JPH1147979A - Method for joining different kinds of metallic material - Google Patents

Method for joining different kinds of metallic material

Info

Publication number
JPH1147979A
JPH1147979A JP9199547A JP19954797A JPH1147979A JP H1147979 A JPH1147979 A JP H1147979A JP 9199547 A JP9199547 A JP 9199547A JP 19954797 A JP19954797 A JP 19954797A JP H1147979 A JPH1147979 A JP H1147979A
Authority
JP
Japan
Prior art keywords
joining
brazing material
brazing
strength
dissimilar metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9199547A
Other languages
Japanese (ja)
Inventor
Nobunao Suzuki
伸尚 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9199547A priority Critical patent/JPH1147979A/en
Publication of JPH1147979A publication Critical patent/JPH1147979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of integrally joining different kinds of metallic materials having different or identical magnetism through raised joining strength. SOLUTION: In integrally joining different kinds of metallic materials having different or identical magnetism by means of an Ag based filler metal, brazing is performed using the Ag based filler metal containing one or more elements in Ti, Ni, Pd and In. Specifically, the Ag based filler metal is designed to contain 0.5-20% either Ti or Ni singly or both respectively, 5-30% Pd or 5-10% In for joining the different kinds of metallic materials. The joining atmosphere at the time of brazing is suitably a non-oxidizing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は回転機に用いられる
部材の中で、磁性の異なる異種金属材料もしくは磁性が
同一である異種金属材料を一体に接合する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for integrally joining dissimilar metal materials having different magnetisms or dissimilar metal materials having the same magnetism among members used for a rotating machine.

【0002】[0002]

【従来の技術】近年の磁石を用いた回転機として、より
小型化,高速化された性能に対する要求が高くなり、こ
れに伴って磁路の関係から異種金属材料を強固に接合す
る方法の改善が希求されている。
2. Description of the Related Art As a rotary machine using a magnet in recent years, there has been an increasing demand for smaller and faster performance, and accordingly, a method of strongly joining dissimilar metal materials due to the magnetic path has been improved. Is needed.

【0003】例えば回転機で用いられる異種金属材料と
して、図10に示したように磁石1を磁性材もしくは非
磁性材でなるシャフト2と接合したり、磁石1を非磁性
材でなる端板3に接合するケース、又は非磁性材でなる
保持リング4と磁石1及び端板3とを接合するケース等
がある。つまり磁性の異なる金属材料の組み合わせだけ
でなく、磁性が同一である金属材料を一体に接合するケ
ースも考えられる。
For example, as a dissimilar metal material used in a rotating machine, as shown in FIG. 10, a magnet 1 is joined to a shaft 2 made of a magnetic material or a non-magnetic material, or a magnet 1 is made of an end plate 3 made of a non-magnetic material. Or a case where the holding ring 4 made of a non-magnetic material is joined to the magnet 1 and the end plate 3. That is, not only a combination of metal materials having different magnetism but also a case in which metal materials having the same magnetism are integrally joined may be considered.

【0004】これら異種金属の接合方法としては、一般
的には銀ろうなどの金属系ろう材を用いたろう付け方法
が用いられており、特に接合界面で大きな接合強度を得
るためには、焼きばめとかくさびを用いた機械的拘束手
段が併用されている。
[0004] As a joining method of these dissimilar metals, a brazing method using a metal brazing material such as silver solder is generally used. Mechanical restraints using wedges and wedges are also used.

【0005】[0005]

【発明が解決しようとする課題】異種金属の接合方法と
しては、一般的には銀ろうなどの金属系ろう材を用いた
ろう付け方法が用いられているが、通常のAg系ろう材
を用いた高温ろう付け方法では接合界面で充分な強度が
得られず、回転機をより小型化,高速化すると上で要求
される性能を必ずしも満足する大きな接合強度を得るこ
とができないという課題が存在する。
As a method for joining dissimilar metals, a brazing method using a metallic brazing material such as silver brazing is generally used, but a normal Ag-based brazing material is used. With the high-temperature brazing method, sufficient strength cannot be obtained at the bonding interface, and there is a problem that if the rotating machine is further reduced in size and speed is increased, high bonding strength that always satisfies the performance required above cannot be obtained.

【0006】このように異種金属間の接合強度が充分に
得られない場合には、回転機としての強度,剛性,靭
性,変形能等の機械的特性が不足する事態が生じてしま
い、電動機等の高速化とか大容量化に伴って回転機に作
用する遠心力が一段と増大した際に磁石の変形とか破断
が生じやすいという問題点が残る。
[0006] When the bonding strength between different metals is not sufficiently obtained, mechanical characteristics such as strength, rigidity, toughness, and deformability of a rotating machine may be insufficient, and an electric motor or the like may be insufficient. When the centrifugal force acting on the rotating machine further increases due to the increase in speed and capacity of the rotor, there remains a problem that the magnet is likely to be deformed or broken.

【0007】そこで本発明は上記に鑑みてなされたもの
であって、磁性の異なる異種金属材料もしくは磁性が同
一である異種金属材料を、接合強度を高めて一体に接合
することができる接合方法を提供することを目的として
いる。
In view of the above, the present invention has been made in view of the above, and has a method for joining dissimilar metal materials having different magnetisms or dissimilar metal materials having the same magnetism together by increasing the joining strength. It is intended to provide.

【0008】[0008]

【課題を解決するための手段】一般に用いられているろ
う付け方法は、異種金属の接合界面で充分な強度が得ら
れないが、本発明者らは異種金属の表面酸化層を完全に
除去すれば、接合界面でろう材成分が拡散して高強度の
ろう付けが行えるものと考え、更に接合時に圧力を加え
たり、鋼材の表面粗さを制御することによってろう付け
の強度が増大するものとの観点から以下の接合方法を実
施した。
The brazing method generally used does not provide sufficient strength at the joining interface between dissimilar metals, but the present inventors completely remove the surface oxide layer of the dissimilar metal. For example, it is thought that high-strength brazing can be performed by diffusing the brazing filler metal at the joining interface, and further increasing the brazing strength by applying pressure during joining or controlling the surface roughness of the steel material. From the viewpoint of the following, the following joining method was implemented.

【0009】磁性の異なる異種金属材料もしくは磁性が
同一である異種金属材料をAg系ろう材を用いて一体に
接合する際に、チタン(Ti),ニッケル(Ni),パ
ラジウム(Pd),インジウム(In)の何れか1種も
しくは複数種の元素を含有するAg系のろう材を用いて
ろう付けを行うことが特徴となっている。
When different metal materials having different magnetisms or different metal materials having the same magnetism are joined together by using an Ag-based brazing material, titanium (Ti), nickel (Ni), palladium (Pd), indium ( It is characterized in that brazing is performed using an Ag-based brazing material containing any one or more elements of In).

【0010】具体的な実施形態としては、Ag系のろう
材として、チタン,ニッケルの単独又は両方を各0.5
〜20%含有させたり、パラジウムを5〜30%含有さ
せ、もしくはインジウムを5〜10%含有させて異種金
属材料の接合を実施する。ろう付け時の接合雰囲気は、
非酸化性雰囲気とすることが好ましい。
[0010] As a specific embodiment, as the Ag-based brazing filler metal, titanium or nickel alone or both are each added at 0.5%.
The dissimilar metal material is joined by containing 2020%, containing 5-30% of palladium, or containing 5-10% of indium. The bonding atmosphere during brazing is
It is preferable to use a non-oxidizing atmosphere.

【0011】更にチタン,ニッケル,パラジウムとイン
ジウムの何れか1種もしくは複数種が添加されたろう材
を用いて、加圧条件下で異種金属材料の表面粗さを最適
に制御してろう付けを行う異種金属材料の接合方法を提
案する。
Further, brazing is performed by using a brazing material to which one or more of titanium, nickel, palladium and indium are added, while controlling the surface roughness of the dissimilar metal material under a pressurized condition. A method for joining dissimilar metal materials is proposed.

【0012】かかる異種金属材料の接合方法によれば、
非酸化雰囲気中でAg系のろう材にチタン,ニッケルを
単独又は両方を各0.5〜20%含有させて接合した場
合と、パラジウムを5〜30%含有させて接合した場合
及びインジウムを5〜10%含有させて接合した場合に
は、これらの金属を含有していないAg系ろう材を用い
た場合の接合強度に対して、約1.5倍の接合強度が得
られ、強固な接合部の一体化構造が実現された。
According to the method for joining dissimilar metal materials,
In a non-oxidizing atmosphere, an Ag-based brazing material was joined by adding 0.5 to 20% of titanium or nickel alone or both, a case of joining containing 5 to 30% of palladium, and a case of joining 5% or less of indium. In the case of joining by containing 10% to 10%, the joining strength of about 1.5 times as large as the joining strength when using an Ag-based brazing material not containing these metals is obtained. The unit has an integrated structure.

【0013】これはAg系ろう材と異種金属側の界面
で、ろう材成分中をチタン,ニッケルが拡散して異種金
属側表面の酸化層を除去し、金属間化合物を生成したた
めであり、特にニッケルの場合にはTiNiの金属間化
合物を形成する。このようにAg系ろう材と異種金属表
面の両方の界面に合金層が形成されることにより、異種
金属材料の接合強度を高めることができる。
This is because titanium and nickel diffuse in the brazing alloy component at the interface between the Ag-based brazing material and the dissimilar metal side to remove an oxide layer on the surface of the dissimilar metal side, thereby producing an intermetallic compound. In the case of nickel, an intermetallic compound of TiNi is formed. By forming the alloy layer at the interface between both the Ag-based brazing material and the surface of the dissimilar metal, the bonding strength of the dissimilar metal material can be increased.

【0014】更に加圧条件下で異種金属材料の表面粗さ
を最適に制御してろう付けを行うことにより、表面粗さ
を変化させていない従来例に比して接合強度を更に増大
することが可能となる。
Further, the brazing is performed by optimally controlling the surface roughness of the dissimilar metal material under a pressurized condition, thereby further increasing the bonding strength as compared with the conventional example in which the surface roughness is not changed. Becomes possible.

【0015】[0015]

【発明の実施の形態】以下本発明にかかる異種金属材料
の接合方法の実施形態例を説明する。一般に磁石を用い
た回転機に課せられている小型化,高速化に対する要求
を満足するためには、異種金属の接合部は高強度に一体
接合されていることが必須の要件である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for joining dissimilar metal materials according to the present invention will be described below. In order to satisfy the demands for miniaturization and high speed generally imposed on rotating machines using magnets, it is essential that the joints of different metals be integrally joined with high strength.

【0016】本発明の実施形態例では、鋼材に接合する
金属として軽量で高強度なチタン合金を採用し、このチ
タン合金と鋼材という異種金属でなる供試材の接合方法
として、通常用いられているろう付け方法に着目した。
In the embodiment of the present invention, a lightweight and high-strength titanium alloy is adopted as a metal to be joined to a steel material, and this titanium alloy and a steel material are commonly used as a method of joining test materials composed of different metals. I focused on the brazing method.

【0017】前記したように、従来のAg系ろう材を使
用したろう付け方法は、異種金属の接合界面で充分な強
度が得られないため、回転機に課せられている前記要求
を満足する大きな接合強度を得ることができないという
課題があるが、本発明者らは供試材であるチタン合金と
鋼材の各表面酸化層を完全に除去すれば、接合界面でろ
う材成分が拡散して高強度のろう付けが行えるものと考
えた。
As described above, the conventional brazing method using an Ag-based brazing material does not provide sufficient strength at the joining interface between dissimilar metals, so that a large brazing method that satisfies the above-mentioned requirements imposed on a rotating machine is required. Although there is a problem that the joining strength cannot be obtained, the inventors of the present invention completely remove the surface oxide layers of the titanium alloy and the steel, which are the test materials, so that the brazing filler metal diffuses at the joining interface to increase the bonding strength. We thought that brazing of strength could be performed.

【0018】更に接合時に圧力を加えたり、鋼材の表面
粗さを制御することによってろう付けの強度が増大する
ものと思慮し、以下に記す実施形態例1〜8に基づいて
チタン合金と鋼材の一体接合を試みた。
Further, it is considered that the brazing strength is increased by applying a pressure at the time of joining or controlling the surface roughness of the steel material. Attempted integral joining.

【0019】先ず供試材としてのチタン合金と鋼材の組
成を表1に示す。
First, Table 1 shows the composition of the titanium alloy and the steel as test materials.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示したように、チタン合金として
「Ti−6Al−4V」を採用し、鋼材は合金鋼として
「Ni−Cr−Mo鋼」、及び超高張力鋼として「18
Niマルエージング鋼」を用いた。
As shown in Table 1, "Ti-6Al-4V" was used as a titanium alloy, and "Ni-Cr-Mo steel" was used as an alloy steel, and "18" was used as an ultra-high tensile steel.
Ni maraging steel ".

【0022】使用するろう材としては、一般的に用いら
れているAg系のろう材を採用し、このAg系のろう材
に添加されている金属として、銅(Cu)の外に供試材
の表面酸化層を除去する目的で活性金属であるチタン
(Ti),強固な接合を目的として両方の供試材に拡散
しやすいニッケル(Ni),供試材への濡れ性を改善す
る目的でパラジウム(Pd)及びインジウム(In)が
添加されているろう材を用いた。ろう材の組成例を表2
に示す。
As a brazing material to be used, a commonly used Ag-based brazing material is employed. As a metal added to the Ag-based brazing material, copper (Cu) is used as a test material. Titanium (Ti), which is the active metal, for the purpose of removing the surface oxide layer of nickel, nickel (Ni), which is easily diffused into both test materials for the purpose of strong bonding, and the purpose of improving the wettability to the test materials A brazing material to which palladium (Pd) and indium (In) were added was used. Table 2 shows examples of brazing filler metal compositions.
Shown in

【0023】[0023]

【表2】 [Table 2]

【0024】接合温度としては、一般にろう材の接合温
度といわれている液相温度+50℃より高い接合温度を
採用し、接合雰囲気は真空中とすることにより、接合界
面にろう材と供試材との間で強固な合金層を形成させる
ことを試みた。
As the joining temperature, a joining temperature higher than the liquidus temperature + 50 ° C., which is generally called the joining temperature of the brazing material, is employed. An attempt was made to form a strong alloy layer between them.

【0025】その結果、Ag系のろう材にチタン,ニッ
ケルを単独又は両方を各0.5〜20%含有させた例
と、パラジウム5〜30%含有させた例、インジウムを
5〜10%含有させた例は、これらの金属を含有してい
ないAg系ろう材を用いた場合の接合強度に対して、約
1.5倍の接合強度が得られ、これによりAg系ろう材
を使用しての接合部の一体化構造を実現した。
As a result, an example in which titanium or nickel is contained alone or both in the Ag-based brazing material in an amount of 0.5 to 20%, an example in which palladium is contained in an amount of 5 to 30%, an indium containing 5 to 10%. In this example, the bonding strength of about 1.5 times the bonding strength when using the Ag-based brazing material not containing these metals was obtained. The integrated structure of the joint is realized.

【0026】以下にチタン合金と鋼材との接合について
各種実施形態例を説明する。
Various embodiments of the joining of a titanium alloy and a steel material will be described below.

【0027】〔第1実施形態例〕接合雰囲気として非酸
化性雰囲気である真空中において、チタン合金と炭素を
0.4%含んでいる合金鋼との接合を、Ag系ろう材に
ニッケルを添加したろう材を用いて行った。
[First Embodiment] In a vacuum, which is a non-oxidizing atmosphere, a titanium alloy and an alloy steel containing 0.4% of carbon are joined by adding nickel to an Ag-based brazing material. This was performed using a brazing filler metal.

【0028】図1に示したように、ろう材としてAg−
42%Cu−2%Ni(液相893℃)を使用すると、
Ag−28%Cu(液相780℃)のろう材を使用した
場合よりも接合強度が向上した。
As shown in FIG. 1, Ag-
Using 42% Cu-2% Ni (liquid phase 893 ° C.)
The joining strength was improved as compared with the case where the brazing material of Ag-28% Cu (liquid phase 780 ° C.) was used.

【0029】これらは一般に接合温度とされている液相
温度+50℃よりも更に接合温度を上昇させたことによ
り、Ag系ろう材と合金鋼側の界面で、Ag系ろう材成
分中をチタン合金のTiが拡散して合金鋼表面の酸化層
を除去し、TiCの金属間化合物を生成している。
In these, the joining temperature is raised further than the liquidus temperature + 50 ° C., which is generally considered as the joining temperature, so that the Ag-based brazing filler metal component in the interface between the Ag-based brazing material and the alloy steel side is titanium alloy. Of Ti diffuses to remove an oxide layer on the surface of the alloy steel, thereby generating an intermetallic compound of TiC.

【0030】又、Ag系ろう材とチタン合金側の界面に
は、ろう材成分のNiが拡散してチタン合金表面の酸化
層を除去し、TiNiの金属間化合物を形成している。
At the interface between the Ag-based brazing material and the titanium alloy, Ni as a brazing material diffuses to remove an oxide layer on the surface of the titanium alloy, thereby forming an intermetallic compound of TiNi.

【0031】このようにAg系ろう材と合金鋼表面との
界面と、Ag系ろう材とチタン合金側の界面との両方の
界面に合金層を形成することによってチタン合金と合金
鋼の接合強度を高めることができる。
By forming an alloy layer at both the interface between the Ag-based brazing material and the surface of the alloy steel and the interface between the Ag-based brazing material and the interface on the titanium alloy side, the joining strength between the titanium alloy and the alloy steel is increased. Can be increased.

【0032】但し接合温度が高くなると接合強度は低下
する。これは接合部に脆い金属間化合物が増加して接合
強度の向上を阻害するためであるものと考えられる。
However, as the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0033】又、以下の各実施形態例と共通する事項と
して、チタン合金と鋼材との接合工程を真空中で実施す
ることにより、強固な酸化皮膜が形成されやすいチタン
合金及び鋼材の表面が洗浄後の清浄な状態を維持してお
り、接合強度を高める要因となっている。
Further, as a common matter with each of the following embodiments, the surface of the titanium alloy and the steel material on which a strong oxide film is easily formed is cleaned by performing the joining process between the titanium alloy and the steel material in a vacuum. A later clean state is maintained, which is a factor for increasing the bonding strength.

【0034】〔第2実施形態例〕接合雰囲気として非酸
化性雰囲気である真空中においてチタン合金と炭素を
0.4%含んでいる合金鋼との接合を、Ag系ろう材に
チタンを添加したろう材を用いて行った。
[Second Embodiment] In a vacuum, which is a non-oxidizing atmosphere, a titanium alloy is joined to an alloy steel containing 0.4% of carbon by adding titanium to an Ag brazing material. This was performed using a brazing filler metal.

【0035】図2に示したように、ろう材としてAg−
27%Cu−4.5%Ti(液相850℃)を使用する
と、Ag−28%Cu(液相780℃)のろう材を使用
した場合よりも接合強度が向上した。
As shown in FIG. 2, Ag-
When 27% Cu-4.5% Ti (liquid phase 850 ° C) was used, the bonding strength was improved as compared with the case where Ag-28% Cu (liquid phase 780 ° C) brazing material was used.

【0036】第1実施形態例と同様に接合温度とされて
いる液相温度+50℃よりも更に接合温度を上昇させた
ことにより、Ag系ろう材成分中のTiが拡散して合金
鋼表面の酸化層を除去し、TiCの金属間化合物を形成
している。又、Ag系ろう材とチタン合金側の界面に
は、ろう材成分中のTiがチタン合金中に拡散してい
る。
As in the first embodiment, by increasing the joining temperature further than the liquidus temperature + 50 ° C., which is the joining temperature, Ti in the Ag-based brazing filler metal diffuses and the The oxide layer is removed to form an intermetallic compound of TiC. Also, at the interface between the Ag-based brazing material and the titanium alloy, Ti in the brazing metal component diffuses into the titanium alloy.

【0037】このように両方の界面に合金層を形成する
ことによってチタン合金と合金鋼の接合強度を高めるこ
とができる。但し前記例と同じく接合温度が高くなると
接合強度は低下する。これは接合部に脆い金属間化合物
が増加して接合強度の向上を阻害するためであるものと
考えられる。
As described above, by forming the alloy layers at both interfaces, the joining strength between the titanium alloy and the alloy steel can be increased. However, as in the above example, when the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0038】〔第3実施形態例〕接合雰囲気として非酸
化雰囲気である真空中においてチタン合金と炭素を0.
4%含んでいる合金鋼との接合を、Ag系ろう材にパラ
ジウムを添加したろう材を用いて行った。
[Third Embodiment] In a vacuum, which is a non-oxidizing atmosphere as a bonding atmosphere, a titanium alloy and carbon are mixed at a pressure of 0.1 mm.
Joining with an alloy steel containing 4% was performed using a brazing material in which palladium was added to an Ag-based brazing material.

【0039】図3に示したようにろう材としてAg−2
1%Cu−25%Pd(液相950℃)を使用すると、
Ag−28%Cu(液相780℃)のろう材を使用した
場合よりも接合強度が向上した。
As shown in FIG. 3, Ag-2 was used as a brazing material.
Using 1% Cu-25% Pd (liquid phase at 950 ° C.)
The joining strength was improved as compared with the case where the brazing material of Ag-28% Cu (liquid phase 780 ° C.) was used.

【0040】第1,第2実施形態例と同様に接合温度と
されている液相温度+50℃よりも更に接合温度を上昇
させたことにより、Ag系ろう材と合金鋼側の界面には
Ag系ろう材成分中のPdが合金側に拡散して、界面に
合金層を形成している。
As in the first and second embodiments, the joining temperature is further raised from the liquidus temperature + 50 ° C., which is the joining temperature, so that the interface between the Ag-based brazing material and the alloy steel side has Ag. Pd in the brazing filler metal component diffuses to the alloy side to form an alloy layer at the interface.

【0041】このように両方の界面に合金層を形成する
ことによってチタン合金と合金鋼の接合強度を高めるこ
とができる。但し前記各例と同じく接合温度が高くなる
と接合強度は低下する。これは接合部に脆い金属間化合
物が増加して接合強度の向上を阻害するためであるもの
と考えられる。
By forming an alloy layer at both interfaces in this way, the joining strength between the titanium alloy and the alloy steel can be increased. However, as in the above examples, when the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0042】〔第4実施形態例〕接合雰囲気として非酸
化性雰囲気である真空中においてチタン合金と炭素を
0.4%含んでいる合金鋼との接合を、Ag系ろう材に
インジウムを添加したろう材を用いて行った。
[Fourth Embodiment] The joining of a titanium alloy and an alloy steel containing 0.4% of carbon in a vacuum, which is a non-oxidizing atmosphere, is performed by adding indium to an Ag brazing material. This was performed using a brazing filler metal.

【0043】図4に示したようにろう材としてAg−2
7%Cu−10%In(液相730℃)を使用すると、
Ag−28%Cu(液相780℃)のろう材を使用した
場合よりも接合強度が向上した。
As shown in FIG. 4, Ag-2 was used as a brazing material.
Using 7% Cu-10% In (liquid phase at 730 ° C.)
The joining strength was improved as compared with the case where the brazing material of Ag-28% Cu (liquid phase 780 ° C.) was used.

【0044】これは接合温度とされている液相温度+5
0℃よりも更に接合温度を上昇させたことにより、Ag
系ろう材成分中のInが拡散して合金鋼表面の酸化層を
除去し、合金層を形成している。又、Ag系ろう材とチ
タン合金側の界面には、ろう材成分中のInがチタン合
金中に拡散している。
This is the liquidus temperature +5 which is the joining temperature.
By increasing the bonding temperature further than 0 ° C., Ag
In in the brazing filler metal component diffuses to remove an oxide layer on the surface of the alloy steel, thereby forming an alloy layer. At the interface between the Ag-based brazing material and the titanium alloy, In in the brazing metal component diffuses into the titanium alloy.

【0045】このように両方の界面に合金層を形成する
ことによってチタン合金と合金鋼の接合強度を高めるこ
とができる。但し前記例と同じく接合温度が高くなると
接合強度は低下する。これは接合部に脆い金属間化合物
が増加して接合強度の向上を阻害するためであるものと
考えられる。
By forming an alloy layer at both interfaces in this way, the joining strength between the titanium alloy and the alloy steel can be increased. However, as in the above example, when the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0046】〔第5実施形態例〕接合雰囲気として非酸
化性雰囲気である真空中において、チタン合金と炭素含
有量が≦0.03%である超高張力鋼である「18Ni
マルエージング鋼」との接合を、Ag系ろう材にニッケ
ルを添加したろう材を用いて行った。
Fifth Embodiment In a vacuum which is a non-oxidizing atmosphere as a joining atmosphere, a titanium alloy and ultra-high-strength steel "18Ni" having a carbon content of ≤0.03% are used.
The bonding with "maraging steel" was performed using a brazing material obtained by adding nickel to an Ag-based brazing material.

【0047】図5に示したようにろう材としてAg−4
2%Cu−2%Ni(液相893℃)を使用すると、A
g−28%Cu(液相780℃)のろう材を使用した場
合よりも接合強度が向上した。
As shown in FIG. 5, Ag-4 was used as a brazing material.
When 2% Cu-2% Ni (liquid phase 893 ° C.) is used, A
The bonding strength was improved as compared with the case where the brazing material of g-28% Cu (liquid phase 780 ° C.) was used.

【0048】これは一般に接合温度とされている液相温
度+50℃よりも更に接合温度を上昇させたことによ
り、Ag系ろう材と超高張力鋼側の界面にはAg系ろう
材成分中をチタン合金のTiが拡散して合金鋼表面の酸
化層を除去し、超高張力鋼「18Ni」のNiとTiN
iの金属間化合物を形成している。
This is because the joining temperature is raised further than the liquidus temperature + 50 ° C., which is generally regarded as the joining temperature, so that the interface between the Ag-based brazing material and the ultrahigh-strength steel side contains the Ag-based brazing material component. The Ti of the titanium alloy diffuses to remove the oxide layer on the surface of the alloy steel, and the Ni and TiN of the ultra-high tensile steel “18Ni”
i forms an intermetallic compound.

【0049】又、Ag系ろう材とチタン合金側の界面に
は、Ag系ろう材成分中のNiが拡散してチタン合金表
面の酸化層を除去し、TiNiの金属間化合物を形成し
ている。
At the interface between the Ag-based brazing material and the titanium alloy, Ni in the Ag-based brazing material diffuses to remove an oxide layer on the surface of the titanium alloy, thereby forming an intermetallic compound of TiNi. .

【0050】このように両方の界面に合金層を形成する
ことによってチタン合金と超高張力鋼の接合強度を高め
ることができる。
By forming the alloy layers at both interfaces in this way, the joining strength between the titanium alloy and the ultra-high tensile steel can be increased.

【0051】但し前記各例と同じく接合温度が高くなる
と接合強度は低下する。これは接合部に脆い金属間化合
物が増加して接合強度の向上を阻害するためであるもの
と考えられる。
However, as in the above examples, when the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0052】〔第6実施形態例〕接合雰囲気として非酸
化性雰囲気である真空中においてチタン合金と炭素含有
量が≦0.03%である超高張力鋼である「18Niマ
ルエージング鋼」との接合を、Ag系ろう材にパラジウ
ムを添加したろう材を用いて行った。
[Sixth Embodiment] In a vacuum, which is a non-oxidizing atmosphere, a titanium alloy and "18Ni maraging steel", an ultra-high tensile steel having a carbon content of ≤0.03%, are used as a bonding atmosphere. The joining was performed using a brazing material obtained by adding palladium to an Ag-based brazing material.

【0053】図6に示したようにろう材としてAg−2
1%Cu−25%Pd(液相950℃)を使用すると、
Ag−28%Cu(液相780℃)のろう材を使用した
場合よりも接合強度が向上した。
As shown in FIG. 6, Ag-2 was used as a brazing material.
Using 1% Cu-25% Pd (liquid phase at 950 ° C.)
The joining strength was improved as compared with the case where the brazing material of Ag-28% Cu (liquid phase 780 ° C.) was used.

【0054】これは一般に接合温度とされている液相温
度+50℃よりも更に接合温度を上昇させたことによ
り、Ag系ろう材と超高張力鋼側の界面にはAg系ろう
材成分中のPdが合金鋼に拡散して界面に合金層を形成
し、Ag系ろう材とチタン合金側の界面にはAg系ろう
材成分中のPdが拡散してチタン合金界面で合金層を形
成している。
This is because the joining temperature is raised further than the liquidus temperature + 50 ° C., which is generally considered to be the joining temperature, so that the interface between the Ag-based brazing material and the ultra-high tensile strength steel side contains the Ag-based brazing material component. Pd diffuses into the alloy steel to form an alloy layer at the interface. At the interface between the Ag brazing material and the titanium alloy, Pd in the Ag brazing material diffuses to form an alloy layer at the titanium alloy interface. I have.

【0055】このように両方の界面に合金層を形成する
ことによってチタン合金と超高張力鋼の接合強度を高め
ることができる。但し前記各例と同じく接合温度が高く
なると接合強度は低下する。これは接合部に脆い金属間
化合物が増加して接合強度の向上を阻害するためである
ものと考えられる。
By forming the alloy layers at both interfaces in this way, the joining strength between the titanium alloy and the ultra-high tensile steel can be increased. However, as in the above examples, when the joining temperature increases, the joining strength decreases. It is considered that this is because brittle intermetallic compounds increase at the joints and hinder the improvement of the joint strength.

【0056】次に接合時に圧力を加え、鋼材の表面粗さ
を制御することによってろう付けの強度が増大するもの
との観点から、以下に記す実施形態例7〜8に基づいて
チタン合金と鋼材の一体接合を試みた結果を説明する。
Next, from the viewpoint that the strength of brazing is increased by controlling the surface roughness of the steel material by applying pressure at the time of joining, a titanium alloy and a steel material will be described based on Embodiments 7 to 8 described below. The results of an attempt to integrally join are described.

【0057】先ず供試材として用いたチタン合金中の
「Ti−4.5Al−3V−2Mo−2Fe」の組成を
表3に示す。
First, Table 3 shows the composition of "Ti-4.5Al-3V-2Mo-2Fe" in the titanium alloy used as the test material.

【0058】[0058]

【表3】 [Table 3]

【0059】尚、チタン合金として表1に示した「Ti
−6Al−4V」をも使用し、鋼材としての合金鋼は表
1に記載した「Ni−Cr−Mo鋼」を用いた。
As the titanium alloy, “Ti” shown in Table 1 was used.
-6Al-4V "was also used, and" Ni-Cr-Mo steel "described in Table 1 was used as the alloy steel as the steel material.

【0060】〔第7実施形態例〕接合雰囲気として非酸
化雰囲気である真空中において、チタン合金「Ti−6
Al−4V」と炭素を0.4%含んでいる合金鋼との接
合を、Ag系ろう材にニッケルを添加したろう材を用
い、更に加圧条件下で合金鋼の表面粗さを変化させて行
った。
[Seventh Embodiment] A titanium alloy "Ti-6" is used in a vacuum which is a non-oxidizing atmosphere as a bonding atmosphere.
Al-4V "and an alloy steel containing 0.4% of carbon were joined by using a brazing material obtained by adding nickel to an Ag-based brazing material and further changing the surface roughness of the alloy steel under pressurized conditions. I went.

【0061】図7に示したように、ろう材としてAg−
42%Cu−2%Ni(液相893℃)を使用し、接合
温度が980℃の時、表面粗さを変化させていない前回
例のデータ(表面粗さRa=6.3a,加圧なし,図7
中に×で示す)と較べて、本例(図7中に△で示す)の
ように表面粗さRaが1.6a〜6.3aの範囲にあるよ
うにし、10MPaの加圧条件下で接合することによ
り、接合強度が向上していることが確認された。
As shown in FIG. 7, Ag-
When using 42% Cu-2% Ni (liquid phase 893 ° C.) and the joining temperature is 980 ° C., the data of the previous example in which the surface roughness was not changed (surface roughness Ra = 6.3a, no pressure applied) , FIG.
As shown in this example (indicated by △ in FIG. 7), the surface roughness Ra is in the range of 1.6a to 6.3a, and the pressure is increased under 10 MPa. It was confirmed that the joining strength was improved by joining.

【0062】更に他のAg系ろう材であるAg−27%
Cu−4.5%Ti(液相850℃,第2実施形態例で
採用)、Ag−21%Cu−25%Pd(液相950
℃,第3実施形態例で採用)、Ag−27%Cu−10
%In(液相730℃,第4実施形態例で採用)を用い
た場合でも略同様な結果が得られた。
Ag-27% which is another Ag-based brazing material
Cu-4.5% Ti (liquid phase 850 ° C, adopted in the second embodiment), Ag-21% Cu-25% Pd (liquid phase 950
° C, employed in the third embodiment), Ag-27% Cu-10
Even when% In (liquid phase at 730 ° C., adopted in the fourth embodiment) was used, substantially the same results were obtained.

【0063】〔第8実施形態例〕接合雰囲気として非酸
化雰囲気である真空中において、チタン合金「Ti−
4.5Al−3V−2Mo−2Fe」と炭素を0.4%含
んでいる合金鋼との接合を、Ag系ろう材にニッケル
(Ni)を添加したろう材を用い、更に加圧条件下で低
合金鋼の表面粗さを変化させて行った。
[Eighth Embodiment] A titanium alloy "Ti-
"4.5Al-3V-2Mo-2Fe" and an alloy steel containing 0.4% of carbon were joined using a brazing material obtained by adding nickel (Ni) to an Ag-based brazing material, and further under a pressurizing condition. The test was performed by changing the surface roughness of the low alloy steel.

【0064】図8に示したように、ろう材としてAg−
42%Cu−2%Ni(液相893℃)を使用し、接合
温度が980℃の時、表面粗さを変化させていない前回
例のデータ(表面粗さRa=6.3a,加圧なし,図8
中に×で示す)と較べて、本例(図8中に△で示す)の
ように表面粗さRaが0.2a〜6.3aの範囲にあるよ
うにし、10MPaの加圧条件下で接合することによ
り、接合強度が向上していることが確認された。
As shown in FIG. 8, Ag-
When using 42% Cu-2% Ni (liquid phase 893 ° C.) and the joining temperature is 980 ° C., the data of the previous example in which the surface roughness was not changed (surface roughness Ra = 6.3a, no pressure applied) , FIG.
As shown in this example (indicated by Δ in FIG. 8), the surface roughness Ra is in the range of 0.2a to 6.3a, and the pressure is increased under a pressure of 10 MPa. It was confirmed that the joining strength was improved by joining.

【0065】更に第2実施形態例、第3実施形態例、第
4実施形態例で採用したAg系ろう材を用いた場合でも
略同様な結果が得られた。
Further, substantially the same results were obtained when the Ag-based brazing material employed in the second, third and fourth embodiments was used.

【0066】このように接合時に加圧力を加え、且つ鋼
材の表面粗さを変化させることによってろう付けの強度
が増大する理由は、図9に示したようにチタン合金がと
もにろう付け温度付近で大きな塑性伸びを生じ、このよ
うな温度域での流動応力が約50MPa以下という小さ
い値であるため、小さな加圧力でも接合する相手材の接
合面の形状になじみやすくなるためである。
The reason why the strength of brazing is increased by applying a pressing force at the time of joining and changing the surface roughness of the steel material is as shown in FIG. This is because a large plastic elongation occurs, and the flow stress in such a temperature range is a small value of about 50 MPa or less, so that even a small pressing force can easily conform to the shape of the joining surface of the mating material to be joined.

【0067】又、チタン合金「Ti−4.5Al−3V
−2Mo−2Fe」は、チタン合金「Ti−6Al−4
V」よりもAg系ろう材のろう付け温度付近で大きな塑
性伸びを生じており、上記の理由によりろう付けの強度
がより一層増大することが確認された。
The titanium alloy “Ti-4.5Al-3V”
-2Mo-2Fe "is a titanium alloy" Ti-6Al-4 "
A larger plastic elongation occurred near the brazing temperature of the Ag-based brazing material than "V", and it was confirmed that the brazing strength was further increased for the above reasons.

【0068】[0068]

【発明の効果】以上詳細に説明したように、本発明にか
かる異種金属材料の接合方法によれば、磁性の異なる異
種金属材料もしくは磁性が同一である異種金属材料を接
合するに際して、非酸化雰囲気中でAg系のろう材にチ
タン,ニッケルを単独又は両方を適量含有させ、更にパ
ラジウム又はインジウムを適量含有させて接合すること
により、Ag系ろう材と異種金属側の界面でろう材成分
中をTi,Niが拡散して異種金属側表面の酸化層を除
去し、金属間化合物を生成することによってこれらの金
属を含有していないAg系ろう材を用いた場合の接合強
度よりも強度が大きい一体化構造を実現することができ
る。
As described above in detail, according to the method for joining dissimilar metal materials according to the present invention, when joining dissimilar metal materials having different magnetisms or dissimilar metal materials having the same magnetism, a non-oxidizing atmosphere is used. By adding titanium or nickel alone or both in an appropriate amount to an Ag-based brazing material and further adding an appropriate amount of palladium or indium to the Ag-based brazing material and joining them together, the brazing material component at the interface between the Ag-based brazing material and the dissimilar metal side. Ti and Ni are diffused to remove the oxide layer on the surface of the dissimilar metal and generate an intermetallic compound, so that the bonding strength is higher than the bonding strength when using an Ag-based brazing material not containing these metals. An integrated structure can be realized.

【0069】更にAg系ろう材と異種金属表面の両方の
界面に合金層が形成されることによって異種金属材料の
接合強度を高め、且つろう付け時に加圧条件下で異種金
属材料の表面粗さを最適に制御してろう付けを行うこと
により、表面粗さを変化させていない従来例に比して接
合強度を増大することが可能となる。
Further, an alloy layer is formed at the interface between both the Ag-based brazing material and the surface of the dissimilar metal, so that the joining strength of the dissimilar metal material is increased, and the surface roughness of the dissimilar metal material is increased under pressure during brazing. By performing the brazing while controlling the optimum value, it is possible to increase the bonding strength as compared with the conventional example in which the surface roughness is not changed.

【0070】従って本発明によれば、銀ろうなどの通常
の金属系ろう材を用いた従来のろう付け方法で接合界面
で充分な強度が得られず、回転機をより小型化,高速化
する上で要求される性能を満足できないという課題を解
消して、回転機としての強度,剛性,靭性,変形能等の
機械的特性を高めて電動機等の高速化とか大容量化に伴
って回転機に作用する遠心力が増大しても磁石の変形と
か破断が生じることがない磁性の異なる金属部材の高強
度な一体化接合方法を実現することができる。
Therefore, according to the present invention, sufficient strength can not be obtained at the joining interface by the conventional brazing method using a normal metal brazing material such as silver brazing, and the rotating machine can be made smaller and faster. Eliminating the problem that the performance required above cannot be satisfied, and improving the mechanical properties such as strength, rigidity, toughness, and deformability of the rotating machine, and increasing the speed and increasing the capacity of the rotating machine A high-strength integrated joining method of metal members having different magnetism without causing deformation or breakage of the magnet even if the centrifugal force acting on the metal member increases.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ろう材としてAg−42%Cu−2%Ni及び
Ag−28%Cuを使用した場合の温度と接合強度の関
係をプロットしたグラフ。
FIG. 1 is a graph plotting the relationship between temperature and bonding strength when Ag-42% Cu-2% Ni and Ag-28% Cu are used as a brazing material.

【図2】ろう材としてAg−27%Cu−4.5%Ti
及びAg−28%Cuを使用した場合の温度と接合強度
の関係をプロットしたグラフ。
FIG. 2 Ag-27% Cu-4.5% Ti as brazing filler metal
7 is a graph plotting the relationship between temperature and bonding strength when Ag-28% Cu is used.

【図3】ろう材としてAg−21%Cu−25%Pd及
びAg−28%Cuを使用した場合の温度と接合強度の
関係をプロットしたグラフ。
FIG. 3 is a graph plotting the relationship between temperature and bonding strength when Ag-21% Cu-25% Pd and Ag-28% Cu are used as a brazing material.

【図4】ろう材としてAg−27%Cu−10%In及
びAg−28%Cuを使用した場合の温度と接合強度の
関係をプロットしたグラフ。
FIG. 4 is a graph plotting the relationship between temperature and bonding strength when using Ag-27% Cu-10% In and Ag-28% Cu as brazing materials.

【図5】ろう材としてAg−42%Cu−2%Ni及び
Ag−28%Cuを使用した場合の温度と接合強度の関
係をプロットしたグラフ。
FIG. 5 is a graph plotting the relationship between temperature and bonding strength when Ag-42% Cu-2% Ni and Ag-28% Cu are used as brazing materials.

【図6】ろう材としてAg−21%Cu−25%Pd及
びAg−28%Cuを使用した場合の温度と接合強度の
関係をプロットしたグラフ。
FIG. 6 is a graph plotting the relationship between temperature and bonding strength when Ag-21% Cu-25% Pd and Ag-28% Cu are used as brazing materials.

【図7】ろう材としてAg−42%Cu−2%Niを使
用し、加圧条件下でチタン合金「Ti−6Al−4V」
の表面粗さを変化させた際の表面粗さと接合強度の関係
をプロットしたグラフ。
FIG. 7 shows a titanium alloy “Ti-6Al-4V” using Ag-42% Cu-2% Ni as a brazing material under a pressurized condition.
7 is a graph plotting the relationship between the surface roughness and the bonding strength when the surface roughness of the sample was changed.

【図8】ろう材としてAg−42%Cu−2%Niを使
用し、加圧条件下でチタン合金「Ti−4.5Al−3
V−2Mo−2Fe」の表面粗さを変化させた際の表面
粗さと接合強度の関係をプロットしたグラフ。
FIG. 8 shows a titanium alloy “Ti-4.5Al-3” using Ag-42% Cu-2% Ni as a brazing material under a pressurized condition.
7 is a graph plotting the relationship between surface roughness and bonding strength when the surface roughness of “V-2Mo-2Fe” is changed.

【図9】チタン合金のろう付け温度付近での塑性伸び及
び流動応力と温度の関係を示すグラフ。
FIG. 9 is a graph showing the relationship between plastic elongation, flow stress, and temperature near the brazing temperature of a titanium alloy.

【図10】回転機で用いられる異種金属材料の接合例を
示す要部断面図。
FIG. 10 is a cross-sectional view of a main part showing an example of joining dissimilar metal materials used in a rotating machine.

【符号の説明】[Explanation of symbols]

1…磁石 2…シャフト 3…端板 4…保持リング DESCRIPTION OF SYMBOLS 1 ... Magnet 2 ... Shaft 3 ... End plate 4 ... Retaining ring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // H02K 1/27 501 H02K 1/27 501G 1/28 1/28 A B23K 103:24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // H02K 1/27 501 H02K 1/27 501G 1/28 1/28 A B23K 103: 24

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁性の異なる異種金属材料もしくは磁性
が同一である異種金属材料をAg系ろう材を用いて一体
に接合する方法において、 チタン(Ti),ニッケル(Ni),パラジウム(P
d),インジウム(In)の何れか1種もしくは複数種
の元素を含有するAg系のろう材を用いてろう付けを行
うことを特徴とする異種金属材料の接合方法。
1. A method for integrally joining dissimilar metal materials having different magnetisms or dissimilar metal materials having the same magnetism using an Ag-based brazing material, comprising: titanium (Ti), nickel (Ni), palladium (P
d) brazing using an Ag-based brazing material containing one or more elements of indium (In).
【請求項2】 Ag系のろう材に、チタン,ニッケルの
単独又は両方を、各0.5〜20%含有させたことを特
徴とする請求項1記載の異種金属材料の接合方法。
2. The method for joining dissimilar metallic materials according to claim 1, wherein the Ag-based brazing filler metal contains titanium or nickel alone or both in an amount of 0.5 to 20%.
【請求項3】 Ag系のろう材に、パラジウムを5〜3
0%含有させたことを特徴とする請求項1記載の異種金
属材料の接合方法。
3. An Ag-based brazing material containing 5 to 3 palladium.
2. The method for joining dissimilar metal materials according to claim 1, wherein 0% is contained.
【請求項4】 Ag系のろう材に、インジウムを5〜1
0%含有させたことを特徴とする請求項1記載の異種金
属材料の接合方法。
4. An Ag-based brazing material containing 5-1 indium.
2. The method for joining dissimilar metal materials according to claim 1, wherein 0% is contained.
【請求項5】 ろう付け時の接合雰囲気を、非酸化性雰
囲気としたことを特徴とする請求項1,2,3項又は4
項の何れか1項に記載の異種金属材料の接合方法。
5. The bonding atmosphere during brazing is a non-oxidizing atmosphere.
Item 14. The method for joining dissimilar metal materials according to any one of the above items.
【請求項6】 磁性の異なる異種金属材料もしくは磁性
が同一である異種金属材料をAg系ろう材を用いて一体
に接合する方法において、 Ag系のろう材に添加されている金属として、チタン
(Ti),ニッケル(Ni),パラジウム(Pd),の
何れか1種もしくは複数種の元素が添加されたろう材を
採用し、加圧条件下で異種金属材料の表面粗さを最適に
制御してろう付けを行うことを特徴とする異種金属材料
の接合方法。
6. A method for integrally joining dissimilar metal materials having different magnetisms or dissimilar metal materials having the same magnetism using an Ag-based brazing material, wherein titanium (Ti) is used as a metal added to the Ag-based brazing material. Ti), nickel (Ni), palladium (Pd), or a brazing material to which one or more of the elements are added, and under pressure conditions, optimally control the surface roughness of the dissimilar metal material A method for joining dissimilar metal materials, comprising performing brazing.
JP9199547A 1997-07-25 1997-07-25 Method for joining different kinds of metallic material Pending JPH1147979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9199547A JPH1147979A (en) 1997-07-25 1997-07-25 Method for joining different kinds of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9199547A JPH1147979A (en) 1997-07-25 1997-07-25 Method for joining different kinds of metallic material

Publications (1)

Publication Number Publication Date
JPH1147979A true JPH1147979A (en) 1999-02-23

Family

ID=16409649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9199547A Pending JPH1147979A (en) 1997-07-25 1997-07-25 Method for joining different kinds of metallic material

Country Status (1)

Country Link
JP (1) JPH1147979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207170A (en) * 2002-12-26 2004-07-22 Ngk Spark Plug Co Ltd Stacked body and solid electrolyte fuel cell
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
WO2020225910A1 (en) * 2019-05-09 2020-11-12 昭和電工マテリアルズ株式会社 Magnet composite and method for manufacturing magnet composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207170A (en) * 2002-12-26 2004-07-22 Ngk Spark Plug Co Ltd Stacked body and solid electrolyte fuel cell
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
WO2020225910A1 (en) * 2019-05-09 2020-11-12 昭和電工マテリアルズ株式会社 Magnet composite and method for manufacturing magnet composite
JPWO2020225910A1 (en) * 2019-05-09 2020-11-12

Similar Documents

Publication Publication Date Title
JP2002527618A (en) Sputter target / back plate assembly and method of manufacturing the same
JP2003170280A (en) Method for connecting different kinds of metallic materials
EP0816007A2 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
WO2012049893A1 (en) RECTANGULAR-SHAPED SILVER (Ag) CLAD STEEL-RIBBON FOR HIGH TEMPERATURE SEMICONDUCTOR DEVICE
JP3078544B2 (en) Electronic component package, lid material for the lid, and method for manufacturing the lid material
JP6271798B2 (en) Manufacturing method of sputtering target
US4049475A (en) SECo5 -Permanent magnet joined to at least one iron mass and method of fabricating such a permanent magnet
JPH1147979A (en) Method for joining different kinds of metallic material
JP2005032834A (en) Joining method of semiconductor chip and substrate
JP2006257510A (en) Sputtering target manufacturing method, and sputtering target
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JP2003282974A (en) Thermoelectric conversion module
JPH1190650A (en) Joining method of different kinds of metallic material
JP3629578B2 (en) Ti-based material and Cu-based bonding method
JP4343479B2 (en) Method for producing reactive solder or brazing material
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body
JP4020003B2 (en) Electrode wire for wire electric discharge machining and electric discharge machining method using the same
JP3199473B2 (en) Resistance diffusion bonding method
JPS61161682A (en) Joint of superconductor
JP5500117B2 (en) Al-Cu bonding ribbon and manufacturing method thereof
JP2003025078A (en) Copper, copper-base alloy and method of manufacturing the same
JPH11170066A (en) Joining method between titanium alloy and dissimilar metal material
JP3440635B2 (en) Aluminum wire bonding pad and method of manufacturing the same
JPH10287972A (en) Backing plate for sputtering target and sputtering target

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405