JPH1176826A - Catalyst for cleaning exhaust gas and its manufacture - Google Patents

Catalyst for cleaning exhaust gas and its manufacture

Info

Publication number
JPH1176826A
JPH1176826A JP9244238A JP24423897A JPH1176826A JP H1176826 A JPH1176826 A JP H1176826A JP 9244238 A JP9244238 A JP 9244238A JP 24423897 A JP24423897 A JP 24423897A JP H1176826 A JPH1176826 A JP H1176826A
Authority
JP
Japan
Prior art keywords
exhaust gas
zeolite
silica
metal component
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9244238A
Other languages
Japanese (ja)
Inventor
Hiroshi Akama
弘 赤間
Masanori Kamikubo
真紀 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9244238A priority Critical patent/JPH1176826A/en
Publication of JPH1176826A publication Critical patent/JPH1176826A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for cleaning exhaust gas and its manufacture wherein even though exposed to very severe and light temperature conditions for a long time, it hardly deteriorates, and its very excellent in durability. SOLUTION: The exhaust gas cleaning catalyst contains a metal constituent support zeolite particle and silica having a peak of a pore diameter distribution within an area of 1 nm or over up to and excluding 4 nm, the metal constituent support zeolite particle is preferably covered with a porous material formed of silica, and further the porous material, formed of silica is contained by 2 pts.wt. or over to and excluding 30 pts.wt. to 100 pts.wt. of the metal constituent support zeolite particle. In manufacture of the exhaust gas cleaning catalyst, a process wherein a layer silicate and a zeolite particle are dispersed in 10.5 to 12 pH nitrogen-containing compound aqueous solution, and a process wherein a mixture of the layer silicate and the zeolite particle is burnt, are contained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒及びその製造方法に関し、特に自動車エンジン等の内
燃機関や各種燃焼器等からの排気ガスの浄化効率に優れ
た排気ガス浄化用触媒及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst and a method for producing the same, and more particularly to an exhaust gas purifying catalyst excellent in the efficiency of purifying exhaust gas from internal combustion engines such as automobile engines and various combustors. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】従来、自動車のエンジン等の排気ガスを
浄化するための触媒としては、三元触媒が幅広く用いら
れている。従来の三元触媒は、白金、パラジウム、ロジ
ウム等の貴金属成分およびセリウム、ランタン、バリウ
ム成分等の各種成分を含有したアルミナを主成分とする
三元触媒が主流であり、エンジンが理論空燃比の近傍で
運転された場合の排気ガスに対して高い浄化効率を示す
ものである。
2. Description of the Related Art Conventionally, a three-way catalyst has been widely used as a catalyst for purifying exhaust gas from an automobile engine or the like. Conventional three-way catalysts are mainly three-way catalysts mainly composed of alumina containing noble metal components such as platinum, palladium and rhodium and various components such as cerium, lanthanum and barium components. It shows a high purification efficiency for exhaust gas when operated in the vicinity.

【0003】一方、近年、燃費向上及び二酸化炭素の排
出量削減の観点から、理論空燃比より高い空燃比におい
ても運転されるリーン・バーン・エンジンが注目されて
いる。かかるリーン・バーン・エンジンの排気ガス(リ
ーン排気ガス)は、理論空燃比近傍でのみ運転する従来
エンジンの排気ガス(ストイキ排気ガス)に比較して、
酸素の含有率が高く、従来の三元触媒では窒素酸化物
(NOx)の浄化が不十分となる。また、ディーゼル・
エンジンからの排気ガスも典型的なリーン排気ガスであ
り、NOx浄化が切実な問題として有効な浄化方法が期
待されている。そこで、幅広い空燃比で運転されるリー
ン・バーン・エンジンに適用可能な新触媒が望まれてい
た。
[0003] On the other hand, in recent years, from the viewpoint of improving fuel efficiency and reducing carbon dioxide emission, a lean burn engine that operates even at an air-fuel ratio higher than the stoichiometric air-fuel ratio has attracted attention. The exhaust gas (lean exhaust gas) of the lean burn engine is compared with the exhaust gas (stoichiometric exhaust gas) of the conventional engine that operates only near the stoichiometric air-fuel ratio.
Since the oxygen content is high, the purification of nitrogen oxides (NOx) is insufficient with the conventional three-way catalyst. In addition, diesel
Exhaust gas from the engine is also a typical lean exhaust gas, and an effective purification method is expected as an urgent problem for NOx purification. Therefore, a new catalyst applicable to a lean burn engine operated at a wide air-fuel ratio has been desired.

【0004】各種の金属成分を結晶性アルミノケイ酸塩
(以下、「ゼオライト」と称す)に担持して得られる金
属担持ゼオライト触媒は、酸素含有率が高い排気ガス中
(リーン排気ガス)においても、炭化水素類(HC)が
存在していれば、NOxを比較的効率良く浄化できる能
力があることで注目されている。
A metal-supported zeolite catalyst obtained by supporting various metal components on a crystalline aluminosilicate (hereinafter referred to as “zeolite”) can be used even in an exhaust gas having a high oxygen content (lean exhaust gas). The presence of hydrocarbons (HC) has been noted for its ability to purify NOx relatively efficiently.

【0005】ゼオライトは、特殊な細孔構造、イオン交
換能を有し、それが触媒活性、選択性の点で従来のアル
ミナ系触媒には存在しない優れた特徴を発揮する原因と
なっている。しかし、耐熱性が低いという問題点のため
に、600℃以上の高温過酷な条件下に長時間曝される
ような自動車エンジンの排気ガスの浄化に用いられる場
合は、極く限られた条件でのみ使用に限られていた。
[0005] Zeolite has a special pore structure and ion-exchange ability, which is a cause of exhibiting excellent characteristics not present in conventional alumina catalysts in terms of catalytic activity and selectivity. However, due to the problem of low heat resistance, when used for purifying the exhaust gas of an automobile engine that is exposed for a long time under severe conditions of a high temperature of 600 ° C. or more, under extremely limited conditions. Only limited to use.

【0006】このような従来のゼオライト触媒の問題点
を解決すべく、様々な提案がなされている。かかる技術
には、アルカリ、アルカリ土類、希土類金属等をはじめ
とする添加物をゼオライトに加えることにより、ゼオラ
イトの脱アルミニウム抑制や担持活性金属成分の熱的安
定化を図るものや(特開平3−131345号公報、特
開平3−135437号公報、特開平3−202157
号公報、特開平4−4045号公報等)、ゼオライト結
晶をC軸方向へ成長させたり(特開平3−261546
号公報)、シリカモノレイヤー(第78回触媒討論会
(A)6A30、7A11)及びシリカ微粒子による被
覆処理(特願平7−46869号公報)によってゼオラ
イト粒子自体の耐熱性向上効果を期待するもの等が含ま
れるが、いずれの技術においても、自動車エンジンの排
気ガスのような極めて過酷な条件下に長時間曝された場
合には、触媒劣化が大きく、より一層の耐熱性向上が求
められている。
Various proposals have been made to solve the problems of the conventional zeolite catalyst. Such a technique includes adding an additive such as an alkali, an alkaline earth, or a rare earth metal to the zeolite, thereby suppressing dealumination of the zeolite and thermally stabilizing the supported active metal component. JP-A-131345, JP-A-3-135439, JP-A-3-202157
And Japanese Patent Application Laid-Open No. 4-40545, and a zeolite crystal is grown in the C-axis direction (Japanese Patent Application Laid-Open No. 3-261546).
JP-A No. 7-146, and a monolayer of silica (the 78th Symposium on Catalysis (A) 6A30, 7A11) and a coating treatment with silica fine particles (Japanese Patent Application No. 7-46869) are expected to improve the heat resistance of zeolite particles themselves. However, in any of the technologies, when exposed to extremely severe conditions such as the exhaust gas of an automobile engine for a long time, the catalyst deteriorates greatly, and further improvement in heat resistance is required. I have.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、従来のゼオライト触媒の上記問題点を解決し、高温
過酷な条件に長時間曝されても劣化の少ない、極めて耐
久性に優れた排気ガス浄化用触媒及びその製造方法を提
供するにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional zeolite catalysts, and to have little deterioration even when exposed to severe conditions at high temperature for a long time, and have extremely excellent durability. An object of the present invention is to provide an exhaust gas purifying catalyst and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために研究した結果、活性金属成分を担持し
たゼオライト触媒粒子を、層状ケイ酸塩を原料としたシ
ート状シリカ微粒子で被覆することにより、触媒の大幅
な熱的安定性の向上が図れることを見い出し、本発明に
到達した。
Means for Solving the Problems As a result of research conducted to solve the above problems, the present inventors have found that zeolite catalyst particles carrying an active metal component are converted into sheet-like silica fine particles using a layered silicate as a raw material. The inventors have found that coating can greatly improve the thermal stability of the catalyst, and have reached the present invention.

【0009】請求項1記載の排気ガス浄化用触媒は、金
属成分担持ゼオライト粒子及び、1nm以上4nm未満の領
域に細孔径分布のピークを有するシリカを含有すること
を特徴とする。
The exhaust gas purifying catalyst according to the first aspect is characterized by containing zeolite particles carrying a metal component and silica having a peak of pore size distribution in a region of 1 nm or more and less than 4 nm.

【0010】請求項2記載の排気ガス浄化用触媒は、上
記金属成分担持ゼオライト粒子が、1nm以上4nm未満の
領域に細孔径分布のピークを有するシリカから形成され
た多孔体で被覆されていることを特徴とする。
[0010] In the exhaust gas purifying catalyst according to claim 2, the metal component-supported zeolite particles are coated with a porous material formed of silica having a pore size distribution peak in a region of 1 nm or more and less than 4 nm. It is characterized by.

【0011】請求項3記載の排気ガス浄化用触媒は、上
記金属成分担持ゼオライト粒子100重量部に対して、
上記シリカから形成された多孔体は、2重量部以上30
重量部未満で含有されることを特徴とする。
[0011] The exhaust gas purifying catalyst according to claim 3 is based on 100 parts by weight of the metal component-supported zeolite particles.
The porous body formed from the above silica is 2 parts by weight or more and 30 parts by weight or more.
It is characterized by being contained in less than parts by weight.

【0012】請求項4記載の排気ガス浄化用触媒は、上
記ゼオライトが、シリカ/アルミナ比が35以上である
MFIゼオライト、モルデナイト及びβゼオライトから
成る群より選ばれる少なくとも1種のゼオライトである
ことを特徴とする。
According to a fourth aspect of the present invention, in the exhaust gas purifying catalyst, the zeolite is at least one zeolite selected from the group consisting of MFI zeolite, mordenite and β zeolite having a silica / alumina ratio of 35 or more. Features.

【0013】請求項5記載の排気ガス浄化用触媒は、金
属成分が、白金、パラジウム、ロジウム、イリジウム、
銀、銅、ニッケル、コバルト、鉄、亜鉛、インジウム、
タングステン、マンガン、スズ、ガリウムから成る群よ
り選ばれる少なくとも1種以上の成分であることを特徴
とする。
[0013] In the exhaust gas purifying catalyst according to claim 5, the metal component is platinum, palladium, rhodium, iridium,
Silver, copper, nickel, cobalt, iron, zinc, indium,
It is characterized by being at least one or more components selected from the group consisting of tungsten, manganese, tin and gallium.

【0014】請求項6記載の排気ガス浄化用触媒は、金
属成分担持ゼオライト粒子とシリカを、ハニカム状耐熱
性モノリス担体にコート層として備えたことを特徴とす
る。
According to a sixth aspect of the present invention, there is provided a catalyst for purifying exhaust gas, wherein zeolite particles carrying a metal component and silica are provided as a coating layer on a honeycomb-like heat-resistant monolithic carrier.

【0015】請求項7記載の上記本発明の排気ガス浄化
用触媒の製造方法は、pHが10.5〜12以下の含窒素
化合物水溶液中に層状ケイ酸塩とゼオライト粒子とを分
散する工程(1)、該層状ケイ酸塩とゼオライト粒子と
の混合物を焼成する工程(2)を含むことを特徴とす
る。
In the method for producing an exhaust gas purifying catalyst according to the present invention, the layered silicate and the zeolite particles are dispersed in an aqueous solution of a nitrogen-containing compound having a pH of 10.5 to 12 or less. 1) and a step (2) of firing a mixture of the layered silicate and the zeolite particles.

【0016】請求項8記載の排気ガス浄化用触媒の製造
方法は、金属成分をゼオライト粒子に担持する工程を上
記工程(1)と同時に行うことを特徴とする。
The method for producing an exhaust gas purifying catalyst according to claim 8 is characterized in that the step of supporting the metal component on the zeolite particles is performed simultaneously with the step (1).

【0017】請求項9記載の排気ガス浄化用触媒の製造
方法は、上記工程(2)に続き、金属成分をゼオライト
粒子に担持する工程(3)を含むことを特徴とする。
A method for producing an exhaust gas purifying catalyst according to a ninth aspect is characterized by including a step (3) of supporting a metal component on zeolite particles, following the step (2).

【0018】請求項10記載の排気ガス浄化用触媒の製
造方法は、予め金属成分を担持したゼオライト粒子を上
記工程(1)で用いることを特徴とする。
A method for producing an exhaust gas purifying catalyst according to a tenth aspect is characterized in that zeolite particles having a metal component supported thereon are used in the step (1).

【0019】[0019]

【発明の実施の形態】本発明の排気ガス浄化用触媒は、
金属成分担持ゼオライト及び、1nm以上4nm未満の領域
に細孔径分布のピークを有するシリカを含有する。該シ
リカから形成された多孔体は、金属担持ゼオライト粒子
を被覆する状態であることが好ましい。シリカ多孔体の
細孔径分布は、1nm以上4nm未満の領域に細孔径分布の
ピークを有するものであり、これにより、ゼオライト細
孔内への排気ガス成分の拡散及びシンタリングの影響を
排除することができる。1nm未満の平均細孔径ではゼオ
ライト細孔への排気ガス成分の拡散が阻害されると共に
シンタリングによる細孔閉塞の影響が大きく、4nmを超
える平均細孔径では被覆の効果が不十分となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas purifying catalyst of the present invention is
It contains a metal component-supported zeolite and silica having a pore size distribution peak in a region of 1 nm or more and less than 4 nm. The porous body formed from the silica is preferably in a state of covering the metal-supported zeolite particles. The pore size distribution of the porous silica material has a pore size distribution peak in a region of 1 nm or more and less than 4 nm, thereby eliminating the influence of the diffusion of exhaust gas components into zeolite pores and the effect of sintering. Can be. If the average pore diameter is less than 1 nm, the diffusion of the exhaust gas components into the zeolite pores is inhibited, and the effect of pore closure due to sintering is large. If the average pore diameter exceeds 4 nm, the effect of coating becomes insufficient.

【0020】また当該シリカ多孔体はシート状シリカか
ら形成することが好ましく、シート状であるが故に粒状
シリカに比較して焼結し難く、更に均一な細孔径を有し
ているために、細孔閉塞が起こりにくくなっている。
The porous silica is preferably formed from sheet-like silica. Since it is in the form of a sheet, it is difficult to be sintered as compared with granular silica, and has a uniform pore diameter. Hole blocking is less likely to occur.

【0021】更に、シリカの有する疎水性によりゼオラ
イト表面に疎水場を形成し、排気ガス中の水分の影響を
抑制でき、さらには、ゼオライト粒子表面を耐熱性の高
いシリカ膜で支持することにより、活性金属成分の表面
移動とその結果生ずるシンタリング及びゼオライト粒子
の熱による崩壊を防ぐことができる。
Further, the hydrophobicity of silica forms a hydrophobic field on the zeolite surface, thereby suppressing the effect of moisture in the exhaust gas. Further, by supporting the zeolite particle surface with a highly heat-resistant silica film, The surface migration of the active metal component and the resulting sintering and thermal collapse of the zeolite particles can be prevented.

【0022】金属担持ゼオライト粒子に対するシリカ多
孔体の含有量は、金属担持ゼオライト粒子100重量部
に対して、該シリカ多孔体は2重量部以上30重量部未
満であることが好ましい。2重量部未満ではシリカ多孔
体の上記効果が小さく、30重量部以上であると過剰被
覆となり逆効果となる。
The content of the porous silica in the metal-supported zeolite particles is preferably 2 parts by weight or more and less than 30 parts by weight based on 100 parts by weight of the metal-supported zeolite particles. If the amount is less than 2 parts by weight, the above effect of the porous silica material is small, and if the amount is more than 30 parts by weight, the coating is excessively coated, which has an adverse effect.

【0023】シリカの原料としては、ケニヤアイト、マ
カタイト、アイラアイト、カネマイト、マガディアイト
等の層状ケイ酸塩を有効に用いることができる。
As a raw material of silica, layered silicates such as kenyaite, macatite, islayite, kanemite, and magadiite can be effectively used.

【0024】金属成分担持ゼオライトにおけるゼオライ
トのシリカ/アルミナのモル比は35以上であることが
好ましい。シリカ/アルミナ比が35未満では、ゼオラ
イト骨格のアルミニウム原子が不安定で移動し易く、触
媒の耐熱性の面で不利となる。
The silica / alumina molar ratio of the zeolite in the metal component-supporting zeolite is preferably 35 or more. When the silica / alumina ratio is less than 35, aluminum atoms in the zeolite skeleton are unstable and easily move, which is disadvantageous in terms of heat resistance of the catalyst.

【0025】本発明において用いられるゼオライトとし
ては、公知のゼオライトの中から適宜選択して使用する
ことができるが、特に上記シリカ/アルミナ比を有する
モルデナイト、MFIゼオライト及びβゼオライトから
成る群より選ばれる少なくとも1種以上のゼオライトを
用いると耐熱性の高い触媒が得られるので好ましい。
The zeolite used in the present invention can be appropriately selected from known zeolites, and is particularly selected from the group consisting of mordenite having the above silica / alumina ratio, MFI zeolite and β zeolite. It is preferable to use at least one zeolite because a catalyst having high heat resistance can be obtained.

【0026】また、ゼオライトは、水熱処理、再合成な
どによって、結晶性を高めることにより安定化し、耐熱
性、耐久性の高い触媒が得られるので好ましい。
Zeolite is preferable because it is stabilized by increasing the crystallinity by hydrothermal treatment, resynthesis, or the like, and a catalyst having high heat resistance and durability can be obtained.

【0027】本発明に用いられるゼオライトに担持する
金属成分としては、種々の遷移金属種が有効であるが、
特に、白金(Pt)、パラジウム(Pd)、ロジウム
(Rh)、イリジウム(Ir)、銀(Ag)、銅(C
u)、ニッケル(Ni)、コバルト(Co)、鉄(F
e)、亜鉛(Zn)、インジウム(In)、タングステ
ン(W)、マンガン(Mn)、スズ(Su)、ガリウム
(Ga)から成る群より選ばれた少なくとも1種が好ま
しい。これらの成分は還元性能又は酸化性能を有効に発
揮できる。
As the metal component supported on the zeolite used in the present invention, various transition metal species are effective.
In particular, platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), silver (Ag), copper (C
u), nickel (Ni), cobalt (Co), iron (F
e), zinc (Zn), indium (In), tungsten (W), manganese (Mn), tin (Su), and gallium (Ga). These components can effectively exhibit reduction performance or oxidation performance.

【0028】これらの金属成分の原料としては、無機酸
塩、酸化物、有機酸塩、塩化物、炭酸塩、ナトリウム
塩、アンモニウム塩、アンミン錯化合物等の各種化合物
を使用することができ、イオン交換法、含浸法等の通常
用いられる方法で該金属成分をゼオライトに担持するこ
とができる。さらには、金属原料を高温で蒸発させて気
相担持する方法や、物理的混合法による担持も有効であ
るが、シリカ多孔体部分には必要以上に金属成分を担持
させないようにする。従って、上記担持法はいずれも有
効であるが、担持後には余分な金属成分を洗浄除去する
操作を行うことが好ましい。
As a raw material of these metal components, various compounds such as inorganic acid salts, oxides, organic acid salts, chlorides, carbonates, sodium salts, ammonium salts, ammine complex compounds and the like can be used. The metal component can be supported on zeolite by a commonly used method such as an exchange method or an impregnation method. Further, a method in which a metal material is vaporized at a high temperature and supported in a gaseous phase, or a method in which the metal raw material is supported by a physical mixing method is also effective. Accordingly, any of the above-mentioned loading methods is effective, but it is preferable to perform an operation of washing and removing excess metal components after loading.

【0029】通常のイオン交換法、含浸法による場合に
は、金属原料は溶液で用いられることが多く、その溶液
には、酸あるいは塩基を添加して適当にpHを調節する
ことにより好ましい結果を与える場合もあるが、本発明
は担持法によって制限されるものではない。
In the case of the usual ion exchange method or impregnation method, the metal raw material is often used in a solution, and a preferable result can be obtained by appropriately adjusting the pH by adding an acid or a base to the solution. In some cases, the present invention is not limited by the supporting method.

【0030】本発明の排気ガス浄化用触媒を製造するに
は、pHが10.5〜12の含窒素化合物水溶液中に層状
ケイ酸塩とゼオライト粒子とを分散する工程(1)と、
該層状ケイ酸塩とゼオライト粒子との混合物を焼成する
工程(2)とを含む。ゼオライトへの活性金属成分の担
持は、上記工程(1)で行ってもよいし、工程(2)に
引き続いて行ってもよい。また、予め金属成分を担持し
たゼオライト粒子を工程(1)で用いることも有効で、
この場合、必要に応じて、工程(1)においても、ま
た、工程(2)に引き続いて活性金属成分の担持を再度
行ってもよい。これらの上記製法においては、活性金属
の担持法はイオン交換法を用いることが好ましく、金属
担持後には余剰の金属成分を洗浄除去することが好まし
い。上記焼成工程における焼成温度は、シリカの疎水性
を高めるために600℃以上が好ましく、各工程後には
Na等の不純物を残さないために、洗浄、ろ過すること
が好ましい。
To produce the exhaust gas purifying catalyst of the present invention, a step (1) of dispersing the layered silicate and zeolite particles in a nitrogen-containing compound aqueous solution having a pH of 10.5 to 12;
Firing the mixture of the layered silicate and the zeolite particles (2). The loading of the active metal component on the zeolite may be performed in the above step (1) or may be performed subsequently to the step (2). It is also effective to use zeolite particles that carry a metal component in advance in step (1),
In this case, if necessary, the active metal component may be supported again in the step (1) or after the step (2). In these production methods, it is preferable to use an ion exchange method as a method for supporting the active metal, and it is preferable to wash and remove excess metal components after supporting the metal. The firing temperature in the firing step is preferably 600 ° C. or higher in order to increase the hydrophobicity of silica, and it is preferable to wash and filter after each step so as not to leave impurities such as Na.

【0031】本発明の触媒はハニカム形状で使用するの
が好ましい。この場合、通常、ハニカム状の担体に金属
成分担持ゼオライト粒子とシリカとを塗布して用いる。
このハニカム材料としては、一般にコージェライト質の
ものが広く用いられているが、これに限定されるもので
はなく、金属材料からなるハニカム担体も有効であり、
また触媒粉末そのものをハニカム状に成形することもで
きる。更には、触媒の形状をハニカム状とすることによ
り、触媒と排気ガスとの接触面積が大きくなり、圧力損
失も抑えられるため、振動があり、かつ限られた空間内
で多量の排気ガスを処理することが要求される自動車用
触媒として用いる場合に極めて有利となる。
The catalyst of the present invention is preferably used in a honeycomb shape. In this case, usually, a zeolite particle carrying a metal component and silica are applied to a honeycomb-shaped carrier and used.
As the honeycomb material, cordierite-based materials are generally widely used, but are not limited thereto, and a honeycomb carrier made of a metal material is also effective.
Further, the catalyst powder itself can be formed into a honeycomb shape. Furthermore, by making the shape of the catalyst a honeycomb shape, the contact area between the catalyst and the exhaust gas is increased and the pressure loss is suppressed, so that a large amount of exhaust gas is processed in a limited space with vibration. This is extremely advantageous when used as an automotive catalyst which is required to be used.

【0032】[0032]

【実施例】以下、本発明を次の実施例及び比較例によっ
て更に詳述するが、本発明はこれによって限定されるも
のではない。実施例1 (1)金属成分担持ゼオライトの調製 濃度0.24モルの硝酸銅水溶液に、シリカ/アルミナ
が約45のNa型MFIゼオライト粉末を添加分散させ
て4時間良く攪拌した後、濾過することにより固液を分
離した。前記攪拌・濾過操作を4回繰り返すことによ
り、Cuをイオン交換担持したMFIゼオライト触媒ケ
ーキを得た。このケーキを、乾燥機を用いて120℃で
8時間以上乾燥し、次いで電気炉を用いて大気雰囲気下
600℃で4時間焼成することにより、Cuが3.1重
量%担持されたCu−MFI粉末を得た。当該粉末は、
2.2nm及び7〜9nmにピークを有する細孔分布を示し
た。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited thereto. Example 1 (1) Preparation of metal component-supported zeolite Na-type MFI zeolite powder having about 45 silica / alumina was added to and dispersed in an aqueous solution of copper nitrate having a concentration of 0.24 mol, stirred well for 4 hours, and then filtered. To separate the solid and liquid. The MFI zeolite catalyst cake carrying Cu ion-exchange was obtained by repeating the stirring / filtration operation four times. The cake was dried at 120 ° C. for 8 hours or more using a dryer, and then baked at 600 ° C. for 4 hours in an air atmosphere using an electric furnace, whereby Cu-MFI carrying 3.1% by weight of Cu was loaded. A powder was obtained. The powder is
The pore distribution showed peaks at 2.2 nm and 7 to 9 nm.

【0033】(2)触媒粉の調製 ドデシルトリメチルアンモニウムクロライド(C1225
(CH3)3 NCl)を含有するpH11.5の水溶液中
に、層状ケイ酸塩の一種であるカネマイト(NaHSI
2 5 ・3H2 O)の粉末と上記Cu−MFI粉末粒子
とを分散させ、約2時間攪拌した。この混合水溶液に濃
度が0.2モルの硝酸銅の水溶液を加えてpHを10.6
にした後、約2時間攪拌した。次いで、ろ過することに
より固液分離し、得られた固形分をイオン交換水でよく
洗浄した。洗浄した固形分を120℃で一昼夜乾燥した
後、電気炉を用いて大気雰囲気下650℃で4時間焼成
することにより触媒粉(1)を得た。この触媒粉(1)
におけるCu成分担持量は3.4重量%であった。ま
た、Cu−MFI粒子100重量部に対するシリカ多孔
体の量は、Cu成分が全てMFIゼオライト上に担持さ
れたと仮定して12重量部であった。この細孔構造を調
べたところ、2.9nmにピークを有する細孔分布を示し
ていた。
(2) Preparation of Catalyst Powder Dodecyltrimethylammonium chloride (C 12 H 25
In an aqueous solution containing (CH 3 ) 3 NCl) and having a pH of 11.5, kanemite (NaHSI), a kind of layered silicate, was added.
2 O 5 · 3H 2 O) powder and is dispersed and the Cu-MFI powder particles, and stirred for about 2 hours. An aqueous solution of copper nitrate having a concentration of 0.2 mol was added to the mixed aqueous solution to adjust the pH to 10.6.
Then, the mixture was stirred for about 2 hours. Next, solid-liquid separation was performed by filtration, and the obtained solid content was thoroughly washed with ion-exchanged water. The washed solid was dried at 120 ° C. for 24 hours, and then calcined at 650 ° C. for 4 hours in an air atmosphere using an electric furnace to obtain a catalyst powder (1). This catalyst powder (1)
Was 3.4% by weight. The amount of the silica porous material with respect to 100 parts by weight of the Cu-MFI particles was 12 parts by weight on the assumption that all the Cu components were supported on the MFI zeolite. Examination of this pore structure showed a pore distribution having a peak at 2.9 nm.

【0034】(3)ハニカム触媒体の製造 上記触媒粉(1)100重量部に対してシリカ固形分で
4重量部のシリカゾルバインダーを用意し、これに水を
加えた後、触媒粉(1)を加えて良く混練した。次い
で、混練物に更に水を加え、ボールミルポットに入れた
後、振動ミルで約1時間粉砕してスラリーを得た。得ら
れたスラリーを、1平方インチ断面当たり約400個の
流路を持つコージェライト製ハニカム担体0.5Lにコ
ーティングし、120℃で乾燥した後、500℃で1時
間焼成することにより、本発明の排気ガス浄化用触媒
(1)を得た。ハニカム担体に対する触媒粉(1)のコ
ート量は、シリカゾルバインダーを含めて、180g/
Lであった。
(3) Preparation of honeycomb catalyst body 4 parts by weight of silica sol binder in terms of silica solid content was prepared with respect to 100 parts by weight of the catalyst powder (1), and water was added thereto. And kneaded well. Next, water was further added to the kneaded material, and the mixture was put into a ball mill pot, and then pulverized with a vibration mill for about 1 hour to obtain a slurry. The obtained slurry is coated on 0.5 L of a cordierite honeycomb carrier having about 400 channels per square inch cross section, dried at 120 ° C., and baked at 500 ° C. for 1 hour to obtain the present invention. The exhaust gas purifying catalyst (1) was obtained. The coating amount of the catalyst powder (1) on the honeycomb carrier was 180 g /
L.

【0035】実施例2 シリカ/アルミナ比が約45のNa型MFI粉末100
重量部に対して層状ケイ酸塩の一種であるケニヤアイト
を15重量部添加混合し、該MFIとケニヤアイトの混
合粉末を純水中に分散させて約4時間良く攪拌した後、
ろ過により固液を分離した。
Example 2 Na-type MFI powder 100 having a silica / alumina ratio of about 45
15 parts by weight of Kenyaite, which is a kind of layered silicate, is added to and mixed with parts by weight, and the mixed powder of MFI and Kenyaite is dispersed in pure water and stirred well for about 4 hours.
The solid and liquid were separated by filtration.

【0036】一方、0.24モルの硝酸銅水溶液に、ド
デシルトリメチルアンモニウムクロライドを含むアンモ
ニア10%水溶液を滴下し、pHが10.8のアルカリ水
溶液を得た。
On the other hand, an aqueous 10% ammonia solution containing dodecyltrimethylammonium chloride was dropped into a 0.24 mol aqueous copper nitrate solution to obtain an alkaline aqueous solution having a pH of 10.8.

【0037】このアルカリ水溶液中に上記MFIとケニ
ヤアイトの混合物を添加し、液中によく分散させて4時
間良く攪拌した後、ろ過して固液を分離した。この操作
を4回繰り返した後、得られた触媒ケーキをイオン交換
水でよく洗浄して、余分な銅成分を除去した。次いで電
気炉中700℃で3時間焼成することによりCuが4.
5重量%担持されたCu−MFI・ケニヤアイト粉末
(2)を得た。この粉末の細孔構造を調べたところ、
3.0nmにピークを有する細孔分布を示していた。
The mixture of MFI and Kenyaite was added to the aqueous alkali solution, dispersed well in the liquid, stirred well for 4 hours, and then filtered to separate a solid and a liquid. After repeating this operation four times, the obtained catalyst cake was thoroughly washed with ion-exchanged water to remove excess copper components. Then, by sintering at 700 ° C. for 3 hours in an electric furnace, Cu is added in an amount of 4.
5% by weight of supported Cu-MFI / Kenyaite powder (2) was obtained. When examining the pore structure of this powder,
The pore distribution showed a peak at 3.0 nm.

【0038】以下、実施例1と同様にして、本発明の排
気ガス浄化用触媒(2)を得た。ハニカム担体に対する
触媒粉(2)のコート量は、シリカゾルバインダーを含
めて、170g/Lであった。
Thereafter, in the same manner as in Example 1, an exhaust gas purifying catalyst (2) of the present invention was obtained. The coating amount of the catalyst powder (2) on the honeycomb carrier was 170 g / L including the silica sol binder.

【0039】実施例3 実施例1の「1.金属成分担持ゼオライトの調製」の工
程において、シリカ/アルミナ比が約45のNa型MF
I粉末を、シリカ/アルミナ比が約40のプロトン型β
ゼオライト粉末に代えた以外は同様にして、Cuが約
3.8重量%担持されたCu−βゼオライト粉末を得
た。
Example 3 In the step of “1. Preparation of metal component-supported zeolite” in Example 1, the Na-type MF having a silica / alumina ratio of about 45 was used.
I powder was converted to a proton form β having a silica / alumina ratio of about 40.
A Cu-β zeolite powder carrying about 3.8% by weight of Cu was obtained in the same manner except that the zeolite powder was used instead.

【0040】続く、「2.触媒粉の調製」の工程におい
て、硝酸銅の水溶液を酢酸コバルト水溶液に代えた以外
は実施例1と同様にして、触媒粉(3)を得た。この触
媒粉(3)におけるCu及びCoの担持量はそれぞれ
3.8重量%、0.4重量%であった。ゼオライト粒子
100重量部に対するシリカ多孔体の量は10重量部で
あり、細孔構造を調べたところ、3.4nmにピークを有
する細孔分布を示していた。
In the subsequent step of “2. Preparation of catalyst powder”, a catalyst powder (3) was obtained in the same manner as in Example 1, except that the aqueous solution of copper nitrate was replaced with an aqueous solution of cobalt acetate. The supported amounts of Cu and Co in the catalyst powder (3) were 3.8% by weight and 0.4% by weight, respectively. The amount of the porous silica was 100 parts by weight based on 100 parts by weight of the zeolite particles, and the pore structure was examined. As a result, it was found that the pore distribution had a peak at 3.4 nm.

【0041】以下、実施例1と同様にして、本発明の排
気ガス浄化用触媒(3)を得た。ハニカム担体に対する
触媒粉(3)のコート量は、シリカゾルバインダーを含
めて、約190g/Lであった。
Thereafter, in the same manner as in Example 1, an exhaust gas purifying catalyst (3) of the present invention was obtained. The coating amount of the catalyst powder (3) on the honeycomb carrier was about 190 g / L including the silica sol binder.

【0042】実施例4〜13 実施例3における「2.触媒粉の調製」の工程におい
て、酢酸コバルト水溶液を、それぞれ硝酸銀、酢酸ニッ
ケル、硝酸鉄、硝酸亜鉛、硝酸マンガン、タングステン
酸アンモニウム、塩化スズ、硝酸ガリウム、硝酸インジ
ウム、塩化イリジウムに代えた以外は実施例3と同様に
して、触媒粉(4)〜(13)を得た。この触媒粉
(4)〜(13)において、金属成分の水溶液を加えた
層状ケイ酸塩、Cu−βゼオライト及び含窒素化合物の
混合溶液のpHが、ほぼ10.6〜11.3の範囲に入る
ように、塩酸、アンモニア水で調節した。得られた触媒
粉(4)〜(13)はいずれも、2.8〜3.5nmにピ
ークを有する細孔分布を示していた。以下実施例13と
同様にして、本発明の排気ガス浄化用触媒(4)〜(1
3)を得た。
Examples 4 to 13 In the step of "2. Preparation of catalyst powder" in Example 3, the aqueous solution of cobalt acetate was replaced with silver nitrate, nickel acetate, iron nitrate, zinc nitrate, manganese nitrate, ammonium tungstate, tin chloride, respectively. Catalyst powders (4) to (13) were obtained in the same manner as in Example 3 except that gallium nitrate, indium nitrate, and iridium chloride were used instead. In the catalyst powders (4) to (13), the pH of the mixed solution of the layered silicate, the Cu-β zeolite, and the nitrogen-containing compound to which the aqueous solution of the metal component was added was substantially in the range of 10.6 to 11.3. It was adjusted with hydrochloric acid and aqueous ammonia so that it could enter. Each of the obtained catalyst powders (4) to (13) showed a pore distribution having a peak at 2.8 to 3.5 nm. Hereinafter, in the same manner as in Example 13, the exhaust gas purifying catalysts (4) to (1) of the present invention were used.
3) was obtained.

【0043】実施例14〜16 実施例1における「1.金属成分担持ゼオライトの調
製」の工程において、濃度が0.24モルの硝酸銅水溶
液を、それぞれ、ジニトロジアンミン白金(Pt;1wt
%)、硝酸パラジウム(Pd;1.2wt%)、硝酸ロジ
ウム(Rh;0.2wt%)水溶液に代え、シリカ/アル
ミナ比が約45のNa型ZSM5粉末をシリカ/アルミ
ナ比が約38のプロトン型モルデナイト粉末に代えた以
外は同様にして、それぞれ、Ptが約4.2重量%、P
dが6.3重量%、Rhが4.5重量%担持された貴金
属担持モルデナイト粉末を得た。
Examples 14 to 16 In the step of "1. Preparation of metal component-supported zeolite" in Example 1, an aqueous solution of copper nitrate having a concentration of 0.24 mol was added to dinitrodiammine platinum (Pt; 1 wt.
%), Palladium nitrate (Pd; 1.2 wt%) and rhodium nitrate (Rh; 0.2 wt%) aqueous solutions, and Na-type ZSM5 powder having a silica / alumina ratio of about 45 was converted to a proton having a silica / alumina ratio of about 38. Pt was about 4.2% by weight and P
A noble metal-supported mordenite powder supporting 6.3% by weight of d and 4.5% by weight of Rh was obtained.

【0044】続く、「2.触媒粉の調製」の工程におい
て、硝酸銅の水溶液を用いない以外は実施例1と同様に
して、触媒粉(14)〜(16)を得た。得られた触媒
粉(14)〜(16)はいずれも、2.2〜3.8nmに
ピークを有する細孔分布を示していた。以下実施例1と
同様にして、本発明の排気ガス浄化用触媒(14)〜
(16)を得た。
In the subsequent step of "2. Preparation of catalyst powder", catalyst powders (14) to (16) were obtained in the same manner as in Example 1 except that an aqueous solution of copper nitrate was not used. Each of the obtained catalyst powders (14) to (16) showed a pore distribution having a peak at 2.2 to 3.8 nm. Hereinafter, in the same manner as in Example 1, the exhaust gas purifying catalysts (14) to (14) of the present invention are described.
(16) was obtained.

【0045】比較例1,2 実施例1及び3で得られた金属成分担持ゼオライト粉
を、「2.触媒粉の調製」の工程を経ないで直接「3.
ハニカム触媒体の製造」の工程を経て、それぞれ排気ガ
ス浄化用触媒(比較1)及び(比較2)を得た。
Comparative Examples 1 and 2 The metal component-supported zeolite powder obtained in Examples 1 and 3 was directly applied to "3. Preparation of catalyst powder" without the step of "3. Preparation of catalyst powder".
Exhaust gas purifying catalysts (Comparative 1) and (Comparative 2) were obtained through the steps of “Production of honeycomb catalyst body”.

【0046】比較例1のCu−MFI粉末は、2.2n
m、及び7〜9nmにピークを有する細孔分布を、比較例
2のCu−βゼオライト粉末は、2.8nm、及び10〜
20nmにピークを有する細孔分布を示していた。
The Cu-MFI powder of Comparative Example 1 was 2.2 n
m, and the pore distribution having peaks at 7 to 9 nm, the Cu-β zeolite powder of Comparative Example 2 was 2.8 nm, and 10 to 10 nm.
It showed a pore distribution with a peak at 20 nm.

【0047】比較例3〜5 実施例14〜16で得られた金属成分担持ゼオライト粉
を、「2.触媒粉の調製」の工程を経ないで直接「3.
ハニカム触媒体の製造」の工程を経てそれぞれ排気ガス
浄化用触媒(比較3)、(比較4)、(比較5)を得
た。いずれの触媒粉も、2.0〜3.1nm及び6〜20
nmにピークを有する細孔分布を示していた。
Comparative Examples 3 to 5 The metal component-supported zeolite powder obtained in Examples 14 to 16 was directly applied to "3.
Exhaust gas purifying catalysts (Comparative 3), (Comparative 4), and (Comparative 5) were obtained through the steps of “Manufacture of honeycomb catalyst body”. Each of the catalyst powders was 2.0 to 3.1 nm and 6 to 20 nm.
The pore distribution showed a peak at nm.

【0048】比較例6〜7 実施例1において、Cu−MFIに対するシリカ多孔体
の量をそれぞれ1重量部、40重量部とした以外は同様
にして排気ガス浄化用触媒(比較例6),(比較例7)
を得た。上記実施例1〜16及び比較例1〜7で得られ
た排気ガス浄化用触媒の組成を表1に示す。
Comparative Examples 6 to 7 Exhaust gas purifying catalysts (Comparative Example 6), (Example 6) except that the amount of the silica porous material with respect to Cu-MFI was changed to 1 part by weight and 40 parts by weight, respectively. Comparative Example 7)
I got Table 1 shows the compositions of the exhaust gas purifying catalysts obtained in Examples 1 to 16 and Comparative Examples 1 to 7.

【0049】試験例 上記実施例1〜16及び比較例1〜7で得られた排気ガ
ス浄化用触媒の細孔径分布と触媒性能を以下に示す方法
により検討した。
Test Example The pore size distribution and catalytic performance of the exhaust gas purifying catalysts obtained in Examples 1 to 16 and Comparative Examples 1 to 7 were examined by the following methods.

【0050】触媒粉の細孔径分布測定 装置;島津製作所(マイクロメリテックス)製 アサッ
プ2010形 測定方法;N2 ガス吸着による定容法 細孔分布データ解析;BJH法 データ解析には吸着側のデータを用いた。サンプルの前
処理方法;300℃で約5時間の脱気処理(10μmHg
以下)
Measuring device for pore size distribution of catalyst powder ; Asap 2010 manufactured by Shimadzu (Micromeritex) Measuring method; Constant volume method by N 2 gas adsorption Pore distribution data analysis; BJH method Was used. Sample pretreatment method: degassing treatment at 300 ° C for about 5 hours (10 µmHg
Less than)

【0051】触媒性能試験例 ラボモデルガスによる触媒活性評価 モデル反応:リーン(酸素過剰存在)条件下での炭化水
素によるNOの還元反応 触媒容量:50cc(400セル/平方インチハニカム
状) ガス空間速度:約40000h -1 ガス組成:C3 8 :C3 6 =2:1混合ガス=約5
000ppm NO=約800ppm O2 =約6.5% H2 O=約10% N2 =バランス 触媒温度:400℃
Example of catalytic performance test Evaluation of catalytic activity using laboratory model gas Model reaction: reduction reaction of NO with hydrocarbon under lean (excess oxygen) condition Catalyst capacity: 50 cc (400 cells / square inch honeycomb) Gas space velocity : About 40000 h -1 Gas composition: C 3 H 8 : C 3 H 6 = 2: 1 mixed gas = about 5
000 ppm NO = about 800 ppm O 2 = about 6.5% H 2 O = about 10% N 2 = balance Catalyst temperature: 400 ° C.

【0052】触媒耐久試験例 実エンジン排気ガスによる触媒劣化処理 触媒入口排気ガス温度:700℃ 耐久処理時間:30hr エンジン:日産自動車(株)製V型6気筒DOHC3L
エンジン 平均空燃比:約14.6(ストイキ) 燃料:無鉛レギュラーガソリン
Catalyst Endurance Test Example Catalyst Deterioration Treatment by Actual Engine Exhaust Catalyst Inlet Exhaust Gas Temperature: 700 ° C. Endurance Treatment Time: 30 hr Engine: Nissan Motor Co., Ltd. V-6 DOHC3L
Engine Average air-fuel ratio: about 14.6 (stoichiometric) Fuel: unleaded regular gasoline

【0053】上記耐久試験後の実施例1〜16及び比較
例1〜7の各触媒のモデルガス評価によるNO転化率を
以下の式により算出して、その結果を表1に示す。
The NO conversion based on the model gas evaluation of each of the catalysts of Examples 1 to 16 and Comparative Examples 1 to 7 after the endurance test was calculated by the following equation. The results are shown in Table 1.

【0054】[0054]

【数1】 (Equation 1)

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明の排気ガス浄化用触媒は、実エン
ジン排気ガスの極めて過酷な耐久試験に供した後でも優
れた浄化性能を示し極めて高い耐熱性を有している。従
って、本発明の排気ガス浄化用触媒は、適用範囲が広が
り、特に燃費の良好な自動車を提供することができるた
め経済性にも優れ、且つ、環境汚染の抑制に貢献するこ
とができる。
The exhaust gas purifying catalyst of the present invention exhibits excellent purification performance even after subjected to a very severe durability test of actual engine exhaust gas, and has extremely high heat resistance. Therefore, the exhaust gas purifying catalyst of the present invention can be applied to a wide range of applications, and in particular, can provide an automobile with good fuel economy, so that it is excellent in economy and can contribute to suppression of environmental pollution.

【0057】また、本発明の排気ガス浄化用触媒製造方
法は、本発明の排気ガス浄化用触媒を効率良く且つ経済
点に製造することができる。
The method for producing an exhaust gas purifying catalyst of the present invention can produce the exhaust gas purifying catalyst of the present invention efficiently and economically.

フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 29/18 B01J 29/22 A 29/22 29/40 A 29/40 29/42 A 29/42 29/46 A 29/46 29/48 A 29/48 35/10 301H 35/10 301 B01D 53/36 104A Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 29/18 B01J 29/22 A 29/22 29/40 A 29/40 29/42 A 29/42 29/46 A 29/46 29 / 48A 29/48 35/10 301H 35/10 301 B01D 53/36 104A

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 金属成分担持ゼオライト粒子及び、1nm
以上4nm未満の領域に細孔径分布のピークを有するシリ
カを含有することを特徴とする排気ガス浄化用触媒。
A zeolite particle carrying a metal component, and 1 nm
An exhaust gas purifying catalyst comprising silica having a peak of pore diameter distribution in a region of less than 4 nm.
【請求項2】 金属成分担持ゼオライト粒子は、1nm以
上4nm未満の領域に細孔径分布のピークを有するシリカ
から形成された多孔体で被覆されていることを特徴とす
る請求項1記載の排気ガス浄化用触媒。
2. The exhaust gas according to claim 1, wherein the metal component-supported zeolite particles are covered with a porous body formed of silica having a pore size distribution peak in a region of 1 nm or more and less than 4 nm. Purification catalyst.
【請求項3】 金属成分担持ゼオライト粒子100重量
部に対して、該シリカから形成された多孔体は、2重量
部以上30重量部未満で含有されることを特徴とする請
求項2記載の排気ガス浄化用触媒。
3. The exhaust gas according to claim 2, wherein the porous body made of silica is contained in an amount of 2 parts by weight or more and less than 30 parts by weight based on 100 parts by weight of the zeolite particles carrying the metal component. Gas purification catalyst.
【請求項4】 ゼオライトは、シリカ/アルミナ比が3
5以上であるMFIゼオライト、モルデナイト及びβゼ
オライトから成る群より選ばれる少なくとも1種のゼオ
ライトであることを特徴とする請求項1〜3いずれかの
項記載の排気ガス浄化用触媒。
4. The zeolite has a silica / alumina ratio of 3
The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the catalyst is at least one zeolite selected from the group consisting of MFI zeolite, mordenite, and β zeolite of 5 or more.
【請求項5】 金属成分は、白金(Pt)、パラジウム
(Pd)、ロジウム(Rh)、イリジウム(Ir)、銀
(Ag)、銅(Cu)、ニッケル(Ni)、コバルト
(Co)、鉄(Fe)、亜鉛(Zn)、インジウム(I
n)、タングステン(W)、マンガン(Mn)、スズ
(Sn)、ガリウム(Ga)から成る群より選ばれる少
なくとも1種以上の成分であることを特徴とする請求項
1〜4いずれかの項記載の排気ガス浄化用触媒。
5. The metal component includes platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), silver (Ag), copper (Cu), nickel (Ni), cobalt (Co), and iron. (Fe), zinc (Zn), indium (I
5. At least one component selected from the group consisting of n), tungsten (W), manganese (Mn), tin (Sn), and gallium (Ga). The exhaust gas purifying catalyst according to the above.
【請求項6】 金属成分担持ゼオライト粒子とシリカ
を、ハニカム状耐熱性モノリス担体にコート層として備
えたことを特徴とする請求項1〜5いずれかの項記載の
排気ガス浄化用触媒。
6. The exhaust gas purifying catalyst according to claim 1, wherein the metal component-supported zeolite particles and silica are provided as a coating layer on a honeycomb-shaped heat-resistant monolithic carrier.
【請求項7】 pHが10.5〜12の含窒素化合物水溶
液中に層状ケイ酸塩とゼオライト粒子とを分散する工程
(1)、該層状ケイ酸塩とゼオライト粒子との混合物を
焼成する工程(2)を含むことを特徴とする排気ガス浄
化用触媒の製造方法。
7. A step (1) of dispersing a layered silicate and zeolite particles in an aqueous solution of a nitrogen-containing compound having a pH of 10.5 to 12, and a step of firing a mixture of the layered silicate and zeolite particles. A method for producing an exhaust gas purifying catalyst, comprising (2).
【請求項8】 金属成分をゼオライト粒子に担持する工
程を上記工程(1)と同時に行うことを特徴とする請求
項7記載の排気ガス浄化用触媒の製造方法。
8. The method for producing an exhaust gas purifying catalyst according to claim 7, wherein the step of supporting the metal component on the zeolite particles is performed simultaneously with the step (1).
【請求項9】 上記工程(2)に続き、金属成分をゼオ
ライト粒子に担持する工程(3)を含むことを特徴とす
る請求項7記載の排気ガス浄化用触媒の製造方法。
9. The method for producing an exhaust gas purifying catalyst according to claim 7, further comprising a step (3) of supporting a metal component on the zeolite particles, following the step (2).
【請求項10】 予め金属成分を担持したゼオライト粒
子を上記工程(1)で用いることを特徴とする請求項7
記載の排気ガス浄化用触媒の製造方法。
10. The method according to claim 7, wherein zeolite particles pre-loaded with a metal component are used in the step (1).
A method for producing the exhaust gas purifying catalyst according to the above.
JP9244238A 1997-09-09 1997-09-09 Catalyst for cleaning exhaust gas and its manufacture Withdrawn JPH1176826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9244238A JPH1176826A (en) 1997-09-09 1997-09-09 Catalyst for cleaning exhaust gas and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9244238A JPH1176826A (en) 1997-09-09 1997-09-09 Catalyst for cleaning exhaust gas and its manufacture

Publications (1)

Publication Number Publication Date
JPH1176826A true JPH1176826A (en) 1999-03-23

Family

ID=17115802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9244238A Withdrawn JPH1176826A (en) 1997-09-09 1997-09-09 Catalyst for cleaning exhaust gas and its manufacture

Country Status (1)

Country Link
JP (1) JPH1176826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069095A (en) * 2005-09-06 2007-03-22 Asahi Kasei Corp Carrier of catalyst for nox purification
CN113751054A (en) * 2021-10-12 2021-12-07 武汉工程大学 SiO (silicon dioxide)2Coated molecular sieve supported bimetallic catalyst and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069095A (en) * 2005-09-06 2007-03-22 Asahi Kasei Corp Carrier of catalyst for nox purification
CN113751054A (en) * 2021-10-12 2021-12-07 武汉工程大学 SiO (silicon dioxide)2Coated molecular sieve supported bimetallic catalyst and preparation method and application thereof
CN113751054B (en) * 2021-10-12 2022-07-19 武汉工程大学 SiO (silicon dioxide)2Coated molecular sieve supported bimetallic catalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US7601670B2 (en) Catalyst powder, exhaust gas purifying catalyst, and method of producing the catalyst powder
EP1208903B1 (en) Catalyst for purifying exhaust gas
EP0519120B1 (en) Catalyst for purification of exhaust gases
EP1166854B1 (en) Exhaust gas purifing catalyst and method for purifying exhaust gas
US5141906A (en) Catalyst for purifying exhaust gas
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
US5686377A (en) Catalyst for purifying exhaust gases
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JP3517973B2 (en) Exhaust gas purifying catalyst, method for producing the exhaust gas purifying catalyst, and method for producing the exhaust gas purifying honeycomb catalyst
JP3407901B2 (en) Exhaust gas purifying catalyst, method for producing the catalyst, and method for purifying exhaust gas
JPH11221466A (en) Catalyst for purifying exhaust gas and purification of exhaust gas
JP3387417B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5019019B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JPH1176826A (en) Catalyst for cleaning exhaust gas and its manufacture
JP3287873B2 (en) Exhaust gas purification catalyst
JPH05305240A (en) Exhaust gas purifying catalyst
JP2000015104A (en) Catalyst for purification of exhaust gas and purification of exhaust gas
JPH0957066A (en) Catalyst for purification of exhaust gas
JPH11226402A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH11226415A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2002224573A (en) Exhaust emission control catalyst and its manufacturing method
JP3473245B2 (en) Exhaust gas purification catalyst
JP3295992B2 (en) Exhaust gas purification catalyst
JP3296848B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207