JPH1180296A - Gel form polymer electrolyte - Google Patents

Gel form polymer electrolyte

Info

Publication number
JPH1180296A
JPH1180296A JP9246369A JP24636997A JPH1180296A JP H1180296 A JPH1180296 A JP H1180296A JP 9246369 A JP9246369 A JP 9246369A JP 24636997 A JP24636997 A JP 24636997A JP H1180296 A JPH1180296 A JP H1180296A
Authority
JP
Japan
Prior art keywords
powder
polymer electrolyte
electrolyte
sheet
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9246369A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9246369A priority Critical patent/JPH1180296A/en
Publication of JPH1180296A publication Critical patent/JPH1180296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gel form polymer electrolyte which has a high lithium ion conductivity at room temperature of 1 mS/cm or more and is thermally and chemically stable and has an electrochemical stability having difficulty in forming a high resistance passive state membrane and can be processed into a 100 μm-thick thin membrane and has sufficient adhesion and viscoelasticity to integrate and retain powdered particles of an electrode material. SOLUTION: A gel form polymer electrolyte is obtained by gelatinizing (B) an aprotic organic solvent dissolving a lithium salt with (A) a thermoplastic elastomer having a block or graft copolymer of a vinylidene fluoride polymer segment and an acrylonitrile polymer segment as the main skeleton. Further, the polymer electrolyte comprises (C) an electrical insulating inorganic powder in addition to components (A) and (B).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム一次電
池、リチウム二次電池、電気二重層キャパシタ、エレク
トロクロミックディスプレイ等の電気化学素子に応用す
ることができるゲル状ボリマー電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel-like polymer electrolyte which can be applied to electrochemical devices such as lithium primary batteries, lithium secondary batteries, electric double layer capacitors, and electrochromic displays.

【0002】[0002]

【従来の技術】LiBF4、LiPF6等の塩を溶解した非プロト
ン性有機溶媒からなる有機電解液を、有機高分子化合物
でゲル化あるいは保持して流動性を無くしたゲル状ポリ
マー電解質、いわゆる、ポリマーゲル電解質を用いる
と、見かけは固体状の電池を構成することができる。
2. Description of the Related Art A gel polymer electrolyte in which an aprotic organic solvent in which salts such as LiBF4 and LiPF6 are dissolved is gelled or held with an organic polymer compound to lose fluidity, that is, a so-called polymer When a gel electrolyte is used, an apparently solid battery can be formed.

【0003】このようなポリマーゲル電解質としては例
えば、有機電解液をフッ化ビニリデンと3フッ化エチレ
ンの共重合体で保持したポリマーゲル電解質が特開昭5
8−75779で提案されている。また、有機電解液を
フッ化ビニリデンと6フッ化プロピレンの共重合体で保
持したポリマーゲル電解質が米国特許第5296318
号に提案されている。また、有機電解液をポリアクリロ
ニトリルでゲル化したポリマーゲル電解質が、特開昭5
8−75779で提案されている。さらに、アクリロニ
トリル共重合体でゲル化したポリマーゲル電解質が特開
平7−57713号に提案されている。
As such a polymer gel electrolyte, for example, a polymer gel electrolyte in which an organic electrolytic solution is held by a copolymer of vinylidene fluoride and ethylene trifluoride is disclosed in
8-75779. Further, a polymer gel electrolyte in which an organic electrolytic solution is held by a copolymer of vinylidene fluoride and propylene hexafluoride is disclosed in US Pat. No. 5,296,318.
No. has been proposed. Further, a polymer gel electrolyte obtained by gelling an organic electrolyte with polyacrylonitrile is disclosed in
8-75779. Further, a polymer gel electrolyte gelled with an acrylonitrile copolymer is proposed in Japanese Patent Application Laid-Open No. 7-57713.

【0004】[0004]

【発明が解決しようとする課題】ポリマーゲル電解質に
求められる特性としては、高いイオン伝導性を有し、多
量の有機電解液を保持でき、熱的、化学的に安定で、電
池の動作電圧無いで酸化還元により分解しない電気化学
的な安定性があり、薄いシート状に加工しても十分な機
械強度を有していること、電極に混合して用いられる際
は、電極材料粉末粒子を結着保持する十分な接着性と粘
弾性が必要である。
The characteristics required for the polymer gel electrolyte include high ionic conductivity, a large amount of organic electrolyte can be held, thermal and chemical stability, and no operating voltage of the battery. It has electrochemical stability that does not decompose due to oxidation and reduction, has sufficient mechanical strength even when processed into a thin sheet, and binds the electrode material powder particles when used in an electrode. Sufficient adhesiveness and viscoelasticity for holding and holding are required.

【0005】従来より提案されているポリマーゲル電解
質は、イオン伝導性が低い、薄膜状にした際の機械強度
が不十分、有機電解液を十分保持できない、還元性の金
属リチウムと反応して高抵抗の不働態膜を形成する等の
課題がある。さらに、二次電池の活物質であるLiCoO2
LiMn2O4等の金属酸化物よりなる電極材料と混合した際
酸化分解する、電極材料粉末を結着保持するための接着
性と粘弾性とが不十分である等の課題も有しており、上
記の特性を全て満たすものがないのが現状である。
The conventionally proposed polymer gel electrolytes have low ionic conductivity, insufficient mechanical strength when formed into a thin film, cannot hold an organic electrolytic solution sufficiently, and react with reducing metallic lithium to give high performance. There are problems such as formation of a passive film of resistance. Furthermore, LiCoO 2 which is the active material of the secondary battery,
It also has problems such as decomposition by oxidation when mixed with an electrode material composed of a metal oxide such as LiMn 2 O 4 and insufficient adhesiveness and viscoelasticity for binding and holding the electrode material powder. At present, none of the above characteristics are satisfied.

【0006】本発明が解決しようとする課題は、室温動
作のリチウム一次電池、リチウム二次電池、電気二重層
キャパシタ、エレクトロクロミックディスプレイ等の電
気化学素子に用い実用上十分な特性を発揮することを目
的とし、室温で1mS/cm 以上の高いリチウムイオン伝
導度を有し、熱的化学的に安定で、金属リチウムと接触
しても高抵抗の不働態膜を形成し難い電気化学的な安定
性を有し、厚み100μの薄膜状に加工が可能で、電極
材料粉末を十分に結着保持する接着性と粘弾性とを有す
るゲル状のポリマー電解質を提供することである。
The problem to be solved by the present invention is to exhibit practically sufficient characteristics when used in electrochemical devices such as lithium primary batteries, lithium secondary batteries, electric double layer capacitors, and electrochromic displays which operate at room temperature. The purpose is to have high lithium ion conductivity of 1mS / cm or more at room temperature, thermochemically stable, and electrochemical stability that makes it difficult to form a high-resistance passive film even when in contact with metallic lithium. The present invention is to provide a gel-like polymer electrolyte which can be processed into a thin film having a thickness of 100 μm and has sufficient adhesiveness and viscoelasticity to sufficiently bind and hold the electrode material powder.

【0007】[0007]

【課題を解決するための手段】本発明は、特定の熱可塑
性エラストマーを用いることで上記課題を解決したゲル
状ポリマー電解質を提供する。すなわち、リチウム塩を
溶解した非プロトン性有機溶媒(B)を、フッ化ビニリ
デンポリマーセグメントとアクリロニトリルポリマーセ
グメントのブロックまたはグラフト共重合体を骨格とす
る熱可塑性エラストマー(A)でゲル化して得られるゲ
ル状ポリマー電解質により、上述の課題を解決すること
が出来る。
SUMMARY OF THE INVENTION The present invention provides a gel polymer electrolyte which solves the above-mentioned problems by using a specific thermoplastic elastomer. That is, a gel obtained by gelling an aprotic organic solvent (B) in which a lithium salt is dissolved with a thermoplastic elastomer (A) having a block or graft copolymer of a vinylidene fluoride polymer segment and an acrylonitrile polymer segment as a skeleton. The above-mentioned problems can be solved by the polymer electrolyte.

【0008】さらに、リチウム塩を溶解した非プロトン
性有機溶媒(B)を、フッ化ビニリデンポリマーセグメ
ントとアクリロニトリルポリマーセグメントのブロック
またはグラフト共重合体を骨格とする熱可塑性エラスト
マー(A)でゲル化し、これに電気絶縁性無機粉末
(C)を添加したゲル状ポリマー電解質により、上述の
課題を解決することが出来る。
Further, the aprotic organic solvent (B) in which a lithium salt is dissolved is gelled with a thermoplastic elastomer (A) having a block or graft copolymer of a vinylidene fluoride polymer segment and an acrylonitrile polymer segment as a skeleton, The above-mentioned problem can be solved by the gel polymer electrolyte to which the electrically insulating inorganic powder (C) is added.

【0009】[0009]

【発明の実施の形態】本発明の熱可塑性エラストマー
(A)は通常のブロック共重合またはグラフト共重合に
より得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoplastic elastomer (A) of the present invention can be obtained by ordinary block copolymerization or graft copolymerization.

【0010】その作製方法は、まずメタクリロイル基や
スチリル基等の重合性官能基を片末端あるいは両末端に
有するアクリロニトリル(重合度が200〜600)の
マクロホモモノマー(あるいはマクロコモノマー)を、
通常の官能性連鎖移動剤を用いたラジカル重合反応によ
り合成する。他方、フッ化ビニリデンまたはフッ化ビニ
リデンと共重合可能な6フッ化プロピレン(または4フ
ッ化エチレン)などのモノマーを溶解した溶媒を作製
し、これにアゾイソブチロニトリルなどの重合開始剤を
添加する。最後に上述のマクロホモモノマー(あるいは
コモノマー)をこれに加え、ラジカル重合を行うことで
熱可塑性エラストマー(A)を作製することが出来る。
[0010] The production method is as follows: first, a macro homo monomer (or macro comonomer) of acrylonitrile (polymerization degree: 200 to 600) having a polymerizable functional group such as a methacryloyl group or a styryl group at one end or both ends is prepared.
It is synthesized by a radical polymerization reaction using an ordinary functional chain transfer agent. On the other hand, a solvent is prepared by dissolving a monomer such as vinylidene fluoride or propylene hexafluoride (or ethylene tetrafluoride) copolymerizable with vinylidene fluoride, and a polymerization initiator such as azoisobutyronitrile is added thereto. I do. Finally, the above-mentioned macro homo monomer (or comonomer) is added thereto, and radical polymerization is performed to produce the thermoplastic elastomer (A).

【0011】また、上述の熱可塑性エラストマー(A)
の合成は、フッ化ビニリデンの片末端あるいは両末端に
メタクリロイル基等の重合性官能基を付加したマクロホ
モモノマーあるいはマクロコモノマー(重合度が200
〜600)を、通常の官能性連鎖移動剤を用いたラジカ
ル重合反応により合成したのち、これをアクリロニトリ
ルまたは、アクリロニトリルと共重合可能なアクリル酸
メチル、酢酸ブチル、塩化ビニルなどのビニルモノマー
を溶解した溶媒に添加し、アゾイソブチロニトリルなど
の重合開始剤を添加した後、ラジカル重合反応を行うこ
とで得ることも可能である。
Further, the above-mentioned thermoplastic elastomer (A)
Is synthesized by adding a macro homo monomer or macro comonomer having a polymerizable functional group such as a methacryloyl group to one end or both ends of vinylidene fluoride (having a polymerization degree of 200).
~ 600) was synthesized by a radical polymerization reaction using a normal functional chain transfer agent, and then this was dissolved in acrylonitrile or a vinyl monomer such as methyl acrylate, butyl acetate and vinyl chloride copolymerizable with acrylonitrile. It can also be obtained by adding a polymerization initiator such as azoisobutyronitrile to a solvent and then performing a radical polymerization reaction.

【0012】フッ化ビニリデンと、フッ化ビニリデンと
共重合可能なモノマーの合計量は全モノマー量に対し1
から99モル%であり、またアクリロニトリルと、アク
リロニトリルと共重合可能なモノマーの合計量は全モノ
マー量に対し99〜1モル%であるのが好ましい。
The total amount of vinylidene fluoride and the monomer copolymerizable with vinylidene fluoride is 1 to the total monomer amount.
To 99 mol%, and the total amount of acrylonitrile and monomers copolymerizable with acrylonitrile is preferably 99 to 1 mol% based on the total amount of monomers.

【0013】熱可塑性エラストマー(A)の分子量は、
10万から100万のものが使用可能である。分子量
は、ブロックあるいは共重合の際のモノマー濃度、開始
剤濃度、連鎖移動剤濃度、温度により制御することが可
能である。組成は、仕込みモノマー組成により制御可能
である。
The molecular weight of the thermoplastic elastomer (A) is:
One hundred thousand to one million can be used. The molecular weight can be controlled by the monomer concentration, initiator concentration, chain transfer agent concentration, and temperature at the time of block or copolymerization. The composition can be controlled by the charged monomer composition.

【0014】本発明で用いるリチウム塩を溶解した非プ
ロトン性有機溶媒(B)は、非プロトン性有機溶媒にリ
チウム塩を0.5〜2モル/リットル溶解したものであ
る。溶解するリチウム塩としては、LiClO4、Li
BF4、LiPF6、LiAsF6、LiOSO2CF3
LiN(SO2CF32、Li(SO2CF3)(SO2
49)、LiN(SO2CF3)(SO225)などが
用いられる。非プロトン性有機溶媒としては、プロピレ
ンカーボネート(PC)、エチレンカーボネート(E
C)、ジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)、エチルメチルカーボネート(EM
C)、ジメトキシエタン(DME)、スルホラン(S
F)、テトラハイドロフラン(THF)などが単独であ
るいは混合して用いられる。
The aprotic organic solvent (B) in which a lithium salt is dissolved used in the present invention is a solution in which a lithium salt is dissolved in an aprotic organic solvent in an amount of 0.5 to 2 mol / l. LiClO 4 , Li
BF 4 , LiPF 6 , LiAsF 6 , LiOSO 2 CF 3 ,
LiN (SO 2 CF 3 ) 2 , Li (SO 2 CF 3 ) (SO 2 C
4 F 9), LiN (SO 2 CF 3) (SO 2 C 2 F 5) or the like is used. As aprotic organic solvents, propylene carbonate (PC), ethylene carbonate (E
C), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EM
C), dimethoxyethane (DME), sulfolane (S
F), tetrahydrofuran (THF) or the like is used alone or as a mixture.

【0015】本発明で用いる電気絶縁性無機粉末(C)
としては、アルミナ粉末、シリカ粉末、シリカアルミナ
粉末、チタニア粉末、多孔質ガラス粉末、珪酸アルミニ
ウム、ジルコニア粉末、ゼオライト粉末等、大きさが
0.1μmから数10μmの粉末が用いられる。これら
の粉末は、球状、繊維状、板状、中空体、多孔体のいず
れであってもよい。表面をビニルモノマーの重合体で改
質したものは、特に、高い機械強度を有するゲル状ポリ
マー電解質となる。
The electrically insulating inorganic powder (C) used in the present invention
As the powder, powder having a size of 0.1 μm to several tens μm, such as alumina powder, silica powder, silica alumina powder, titania powder, porous glass powder, aluminum silicate, zirconia powder, and zeolite powder, is used. These powders may be spherical, fibrous, plate-like, hollow, or porous. The one whose surface is modified with a polymer of a vinyl monomer is particularly a gel polymer electrolyte having high mechanical strength.

【0016】熱可塑性エラストマー(A)は、リチウム
塩を溶解した非プロトン性有機溶媒(B)100重量部
に対し、0.5〜20重量部が使用可能であり、そのう
ち特に2重量部から10重量部の範囲で用いると、フレ
キシブルで有機溶媒の浸みだしのないマイナス10℃か
ら80℃まで、形状の安定した優れた信頼性を有するゲ
ル状ポリマー電解質を得ることができる。
The thermoplastic elastomer (A) can be used in an amount of 0.5 to 20 parts by weight, based on 100 parts by weight of the aprotic organic solvent (B) in which the lithium salt is dissolved, and especially 2 to 10 parts by weight. When used in the range of parts by weight, it is possible to obtain a gel polymer electrolyte having a stable shape and excellent reliability from −10 ° C. to 80 ° C. that is flexible and does not exude the organic solvent.

【0017】電気絶縁性無機物質粉末(C)は、熱可塑
性エラストマー(A)とリチウム塩を溶解した非プロト
ン性有機溶媒(B)の合計の重量に対し0.05%から
10%の範囲で使用可能である。この範囲であると、イ
オン伝導度を大きく低下することなく、特に高い機械強
度を有するゲル状ポリマー電解質を得ることができる。
The electrically insulating inorganic substance powder (C) is contained in an amount of 0.05% to 10% with respect to the total weight of the thermoplastic elastomer (A) and the aprotic organic solvent (B) in which a lithium salt is dissolved. Can be used. Within this range, a gel polymer electrolyte having particularly high mechanical strength can be obtained without significantly lowering the ionic conductivity.

【0018】熱可塑性エラストマー(A)の粉末をリチ
ウム塩を溶解した非プロトン性有機溶媒(B)に分散し
た液を、密閉容器で加熱したのち、室温あるいはマイナ
ス20℃の冷凍庫で冷却することでゲル状ポリマー電解
質が得られる。得られたゲル状電解質を熱ローラで圧延
することで好みの厚さ、大きさのシートを得ることがで
きる。また、ゲル状ポリマー電解質と電極活物質とを複
合し、電池の正極あるいは負極を作製には、粉末状の電
極活物質と熱可塑性エラストマー(A)の粉末と必要に
応じて導電剤粉末とを均一に混合し、次に、リチウム塩
を溶解した非プロトン性有機溶媒(B)を添加して混練
する。混練物を加圧下で加熱成形することで複合物の塊
を得る。この塊を、熱プレスローラ等で圧延することで
シート状の電極を得ることができる。あるいは、混合機
を備えた押し出し成形機で均一混合、混練、押し出し成
形することでシート状の電極を得ることもできる。
A liquid obtained by dispersing a powder of the thermoplastic elastomer (A) in an aprotic organic solvent (B) in which a lithium salt is dissolved is heated in a closed container, and then cooled in a freezer at room temperature or minus 20 ° C. A gel polymer electrolyte is obtained. By rolling the obtained gel electrolyte with a hot roller, a sheet having a desired thickness and size can be obtained. Further, in order to form a positive electrode or a negative electrode of a battery by combining a gel polymer electrolyte and an electrode active material, a powdery electrode active material, a thermoplastic elastomer (A) powder, and a conductive agent powder as necessary are used. The mixture is uniformly mixed, and then an aprotic organic solvent (B) in which a lithium salt is dissolved is added and kneaded. A mass of a composite is obtained by subjecting the kneaded material to heat molding under pressure. This lump is rolled with a hot press roller or the like to obtain a sheet-like electrode. Alternatively, a sheet-like electrode can be obtained by uniformly mixing, kneading, and extruding with an extruder equipped with a mixer.

【0019】(実施の形態1)アクリロニトリルモノマ
ー(AN)と酢酸ビニルモノマー(VAc)とメタアク
リル酸モノマーを用いラジカル重合にて平均重合度が4
50、AN/VAcモル比が95/5、メタアクリロイ
ル末端基を有すマクロコモノマーを得た。このマクロコ
モノマーとフッ化ビニリデンモノマー(VdF)をラジ
カル重合することで、フッ化ビニリデン鎖のモノマーユ
ニットの平均繰り返し数が350〜500、フッ化ビニ
リデンの含有量が20モル%、スチレン換算数平均分子
量410,000のブロック共重合体粉末(AN-VAc-VdF
-1)を得た。
(Embodiment 1) An acrylonitrile monomer (AN), a vinyl acetate monomer (VAc) and a methacrylic acid monomer are used to obtain an average degree of polymerization of 4 by radical polymerization.
A macrocomonomer having a methacryloyl end group of 50 and an AN / VAc molar ratio of 95/5 was obtained. By subjecting this macrocomonomer and vinylidene fluoride monomer (VdF) to radical polymerization, the average number of repeating vinylidene fluoride monomer units is 350 to 500, the content of vinylidene fluoride is 20 mol%, and the number average molecular weight in terms of styrene. 410,000 block copolymer powder (AN-VAc-VdF
-1) was obtained.

【0020】次に、ECとEMCを1:3(モル比)に
混合した有機溶媒にLiPF6を1.5モル/リットル
溶解しEC-EMC-LiPF6電解液を得た。
Next, 1.5 mol / l of LiPF 6 was dissolved in an organic solvent in which EC and EMC were mixed at a ratio of 1: 3 (molar ratio) to obtain an EC-EMC-LiPF 6 electrolyte.

【0021】AN-VAc-VdF-1粉末2.5gを、EC-EMC-LiP
F6電解液23gに分散した液をテフロン製の100ml
の密閉容器中で140℃に加熱することで透明な粘性体
を得た後、これを、マイナス20℃に冷却しゲル状ポリ
マー電解質の塊を得た。この塊を、80℃に加熱した熱
プレスローラで圧延し、厚さ80μmのゲル状ポリマー
電解質シート(SPE−A)を得た。得られたシートは
強靱で、柔軟性があり、引っ張り強度0.8kg/5c
mを有していた。室温で30日保存後、電解液の浸みだ
しはなかった。このシートを2x2cmに切断し、厚さ
200μmの金属リチウムで挟んで組み立てたセルにつ
いて周波数10KHz、振幅10mVの交流信号を印加
して測定した伝導度を表1にまとめて示す。伝導度値
は、セルの組立直後、セルを20℃で3ヶ月保存した後
も全く変化なく、金属リチウムとの接触界面は安定して
いる。
2.5 g of AN-VAc-VdF-1 powder was added to EC-EMC-LiP
A solution dispersed in 23 g of F 6 electrolytic solution was made of Teflon 100 ml.
A transparent viscous body was obtained by heating to 140 ° C. in an airtight container, and then cooled to −20 ° C. to obtain a mass of a gel polymer electrolyte. This lump was rolled with a hot press roller heated to 80 ° C. to obtain a gel polymer electrolyte sheet (SPE-A) having a thickness of 80 μm. The resulting sheet is tough, flexible and has a tensile strength of 0.8 kg / 5 c
m. After storage at room temperature for 30 days, there was no seepage of the electrolyte. Table 1 summarizes the conductivity measured by applying an AC signal having a frequency of 10 KHz and an amplitude of 10 mV to a cell assembled by cutting this sheet into 2 × 2 cm and sandwiching it with lithium metal having a thickness of 200 μm. The conductivity value does not change at all immediately after the cell is assembled and after the cell is stored at 20 ° C. for 3 months, and the contact interface with metallic lithium is stable.

【0022】LiCoO2粉末2.5g、アセチレンブ
ラック0.20g、AN-VAc-VdF-1粉末0.15gを均一
に混合した粉体に、EC-EMC-LiPF6電解液を1.5g添加
し、混練してフレーク状の正極組成物を得た。 この正
極組成物を電解液がしみ出さない圧力で加圧成形し直径
1cmのペレットとした。ペレットを内径が1.1cm
のテフロン製のシリンダー内に空間がほとんど残らない
ように密閉し、140℃で1時間加熱した。このペレッ
トを、80℃に加熱した熱プレスローラで圧延し、厚さ
105μmの正極組成物シートを得た。得られたシート
を厚さ20μmのアルミ箔に熱プレスローラで熱圧着し
てアルミ箔をあわせた厚みが120μmの正極−Aを得
た。
To a powder obtained by uniformly mixing 2.5 g of LiCoO 2 powder, 0.20 g of acetylene black, and 0.15 g of AN-VAc-VdF-1 powder, 1.5 g of EC-EMC-LiPF6 electrolyte was added. The mixture was kneaded to obtain a flake-shaped positive electrode composition. This positive electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, to give a pellet having a diameter of 1 cm. Pellets with an inner diameter of 1.1 cm
And heated at 140 ° C. for 1 hour. The pellet was rolled with a hot press roller heated to 80 ° C. to obtain a positive electrode composition sheet having a thickness of 105 μm. The obtained sheet was thermocompression-bonded to a 20-μm-thick aluminum foil with a hot press roller to obtain a 120-μm-thick positive electrode-A including the aluminum foil.

【0023】2500℃で黒鉛化したメソフェーズマイ
クロビーズカーボン粉末2.5g、アセチレンブラック
0.25g、AN-VAc-VdF-1粉末0.20gを均一に混合
した粉末に、EC-EMC-LiPF6電解液を2.0g添加し、混
練してフレーク状の負極組成物を得た。この負極組成物
を電解液がしみ出さない圧力で加圧成形し直径1cmの
ペレットとした。ペレットを内径が1.1cmのテフロ
ン製のシリンダー内に空間がほとんど残らないように密
閉し、140℃で1時間加熱した。このペレットを、8
0℃に加熱した熱プレスローラで圧延し、厚さ105μ
mの負極組成物シートを得た。得られたシートを厚さ2
0μmのアルミ箔に熱プレスローラで熱圧着してアルミ
箔をあわせた厚みが120μmの負極−Aを得た。
An EC-EMC-LiPF 6 electrolytic solution was added to a powder obtained by uniformly mixing 2.5 g of mesophase microbead carbon powder graphitized at 2500 ° C., 0.25 g of acetylene black, and 0.20 g of AN-VAc-VdF-1 powder. 2.0 g of the liquid was added and kneaded to obtain a flake-shaped negative electrode composition. The negative electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, to form a pellet having a diameter of 1 cm. The pellet was sealed in a Teflon cylinder having an inner diameter of 1.1 cm so that almost no space was left, and heated at 140 ° C. for 1 hour. This pellet is
Rolled by hot press roller heated to 0 ° C, thickness 105μ
m of the negative electrode composition sheet was obtained. The thickness of the obtained sheet is 2
A negative electrode A having a thickness of 120 μm was obtained by thermocompression bonding to a 0 μm aluminum foil with a hot press roller.

【0024】SPE−Aを正極−Aと負極−Aの間に挟
んで、熱プレスローラで加熱圧着したのち、3層となっ
たシートを2x2cmの大きさに裁断して得られたセル
を、チタン箔電極リードを備え、ポリエチレン/アルミ
箔/ポリエチレンの3層よるなるアルミラミネートシー
トよりなる電池パッケージ内に真空封入して試験電池−
Aを得た。 試験電池−Aを、20℃で、1mAの一定
電流値で、充電終了電圧4.20、放電終了電圧3.0
Vで、繰り返し充放電を行った。10サイクル後、5.
2mAhの放電容量(Qdis)が得られ、100サイ
クル後、Qdis=4.9mAh、300サイクル後、
Qdis=4.5mAhの安定した充放電サイクル特性
が得られた。
A cell obtained by sandwiching the SPE-A between the positive electrode-A and the negative electrode-A, applying heat and pressure with a hot press roller, and cutting the three-layered sheet into a size of 2 × 2 cm, Test battery with titanium foil electrode leads, vacuum sealed in a battery package consisting of an aluminum laminated sheet consisting of three layers of polyethylene / aluminum foil / polyethylene
A was obtained. The test battery-A was charged at a constant current value of 1 mA at 20 ° C. with a charge end voltage of 4.20 and a discharge end voltage of 3.0.
At V, charging and discharging were repeatedly performed. After 10 cycles, 5.
A discharge capacity (Qdis) of 2 mAh was obtained, and after 100 cycles, Qdis = 4.9 mAh, after 300 cycles,
A stable charge / discharge cycle characteristic of Qdis = 4.5 mAh was obtained.

【0025】(実施の形態2)フッ化ビニリデンモノマ
ー(VdF)と6フッ化プロピレンモノマー(HFP)
とスチレンモノマーを用いラジカル重合にて平均重合度
が450、VdF/HFPモル比が85/15、スチリ
ル末端基を有すマクロコモノマーを得た。このマクロコ
モノマーとアクリロニトリルモノマー(AN)と酢酸ビ
ニルモノマー(VAc)を、AN/VAc=93/7の
モル比でラジカル重合することで、アクリロニトリルモ
ノマーユニットの平均繰り返し数が約450、アクリロ
ニトリルの含有量が15モル%、スチレン換算数平均分
子量380,000のブロック共重合体粉末(AN-VAc-V
dF-HFP-2)を得た。
(Embodiment 2) Vinylidene fluoride monomer (VdF) and propylene hexafluoride monomer (HFP)
And a styrene monomer to obtain a macrocomonomer having an average degree of polymerization of 450, a VdF / HFP molar ratio of 85/15, and a styryl end group. By subjecting this macro comonomer, acrylonitrile monomer (AN) and vinyl acetate monomer (VAc) to radical polymerization at a molar ratio of AN / VAc = 93/7, the average number of acrylonitrile monomer units is about 450 and the content of acrylonitrile Is a block copolymer powder having a number average molecular weight of 380,000 in terms of styrene (AN-VAc-V
dF-HFP-2) was obtained.

【0026】次に、ECとPCを2:1(モル比)に混
合した有機溶媒にLiBF4を1.5モル/リットル溶
解しEC-PC-LiBF4電解液を得た。
Next, 1.5 mol / l of LiBF 4 was dissolved in an organic solvent in which EC and PC were mixed at a molar ratio of 2: 1 to obtain an EC-PC-LiBF 4 electrolytic solution.

【0027】AN-VAc-VdF-HFP-2粉末2.5gを、EC-PC-
LiBF4電解液23gに分散した液をテフロン製の100
mlの密閉容器中で140℃に加熱することで透明な粘
性体を得た後、これを、マイナス20℃に冷却しゲル状
ポリマー電解質の塊を得た。この塊を、80℃に加熱し
た熱プレスローラで圧延し、厚さ80μmのゲル状ポリ
マー電解質シート(SPE−B)を得た。得られたシー
トは強靱で、柔軟性があり、引っ張り強度1.2kg/
5cmを有していた。室温で30日保存後、電解液の浸
みだしはなかった。このシートを2x2cmに切断し、
厚さ200μmの金属リチウムで挟んで組み立てたセル
について周波数10KHz、振幅10mVの交流信号を
印加して測定した伝導度を表1にまとめて示す。伝導度
値は、セルの組立直後、セルを20℃で3ヶ月保存した
後も全く変化なく、金属リチウムとの接触界面は安定し
ている。
2.5 g of AN-VAc-VdF-HFP-2 powder was added to EC-PC-
A solution dispersed in 23 g of LiBF 4 electrolyte was treated with Teflon 100
After heating to 140 ° C. in a closed container of ml to obtain a transparent viscous body, it was cooled to −20 ° C. to obtain a mass of a gel polymer electrolyte. This lump was rolled with a hot press roller heated to 80 ° C. to obtain a gel polymer electrolyte sheet (SPE-B) having a thickness of 80 μm. The resulting sheet is tough, flexible and has a tensile strength of 1.2 kg /
Had 5 cm. After storage at room temperature for 30 days, there was no seepage of the electrolyte. Cut this sheet into 2x2cm,
Table 1 summarizes the conductivity measured by applying an AC signal having a frequency of 10 KHz and an amplitude of 10 mV to a cell assembled with metal lithium having a thickness of 200 μm. The conductivity value does not change at all immediately after the cell is assembled and after the cell is stored at 20 ° C. for 3 months, and the contact interface with metallic lithium is stable.

【0028】LiCoO2粉末2.5g、アセチレンブ
ラック0.20g、AN-VAc-VdF-HFP-1粉末0.15gを
均一に混合した粉体に、EC-PC-LiBF4電解液を1.5g
添加し、混練してフレーク状の正極組成物を得た。 こ
の正極組成物を電解液がしみ出さない圧力で加圧成形し
直径1cmのペレットとした。ペレットを内径が1.1
cmのテフロン製のシリンダー内に空間がほとんど残ら
ないように密閉し、140℃で1時間加熱した。このペ
レットを、80℃に加熱した熱プレスローラで圧延し、
厚さ115μmの正極組成物シートを得た。得られたシ
ートを厚さ20μmのアルミ箔に熱プレスローラで熱圧
着してアルミ箔をあわせた厚みが130μmの正極−B
を得た。
1.5 g of EC-PC-LiBF 4 electrolyte was added to a uniformly mixed powder of 2.5 g of LiCoO 2 powder, 0.20 g of acetylene black and 0.15 g of AN-VAc-VdF-HFP-1 powder.
It was added and kneaded to obtain a flake-shaped positive electrode composition. This positive electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, to give a pellet having a diameter of 1 cm. Pellets with an inner diameter of 1.1
The tube was sealed so that almost no space was left in a Teflon cylinder of 1 cm and heated at 140 ° C. for 1 hour. This pellet is rolled by a hot press roller heated to 80 ° C.
A positive electrode composition sheet having a thickness of 115 μm was obtained. The obtained sheet was thermocompression-bonded to a 20-μm-thick aluminum foil with a hot press roller to combine the aluminum foil with a 130 μm-thick positive electrode-B.
I got

【0029】フェーノール樹脂を900℃で炭化してい
たソフトカーボン粉末2.5g、アセチレンブラック
0.25g、AN-VAc-VdF-HFP-2粉末0.20gを均一に
混合した粉末に、EC-PC-LiBF4電解液を2.0g添加
し、混練してフレーク状の負極組成物を得た。この負極
組成物を電解液がしみ出さない圧力で加圧成形し直径1
cmのペレットとした。ペレットを内径が1.1cmの
テフロン製のシリンダー内に空間がほとんど残らないよ
うに密閉し、140℃で1時間加熱した。このペレット
を、80℃に加熱した熱プレスローラで圧延し、厚さ9
5μmの負極組成物シートを得た。得られたシートを厚
さ20μmのアルミ箔に熱プレスローラで熱圧着してア
ルミ箔をあわせた厚みが110μmの負極−Bを得た。
EC-PC was added to a powder obtained by uniformly mixing 2.5 g of soft carbon powder, 0.25 g of acetylene black, and 0.20 g of AN-VAc-VdF-HFP-2 powder, which was obtained by carbonizing a phenol resin at 900 ° C. -LiBF 4 electrolyte solution (2.0 g) was added and kneaded to obtain a flake-shaped negative electrode composition. The negative electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, and the diameter of the negative electrode composition was reduced to 1 mm.
cm pellets. The pellet was sealed in a Teflon cylinder having an inner diameter of 1.1 cm so that almost no space was left, and heated at 140 ° C. for 1 hour. This pellet was rolled with a hot press roller heated to 80 ° C.
A 5 μm negative electrode composition sheet was obtained. The obtained sheet was thermocompression-bonded to an aluminum foil having a thickness of 20 μm with a hot press roller to obtain a negative electrode-B having a thickness of 110 μm including the aluminum foil.

【0030】SPE−Bを正極−Bと負極−Bの間に挟
んで、熱プレスローラで加熱圧着したのち、3層となっ
たシートを2x2cmの大きさに裁断して得られたセル
を、チタン箔電極リードを備え、ポリエチレン/アルミ
箔/ポリエチレンの3層よるなるアルミラミネートシー
トよりなる電池パッケージ内に真空封入して試験電池−
Aを得た。 試験電池−Aを、20℃で、1mAの一定
電流値で、充電終了電圧4.20、放電終了電圧2.5
Vで、繰り返し充放電を行った。10サイクル後、5.
8mAhの放電容量(Qdis)が得られ、100サイ
クル後、Qdis=5.2mAh、300サイクル後、
Qdis=4.9mAhの安定した充放電サイクル特性
が得られた。
A cell obtained by sandwiching SPE-B between the positive electrode-B and the negative electrode-B, applying heat and pressure with a hot press roller, and cutting the three-layered sheet into a size of 2 × 2 cm, Test battery with titanium foil electrode leads, vacuum sealed in a battery package consisting of an aluminum laminated sheet consisting of three layers of polyethylene / aluminum foil / polyethylene
A was obtained. The test battery-A was charged at 20 ° C. at a constant current value of 1 mA at a charge end voltage of 4.20 and a discharge end voltage of 2.5.
At V, charging and discharging were repeatedly performed. After 10 cycles, 5.
A discharge capacity (Qdis) of 8 mAh was obtained, and after 100 cycles, Qdis = 5.2 mAh, after 300 cycles,
A stable charge / discharge cycle characteristic of Qdis = 4.9 mAh was obtained.

【0031】(実施の形態3)アクリロニトリルモノマ
ー(AN)とメタアクリル酸モノマー(MA)を用いラ
ジカル重合にて平均重合度が300〜450、AN/M
Aモル比が97/3、メタアクリロイル末端基を有すマ
クロコモノマーを得た。このマクロコモノマーとフッ化
ビニリデンモノマー(VdF)をラジカル重合すること
で、フッ化ビニリデン鎖のモノマーユニットの平均繰り
返し数が350〜500、フッ化ビニリデンの含有量が
45モル%、スチレン換算数平均分子量360,000
のブロック共重合体粉末(AN-MA-VdF-3)を得た。
(Embodiment 3) An acrylonitrile monomer (AN) and a methacrylic acid monomer (MA) are used in radical polymerization to obtain an average degree of polymerization of 300 to 450, AN / M
A macromonomer having an A molar ratio of 97/3 and having methacryloyl end groups was obtained. By subjecting this macro comonomer and vinylidene fluoride monomer (VdF) to radical polymerization, the average number of repeating monomer units of the vinylidene fluoride chain is 350 to 500, the content of vinylidene fluoride is 45 mol%, and the number average molecular weight in terms of styrene. 360,000
Was obtained as a block copolymer powder (AN-MA-VdF-3).

【0032】次に、ECとPCとDME(ジメトキシエ
タン)1:1:0.2(モル比)に混合した有機溶媒に
LiPF6を0.5モル/リットル、LiBF4を1.0
モル/リットル溶解しEC-PC-DME-LiPF6-LiBF4電解液を
得た。
[0032] Next, EC, PC and DME (dimethoxyethane) 1: 1: 0.2 mixed organic solvent in the LiPF6 in (molar ratio) 0.5 mol / liter, LiBF 4 1.0
The resulting mixture was dissolved in mol / liter to obtain an EC-PC-DME-LiPF6-LiBF 4 electrolyte.

【0033】AN-MA-VdF-2粉末2.5gを、EC-PC-DME-L
iPF6-LiBF4電解液23gに分散した液をテフロン製の1
00mlの密閉容器中で140℃に加熱することで透明
な粘性体を得た後、これを、マイナス20℃に冷却しゲ
ル状ポリマー電解質の塊を得た。この塊を、80℃に加
熱した熱プレスローラで圧延し、厚さ80μmのゲル状
ポリマー電解質シート(SPE−C)を得た。得られた
シートは強靱で、柔軟性があり、引っ張り強度1.6k
g/5cmを有していた。室温で30日保存後、電解液
の浸みだしはなかった。 このシートを2x2cmに切
断し、厚さ200μmの金属リチウムで挟んで組み立て
たセルについて周波数10KHz、振幅10mVの交流
信号を印加して測定した伝導度を表1にまとめて示す。
伝導度値は、セルの組立直後、セルを20℃で3ヶ月保
存した後も全く変化なく、金属リチウムとの接触界面は
安定している。
2.5 g of AN-MA-VdF-2 powder was added to EC-PC-DME-L
The solution dispersed in 23 g of the iPF 6 -LiBF 4 electrolytic solution is made of Teflon 1
After heating to 140 ° C. in a 00 ml closed container to obtain a transparent viscous body, it was cooled to −20 ° C. to obtain a mass of a gel polymer electrolyte. This lump was rolled by a hot press roller heated to 80 ° C. to obtain a gel polymer electrolyte sheet (SPE-C) having a thickness of 80 μm. The sheet obtained is tough, flexible and has a tensile strength of 1.6k.
g / 5 cm. After storage at room temperature for 30 days, there was no seepage of the electrolyte. Table 1 summarizes the conductivity measured by applying an AC signal having a frequency of 10 KHz and an amplitude of 10 mV to a cell assembled by cutting this sheet into 2 × 2 cm and sandwiching it with lithium metal having a thickness of 200 μm.
The conductivity value does not change at all immediately after the cell is assembled and after the cell is stored at 20 ° C. for 3 months, and the contact interface with metallic lithium is stable.

【0034】LiMn24粉末2.5g、アセチレンブ
ラック0.20g、AN-VAc-VdF-1粉末0.15gを均一
に混合した粉体に、EC-PC-DME-LiPF6-LiBF4電解液を
1.5g添加し、混練してフレーク状の正極組成物を得
た。 この正極組成物を電解液がしみ出さない圧力で加
圧成形し直径1cmのペレットとした。ペレットを内径
が1.1cmのテフロン製のシリンダー内に空間がほと
んど残らないように密閉し、140℃で1時間加熱し
た。このペレットを、80℃に加熱した熱プレスローラ
で圧延し、厚さ105μmの正極組成物シートを得た。
得られたシートを厚さ20μmのアルミ箔に熱プレスロ
ーラで熱圧着してアルミ箔をあわせた厚みが120μm
の正極−Cを得た。
EC-PC-DME-LiPF 6 -LiBF 4 was mixed with a powder obtained by uniformly mixing 2.5 g of LiMn 2 O 4 powder, 0.20 g of acetylene black and 0.15 g of AN-VAc-VdF-1 powder. 1.5 g of the liquid was added and kneaded to obtain a flake-shaped positive electrode composition. This positive electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, to give a pellet having a diameter of 1 cm. The pellet was sealed in a Teflon cylinder having an inner diameter of 1.1 cm so that almost no space was left, and heated at 140 ° C. for 1 hour. The pellet was rolled with a hot press roller heated to 80 ° C. to obtain a positive electrode composition sheet having a thickness of 105 μm.
The obtained sheet is thermocompressed with a hot press roller to an aluminum foil having a thickness of 20 μm, and the thickness of the combined aluminum foil is 120 μm.
Of positive electrode-C was obtained.

【0035】Li4/3Ti5/34粉末2.5g、アセチ
レンブラック0.25g、AN-MA-VdF-3粉末0.20g
を均一に混合した粉末に、EC-PC-DME-LiPF6-LiBF4電解
液を2.0g添加し、混練してフレーク状の負極組成物
を得た。この負極組成物を電解液がしみ出さない圧力で
加圧成形し直径1cmのペレットとした。ペレットを内
径が1.1cmのテフロン製のシリンダー内に空間がほ
とんど残らないように密閉し、140℃で1時間加熱し
た。このペレットを、80℃に加熱した熱プレスローラ
で圧延し、厚さ105μmの負極組成物シートを得た。
得られたシートを厚さ20μmのアルミ箔に熱プレスロ
ーラで熱圧着してアルミ箔をあわせた厚みが120μm
の負極−Cを得た。
2.5 g Li 4/3 Ti 5/3 O 4 powder, 0.25 g acetylene black, 0.20 g AN-MA-VdF-3 powder
Was uniformly mixed, and 2.0 g of an EC-PC-DME-LiPF 6 -LiBF 4 electrolyte was added and kneaded to obtain a flake-shaped negative electrode composition. The negative electrode composition was molded under pressure at a pressure at which the electrolyte did not exude, to form a pellet having a diameter of 1 cm. The pellet was sealed in a Teflon cylinder having an inner diameter of 1.1 cm so that almost no space was left, and heated at 140 ° C. for 1 hour. The pellet was rolled with a hot press roller heated to 80 ° C. to obtain a negative electrode composition sheet having a thickness of 105 μm.
The obtained sheet is thermocompressed with a hot press roller to an aluminum foil having a thickness of 20 μm, and the thickness of the combined aluminum foil is 120 μm.
Of negative electrode-C was obtained.

【0036】SPE−Cを正極−Cと負極−Cの間に挟ん
で、熱プレスローラで加熱圧着したのち、3層となった
シートを2x2cmの大きさに裁断して得られたセル
を、チタン箔電極リードを備え、ポリエチレン/アルミ
箔/ポリエチレンの3層よるなるアルミラミネートシー
トよりなる電池パッケージ内に真空封入して試験電池−
Aを得た。 試験電池−Cを、20℃で、0.2mAの
一定電流値で、充電終了電圧2.50V、放電終了電圧
0.5Vで、繰り返し充放電を行った。10サイクル
後、3.8mAhの放電容量(Qdis)が得られ、1
00サイクル後、Qdis=3.6mAh、300サイ
クル後、Qdis=3.5mAhの安定した充放電サイ
クル特性が得られた。
A cell obtained by sandwiching the SPE-C between the positive electrode-C and the negative electrode-C, applying heat and pressure with a hot press roller, and cutting the three-layered sheet into a size of 2 × 2 cm, Test battery with titanium foil electrode leads, vacuum sealed in a battery package consisting of an aluminum laminated sheet consisting of three layers of polyethylene / aluminum foil / polyethylene
A was obtained. The test battery-C was repeatedly charged and discharged at 20 ° C. at a constant current value of 0.2 mA, at a charge end voltage of 2.50 V and a discharge end voltage of 0.5 V. After 10 cycles, a discharge capacity (Qdis) of 3.8 mAh was obtained and 1
After 00 cycles, stable charge-discharge cycle characteristics of Qdis = 3.6 mAh and after 300 cycles, Qdis = 3.5 mAh were obtained.

【0037】(実施の形態4)アクリロニトリルモノマ
ー(AN)とメタアクリル酸モノマー(MA)を用いラ
ジカル重合にて平均重合度が300〜450、AN/M
Aモル比が97/3、メタアクリロイル末端基を有すマ
クロコモノマーを得た。フッ化ビニリデンモノマー(V
dF)と6フッ化プロピレンモノマー(HFP)とスチ
レンモノマーを用いラジカル重合にて平均重合度が45
0、VdF/HFPモル比が85/15、スチリル末端
基を有すマクロコモノマーを得た。これらのマクロコモ
ノマーをラジカル重合することで、フッ化ビニリデン鎖
のモノマーユニットの平均繰り返し数が350〜50
0、フッ化ビニリデンの含有量が55モル%、スチレン
換算数平均分子量520,000のブロック共重合体粉
末(AN-MA-VdF-HFP-4)を得た。 次に、ECとDEC
を1:1(モル比)に混合した有機溶媒にLiOSO 2
CF3を1.5モル/リットル溶解しEC-DEC-LiOSO2CF3
電解液を得た。
(Embodiment 4) Acrylonitrile monomer
-(AN) and methacrylic acid monomer (MA)
The average degree of polymerization is 300 to 450 by dical polymerization, AN / M
A having a molar ratio of 97/3 and a methacryloyl end group
Crocomonomer was obtained. Vinylidene fluoride monomer (V
dF), propylene hexafluoride monomer (HFP) and polystyrene
The average degree of polymerization is 45 by radical polymerization using
0, VdF / HFP molar ratio is 85/15, styryl terminal
A macrocomonomer having a group was obtained. These Macro Como
Radical polymerization of nomers produces vinylidene fluoride chains.
The average number of repeating monomer units is from 350 to 50
0, the content of vinylidene fluoride is 55 mol%, styrene
Block copolymer powder with reduced number average molecular weight of 520,000
Powder (AN-MA-VdF-HFP-4). Next, EC and DEC
In a 1: 1 (molar ratio) mixed organic solvent with LiOSO Two
CFThreeEC-DEC-LiOSOTwoCFThree
An electrolyte was obtained.

【0038】多孔性のシルカゲル粉末(平均粒径2.4
μm、比表面積220m2/g)を200℃で17時間
真空乾燥して、シリカゲル粉末を得た。
Porous silica gel powder (average particle size 2.4)
(μm, specific surface area: 220 m 2 / g) was vacuum dried at 200 ° C. for 17 hours to obtain a silica gel powder.

【0039】AN-MA-VdF-HFP-4粉末2.5g、シリカゲ
ル粉末0.2gをEC-DEC-LiOSO2CF3電解液23gに分散
した液をテフロン製の100mlの密閉容器中で140
℃に加熱することで透明な粘性体を得た後、これを、マ
イナス20℃に冷却しゲル状ポリマー電解質の塊を得
た。この塊を、80℃に加熱した熱プレスローラで圧延
し、厚さ80μmのゲル状ポリマー電解質シート(SP
E−D)を得た。得られたシートは強靱で、柔軟性があ
り、引っ張り強度2.2kg/5cmを有していた。室
温で30日保存後、電解液の浸みだしはなかった。この
シートを2x2cmに切断し、厚さ200μmの金属リ
チウムで挟んで組み立てたセルについて周波数10KH
z、振幅10mVの交流信号を印加して測定した伝導度
を表1にまとめて示す。伝導度値は、セルの組立直後、
セルを20℃で3ヶ月保存した後も全く変化なく、金属
リチウムとの接触界面は安定していた。
A solution obtained by dispersing 2.5 g of the AN-MA-VdF-HFP-4 powder and 0.2 g of the silica gel powder in 23 g of the EC-DEC-LiOSO 2 CF 3 electrolyte solution was placed in a 100 ml Teflon-made closed container.
After obtaining a transparent viscous body by heating to ℃, it was cooled to minus 20 ℃ to obtain a mass of gel polymer electrolyte. This lump is rolled with a hot press roller heated to 80 ° C., and a gel polymer electrolyte sheet (SP
ED) was obtained. The resulting sheet was tough, flexible, and had a tensile strength of 2.2 kg / 5 cm. After storage at room temperature for 30 days, there was no seepage of the electrolyte. This sheet was cut into 2 × 2 cm, and the cell assembled with lithium metal having a thickness of 200 μm was assembled at a frequency of 10 KH.
Table 1 summarizes the conductivity measured by applying an AC signal of z and an amplitude of 10 mV. Conductivity values are measured immediately after cell assembly,
Even after the cell was stored at 20 ° C. for 3 months, there was no change, and the contact interface with metallic lithium was stable.

【0040】(実施の形態5)実施例1のAN-VAc-VdF-1
粉末2.5g、200℃で17時間真空乾燥した平均粒
径3.8μmのアルミナ粉末0.15gを、実施例1の
EC-EMC-LiPF6電解液23gに分散した液をテフロン製の
100mlの密閉容器中で140℃に加熱することで透
明な粘性体を得た後、これを、マイナス20℃に冷却し
ゲル状ポリマー電解質の塊を得た。この塊を、80℃に
加熱した熱プレスローラで圧延し、厚さ80μmのゲル
状ポリマー電解質シート(SPE−E)を得た。得られ
たシートは強靱で、柔軟性があり、引っ張り強度1.4
kg/5cmを有していた。室温で30日保存後、電解
液の浸みだしはなかった。このシートを2x2cmに切
断し、厚さ200μmの金属リチウムで挟んで組み立て
たセルについて周波数10KHz、振幅10mVの交流
信号を印加して測定した伝導度を表1にまとめて示す。
伝導度値は、セルの組立直後、セルを20℃で3ヶ月保
存した後も全く変化なく、金属リチウムとの接触界面は
安定していた。
(Embodiment 5) AN-VAc-VdF-1 of Embodiment 1
2.5 g of powder and 0.15 g of alumina powder having an average particle size of 3.8 μm dried in vacuum at 200 ° C. for 17 hours
A transparent viscous substance was obtained by heating the liquid dispersed in 23 g of the EC-EMC-LiPF 6 electrolyte solution to 140 ° C. in a Teflon-made 100 ml closed container, and then cooled to −20 ° C. to form a gel. A mass of polymer electrolyte was obtained. This lump was rolled with a hot press roller heated to 80 ° C. to obtain a gel polymer electrolyte sheet (SPE-E) having a thickness of 80 μm. The resulting sheet is tough, flexible and has a tensile strength of 1.4.
kg / 5 cm. After storage at room temperature for 30 days, there was no seepage of the electrolyte. Table 1 summarizes the conductivity measured by applying an AC signal having a frequency of 10 KHz and an amplitude of 10 mV to a cell assembled by cutting this sheet into 2 × 2 cm and sandwiching it with lithium metal having a thickness of 200 μm.
The conductivity value did not change at all after the cell was stored at 20 ° C. for 3 months immediately after the cell was assembled, and the contact interface with lithium metal was stable.

【0041】(実施の形態6)多孔性のシリカゲル粉末
(平均粒径2.8μm、比表面積350m2/gを、蒸
留水50mlに分散したのち、セチルトリエチルアンモ
ニウムブロマイドを0.7mmol、過硫酸カリウムを
0.2ml加え、さらにアクリル酸メチルを3.5mm
ol加えた後、60℃で17時間重合を行う。沈殿物を
メタノールで洗浄したのち、90℃で72時間真空乾燥
して、表面を改質したシリカゲル粉末を得た。
(Embodiment 6) A porous silica gel powder (average particle size: 2.8 μm, specific surface area: 350 m 2 / g) was dispersed in 50 ml of distilled water, then 0.7 mmol of cetyltriethylammonium bromide, potassium persulfate Was added, and methyl acrylate was further added to 3.5 mm.
After the addition, polymerization is carried out at 60 ° C. for 17 hours. After the precipitate was washed with methanol, it was vacuum-dried at 90 ° C. for 72 hours to obtain a silica gel powder having a modified surface.

【0042】実施例2のAN-VAc-VdF-HFP-2粉末2.5
g、表面を改質したシリカゲル粉末0.2gを、実施例
2のEC-PC-LiBF4電解液23gに分散した液をテフロン
製の100mlの密閉容器中で140℃に加熱すること
で透明な粘性体を得た後、これを、マイナス20℃に冷
却しゲル状ポリマー電解質の塊を得た。この塊を、80
℃に加熱した熱プレスローラで圧延し、厚さ80μmの
ゲル状ポリマー電解質シート(SPE−F)を得た。得
られたシートは強靱で、柔軟性があり、引っ張り強度
1.8kg/cmを有していた。室温で30日保存後、
電解液の浸みだしはなかった。このシートを2x2cm
に切断し、厚さ200μmの金属リチウムで挟んで組み
立てたセルについて周波数10KHz、振幅10mVの
交流信号を印加して測定した伝導度を表1にまとめて示
す。伝導度値は、セルの組立直後、セルを20℃で3ヶ
月保存した後も全く変化なく、金属リチウムとの接触界
面は安定していた。
AN-VAc-VdF-HFP-2 powder of Example 2 2.5
g, a surface-modified silica gel powder of 0.2 g was dispersed in 23 g of the EC-PC-LiBF 4 electrolytic solution of Example 2 and heated to 140 ° C. in a Teflon-made 100 ml closed container to obtain a transparent liquid. After obtaining the viscous body, it was cooled to minus 20 ° C. to obtain a mass of a gel polymer electrolyte. This lump is 80
Rolling was performed with a hot press roller heated to ℃ to obtain a gel polymer electrolyte sheet (SPE-F) having a thickness of 80 μm. The resulting sheet was tough, flexible, and had a tensile strength of 1.8 kg / cm. After storage at room temperature for 30 days,
There was no seepage of the electrolyte. This sheet is 2x2cm
Table 1 summarizes the conductivity measured by applying an AC signal having a frequency of 10 KHz and an amplitude of 10 mV to a cell assembled by cutting into 200 μm-thick metallic lithium. The conductivity value did not change at all after the cell was stored at 20 ° C. for 3 months immediately after the cell was assembled, and the contact interface with lithium metal was stable.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】以上のように、本発明に従うゲル状ポリ
マー電解質は、100μm以下の薄膜状にしても自己形
状保持性に富み、高い引っ張り強度を与え、可撓性に優
れ、しかも高い伝導度を与える。さらに、本発明のゲル
状ポリマー電解質は、電極材料と均一に混合することが
でき、可撓性のある薄膜状の、安定した充放電サイクル
特性を与える電極シートを与える。電池、電気二重層キ
ャパシタ、エレクトロクロミック表示素子等の薄形の折
り曲げ可能な電気化学素子に有効に用いることができ
る。
As described above, the gel polymer electrolyte according to the present invention is rich in self-shape retention, gives high tensile strength, is excellent in flexibility, and has high conductivity even in the form of a thin film of 100 μm or less. give. Furthermore, the gelled polymer electrolyte of the present invention can be uniformly mixed with the electrode material to provide a flexible thin film electrode sheet that provides stable charge / discharge cycle characteristics. It can be effectively used for a thin, foldable electrochemical device such as a battery, an electric double layer capacitor, and an electrochromic display device.

フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 53/00 C08L 53/00 H01M 6/18 H01M 6/18 E 6/22 6/22 C 10/40 10/40 B Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 53/00 C08L 53/00 H01M 6/18 H01M 6/18 E 6/22 6/22 C 10/40 10/40 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)フッ化ビニリデンポリマーセグメン
トとアクリロニトリルポリマーセグメントのブロックま
たはグラフト共重合体を主骨格とする熱可塑性エラスト
マーと、(B)リチウム塩を溶解した非プロトン性有機
溶媒を含有するゲル状ポリマー電解質。
1. A thermoplastic elastomer having (A) a vinylidene fluoride polymer segment and an acrylonitrile polymer segment block or graft copolymer as a main skeleton, and (B) an aprotic organic solvent in which a lithium salt is dissolved. Gel-like polymer electrolyte.
【請求項2】(A)フッ化ビニリデンポリマーセグメン
トとアクリロニトリルポリマーセグメントのブロックま
たはグラフト共重合体を主骨格とする熱可塑性エラスト
マーと、(B)リチウム塩を溶解した非プロトン性有機
溶媒と、(C)電気絶縁性無機物質粉末を含有するゲル
状ポリマー電解質。
(2) a thermoplastic elastomer having a main skeleton of a block or graft copolymer of a vinylidene fluoride polymer segment and an acrylonitrile polymer segment, (B) an aprotic organic solvent in which a lithium salt is dissolved, C) A gel polymer electrolyte containing an electrically insulating inorganic substance powder.
JP9246369A 1997-09-11 1997-09-11 Gel form polymer electrolyte Pending JPH1180296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9246369A JPH1180296A (en) 1997-09-11 1997-09-11 Gel form polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9246369A JPH1180296A (en) 1997-09-11 1997-09-11 Gel form polymer electrolyte

Publications (1)

Publication Number Publication Date
JPH1180296A true JPH1180296A (en) 1999-03-26

Family

ID=17147529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9246369A Pending JPH1180296A (en) 1997-09-11 1997-09-11 Gel form polymer electrolyte

Country Status (1)

Country Link
JP (1) JPH1180296A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (en) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol Homogenous solid polymer-alloy electrolyte and manufacture thereof, composite electrode using electrolyte, lithium high polymer battery and lithium ion high polymer battery, and manufacture thereof
WO2006080259A1 (en) * 2005-01-27 2006-08-03 Kureha Corporation Vinylidene fluoride based core-shell type polymer and use thereof in nonaqueous electrochemical device
WO2017098851A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic appliance
US9799922B2 (en) 2012-09-13 2017-10-24 Samsung Electronics Co., Ltd. Lithium battery
JP2019197611A (en) * 2018-05-07 2019-11-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. High polymer for matrix, nonaqueous electrolyte gel, and electrochemical device
WO2019234977A1 (en) * 2018-06-08 2019-12-12 株式会社日立製作所 Semisolid electrolyte layer and secondary battery
CN110690497A (en) * 2019-11-01 2020-01-14 中国科学院金属研究所 Polymer electrolyte film, preparation method thereof and application thereof in all-solid-state lithium battery
CN114597501A (en) * 2022-03-02 2022-06-07 中国科学院金属研究所 Polymer electrolyte, preparation method thereof and application thereof in solid-state lithium battery with wide temperature range and high rate
JP7133749B1 (en) * 2021-03-31 2022-09-08 リンテック株式会社 solid electrolytes and batteries
WO2022210774A1 (en) * 2021-03-31 2022-10-06 リンテック株式会社 Solid electrolyte and battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000090728A (en) * 1998-09-10 2000-03-31 Korea Advanced Inst Of Sci Technol Homogenous solid polymer-alloy electrolyte and manufacture thereof, composite electrode using electrolyte, lithium high polymer battery and lithium ion high polymer battery, and manufacture thereof
WO2006080259A1 (en) * 2005-01-27 2006-08-03 Kureha Corporation Vinylidene fluoride based core-shell type polymer and use thereof in nonaqueous electrochemical device
US7851084B2 (en) * 2005-01-27 2010-12-14 Kureha Corporation Vinylidene fluoride based core-shell type polymer and use thereof in nonaqueous electrochemical device
US9799922B2 (en) 2012-09-13 2017-10-24 Samsung Electronics Co., Ltd. Lithium battery
US10811723B2 (en) 2015-12-07 2020-10-20 Murata Manufacturing Inc. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN108370065B (en) * 2015-12-07 2022-04-22 株式会社村田制作所 Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JPWO2017098851A1 (en) * 2015-12-07 2018-08-30 株式会社村田製作所 Secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
US20180287203A1 (en) * 2015-12-07 2018-10-04 Murata Manufacturing Co., Ltd. Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN108370065A (en) * 2015-12-07 2018-08-03 株式会社村田制作所 Secondary cell, battery pack, electric vehicle, electric power storage system, electric tool and electronic equipment
WO2017098851A1 (en) * 2015-12-07 2017-06-15 ソニー株式会社 Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic appliance
JP2019197611A (en) * 2018-05-07 2019-11-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. High polymer for matrix, nonaqueous electrolyte gel, and electrochemical device
KR20190128104A (en) 2018-05-07 2019-11-15 삼성에스디아이 주식회사 Matrix polymer, non-aqueous electrolyte gel and electrochemical device
WO2019234977A1 (en) * 2018-06-08 2019-12-12 株式会社日立製作所 Semisolid electrolyte layer and secondary battery
CN110690497A (en) * 2019-11-01 2020-01-14 中国科学院金属研究所 Polymer electrolyte film, preparation method thereof and application thereof in all-solid-state lithium battery
CN110690497B (en) * 2019-11-01 2022-12-06 中国科学院金属研究所 Polymer electrolyte film, preparation method thereof and application thereof in all-solid-state lithium battery
JP7133749B1 (en) * 2021-03-31 2022-09-08 リンテック株式会社 solid electrolytes and batteries
WO2022210774A1 (en) * 2021-03-31 2022-10-06 リンテック株式会社 Solid electrolyte and battery
CN114597501A (en) * 2022-03-02 2022-06-07 中国科学院金属研究所 Polymer electrolyte, preparation method thereof and application thereof in solid-state lithium battery with wide temperature range and high rate

Similar Documents

Publication Publication Date Title
TWI422089B (en) Gel-type polymer electrolyte precursor and rechargeable cells employing the same
JP4081895B2 (en) Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery
CN111533851A (en) Preparation method of polymer electrolyte and application of polymer electrolyte in all-solid-state battery
JPH11312536A (en) Solid electrolyte secondary battery
US20190036157A1 (en) All-solid-state battery, hybrid-structured solid electrolyte membrane and manufacturing methods thereof
CN102368562B (en) A kind of lithium ion battery
JP2000067920A (en) Solid electrolyte battery
JPH11312535A (en) Solid electrolyte secondary battery
JPH1180296A (en) Gel form polymer electrolyte
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
KR100525278B1 (en) Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
JP4781547B2 (en) Polymer gel electrolyte and battery
JP2001319694A (en) Lithium-polymer secondary battery
JP2003331838A (en) Lithium secondary battery
JP4985959B2 (en) Organic solid electrolyte and secondary battery using the same
CN115207335A (en) Low-temperature chargeable and dischargeable lithium ion battery cathode material and lithium ion battery
JPH1092470A (en) Lithium ion battery and manufacture of it
JP2002216844A (en) Lithium secondary cell
JP2001110403A (en) Electrode for electrochemical device
JPH11214038A (en) Gel high polymer solid electrolyte battery and manufacture thereof
JP2023523124A (en) In situ polymerized hybrid polymer electrolytes for high voltage lithium batteries
JP2002158037A5 (en)
JPH1197026A (en) Electrode for li cell
JP6916337B1 (en) Lithium ion secondary battery
JP4438141B2 (en) Polymer lithium secondary battery