JPH1186904A - Organic electrolyte secondary battery - Google Patents

Organic electrolyte secondary battery

Info

Publication number
JPH1186904A
JPH1186904A JP9240805A JP24080597A JPH1186904A JP H1186904 A JPH1186904 A JP H1186904A JP 9240805 A JP9240805 A JP 9240805A JP 24080597 A JP24080597 A JP 24080597A JP H1186904 A JPH1186904 A JP H1186904A
Authority
JP
Japan
Prior art keywords
battery
organic electrolyte
positive electrode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9240805A
Other languages
Japanese (ja)
Inventor
Satoru Fukuoka
悟 福岡
Akira Kuroda
章 黒田
Atsushi Yamano
淳 山野
Takao Nishitani
隆男 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9240805A priority Critical patent/JPH1186904A/en
Publication of JPH1186904A publication Critical patent/JPH1186904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely detect the last period of discharge while preventing the cycle deterioration and suppressing the active generation of lithium in repeated charge and discharge, and provide a battery effective in commodity design by specifying the organic electrolyte per positive electrode active material. SOLUTION: The required quantity of the organic electrolyte of an organic electrolyte secondary battery is regulated to 0.27-0.37 g per 1 g of a positive electrode material. When the organic electrolyte is minimized in the generating process of lithium, lithium ion is hardly moved, the lithium ion penetrated deeply to the positive electrode is hardly desorbed by charge and the quantity of the lithium ion reduced on the negative electrode is thus limited. Consequently, a large quantity of lithium ion cannot be continuously reduced. The state where the lithium ion exceeding the reducing performance of the negative electrode migrates to the negative electrode is eliminated, the negative electrode is made into the more minute state, and activated lithium is hardly generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極活物質として
リチウムもしくはリチウム合金が使用される負極と、正
極活物質としてγ−β相及び/又はβ相の二酸化マンガ
ンが使用される正極と、有機電解液とを備えた有機電解
液二次電池に関する。
The present invention relates to a negative electrode using lithium or a lithium alloy as a negative electrode active material, a positive electrode using γ-β and / or β-phase manganese dioxide as a positive electrode active material, The present invention relates to an organic electrolyte secondary battery provided with an electrolyte.

【0002】[0002]

【従来の技術】上記有機電解液二次電池においては、充
分な充放電サイクル特性を発揮するために、負極活物質
量は正極活物質量に対して3〜4倍使用されており、ま
た、充放電効率の向上を図るべく、薄くて広い極板を採
用することにより、正負極の極板面積の拡大を図ってい
る。
2. Description of the Related Art In the above-mentioned organic electrolyte secondary battery, in order to exhibit sufficient charge / discharge cycle characteristics, the amount of a negative electrode active material is used three to four times as much as the amount of a positive electrode active material. In order to improve the charging and discharging efficiency, a thin and wide electrode plate is employed to increase the area of the positive and negative electrode plates.

【0003】ところで、この種電池の正極活物質とし
て、有機電解液一次電池に用いられるγ−β及び/又は
β相の二酸化マンガンを使用すると、可逆性が低くな
り、しかも活性なリチウム生成が多くて劣化も大きくな
るため実用化には至らない。そこで、この種電池の正極
活物質としては、一般に、リチウムイオンの吸蔵、放出
が容易で、充放電効率を向上させることができるスピン
ネル型マンガン酸化物が用いられていた。
By the way, when γ-β and / or β-phase manganese dioxide used in an organic electrolyte primary battery is used as a positive electrode active material of this type of battery, reversibility is reduced and more active lithium is produced. As a result, the deterioration becomes large, and it cannot be put to practical use. Therefore, as a positive electrode active material of this type of battery, a spinel-type manganese oxide that can easily insert and extract lithium ions and improve charge and discharge efficiency has been generally used.

【0004】ところが、正極活物質としてスピンネル型
マンガン酸化物を使用した電池においては、充放電サイ
クルが進行しても、殆ど放電電圧が低下しない。これに
対して、正極活物質としてγ−β及び/又はβ相の二酸
化マンガンを使用した電池では、充放電が容易でないと
いうことから、充放電サイクルが進むにつれて充放電収
支のわずかな差が累積し、放電深度が進行して、放電電
圧が徐々に低下する。このことは、放電電圧を測定する
ことにより放電深度の進行を容易に測定できる、即ち、
確実に放電末期を検知できるという特性を有する。この
ように、放電末期を検知できるということは、商品設計
上、大きな価値がある。
However, in a battery using a spinel-type manganese oxide as the positive electrode active material, the discharge voltage hardly decreases even if the charge / discharge cycle proceeds. On the other hand, in a battery using γ-β and / or β-phase manganese dioxide as the positive electrode active material, charging and discharging are not easy, so that a slight difference in charging and discharging balance accumulates as the charging and discharging cycle proceeds. As the depth of discharge advances, the discharge voltage gradually decreases. This means that the progress of the depth of discharge can be easily measured by measuring the discharge voltage, that is,
It has the characteristic that the end of discharge can be reliably detected. The fact that the end of discharge can be detected is of great value in product design.

【0005】但し、正極活物質にγ−β相及び/又はβ
相二酸化マンガンを使用する一方、負極活物質にリチウ
ムもしくはリチウム合金を使用した場合には、上述の如
く、充放電を繰り返した場合のサイクル劣化と、活性な
リチウム生成の抑制とが必要となる。特に、上記活性な
リチウムが生成、蓄積されると、電池が高温にさらされ
た場合には、燃焼面積が増大するということに起因し
て、発火時の燃焼レベルが高くなり、しかも低温で発火
若しくは物理的に大きな衝撃で発火する可能性が高くな
るという問題が生じる。したがって、活性なリチウムの
生成を抑制することは極めて重要となる。
[0005] However, the γ-β phase and / or β
In the case where lithium or lithium alloy is used as the negative electrode active material while using phase manganese dioxide, as described above, it is necessary to suppress cycle deterioration when charge and discharge are repeated and to suppress active lithium generation. In particular, when the active lithium is generated and accumulated, when the battery is exposed to a high temperature, the combustion area at the time of ignition increases due to an increase in the combustion area, and the ignition occurs at a low temperature. Alternatively, there is a problem that the possibility of ignition by a physically large impact increases. Therefore, it is extremely important to suppress the generation of active lithium.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
課題を考慮してなされたものであって、充放電を繰り返
した場合のサイクル劣化防止と、活性なリチウムの生成
の抑制とを図りつつ、放電末期を確実に検知できること
により商品設計上で極めて有効な有機電解液二次電池を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems, and aims at preventing cycle deterioration when charging and discharging are repeated and suppressing active lithium generation. Another object of the present invention is to provide an organic electrolyte secondary battery that is extremely effective in product design by being able to reliably detect the end of discharge.

【0007】[0007]

【課題を解決するための手段】本発明者らは、二酸化マ
ンガンの格子内に侵入したリチウムイオンが、どの反応
率において可逆性に優れているかを調査するとともに、
その反応によって活性リチウムの生成量を支配している
要因を探った。その結果、γ−β相及び/又はβ相の二
酸化マンガンを正極活物質として使用した電池を用い、
理論容量に対して各種の放電深度まで充放電を繰り返
し、劣化の程度を比較調査したところ、通常の電解液量
であれば、放電深度が30%未満であれば一応の可逆性
を有することが確認できた。但し、充放電を繰り返す
と、放電深度が深くなるにつれて、活性リチウムの蓄積
が速くなり、二次電池の使用範囲が狭まくなる。
Means for Solving the Problems The inventors of the present invention investigated at which reaction rate lithium ions invading the lattice of manganese dioxide had excellent reversibility,
The factors controlling the amount of active lithium produced by the reaction were investigated. As a result, using a battery using γ-β and / or β-phase manganese dioxide as the positive electrode active material,
Charge and discharge were repeated to various discharge depths with respect to the theoretical capacity, and the degree of degradation was compared and investigated. It could be confirmed. However, when charge / discharge is repeated, as the depth of discharge increases, the accumulation of active lithium becomes faster, and the range of use of the secondary battery becomes narrower.

【0008】このようなことを考慮して、当該活性リチ
ウムの生成速度を抑えられないかと種々検討したとこ
ろ、電池内の電解液量を一定量減らすと、充放電による
サイクル劣化が緩和され、活性なリチウムの蓄積スピー
ドも落ちることがわかった。そこで、本発明は、負極活
物質としてリチウムもしくはリチウム合金が使用される
負極と、正極活物質としてγ−β相及び/又はβ相の二
酸化マンガンが使用される正極と、有機電解液とを備え
た有機電解液二次電池において、上記有機電解液の量
が、上記正極活物質1gあたり0.27〜0.37gに
規制されることを特徴とする。
In consideration of the above, various investigations have been made as to whether or not the generation rate of the active lithium can be suppressed. When the amount of the electrolytic solution in the battery is reduced by a certain amount, the cycle deterioration due to charge and discharge is alleviated, and the activity is reduced. It turned out that the speed of lithium accumulation also dropped. Therefore, the present invention includes a negative electrode in which lithium or a lithium alloy is used as a negative electrode active material, a positive electrode in which γ-β and / or β-phase manganese dioxide is used as a positive electrode active material, and an organic electrolyte. In the organic electrolyte secondary battery, the amount of the organic electrolyte is regulated to 0.27 to 0.37 g per 1 g of the positive electrode active material.

【0009】このような構成とすれば、上記目的が達成
されるのは、以下に示す理由によるものと考えられる。
即ち、γ−β相及び/又はβ相の二酸化マンガンを使用
した電池では、充放電サイクルが進むにつれて、γ−β
相及び/又はβ相の二酸化マンガンの格子が崩れて膨張
する。このため、正極膨張が大きくなり、周囲の電解液
が吸収される。特に、格子が崩れ易い二次電池では、格
子が崩れにくい一次電池の放電に比べて、放電深度に対
する膨張が大きくなり始める時期が早くなり、その度合
いも大きくなる。したがって、サイクル劣化による活性
なリチウムの生成を防止するには、活性なリチウムが生
成しないように、当該生成過程で消費される有機溶媒を
制限することが必要となる。具体的には、リチウムの生
成過程において、電解液が少なければ(上記の如く、有
機電解液の量を、正極活物質1gあたり0.27〜0.
37gに規制すれば)リチウムイオンの移動が難しくな
り(正極の奥に入りこんだリチウムイオンの充電による
離脱は容易でなくなり)、負極上に還元されるリチウム
イオンの量は制限される結果、多量のリチウムイオンが
連続して還元できないこととなる。
With such a configuration, it is considered that the above-mentioned object is achieved for the following reasons.
That is, in a battery using γ-β phase and / or β-phase manganese dioxide, γ-β
The lattice of manganese dioxide in the phase and / or β phase collapses and expands. For this reason, the positive electrode expansion increases, and the surrounding electrolytic solution is absorbed. In particular, in a secondary battery in which the lattice is easily collapsed, the timing at which the expansion with respect to the depth of discharge starts to increase is earlier than that in a primary battery in which the lattice is not easily collapsed, and the degree of the expansion is also greater. Therefore, in order to prevent generation of active lithium due to cycle deterioration, it is necessary to limit the organic solvent consumed in the generation process so that active lithium is not generated. Specifically, in the process of producing lithium, if the amount of the electrolyte is small (as described above, the amount of the organic electrolyte is set to 0.27 to 0.1 per 1 g of the positive electrode active material).
The transfer of lithium ions becomes difficult (if it is regulated to 37 g) (it is not easy to remove lithium ions that have entered the inside of the positive electrode due to charging), and the amount of lithium ions reduced on the negative electrode is limited. Lithium ions cannot be continuously reduced.

【0010】つまり、負極の還元能力を超えるリチウム
イオンが負極に向かう事態はなくなることになるので、
負極はより緻密な状態となり、この結果、還元時におけ
る多孔且つ不均一で比表面積の多い活性リチウムは生成
しにくくなる。以上のことから、電池内において反応に
富む活性なリチウムが蓄積されるスピードが低下する。
特に、正極活物質量に対して浅い深度で充放電する場合
には、サイクル劣化を充分に抑制することができる。
In other words, lithium ions exceeding the reducing ability of the negative electrode do not go to the negative electrode.
The negative electrode is in a more dense state, and as a result, it is difficult to generate porous, non-uniform, active lithium having a large specific surface area during reduction. As described above, the speed at which active lithium rich in the reaction is accumulated in the battery is reduced.
In particular, when charging and discharging are performed at a shallow depth relative to the amount of the positive electrode active material, cycle deterioration can be sufficiently suppressed.

【0011】そこで、請求項2記載の発明は、請求項1
記載の発明において、充電することなく放電できる放電
量が、電池正極活物質の理論容量の50%以内に規制さ
れることを特徴とする。このように規制することによ
り、上記の効果が一層発揮されることになる。
Therefore, the invention according to claim 2 is based on claim 1
In the invention described above, a discharge amount that can be discharged without charging is regulated to be within 50% of a theoretical capacity of the battery positive electrode active material. By regulating in this way, the above-mentioned effect is further exhibited.

【0012】また、請求項3記載の発明は、請求項1又
は2記載の発明において、電解液が、導電性の溶媒と電
解液の粘度を低くするための溶媒とを含むことを特徴と
する。このような構成とすれば、導電性の溶媒によって
電解液の導電性の向上を図ることができ、且つ電解液の
粘度を低くするための溶媒によってイオンの運搬性を向
上させることができる。
According to a third aspect of the present invention, in the first or second aspect, the electrolytic solution contains a conductive solvent and a solvent for lowering the viscosity of the electrolytic solution. . With such a configuration, the conductivity of the electrolytic solution can be improved by the conductive solvent, and the ion transportability can be improved by the solvent for reducing the viscosity of the electrolytic solution.

【0013】また、請求項4記載の発明は、請求項3記
載の発明において、導電性の溶媒は、エチレンカーボネ
ート、ブチレンカーボネート及びプロピレンカーボネー
トから選択される1以上の溶媒であることを特徴とす
る。また、請求項5記載の発明は、請求項3記載の発明
において、電解液の粘度を低くするための溶媒は、ジメ
トキシエタン、及び/又は1,3ジオキソランから成る
ことを特徴とする。
According to a fourth aspect of the present invention, in the third aspect, the conductive solvent is at least one solvent selected from ethylene carbonate, butylene carbonate and propylene carbonate. . The invention according to claim 5 is characterized in that, in the invention according to claim 3, the solvent for lowering the viscosity of the electrolytic solution comprises dimethoxyethane and / or 1,3 dioxolane.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を、以下に説
明する。先ず、正極活物質としてのγ−β相及びβ相の
二酸化マンガンと、導電剤としての人造黒鉛と、結着剤
としてのテトラフルオロエチレンとを重量比で、86:
9:5の割合で混合して正極合剤を作製した後、この正
極合剤をシート化する。次に、これを芯体の両面に配置
し、圧延、切断した後、200℃で2時間熱処理するこ
とにより水分を蒸発させて正極(幅27mm、長さ18
5mm、厚み0.42mm、理論容量1532mAh)
を作製した。次いで、正極の一部の活物質層を剥離して
芯体を露出させた後、当該露出部に正極タブを接続し
た。
Embodiments of the present invention will be described below. First, manganese dioxide in the γ-β and β phases as a positive electrode active material, artificial graphite as a conductive agent, and tetrafluoroethylene as a binder in a weight ratio of 86:
After mixing at a ratio of 9: 5 to produce a positive electrode mixture, this positive electrode mixture is formed into a sheet. Next, this was placed on both sides of the core, rolled and cut, and then heat-treated at 200 ° C. for 2 hours to evaporate water and to form a positive electrode (width 27 mm, length 18
(5 mm, thickness 0.42 mm, theoretical capacity 1532 mAh)
Was prepared. Next, after exposing a part of the active material layer of the positive electrode to expose the core, a positive electrode tab was connected to the exposed portion.

【0015】これと並行して、金属ナトリウム板を切断
することにより、負極(幅25mm、長さ160mm、
厚み0.20mm、理論容量1650mAh)を作製し
た後、この負極に負極タブを接続した。
At the same time, by cutting the metal sodium plate, the negative electrode (width 25 mm, length 160 mm,
After producing a thickness of 0.20 mm and a theoretical capacity of 1650 mAh), a negative electrode tab was connected to the negative electrode.

【0016】この後、上記正極と上記負極とを、セパレ
ータを介して、渦巻き状に巻回して渦巻き電極体を作製
した後、これを電池外装缶内に挿入し、更に上記負極タ
ブの他端を封口体に溶接する一方、上記正極タブの他端
を上記電池外装缶の缶底に溶接した。しかる後、上記電
池外装缶に溝入れ加工して、当該溝部にガスケットを嵌
め込んだ後、電池外装缶内に電解液を注入し、更に電池
外装缶内の開口部に封口体を押し込んでカシメることに
より、電池を作製した。
Thereafter, the positive electrode and the negative electrode are spirally wound through a separator to form a spiral electrode body, which is inserted into a battery outer can, and further, the other end of the negative electrode tab is formed. Was welded to the sealing body, and the other end of the positive electrode tab was welded to the bottom of the battery outer can. Thereafter, a groove is formed in the battery outer can, a gasket is fitted into the groove, an electrolytic solution is injected into the battery outer can, and a sealing body is further pushed into the opening in the battery outer can by swaging. Thus, a battery was produced.

【0017】尚、上記電解液の注入量は2.0gであ
り、上記正極合剤中の二酸化マンガン1g当たり、電解
液が0.368gとなるように構成されている。また、
電解液は、エチレンカーボネートと、ブチレンカーボネ
ートと、ジメトキシエタンとを容積比で20:20:6
0の割合で混合した混合溶媒に、溶質としてのLiCF
3 SO3 を0.6M(モル/リットル)溶解させたもの
を用いた。但し、電解液の溶質としては上記LiCF3
SO3 に限定されるものではなく、LiPF6 、又はL
iClO4 等を用いることができる。
The amount of the electrolyte injected is 2.0 g.
Per gram of manganese dioxide in the positive electrode mixture,
The liquid is configured to be 0.368 g. Also,
The electrolyte solution is ethylene carbonate and butylene carbonate.
And dimethoxyethane in a volume ratio of 20: 20: 6.
LiCF as a solute in a mixed solvent mixed at a ratio of 0
ThreeSOThree0.6M (mol / liter) dissolved
Was used. However, the above-mentioned LiCF is used as the solute of the electrolytic solution.Three
SOThreeIs not limited to LiPF6Or L
iCLOFourEtc. can be used.

【0018】[0018]

【実施例】【Example】

〔実施例1〕実施例1としては、上記発明の実施の形態
に示した有機電解液二次電池を用いた。このようにして
作製した電池を、以下本発明電池A1と称する。
[Example 1] In Example 1, the organic electrolyte secondary battery described in the above embodiment of the present invention was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.

【0019】〔実施例2〕電解液の注入量を1.7g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.313gとなる)とする他は、上記実施例1と同様
にして電池を作製した。このようにして作製した電池
を、以下本発明電池A2と称する。
Example 2 The amount of the electrolyte injected was 1.7 g.
A battery was fabricated in the same manner as in Example 1 except that the amount of the electrolyte was 0.313 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Battery A2 of the invention.

【0020】〔実施例3〕電解液の注入量を1.5g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.276gとなる)とする他は、上記実施例1と同様
にして電池を作製した。このようにして作製した電池
を、以下本発明電池A3と称する。
Example 3 The amount of electrolyte injected was 1.5 g
A battery was fabricated in the same manner as in Example 1 except that the amount of the electrolyte was 0.276 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Battery A3 of the invention.

【0021】〔実施例4〕電解液として、プロピレンカ
ーボネートと、ジメトキシエタンとを容積比で50:5
0の割合で混合した混合溶媒に、溶質としてのLiCF
3 SO3 を0.6M(モル/リットル)溶解させたもの
を用いる他は、上記実施例2と同様にして電池を作製し
た。このようにして作製した電池を、以下本発明電池A
4と称する。
Example 4 As an electrolytic solution, propylene carbonate and dimethoxyethane were used in a volume ratio of 50: 5.
LiCF as a solute in a mixed solvent mixed at a ratio of 0
A battery was fabricated in the same manner as in Example 2 except that 3 SO 3 was used in which 0.6 M (mol / liter) was dissolved. The battery fabricated in this manner is hereinafter referred to as Battery A of the present invention.
No. 4.

【0022】〔実施例5〕電解液として、1,3ジオキ
ソランと、ジメトキシエタンとを容積比で50:50の
割合で混合した混合溶媒に、溶質としてのLiCF3
3 を0.6M(モル/リットル)溶解させたものを用
いる他は、上記実施例2と同様にして電池を作製した。
このようにして作製した電池を、以下本発明電池A5と
称する。
Example 5 As a liquid electrolyte, 1,3 dioxolane and dimethoxyethane were mixed at a volume ratio of 50:50 in a mixed solvent of LiCF 3 S as a solute.
O 3 except for using those dissolved 0.6M (mol / l) and has a battery was fabricated in the same manner as in Example 2.
The battery fabricated in this manner is hereinafter referred to as Battery A5 of the invention.

【0023】〔比較例1〕電解液の注入量を2.2g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.404gとなる)とする他は、上記実施例1と同様
にして電池を作製した。このようにして作製した電池
を、以下比較電池X1と称する。
Comparative Example 1 The injection amount of the electrolyte was 2.2 g.
A battery was fabricated in the same manner as in Example 1 except that the amount of the electrolytic solution was 0.404 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X1.

【0024】〔比較例2〕電解液の注入量を1.3g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.239gとなる)とする他は、上記実施例1と同様
にして電池を作製した。このようにして作製した電池
を、以下比較電池X2と称する。
Comparative Example 2 The injection amount of the electrolyte was 1.3 g.
A battery was produced in the same manner as in Example 1 except that the amount of the electrolyte was 0.239 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X2.

【0025】〔比較例3〕電解液の注入量を2.2g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.404gとなる)とする他は、上記実施例4と同様
にして電池を作製した。このようにして作製した電池
を、以下比較電池X3と称する。
Comparative Example 3 The injection amount of the electrolyte was 2.2 g.
A battery was fabricated in the same manner as in Example 4 except that the amount of the electrolytic solution was 0.404 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X3.

【0026】〔比較例4〕電解液の注入量を2.2g
(正極合剤中の二酸化マンガン1g当たり、電解液が
0.404gとなる)とする他は、上記実施例5と同様
にして電池を作製した。このようにして作製した電池
を、以下比較電池X4と称する。ここで、理解の容易化
を図るために、上記本発明電池A1〜A5及び比較電池
X1〜X4における、電解液の組成と二酸化マンガン1
g当たりの電解液量とを下記表1に示す。
[Comparative Example 4] The injection amount of the electrolytic solution was 2.2 g.
A battery was fabricated in the same manner as in Example 5 except that the amount of the electrolytic solution was 0.404 g per 1 g of manganese dioxide in the positive electrode mixture. The battery fabricated in this manner is hereinafter referred to as Comparative Battery X4. Here, in order to facilitate understanding, the composition of the electrolytic solution and the manganese dioxide 1 in the batteries A1 to A5 of the present invention and the comparative batteries X1 to X4 were described.
The amount of electrolyte per g is shown in Table 1 below.

【0027】[0027]

【表1】 [Table 1]

【0028】〔実験1〕上記本発明電池A1〜A5と比
較電池X1〜X4とにおいて、下記の条件で充放電させ
て、総放電量が12000mAhとなるまでサイクル試
験を行った後、試験終了後の電池を恒温槽内で昇温させ
(室温から5℃/分の速度で200℃まで昇温)、発火
時点の温度を測定したので、その結果を下記表2に示
す。 充電条件:電流1.2Aで3秒ON/7秒OFFという
連続パルスを500回印加して放電(放電量が正極活物
質の理論容量の約50%に相当) 充電条件:電流60mAで電池電圧3.2Vまで充電
[Experiment 1] The batteries A1 to A5 of the present invention and the comparative batteries X1 to X4 were charged and discharged under the following conditions to perform a cycle test until the total discharge amount reached 12000 mAh. Was heated in a thermostat (from room temperature to 200 ° C. at a rate of 5 ° C./min), and the temperature at the time of ignition was measured. The results are shown in Table 2 below. Charging conditions: Discharge by applying a continuous pulse of 3 seconds ON / 7 seconds OFF at a current of 1.2 A 500 times (discharge amount corresponds to about 50% of the theoretical capacity of the positive electrode active material). Charging condition: battery voltage at a current of 60 mA Charge up to 3.2V

【0029】[0029]

【表2】 [Table 2]

【0030】上記表2から明らかなように、電解液の量
が少ない程、電池の発火温度が高くなっていることが認
められる。したがって、電池の安全性の観点からは電解
液は少ない方が望ましい。尚、比較電池X1、X3、X
4ではリチウムの融点温度(180℃)を下回る温度で
発火していることから、これらの電池においては活性な
リチウムが多量に蓄積されているものと考えられる。
As is clear from Table 2, it can be seen that the smaller the amount of the electrolyte, the higher the ignition temperature of the battery. Therefore, from the viewpoint of battery safety, it is desirable that the amount of the electrolyte is small. The comparative batteries X1, X3, X
In No. 4, since ignition occurred at a temperature lower than the melting point temperature of lithium (180 ° C.), it is considered that a large amount of active lithium was accumulated in these batteries.

【0031】〔実験2〕上記本発明電池A1〜A3と比
較電池X1、X2とにおいて、室温且つ負荷200Ωで
電池電圧が2.0Vになるまで放電したときの放電容量
を調べたので、その結果を下記表3に示す。
[Experiment 2] With respect to the batteries A1 to A3 of the present invention and the comparative batteries X1 and X2, the discharge capacities when the battery was discharged at room temperature and a load of 200Ω until the battery voltage reached 2.0 V were examined. Are shown in Table 3 below.

【0032】[0032]

【表3】 [Table 3]

【0033】上記表3から明らかなように、電解液の量
が余りに少ない比較電池X2では放電容量が著しく低下
していることが認められる。したがって、放電容量の増
大を図るという観点からは電解液は多い方が望ましい。
上記実験1及び実験2より、電池の安全性を確保しつつ
放電容量の増大を図るためには、二酸化マンガン1g当
たりの電解液量は本発明電池A1〜A3に示す範囲
(0.276g〜0.368g)である必要がある。但
し、本発明者らが再度実験したところ、二酸化マンガン
1g当たりの電解液量は0.27g〜0.37gの範囲
であれば、同様の効果があることを実験により確認して
いる。
As is clear from Table 3, it is recognized that the discharge capacity of the comparative battery X2 in which the amount of the electrolyte is too small is significantly reduced. Therefore, from the viewpoint of increasing the discharge capacity, it is desirable that the amount of the electrolyte is large.
From the above Experiments 1 and 2, in order to increase the discharge capacity while ensuring the safety of the battery, the amount of the electrolytic solution per 1 g of manganese dioxide should be in the range shown in the batteries A1 to A3 of the present invention (0.276 g to 0). .368 g). However, when the present inventors conducted an experiment again, it was confirmed by an experiment that if the amount of the electrolytic solution per 1 g of manganese dioxide was in the range of 0.27 g to 0.37 g, the same effect was obtained.

【0034】〔実験3〕上記本発明電池A1〜A3と比
較電池X1とにおいて、連続パルスを600回印加して
放電(放電量が正極活物質の理論容量の約60%に相
当)するという条件を除き上記実験1と同一の条件で充
放電させてサイクル試験を行った後、試験終了後の電池
を恒温槽内で昇温させ(昇温条件も実験1と同じ)、各
電池の発火時点の温度を測定したので、その結果を下記
表4に示す。
[Experiment 3] In the batteries A1 to A3 of the present invention and the comparative battery X1, a continuous pulse was applied 600 times to discharge (the discharge amount corresponds to about 60% of the theoretical capacity of the positive electrode active material). After performing a cycle test by charging and discharging under the same conditions as in Experiment 1 except for the above, the batteries after the test were heated in a constant temperature bath (the temperature rising conditions were also the same as in Experiment 1), and the ignition timing of each battery Was measured, and the results are shown in Table 4 below.

【0035】[0035]

【表4】 [Table 4]

【0036】上記表4から明らかなように、深度が大な
る放電を行った場合には、電解液の量を制限しても発火
温度が低くなっていることが認められる。したがって、
深度が大なる条件下で電池の充放電を行うのは望ましく
ない。具体的には、放電量が正極活物質の理論容量の約
50%に相当するまでで放電を終了させるのが望まし
い。
As is evident from Table 4, when a discharge with a large depth was performed, the ignition temperature was low even when the amount of the electrolyte was restricted. Therefore,
It is not desirable to charge and discharge the battery under the condition that the depth is large. Specifically, it is desirable to terminate the discharge until the discharge amount corresponds to about 50% of the theoretical capacity of the positive electrode active material.

【0037】[0037]

【発明の効果】以上で説明したように本発明によれば、
充放電を繰り返した場合のサイクル劣化防止と、活性な
リチウム生成の抑制とを図ることにより、電池の性能と
安全性とを図ることができ、且つ放電末期を検知できる
ことにより商品設計上で極めて有効な有機電解液二次電
池を提供することができるという効果を奏する。
According to the present invention as described above,
By preventing cycle deterioration when charging and discharging are repeated and suppressing active lithium generation, battery performance and safety can be improved, and the end of discharge can be detected, which is extremely effective in product design. It is possible to provide an organic electrolyte secondary battery with an excellent effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西谷 隆男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Nishitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質としてリチウムもしくはリチ
ウム合金が使用される負極と、正極活物質としてγ−β
相及び/又はβ相の二酸化マンガンが使用される正極
と、有機電解液とを備えた有機電解液二次電池におい
て、 上記有機電解液の量が、上記正極活物質1gあたり0.
27〜0.37gに規制されることを特徴とする有機電
解液二次電池。
1. A negative electrode using lithium or a lithium alloy as a negative electrode active material, and γ-β as a positive electrode active material.
In an organic electrolyte secondary battery including a positive electrode in which a manganese dioxide in a β-phase and / or a β-phase is used, and an organic electrolyte, the amount of the organic electrolyte is 0.1 to 1 g of the positive electrode active material.
An organic electrolyte secondary battery characterized by being regulated to 27 to 0.37 g.
【請求項2】 充電することなく放電できる放電量が、
電池正極活物質の理論容量の50%以内に規制される、
請求項1記載の有機電解液二次電池。
2. The discharge amount that can be discharged without charging is:
Regulated within 50% of the theoretical capacity of the battery cathode active material,
The organic electrolyte secondary battery according to claim 1.
【請求項3】 上記電解液が、導電性の溶媒と電解液の
粘度を低くするための溶媒とを含む、請求項1又は2記
載の有機電解液二次電池。
3. The organic electrolyte secondary battery according to claim 1, wherein the electrolyte contains a conductive solvent and a solvent for reducing the viscosity of the electrolyte.
【請求項4】 上記導電性の溶媒は、エチレンカーボネ
ート、ブチレンカーボネート及びプロピレンカーボネー
トから選択される1以上の溶媒である、請求項3記載の
有機電解液二次電池。
4. The organic electrolyte secondary battery according to claim 3, wherein the conductive solvent is at least one solvent selected from ethylene carbonate, butylene carbonate, and propylene carbonate.
【請求項5】 上記電解液の粘度を低くするための溶媒
は、ジメトキシエタン、及び/又は1,3ジオキソラン
から成る、請求項3記載の有機電解液二次電池。
5. The organic electrolyte secondary battery according to claim 3, wherein the solvent for lowering the viscosity of the electrolyte comprises dimethoxyethane and / or 1,3 dioxolane.
JP9240805A 1997-09-05 1997-09-05 Organic electrolyte secondary battery Pending JPH1186904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9240805A JPH1186904A (en) 1997-09-05 1997-09-05 Organic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9240805A JPH1186904A (en) 1997-09-05 1997-09-05 Organic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1186904A true JPH1186904A (en) 1999-03-30

Family

ID=17064958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9240805A Pending JPH1186904A (en) 1997-09-05 1997-09-05 Organic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1186904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939207B2 (en) * 2003-12-18 2011-05-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939207B2 (en) * 2003-12-18 2011-05-10 Sanyo Electric Co., Ltd. Non-aqueous electrolyte lithium ion secondary cell with improved cycle characteristics and method for fabricating the same

Similar Documents

Publication Publication Date Title
TWI269472B (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
CN100449850C (en) Lithium secondary battery
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
KR930000426B1 (en) Secondary battery of lithium
JPH09213348A (en) Non-aqueous electrolyte battery
US7407725B2 (en) Non-aqueous electrolyte secondary cell
JP4651432B2 (en) Lithium secondary battery
JPH1186904A (en) Organic electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3054511B2 (en) Non-aqueous secondary battery
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JPH1154132A (en) Nonaqueous electrolyte battery
JP3267867B2 (en) Organic electrolyte lithium secondary battery
JPH0495362A (en) Nonaqueous electrolytic battery
JP2000173653A (en) Nonaqueous electrolyte battery
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JP3358482B2 (en) Lithium secondary battery
WO2021192440A1 (en) Lithium primary battery and non-aqueous electrolyte for lithium primary battery
JP3773744B2 (en) Flat type non-aqueous electrolyte secondary battery
JP2775754B2 (en) Non-aqueous electrolyte secondary battery
JPH10255852A (en) Charging-discharging method of nonaqueous electrolyte secondary battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JP2001023697A (en) Nonaqueous electrolyte secondary battery
JP2798991B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601