JPH1143746A - Grain-oriented silicon steel sheet extremely low in core loss and its production - Google Patents

Grain-oriented silicon steel sheet extremely low in core loss and its production

Info

Publication number
JPH1143746A
JPH1143746A JP9200032A JP20003297A JPH1143746A JP H1143746 A JPH1143746 A JP H1143746A JP 9200032 A JP9200032 A JP 9200032A JP 20003297 A JP20003297 A JP 20003297A JP H1143746 A JPH1143746 A JP H1143746A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9200032A
Other languages
Japanese (ja)
Other versions
JP3357578B2 (en
Inventor
Toshito Takamiya
俊人 高宮
Michiro Komatsubara
道郎 小松原
Kunihiro Senda
邦浩 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20003297A priority Critical patent/JP3357578B2/en
Publication of JPH1143746A publication Critical patent/JPH1143746A/en
Application granted granted Critical
Publication of JP3357578B2 publication Critical patent/JP3357578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain-oriented silicon steel sheet having a low core loss by specifying the grain size and the componental compsn. of a steel sheet. SOLUTION: As for the grain size of the steel sheet, the area ratio of the grains of >=8 mm grain size is regulated to >=75%, and the average grain size of all crystal grains is regulated to <=25 mm. It has a compsn. contg., by weight, 1.5 to 7.0% Si, furthermore contg., as inhibitor auxiliary components, Mn, Cu, Sn, Ge, Bi, V, Nb, Cr, Te and Mo by 0.005 to 2.5% independently or in the total of >= two kinds, contg. 0.01 to 1.5% Ni, 0.01 to 0.15% Sb and 0 to 0.0050% B, in which, as impurities, the content of C is reduced to <=0.003%, the total content of S and Se to <=0.003%, that of N to <=0.003%, that of Al to <=0.002%, that of Ti to <=0.003% and that of P to <=0.30%, and the balance iron with inevitable impurities. Furthermore, as for the Sb content X and the Ni content Y, X>0.01, Y>0.01 and 0.3-7.5×<Y<1-10X are regulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板のなかでも、特に鉄
損が極めて低い方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet having extremely low iron loss, particularly among grain-oriented electrical steel sheets used for an iron core of a transformer or a generator.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110)
〔001〕方位や(100)〔001〕方位に配向した
方向性電磁鋼板は、優れた軟磁気特性を有することから
商用周波数域での各種鉄心材料として広く用いられてい
る。このとき、電磁鋼板に要求される特性としては、一
般に50Hzの周波数で1.7 T に磁化させた場合の損失であ
るW17/50(W/kg)で表されることろの鉄損が低いことが重
要である。その理由は、発電機や変圧器の鉄心の鉄損
が、W17/50の値が低い材料を用いることにより大幅に低
減できることからであり、鉄損の低い材料の開発が年々
強く求められてきている所以である。一般に、材料の鉄
損を低減するには、渦電流損を低下させるのに有効であ
る電気抵抗を高めるべく、Siの含有量を増やす方法、鋼
板板厚を低減する方法、結晶粒径を低減する方法、更に
結晶方位の集積度を高めて磁束密度を向上させる方法が
知られている。これらの鉄損低減方法のうち、Si含有量
を増加させる方法、鋼板板厚を低減する方法及び結晶粒
径を低減する方法を検討したが、Si含有量を増加させる
方法についてはSiを過度に含有させると圧延性や加工性
を劣化させるので好ましくなく、鉄損低減に限界があ
り、また、鋼板板厚を低減する方法も極端な製造コスト
の増大をもたらすので、もはや鉄損低減は限界に達しつ
つある。
2. Description of the Related Art Si is contained and the crystal orientation is (110).
Oriented electrical steel sheets oriented in the [001] or (100) [001] direction are widely used as various iron core materials in the commercial frequency range because of their excellent soft magnetic properties. At this time, the characteristic required for the magnetic steel sheet is that the iron loss, which is generally expressed as W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz, is low. is important. The reason is that iron loss in the core of generators and transformers can be significantly reduced by using materials with low values of W17 / 50 , and the development of materials with low iron loss has been strongly demanded year by year. That is why. In general, to reduce iron loss in materials, it is effective to reduce eddy current loss.In order to increase electrical resistance, a method of increasing the content of Si, a method of reducing the thickness of a steel sheet, and a reduction in crystal grain size In addition, there is known a method of increasing the degree of integration of the crystal orientation to improve the magnetic flux density. Among these iron loss reduction methods, a method of increasing the Si content, a method of reducing the thickness of the steel sheet and a method of reducing the crystal grain size were examined.However, the method of increasing the Si content excessively increased the Si content. If it is contained, it is not preferable because it deteriorates the rollability and workability, and there is a limit in reducing iron loss, and the method of reducing the thickness of the steel sheet also causes an extreme increase in manufacturing cost, so the reduction of iron loss is no longer the limit. Is reaching.

【0003】残る磁束密度を向上させる手法については
これまでもよく研究されてきており、例えば、特公昭4
6−23820号公報には、鋼中にAlを添加し、熱間圧
延後1000〜1200℃の高温の熱延板焼鈍とそれに伴う急冷
処理によって微細なAlN を析出させてから、80〜95%の
高圧下率を施す技術が開示され、これによってB10 にし
て1.95T の極めて高い磁束密度の値を得ている。この方
法は、微細に分散したAlN が一次再結晶粒の成長を抑制
するインヒビターとしての強い作用を有することを利用
し、結晶方位の優れた核のみを二次再結晶させることに
より方位の優れた製品の結晶組織を得るものである。し
かしながら、この方法では一般に結晶粒径が粗大化し、
低い鉄損の値を得ることが難しく、また熱延板焼鈍にお
いて完全にAlN を固溶させることは困難であるので安定
して高磁束密度の製品を得ることは困難であった。ま
た、特開平2−115319号公報には偏析型インヒビ
ターとしてSbを更に含有させ、特殊な最終仕上げ焼鈍方
法を施すことで高い磁束密度の製品を得る方法が開示さ
れているが、未だ十分な結晶方位集積度とはいい難く、
しかも集積度の高い製品を得べくSbの含有量を増加させ
た場合には、二次再結晶そのものが不十分となり、鉄損
特性の大幅な劣化を招く結果となった。これとは別に特
公昭58−43445号公報には、0.0006〜0.0080%の
Bと0.0100%以下のNを含有する鋼を用いて、脱炭焼鈍
を工夫することによりB8で1.89T の磁束密度が得られる
技術が開示されている。この方法は比較的安定した磁気
特性の製品が得られるので工業的には好ましい方法であ
るといえるが、磁束密度が低く鉄損もさほど良好とはい
えないので工業化されることはなかった。さらに特公昭
54−32412号公報にはインヒビターとしてS又は
SeのグループとAs, Bi, P, Sn, Cu, Niのグループとを
複合して用いる技術が開示されており、比較的安定して
高磁束密度が得られてはいるが、鉄損特性が悪いという
問題を有していた。これらの技術とは別に、特開平2−
30718号公報には冷間圧延後に鋼板表面に溝を形成
することにより製品板表面にも溝を設け鉄損を低減する
方法が開示されているが、この方法は同時に磁束密度も
低下させ、ヒステリヒス損の増加による鉄損の劣化分が
必然的に生じるので大幅な鉄損の低減効果は得られな
い。また、特開平5−345921号公報にはAlN, MnS
をインヒビターとして、CuとSnを含有する方向性電磁鋼
板の製造においてSi/C含有量比が高くなるに従いNiを
所定量含有させる技術が開示されている。また特開平2
−30740では、SnとNiの組み合わせでSn:0.03〜0.
25%でかつNi:0.35〜2.0 %で優れた磁気特性が得られ
るとしている。しかしながらこれらの方法はいずれも、
製品の結晶方位の十分な集積はなされておらず、満足の
いく鉄損値とは云えなかった。
[0003] Methods for improving the remaining magnetic flux density have been well studied so far.
No. 6-23820 discloses that after Al is added to steel, fine AlN is precipitated by hot rolling annealed at a high temperature of 1000 to 1200 ° C. after hot rolling and quenching treatment accompanying the addition, and then 80 to 95% of the applied technology under high pressure ratio is disclosed, and thereby in the B 10 to obtain the value of the very high magnetic flux density of 1.95 T. This method takes advantage of the fact that finely dispersed AlN has a strong effect as an inhibitor that suppresses the growth of primary recrystallized grains, and achieves excellent orientation by secondary recrystallizing only nuclei with excellent crystal orientation. This is to obtain the crystal structure of the product. However, in this method, the crystal grain size generally becomes coarse,
It was difficult to obtain a low iron loss value, and it was difficult to completely dissolve AlN in solid solution annealing in hot-rolled sheet annealing, so that it was difficult to obtain a product having a high magnetic flux density stably. Japanese Patent Application Laid-Open No. 2-115319 discloses a method in which Sb is further contained as a segregation-type inhibitor and a product having a high magnetic flux density is obtained by applying a special final finish annealing method. It is difficult to say the degree of azimuth accumulation,
Moreover, when the content of Sb was increased in order to obtain a product with a high degree of integration, secondary recrystallization itself became insufficient, resulting in significant deterioration of iron loss characteristics. The Apart Sho 58-43445 discloses to this, the magnetic flux density of 1.89T in B 8 by using a steel containing 0.0006 to 0.0080% of B and 0.0100% or less of N, devising decarburization annealing Are disclosed. Although this method can be said to be an industrially preferable method since a product having relatively stable magnetic properties can be obtained, it has not been industrialized because the magnetic flux density is low and the iron loss is not so good. Furthermore, Japanese Patent Publication No. 54-32412 discloses S or S as an inhibitor.
A technique using a combination of the Se group and the As, Bi, P, Sn, Cu, and Ni groups is disclosed, and although a relatively high magnetic flux density is obtained relatively stably, the iron loss characteristics are low. Had the problem of being bad. Separately from these technologies,
Japanese Patent No. 30718 discloses a method in which grooves are formed on the surface of a steel sheet after cold rolling to reduce the iron loss by forming grooves on the surface of a product sheet. However, this method also reduces the magnetic flux density and reduces the hysteresis. Since an iron loss is inevitably deteriorated due to an increase in the loss, a significant effect of reducing the iron loss cannot be obtained. Japanese Patent Application Laid-Open No. 5-345921 discloses an AlN, MnS
A technique is disclosed in which a predetermined amount of Ni is contained as the Si / C content ratio increases in the production of a grain-oriented electrical steel sheet containing Cu and Sn, using as an inhibitor. Japanese Patent Laid-Open No. Hei 2
In -30740, Sn: 0.03 to 0.3 in combination of Sn and Ni.
It is stated that excellent magnetic properties can be obtained at 25% and Ni: 0.35 to 2.0%. However, each of these methods
The crystal orientation of the product was not sufficiently integrated, and the iron loss value was not satisfactory.

【0004】[0004]

【発明が解決しようとする課題】前述のように方向性電
磁鋼板の鉄損を低減するには、安定して結晶方位の集積
度を高めることが必要で、これにより、優れた鉄損値を
安定して得ることができる。かかる技術に関連した従来
法においては、結晶方位の集積度を高めた場合、必然的
に結晶粒径が増加するために鉄損値の劣化及び不安定化
を招き、逆に結晶粒の細粒化を図ると結晶方位の集積度
が低下し磁束密度の低下を招くという、二律背反状態の
ため、極めて高い結晶方位の集積度でかつ低鉄損の材料
を安定して製造することはできなかったが、これを抜本
的に解決することをこの発明が解決すべき課題とするも
のである。すなわち、この発明はAlN をインヒビターと
する方向性電磁鋼板の製造法においてB8の値にして極め
て高い値を得、かつ本質的に内在する製品の結晶粒径の
粗大化という不安定性を解消した、極めて鉄損の低い方
向性電磁鋼板及びその製造方法技術を提案することを目
的とする。
As described above, in order to reduce the iron loss of the grain-oriented electrical steel sheet, it is necessary to stably increase the degree of integration of the crystal orientation. It can be obtained stably. In the conventional method related to this technology, when the degree of integration of crystal orientation is increased, the crystal grain size inevitably increases, leading to deterioration and instability of the iron loss value. Due to the trade-off state of reducing the degree of integration of the crystal orientation and reducing the magnetic flux density when achieving this, it was not possible to stably produce a material with an extremely high degree of integration of the crystal orientation and low iron loss. However, it is an object of the present invention to solve the problem drastically. That is, this invention has solved instability of coarsening of crystal grain size of the product to obtain a very high value in the values of B 8 in the preparation of oriented electrical steel sheet with an inhibitor of AlN, and essentially inherent It is an object of the present invention to propose a grain-oriented electrical steel sheet having extremely low iron loss and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】前述の二律背反の状態を
解消すべく、発明者らは低鉄損を得るための集合組織及
び結晶組織の改善の方策としてNiを添加しかつ、Ni添加
量に応じてSb添加量を所定の範囲で変化させる方法を新
規に創案した。これは、インヒビターであるAlN の他に
Ni添加とSb添加により一次再結晶粒の成長に対し極めて
強い抑制力の効果を得ることが可能であること、さらに
NiとSbの含有とを組み合わせることで、これまでにない
一次再結晶集合組織の改善が認められるとともに、二次
再結晶粒が微細化しかつ(110)〔001〕方位から
圧延方向の平均面内ずれ角が極めて少なくなるという新
規知見に基づくものであり、かかる新規知見の作用効果
を有効に活用してこの発明を完成させたものである。
Means for Solving the Problems In order to eliminate the above trade-off situation, the inventors added Ni as a measure for improving the texture and crystal structure to obtain a low iron loss, and added the amount of Ni added. A method for changing the amount of Sb added within a predetermined range in accordance with the present invention was newly devised. This is in addition to the inhibitor AlN
By adding Ni and Sb, it is possible to obtain an extremely strong inhibitory effect on the growth of primary recrystallized grains.
By combining the contents of Ni and Sb, an unprecedented improvement in the primary recrystallized texture is recognized, the secondary recrystallized grains are refined, and the average in-plane in the rolling direction from the (110) [001] orientation is obtained. The present invention is based on a new finding that the deviation angle is extremely small, and has completed the present invention by effectively utilizing the effect of the new finding.

【0006】上記知見に立脚するこの発明は、鋼板の結
晶粒について、結晶方位の(110)〔001〕方位か
ら圧延方向の平均面内ずれ角が4度以内、かつ圧延方向
と直交する方向に隣接する結晶粒径8mm以上の粒同士の
平均面内角度差が7度以内であり、粒径8mm以上の結晶
粒径の面積比率が75%以上、かつ全結晶粒の平均結晶粒
径が25mm以下であり、鋼板の成分組成について、Siを1.
5 〜7.0 wt%含み、かつインヒビター補助成分としてM
n, Cu, Sn, Ge, Bi, V, Nb, Cr, Te及びMoを単独ある
いは2種以上の合計で0.005 〜2.5 wt%、Niを0.01〜1.
5 wt%、Sbを0.01〜0.15wt%及びBを0〜0.0050wt%含
有し、不純物としてCを0.003 wt%以下、S及びSeを合
計して0.003 wt%以下、Nを0.003 wt%以下、Alを0.00
2 wt%以下、Tiを0.003 wt%以下、Pを0.30wt%以下に
低減し、残部は鉄と不可避的不純物とからなり、更にSb
含有量X(wt%)とNi含有量Y(wt%)とが下式の関係
を満足することを特徴とする極めて鉄損の低い方向性電
磁鋼板、X>0.01かつY>0.01で0.3 −7.5 X<Y<1
−10X(第1発明)であり、C:0.035 〜0.100 wt%、
Si:1.5 〜7.0 wt%、Mn:0.02〜0.20wt%、Sもしくは
Se:0.005 〜0.04wt%、Al:0.010 〜0.04wt%、N:0.
0010〜0.0150、Sb:0.01〜0.15wt%を含み、かつCu, S
n, Ge, Bi, V, Nb, Cr, Te及びMoを単独あるいは2種
以上の合計で0.005 〜2.5 wt%含有し、更にNiを0.01〜
1.5 wt%、B:0 〜0.050 wt%含有し、残部は鉄及び不
可避的不純物からなるスラブを1300℃以上に加熱した
後、熱間圧延し、熱延板焼鈍を施した後、1回又は中間
焼鈍を挟む2回以上の冷間圧延を施して最終製品厚の冷
延鋼板としたのち、脱炭・一次再結晶焼鈍を施し、鋼板
表面にMgO を主成分とする焼鈍分離剤を塗布してから、
二次再結晶焼鈍及び純化焼鈍を施す一連の工程からなる
方向性珪素鋼板の製造法において、スラブ中のSb含有量
X(wt%)とNi含有量Y(wt%)の間に下式の関係を満
足させ、更に二次再結晶焼鈍の500 ℃〜900 ℃の温度範
囲を平均昇温速度25℃/h以下で昇温することを特徴とす
る極めて鉄損の低い方向性電磁鋼板の製造方法(第2発
明)であり、X>0.01かつY>0.01で0.3 −7.5 X<Y
<1−10X 第1発明において、鋼板表面に50〜1000μm の幅で10〜
50μm の深さで圧延方向に交わる方向に溝が存在するこ
とを特徴とする極めて鉄損の低い方向性電磁鋼板(第3
発明)であり、鋼板表面に鏡面処理もしくは結晶方位強
調処理を施してなり、その表面上に間接的あるいは直接
的に上塗コーティングを被成してなることを特徴とする
極めて鉄損の低い方向性電磁鋼板(第4発明)であり、
さらに最終冷間圧延以降において鋼板表面に溝を形成さ
せる磁区細分化処理を施すことを特徴とする極めて鉄損
の低い方向性電磁鋼板の製造方法(第5発明)である。
The present invention, which is based on the above-mentioned findings, provides a steel sheet having a crystal grain having an average in-plane deviation angle in the rolling direction from the (110) [001] orientation of the crystal orientation within 4 degrees and a direction perpendicular to the rolling direction. The average in-plane angle difference between adjacent grains having a crystal grain size of 8 mm or more is within 7 degrees, the area ratio of crystal grains having a grain size of 8 mm or more is 75% or more, and the average crystal grain size of all the crystal grains is 25 mm. The following is the composition of the steel sheet.
5 to 7.0 wt%, and M
n, Cu, Sn, Ge, Bi, V, Nb, Cr, Te and Mo are used alone or in a total of two or more of 0.005 to 2.5 wt%, and Ni is 0.01 to 1.
5 wt%, 0.01 to 0.15 wt% of Sb and 0 to 0.0050 wt% of B, 0.003 wt% or less of C as impurities, 0.003 wt% or less of S and Se in total, 0.003 wt% or less of N, Al 0.00
2 wt% or less, Ti is reduced to 0.003 wt% or less, P is reduced to 0.30 wt% or less, and the balance consists of iron and unavoidable impurities.
A grain-oriented electrical steel sheet with extremely low iron loss, characterized in that the content X (wt%) and the Ni content Y (wt%) satisfy the relationship of the following formula, 0.3-0.3 when X> 0.01 and Y> 0.01. 7.5 X <Y <1
-10X (first invention), C: 0.035 to 0.100 wt%,
Si: 1.5 to 7.0 wt%, Mn: 0.02 to 0.20 wt%, S or
Se: 0.005 to 0.04 wt%, Al: 0.010 to 0.04 wt%, N: 0.
0010-0.0150, Sb: 0.01-0.15wt%, Cu, S
n, Ge, Bi, V, Nb, Cr, Te, and Mo, alone or in combination of two or more, in a content of 0.005 to 2.5 wt%, and further, Ni
After heating a slab containing iron and unavoidable impurities to 1300 ° C. or more, hot rolling and annealing a hot-rolled sheet, the content is 1.5% by weight, B: 0 to 0.050% by weight. Cold-rolled steel sheets of the final product thickness are obtained by performing cold rolling two or more times with intermediate annealing, then decarburization and primary recrystallization annealing are performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface. And then
In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of performing a secondary recrystallization annealing and a purification annealing, a Sb content X (wt%) and a Ni content Y (wt%) in a slab are expressed by the following formula. Manufacture of grain-oriented electrical steel sheets with extremely low iron loss, characterized by raising the temperature in the temperature range of 500 ° C to 900 ° C for secondary recrystallization annealing at an average rate of 25 ° C / h or less A method (second invention), wherein X> 0.01 and Y> 0.01 and 0.3-7.5 X <Y
<1-10X In the first invention, the steel sheet surface has a width of 50 to 1000 μm and a thickness of 10 to 10 μm.
A grain-oriented electrical steel sheet with extremely low iron loss characterized by having grooves in the direction intersecting the rolling direction at a depth of 50 μm (No. 3
Invention), wherein the surface of the steel sheet is subjected to a mirror surface treatment or a crystal orientation enhancement treatment, and the surface is coated with an overcoating indirectly or directly, and thus has an extremely low iron loss directionality. An electromagnetic steel sheet (a fourth invention);
Further, the present invention provides a method for producing a grain-oriented electrical steel sheet having extremely low iron loss, wherein a magnetic domain refining treatment for forming a groove on the steel sheet surface is performed after the final cold rolling.

【0007】[0007]

【発明の実施の形態】以下、この発明を得るに至った実
験について述べる。 (実験1)3.2 wt%(以下、単に「%」と示す。)Si,
0.06%Mn,0.05%C,0.015 %Se,0.021 %Al,0.0090
%Nを含み、かつSbを0.005 〜0.15%、Niを0.005 〜1.
5%の範囲で種々に変更した成分組成になる厚み230 mm
の方向性電磁鋼の各スラブを、1410℃に加熱し、熱間圧
延によって2.4 mmの厚みの熱延コイルとし、990 ℃の温
度で熱間圧延を終了した後、600 ℃で巻取った。これら
の熱延コイルは速度6℃/sで1000℃まで昇温した後30秒
間保持する熱延板焼鈍を施し、17℃/sで室温まで冷却
後、酸洗し冷間圧延によって1.8 mmの厚みに圧延し、次
いで露点60℃、50%N2 と50%H2 の雰囲気中で1050
℃、70秒間保持する中間焼鈍を施した。これらのコイル
は酸洗後、170 ℃の温度での冷間圧延を施し最終厚みで
ある0.22mmとした後、脱脂処理を施し、次いで鋼板表面
に幅180 μm で圧延直角方向に延びる溝を圧延方向に4.
5 mmの間隔で形成した後、850 ℃で2分間の露点60℃、
50%N2 と50%H2 の雰囲気で脱炭焼鈍を施した。その
後、4%のTiO2を含有するMgO を焼鈍分離剤として鋼板
表面に塗布しコイル状に巻き取ってから、最終仕上げ焼
鈍として750 ℃まではN2 雰囲気で30℃/hの昇温速度で
昇温し、引き続き750 ℃で20時間の保定処理を行った
後、更に15℃/hの昇温速度で750 ℃から800 ℃まではN
2 雰囲気で、800 〜1050℃までは25%のN2 と75%のH
2 の混合雰囲気で、1050〜1150℃まではH2 雰囲気で加
熱し、さらにH2 雰囲気中で1150℃で5時間の均熱を行
い、降温は800 ℃までH2 中で強制冷却を行い、800 ℃
以下をN2 中で冷却する熱サイクルと雰囲気を採用し
た。最終仕上げ焼鈍後は未反応焼鈍分離剤を除去した
後、50%のコロイダルシリカとリン酸マグネシウムから
なる張力コートを塗布し製品とした。各製品より圧延方
向に沿ってエプスタインサイズの試験片を切り出し800
℃で3時間の歪取焼鈍を施した後、1.7 T の磁束密度に
おける鉄損の値W17/50及び磁束密度B8を測定した。これ
らの結果を図1,2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an experiment which led to the present invention will be described. (Experiment 1) 3.2 wt% (hereinafter simply referred to as “%”)
0.06% Mn, 0.05% C, 0.015% Se, 0.021% Al, 0.0090
% N, 0.005 to 0.15% of Sb, 0.005 to 1.
230 mm thickness with various composition changes in the range of 5%
Each slab of the grain-oriented electrical steel was heated to 1410 ° C., hot-rolled into a hot-rolled coil having a thickness of 2.4 mm, hot-rolled at a temperature of 990 ° C., and wound up at 600 ° C. These hot-rolled coils were heated at a rate of 6 ° C./s to 1000 ° C., subjected to hot-rolled sheet annealing for 30 seconds, cooled to room temperature at 17 ° C./s, pickled, and cold-rolled to 1.8 mm. Rolled to a thickness, then 1050 in an atmosphere of dew point 60 ° C, 50% N 2 and 50% H 2
Intermediate annealing was performed at 70 ° C. for 70 seconds. These coils were pickled, cold rolled at a temperature of 170 ° C to a final thickness of 0.22 mm, degreased, and then rolled on the steel sheet surface with a 180 μm wide groove extending perpendicular to the rolling direction. 4.
After forming at 5mm intervals, dew point 60 ℃ for 2 minutes at 850 ℃,
Decarburization annealing was performed in an atmosphere of 50% N 2 and 50% H 2 . After that, MgO containing 4% TiO 2 is applied to the steel sheet surface as an annealing separator and wound into a coil, and then as a final finish annealing up to 750 ° C. in a N 2 atmosphere at a heating rate of 30 ° C./h. After raising the temperature, and subsequently performing a holding treatment at 750 ° C for 20 hours, N was further increased from 750 ° C to 800 ° C at a rate of 15 ° C / h.
2 atmospheres, up to 800-1050 ° C, 25% N 2 and 75% H
In a mixed atmosphere of 2, up to 1,050-1,150 ° C. is heated in an H 2 atmosphere, further subjected to soaking 5 hours at 1150 ° C. in an atmosphere of H 2 cooling performs forced cooling in H 2 to 800 ° C., 800 ° C
A thermal cycle and atmosphere cooling the following in N 2 was employed: After the final annealing, the unreacted annealing separator was removed, and a tension coat consisting of 50% colloidal silica and magnesium phosphate was applied to obtain a product. Cut out Epstein size test specimens from each product along the rolling direction 800
After performing the strain relief annealing at 3 ° C. for 3 hours, the iron loss value W 17/50 and the magnetic flux density B 8 at a magnetic flux density of 1.7 T were measured. These results are shown in FIGS.

【0008】さらに鋼板のマクロエッチを行い結晶粒径
の分布、(110)〔001〕からの結晶方位の平均ず
れ角α及び鋼中成分の分析値を求めた。結晶粒径は円相
当径で求め、分布は面積比率で表記し、方位の面内ずれ
角は2.5 mmピッチで300 mm四方の結晶方位を測定し(粒
界部分の異常値は除く)面内ずれ角の平均値αを求め
た。これらの結果を鉄損特性と併せて図3〜4及び表1
に示す。
Further, the steel plate was subjected to macroetching to determine the distribution of the crystal grain size, the average deviation angle α of the crystal orientation from (110) [001], and the analysis values of the components in the steel. The crystal grain size is determined by the equivalent circle diameter, the distribution is expressed by the area ratio, and the in-plane deviation angle of the orientation is measured at 300 mm square at 2.5 mm pitch (excluding abnormal values at the grain boundary part). The average value α of the shift angles was determined. These results are shown in FIGS.
Shown in

【0009】[0009]

【表1】 [Table 1]

【0010】図1から明らかなように、Sb量とNi量が、
ある一定の範囲で磁気特性(W17/50)が非常に良好とな
った。この原因を調査するため、Sbの偏析について脱炭
焼鈍板で調査を行った結果、Sbの偏析はNiの偏析増加と
共に強くなっていくことが明らかになった。すなわち、
NiとSbが共偏析することにより磁気特性上最も好ましい
結果が得られることを新規に見つけることができた。こ
れを利用することにより、Sbの添加量が少なくて済むこ
とを新たに見いだした。
As is clear from FIG. 1, the amounts of Sb and Ni are
The magnetic properties (W 17/50 ) were very good in a certain range. In order to investigate the cause, we investigated the segregation of Sb using a decarburized annealed plate and found that the segregation of Sb increased with the increase of Ni segregation. That is,
It was newly found that co-segregation of Ni and Sb provided the most favorable results in magnetic properties. It has been newly found that by using this, the amount of Sb added can be reduced.

【0011】とはいえ、ある量以上にSbが偏析すると磁
気特性が逆に劣化する現象が観察された。このようなSb
が適正な値以上に偏析すると磁気特性の劣化が起こる現
象を解析するため、製品及び脱炭焼鈍板の調査をさらに
行った。この結果、磁気特性が劣る原因は、製品中に炭
素が残っているためであることが明らかになった。すな
わち、過剰にSb及びNiが脱炭焼鈍板の粒界に偏析する
と、脱炭焼鈍時に炭素の脱炭反応を阻害し、製品中に有
害な炭素が残留するためである。この発明で示される範
囲以上にNi及びSbを添加すると、通常の脱炭焼鈍でCを
0.003 wt%以下に下げる事は極めて困難である事も判明
した。図1、図2より、磁気特性を良好にするためにNi
とSbの添加量の間にある一定の関係があることが明らか
になった。すなわち、Sb含有量X(wt%)とNi含有量Y
(wt%)の間に下式の関係を満足したときに磁気特性が
良好になることが判明した。X>0.01かつY>0.01で0.
3 −7.5 X<Y<1−10X
However, when Sb segregated to a certain amount or more, a phenomenon was observed in which the magnetic properties deteriorated in reverse. Sb like this
In order to analyze the phenomenon that magnetic properties deteriorate when segregation exceeds a proper value, investigations on products and decarburized annealed sheets were further conducted. As a result, it became clear that the cause of the poor magnetic properties was due to carbon remaining in the product. That is, if Sb and Ni excessively segregate at the grain boundaries of the decarburized annealed sheet, the decarburization reaction of carbon is inhibited during the decarburization annealing, and harmful carbon remains in the product. If Ni and Sb are added beyond the range indicated in the present invention, C is removed by ordinary decarburization annealing.
It was also found that it was extremely difficult to reduce the content to 0.003 wt% or less. From FIG. 1 and FIG.
It became clear that there was a certain relationship between the amount of Sb and the amount of Sb added. That is, Sb content X (wt%) and Ni content Y
(Wt%), it was found that the magnetic properties became good when the relationship of the following equation was satisfied. 0 if X> 0.01 and Y> 0.01
3 -7.5 X <Y <1-10X

【0012】また、図3、図4と表1に示すように良好
な磁気特性を有する製品板の二次再結晶粒径には特殊な
分布があることが明らかになった。すなわち図3より結
晶方位の(110)〔001〕方位から圧延方向の平均
面内ずれ角が4度以内が必要であること、また図4より
4°以内であっても圧延直角方向に隣接する結晶粒径8
mm以上の粒同士の面内角度差が7度以内であり、粒径8
mm以上の結晶粒の面積比率が75%以上、全結晶粒の平均
結晶粒径が25mm以下であるときに極めて鉄損が低くなる
ことが明らかとなった。そして、NiとSbを含有すること
でこれらの粒径分布に入ってくることが明らかになっ
た。
Further, as shown in FIGS. 3 and 4 and Table 1, it has been found that the secondary recrystallized grain size of the product plate having good magnetic properties has a special distribution. That is, as shown in FIG. 3, the average in-plane deviation angle in the rolling direction from the (110) [001] orientation of the crystal orientation needs to be within 4 °, and even if it is within 4 ° in FIG. Crystal grain size 8
In-plane angle difference between grains of not less than 7 mm
It was found that the core loss was extremely low when the area ratio of the crystal grains of not less than mm was 75% or more and the average crystal grain size of all the crystal grains was not more than 25 mm. And, it became clear that the inclusion of Ni and Sb enters these particle size distributions.

【0013】その他、NiとSbを含有すると後述するよう
に最終仕上げ焼鈍における昇温速度に特に留意する必要
が生じてくる。この理由は、NiとSbを複合添加した際、
最終仕上げ焼鈍中にSbの偏析量の変化と一次再結晶粒の
成長、及び集合組織の変化が徐々に起こった後、二次再
結晶が開始するためであると考えられる。このための適
正条件を求めた実験を下記に述べる。
In addition, when Ni and Sb are contained, it is necessary to pay special attention to the temperature rising rate in the final finish annealing as described later. The reason is that when Ni and Sb are added in combination,
This is considered to be because secondary recrystallization starts after the change in the segregation amount of Sb, the growth of primary recrystallized grains, and the change in texture gradually occur during the final annealing. An experiment for finding appropriate conditions for this will be described below.

【0014】(実験2)C:0.08%, Si:3.55%, Mn:
0.075 %, P:0.002 %, S:0.001 %, Cu:0.05%,
Se:0.023 %, Al:0.024 %, N:0.0095%の成分で示
される方向性電磁鋼スラブ(厚み250 mm)を、1390℃に
加熱し、890 ℃の温度で熱間圧延を終了後500 ℃で巻取
り、2.3 mmの厚みの熱延コイルとした。これらの熱延コ
イルは昇温速度8℃/sで890 ℃まで昇温した後60秒間保
持する熱延板焼鈍を施し、15℃/sで冷却後、酸洗し冷間
圧延によって1.8 mmの厚みに圧延し、露点50℃、50%N
2と50%H2 の雰囲気中で1070℃、50秒間保持する中間
焼鈍を施した。これらのコイルは酸洗後、200 ℃の温度
での冷間圧延を施し最終厚みである0.22mmとした後、脱
脂処理を施し鋼板表面に幅100 μm 、深さ20μm で圧延
方向に直交する方向に延びる溝を圧延方向に5mmの間隔
で形成した後、850 ℃で2分間の脱炭焼鈍を施した。そ
の後、MgO を主成分とした焼鈍分離剤を塗布しコイル状
に巻き取った後、表2に示す条件で各コイルに最終仕上
げ焼鈍を施した。なお、室温から900℃まではN2 単身
で、900 ℃以上は50%N2 +50%H2 で1200℃まで、12
00℃の均熱と1200℃から800 ℃までの降温の際にはH2
雰囲気で、それ以降はN2 ガスの雰囲気とした。
(Experiment 2) C: 0.08%, Si: 3.55%, Mn:
0.075%, P: 0.002%, S: 0.001%, Cu: 0.05%,
A directional magnetic steel slab (250 mm thick) represented by the composition of Se: 0.023%, Al: 0.024%, N: 0.0095% is heated to 1390 ° C, and after hot rolling at a temperature of 890 ° C, 500 ° C. To form a hot-rolled coil having a thickness of 2.3 mm. These hot-rolled coils were heated to 890 ° C. at a heating rate of 8 ° C./s, subjected to hot-rolled sheet annealing for 60 seconds, cooled at 15 ° C./s, pickled, and cold-rolled to 1.8 mm. Rolled to thickness, dew point 50 ℃, 50% N
Intermediate annealing was performed at 1070 ° C. for 50 seconds in an atmosphere of 2 and 50% H 2 . After pickling, these coils are cold-rolled at a temperature of 200 ° C to a final thickness of 0.22 mm, and then degreased to a width of 100 μm and a depth of 20 μm on the steel sheet surface in a direction perpendicular to the rolling direction. Were formed at intervals of 5 mm in the rolling direction, followed by decarburizing annealing at 850 ° C. for 2 minutes. Thereafter, an annealing separator containing MgO as a main component was applied and wound into a coil shape, and then each coil was subjected to a final finish annealing under the conditions shown in Table 2. In addition, from room temperature to 900 ° C, N 2 is used alone, and above 900 ° C, 50% N 2 + 50% H 2 is used up to 1200 ° C.
H 2 for soaking at 00 ° C and cooling from 1200 ° C to 800 ° C
Atmosphere, and thereafter the atmosphere of N 2 gas.

【0015】最終仕上げ焼鈍後は未反応の焼鈍分離剤を
除去した後、50%のコロイダルシリカとリン酸マグネシ
ウムからなる張力コートを塗布し製品とした。各製品よ
り圧延方向に沿ってエプスタインサイズの試験片を切り
出し800 ℃で3時間の歪取焼鈍を施した後、1.7 T の磁
束密度における鉄損の値W17/50及び磁束密度B8を測定し
た。さらに鋼板のマクロエッチを行い結晶粒径の分布、
(110)〔001〕からの結晶方位の平均ずれ角及び
鋼中成分の分析値を求めた。結晶粒径は円相当径で求
め、分布は面積比率で表記し、方位の面内ずれ角は2.5
mmピッチで300 mm四方の結晶方位を測定し(粒界部分の
異常値は除く)、面内ずれ角の平均値αを求めた。これ
らの結果を鉄損特性と併せて表2に示す。
After the final annealing, the unreacted annealing separator was removed, and a tension coat consisting of 50% colloidal silica and magnesium phosphate was applied to obtain a product. A specimen of Epstein size was cut out from each product along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then measured for iron loss value W 17/50 and magnetic flux density B 8 at a magnetic flux density of 1.7 T. did. Furthermore, the macro-etching of the steel sheet is performed,
The average deviation angle of the crystal orientation from (110) [001] and the analysis value of the components in the steel were determined. The crystal grain size is determined by the equivalent circle diameter, the distribution is expressed by the area ratio, and the in-plane deviation angle of the orientation is 2.5.
The crystal orientation of 300 mm square was measured at mm pitch (excluding abnormal values at the grain boundaries), and the average value α of the in-plane misalignment angle was determined. Table 2 shows these results together with the iron loss characteristics.

【0016】[0016]

【表2】 [Table 2]

【0017】表2に示されるように昇温速度を変更する
ことにより磁束密度B8はあまり変化しないものの、2次
再結晶粒のサイズが変化し、鉄損値W17/50の値も変化し
ている。また、昇温中に保定処理を行い500 〜900 ℃の
滞在時間を16時間以上として平均昇温速度を25℃/h以下
にしたものも特性が極めて良好であった。これに対し90
0 ℃を超える温度で昇温速度を変化させた試料は、二次
粒径がそれほど大きく変化していない。特性の良好な試
料は、おそらく低温(500〜900 ℃) において徐熱処理を
行っているため、1次再結晶粒の成長が抑制された結
果、ゴス方位の選択が緩やかに起こり、より先鋭性の優
れたゴス方位粒が大量に残るためであると考えられる。
かかる推論を確認するため、試料Bにおいて二次再結晶
焼鈍中にサンプルを引き出し、集合組織変化と一次粒成
長挙動とを観察した。その結果、500 ℃〜900 ℃の平均
昇温速度が25℃/h以下であると、ゴス強度が下がらずに
一次粒成長が起ることが明らかとなった。またこの現象
は、SbとNiを複合添加した素材で非常に顕著であること
が判明した。このため、SbとNiを複合添加した素材にお
いては、500 ℃から900 ℃の平均昇温速度を低下するこ
とが、非常に重要なことが判明した。
As shown in Table 2, by changing the heating rate, the magnetic flux density B 8 does not change much, but the size of the secondary recrystallized grains changes, and the value of the iron loss value W 17/50 also changes. doing. In addition, when the retention was performed during the heating, the residence time at 500 to 900 ° C. was set to 16 hours or more, and the average heating rate was set to 25 ° C./h or less, the characteristics were also extremely good. 90
In the sample in which the heating rate was changed at a temperature exceeding 0 ° C., the secondary particle size did not change so much. Samples with good properties are probably subjected to slow heat treatment at low temperatures (500-900 ° C), so that the growth of primary recrystallized grains was suppressed, resulting in a gradual selection of Goss orientation and a sharper This is considered to be because excellent Goss orientation grains remain in large quantities.
In order to confirm this inference, the sample B was extracted during the secondary recrystallization annealing, and the texture change and the primary grain growth behavior were observed. As a result, it was clarified that when the average rate of temperature rise from 500 ° C to 900 ° C was 25 ° C / h or less, primary grain growth occurred without decreasing Goss strength. It was also found that this phenomenon was very remarkable in a material to which Sb and Ni were added in combination. For this reason, it has been found that it is very important to reduce the average rate of temperature rise from 500 ° C. to 900 ° C. in a material to which Sb and Ni are added in combination.

【0018】鉄損を低減するその他の有力な方法として
は、鋼板表面にレーザーやプラズマジェットを照射して
磁区細分化する方法が公知であり、有効でこの発明にも
適用できる。なかでも、鋼板表面に溝を設ける方法は歪
取焼鈍に耐えるのでより有効な方法となる。その場合に
は、鋼板表面に50〜1000μm の幅で10〜50μm の深さで
圧延方向に交わる方向に溝を設けることが鉄損低減に有
効である。さらに、従来より知られている方法として、
鋼板表面を鏡面化すること、及び磁気特性上より有利な
結晶面を裸出すべく結晶方位強調処理を鋼板表面に施す
ことも鉄損低減に有効である。これらの場合は鋼板表面
にフォルステライト系の被膜が存在しないので、めっき
等を介し、又は直接上塗りコーティングを塗布すること
になる。さらに、こうした手段は各々併用を妨げるもの
ではない。
As another influential method of reducing iron loss, a method of irradiating the surface of a steel sheet with a laser or a plasma jet to subdivide magnetic domains is known, and is effective and applicable to the present invention. Above all, the method of providing grooves on the surface of the steel sheet is a more effective method because it resists strain relief annealing. In this case, it is effective to reduce the iron loss by providing grooves in the direction intersecting the rolling direction at a width of 50 to 1000 μm and a depth of 10 to 50 μm on the surface of the steel sheet. Furthermore, as a conventionally known method,
Mirroring the steel sheet surface and applying a crystal orientation enhancement treatment to the steel sheet surface so as to expose a crystal plane more advantageous in terms of magnetic properties are also effective in reducing iron loss. In these cases, since there is no forsterite-based coating on the steel sheet surface, a top coat is applied via plating or the like. Moreover, each of these means does not preclude combination.

【0019】また、この発明の方向性電磁鋼板をより確
実に得るための優れた方法としては、冷間圧延工程にお
いて表層脱珪層の形成処理を施すこと、及び最終冷間圧
延前の焼鈍において鋼板表層部に脱炭層を形成させる雰
囲気処理と固溶C富化のための急速冷却処理を施すこと
が有効である。表層脱珪層形成処理は、これにより最終
仕上げ焼鈍の鋼板表層の1次再結晶粒を成長させ、方位
の劣る粒の2次再結晶の発現を抑制するのに有効で、こ
の場合0.5 μm 以上の表層脱珪層の形成がなされること
が望ましい。また、最終冷間圧延前の焼鈍において、鋼
板表層部に脱炭層を形成させる雰囲気処理は鋼板表層の
方位の優れた結晶粒の核生成を促進させるためで、この
場合、鋼板表層部に1/20〜1/5 板厚の程度の脱炭層を形
成させることが望ましい。さらに、最終冷間圧延前の冷
却において、急冷処理を行うことにより鋼中の固溶C濃
度を高めることは、上記良好な2次再結晶方位の核生成
頻度を高めるのに有効である。この場合、急冷し低温で
保持し微細なカーバイドを析出させる方法はさらに優れ
た効果をもたらす。
Further, as an excellent method for more reliably obtaining the grain-oriented electrical steel sheet of the present invention, a method of forming a surface desiliconized layer in a cold rolling step, and an annealing method before final cold rolling are used. It is effective to perform an atmosphere treatment for forming a decarburized layer on the surface layer of the steel sheet and a rapid cooling treatment for enriching solid solution C. The surface desiliconization layer formation process is effective for growing primary recrystallized grains on the surface layer of the steel sheet in the final finish annealing and suppressing the appearance of secondary recrystallization of grains having inferior orientation, in this case 0.5 μm or more. It is desirable that the surface desiliconized layer be formed. Further, in the annealing before the final cold rolling, the atmosphere treatment for forming a decarburized layer in the surface layer of the steel sheet promotes the nucleation of crystal grains having an excellent orientation of the surface layer of the steel sheet. It is desirable to form a decarburized layer with a thickness of about 20 to 1/5. Further, in the cooling before the final cold rolling, increasing the solid solution C concentration in the steel by performing a quenching treatment is effective in increasing the nucleation frequency of the above-mentioned favorable secondary recrystallization orientation. In this case, the method of quenching and holding at a low temperature to precipitate fine carbides brings more excellent effects.

【0020】また、鋼中の窒素濃度の低いスラブを用い
て、冷間圧延工程において窒化処理を行う製造方法もこ
の発明に適用することも可能である。
Further, a manufacturing method in which a slab having a low nitrogen concentration in steel is subjected to a nitriding treatment in a cold rolling step can also be applied to the present invention.

【0021】次に、この発明の方向性電磁鋼板とその製
造方法について、この発明の効果を得るために必要な要
件とその範囲及び作用について詳述する。まず、この発
明の方向性電磁鋼板の構成要件について述べる。この発
明の電磁鋼板の鋼は2次再結晶後の多結晶で構成されて
おり、ヒステリシス損を低減するためには、結晶方位の
(110)〔001〕方位からの面内方向の面積平均の
ずれ角αが4度以内である極めて集積度の優れているも
のであることが必要である。ここで、αが4度を超える
場合はヒステリシス損の増大により鉄損の劣化を招く。
Next, with regard to the grain-oriented electrical steel sheet of the present invention and the method for producing the same, the requirements necessary for obtaining the effects of the present invention, the range thereof, and the operation will be described in detail. First, the constituent requirements of the grain-oriented electrical steel sheet of the present invention will be described. The steel of the magnetic steel sheet of the present invention is composed of polycrystal after secondary recrystallization. In order to reduce the hysteresis loss, the average of the area in the in-plane direction from the (110) [001] orientation of the crystal orientation is reduced. It is necessary that the deviation angle α is extremely excellent, that is, the deviation angle is within 4 degrees. Here, when α exceeds 4 degrees, deterioration of iron loss is caused by an increase in hysteresis loss.

【0022】さらに、各結晶粒の粒度分布について、面
積が等価な円相当径として8mm以上の結晶粒の面積比率
が75%以上、全結晶粒の平均粒径が25mm以下であること
が必要である。これによって結晶粒分布が粗大粒と微細
粒に2極化し、良好な磁気特性が安定して得られるよう
になる。ここで8mm以上の径の結晶粒の面積比率が75%
未満である場合、良好な方位の2次再結晶粒の比率が低
下し、鉄損の劣化を招く。また、平均粒径が25mmを超え
る場合には、微細な結晶粒の個数が減少し、鉄損の劣化
を招く。また、隣接する結晶粒径8mm以上の平均面内角
度差が7度を超えると磁束の流れが不均一になり変圧器
などでの実機特性が劣化する。
Further, regarding the grain size distribution of each crystal grain, it is necessary that the area ratio of crystal grains having a circle equivalent diameter of equivalent area of 8 mm or more is 75% or more and the average grain diameter of all crystal grains is 25 mm or less. is there. As a result, the crystal grain distribution is polarized into coarse grains and fine grains, so that good magnetic properties can be stably obtained. Here, the area ratio of crystal grains having a diameter of 8 mm or more is 75%.
If it is less than the above, the ratio of the secondary recrystallized grains having a good orientation decreases, leading to deterioration of iron loss. On the other hand, when the average particle size exceeds 25 mm, the number of fine crystal grains decreases, which causes deterioration of iron loss. On the other hand, if the average in-plane angle difference between adjacent crystal grain sizes of 8 mm or more exceeds 7 degrees, the flow of magnetic flux becomes non-uniform, and the characteristics of actual equipment in a transformer or the like deteriorate.

【0023】次に鋼成分についての規制について記述す
る。Siは電気抵抗を高め鋼板の渦電流損を低減するため
に必要な成分であり、このためには1.5 %以上の含有を
必要とする。しかしながら、7.0 %を超えた場合、ロー
ル圧延加工が困難となるので1.5 〜7.0 %の範囲とす
る。
Next, regulations on steel components will be described. Si is a component necessary for increasing the electric resistance and reducing the eddy current loss of the steel sheet. For this purpose, the content of 1.5% or more is required. However, when the content exceeds 7.0%, roll rolling becomes difficult, so the content is set in the range of 1.5 to 7.0%.

【0024】鋼中には、インヒビター補助成分として、
Mn, Cu, Sn, Ge, Bi, V, Nb, Cr,Te, Moを単独あるい
は2種以上含有させることができる。これらの含有量は
単独あるいは2種以上の合計で0.005 〜2.5 wt%であ
る。これらの成分量が0.005 %に満たないと、実質的に
インヒビターとして機能せず2.5 %を超えるとインヒビ
ターが粗大化しすぎること、圧延性が極度に劣化するた
めに上記の範囲とする。
[0024] In steel, as an inhibitor auxiliary component,
Mn, Cu, Sn, Ge, Bi, V, Nb, Cr, Te, and Mo can be used alone or in combination of two or more. Their content is 0.005 to 2.5 wt%, alone or in combination of two or more. If the content of these components is less than 0.005%, it does not substantially function as an inhibitor, and if it exceeds 2.5%, the inhibitor becomes too coarse and the rollability is extremely deteriorated, so that the above range is set.

【0025】Sbはこの発明の特徴をなす含有成分のひと
つで、鋼中に存在することにより結晶粒界に偏析して、
正常粒成長に対する抑制効果を有する。この結果、製品
の結晶粒の粗大化と方位集積度の向上とをもたらす。こ
の作用のためにはSbを0.01%以上含有させることが必要
であるが、0.15%を超える場合、脱炭が極度に困難とな
るため0.005 〜0.15%の範囲とする。Niはこの発明の特
徴をなすもののひとつで、Sbの偏析効果を増加させると
共に鋼の熱間圧延中の均一な結晶組織化をもたらし、2
次再結晶粒の方位の集積度を高め、同時に粗大粒と微細
粒との2極化を得て鉄損特性を安定化させるための成分
で、この作用を得るためには0.01%以上鋼中に含有させ
ることが必要である。また、0.01%以上の含有により、
鋼組織の均一化や純化や被膜形成を促進する作用をも有
する。一方、1.5 %を超える含有では、飽和磁束密度の
低下を招く。
Sb is one of the constituent components that characterize the present invention, and segregates at the grain boundaries when present in steel,
It has an inhibitory effect on normal grain growth. As a result, the crystal grains of the product are coarsened and the degree of orientation integration is improved. For this effect, it is necessary to contain Sb in an amount of 0.01% or more, but if it exceeds 0.15%, decarburization becomes extremely difficult, so the content is set in the range of 0.005 to 0.15%. Ni is one of the features of the present invention, which increases the segregation effect of Sb and provides a uniform crystal structure during hot rolling of steel.
A component for increasing the degree of accumulation of the orientation of the next recrystallized grains and for stabilizing iron loss characteristics by obtaining the polarization of coarse grains and fine grains at the same time. To obtain this effect, 0.01% or more in steel Must be contained in In addition, by containing 0.01% or more,
It also has the effect of promoting the uniformization, purification, and film formation of the steel structure. On the other hand, if the content exceeds 1.5%, the saturation magnetic flux density decreases.

【0026】加えて、Sbの含有量(X%)に応じてNi
(Y%)を調節することが、この発明の重要な要件のひ
とつである。すなわち、Sb含有量X(wt%)とNi含有量
Y(wt%)との間に次式の関係X>0.01かつY>0.01で
0.3 −7.5 X<Y<1−10Xをみたすことが重要であ
る。この関係を満足しない場合、すなわち、この範囲よ
り下まわる場合には、Sbの偏析効果が低くなりすぎ磁気
特性の改善作用が十分でなく、この範囲より上まわる場
合は、最終製品板でCが0.0030%以上残存してしまう。
In addition, depending on the Sb content (X%), Ni
Adjusting (Y%) is one of the important requirements of the present invention. That is, the relationship X> 0.01 and Y> 0.01 between the Sb content X (wt%) and the Ni content Y (wt%)
It is important to satisfy 0.3-7.5 X <Y <1-10X. If this relationship is not satisfied, that is, if it is below this range, the segregation effect of Sb is too low to sufficiently improve the magnetic properties, and if it exceeds this range, C in the final product sheet 0.0030% or more remains.

【0027】また、この鋼板中には、必要に応じてBを
0.0050以下の範囲で含有させることも可能である。Bは
微細粒を形成させやすい成分であるので適宜含有させて
微細粒頻度を調節することも可能であり、この目的のた
めにはBを0.0003〜0.0050%含有させることが、より好
ましい。
In this steel sheet, if necessary, B is added.
It is also possible to make it contained in the range of 0.0050 or less. Since B is a component that easily forms fine particles, it is possible to adjust the frequency of fine particles by appropriately adding B. For this purpose, it is more preferable to contain B in an amount of 0.0003 to 0.0050%.

【0028】鋼板にはPの含有を0.30%までは許容でき
る。Pは電気抵抗を高め、有益な成分であるが、0.30%
を超えた場合、硬度が固くなり過ぎ板破断を発生しやす
くなる。次に鋼中の不純物であるが、下記のものはいず
れも鋼中の存在してヒステリシス損を増加させ鉄損を劣
化させるので低減することが必要である。すなわち、C
とTiは各0.003 %以下、S及びSeを合計して0.003 %以
下、OとAlは各0.002 %以下、Nは0.003 %以下とする
ことが必要である。
The steel sheet can contain up to 0.30% of P. P increases electrical resistance and is a beneficial component, but 0.30%
When it exceeds, the hardness becomes too hard and the plate is easily broken. Next, impurities in steel, which are all present in steel, increase the hysteresis loss and degrade iron loss, and thus need to be reduced. That is, C
, Ti and S should be 0.003% or less, S and Se in total should be 0.003% or less, O and Al should be 0.002% or less, and N should be 0.003% or less.

【0029】次に、この発明の鋼板表面は、通常のフォ
ルステライト質被膜に被覆され、かつその上に公知の上
塗り張力コーティングを被成した状態でもよいし、鋼板
表面を鏡面化し、その上の張力被膜を被成した状態でも
よい。また、(110)〔001〕結晶方位が選択的に
残存するNaCl電解などの鋼板表面処理により粒方位の選
別処理を行って磁気特性に有利な結晶方位を強調させた
状態とし、その上に直接あるいはめっき等を間に介在さ
せるなどにより間接的に張力被膜を被成させてもよい。
これらは鋼板表面のコーティングによって付与される張
力効果をより良く発揮するための手段である。
Next, the surface of the steel sheet of the present invention may be covered with a usual forsterite coating and coated with a known overcoating tension coating thereon, or the steel sheet surface may be mirror-finished, It may be in a state where a tension coating is formed. In addition, the (110) [001] crystal orientation in which the crystal orientation is selectively retained by performing a grain orientation selection process by a steel sheet surface treatment such as NaCl electrolysis to emphasize the crystal orientation that is advantageous for the magnetic characteristics, Alternatively, a tension film may be formed indirectly by interposing plating or the like.
These are means for better exerting the tension effect provided by the coating on the steel sheet surface.

【0030】また、鋼板表面は磁区細分化のために溝を
設けてもよい。このためには、50〜1000μm の幅で10〜
50μm の深さで圧延方向に交わる方向に溝が存在するこ
とが目的に適する。この条件からはずれた場合、溝によ
る磁区細分化効果が得難くなり鉄損の向上効果が小さ
い。また、溝による磁区細分化効果、鏡面化効果及び結
晶方位強調効果は同等ではないので両者あるいは3者を
併用することは低鉄損を得るためにはより好ましい手段
である。
Further, the surface of the steel sheet may be provided with grooves for subdividing magnetic domains. For this purpose, a width of 50-1000 μm and 10-
It is suitable for the purpose that grooves are present in the direction crossing the rolling direction at a depth of 50 μm. If the condition is not satisfied, it is difficult to obtain the magnetic domain refining effect by the groove, and the effect of improving iron loss is small. In addition, since the magnetic domain refining effect, the mirror-finish effect, and the crystal orientation enhancing effect of the grooves are not equal, it is more preferable to use both or the three in combination to obtain a low iron loss.

【0031】また、磁区細分化のひとつの手段として公
知の、レーザーやプラズマジェットなどにより生成する
微小歪みを鋼板内部に局所的に存在させることも可能で
ある。
It is also possible to locally cause a minute strain generated by a laser, a plasma jet, or the like, which is known as one means of magnetic domain segmentation, inside the steel sheet.

【0032】次にこの発明の方向性電磁鋼板の製造方法
について述べる。まず、出発材である鋼スラブの成分組
成範囲について説明する。Siは電気抵抗を増加させ鉄損
を低減するために必須の成分であり、このために1.5 %
以上含有させることが必要であるが、7.0 %を超えると
加工性が劣化し製造や、製品の加工が極めて困難になる
ので1.5 〜7.0 %の範囲とする。Cは、熱間圧延、冷間
圧延中の組織の均一微細化のみならず、ゴス方位粒の発
達に有用な成分であり、少なくとも0.035 %含有させる
ことが望ましい。しかしながら0.10%を越えて含有させ
ると、かえってゴス方位に乱れが生じるのでその上限は
0.10%程度が望ましい。
Next, a method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. First, the composition range of the steel slab as the starting material will be described. Si is an essential component to increase electric resistance and reduce iron loss, and therefore, 1.5%
It is necessary to contain the above, but if it exceeds 7.0%, the workability is deteriorated, and it becomes extremely difficult to manufacture and process the product. Therefore, the content is made 1.5 to 7.0%. C is a component useful not only for uniform micronization of the structure during hot rolling and cold rolling but also for the development of Goss-oriented grains, and it is desirable to contain C at least 0.035%. However, if the content exceeds 0.10%, the Goss direction will be disturbed, so the upper limit is
About 0.10% is desirable.

【0033】鋼中にはこれらの成分の他に2次再結晶を
誘起するためのインヒビター成分の含有が必要で、イン
ヒビター成分としてAl及びNを含有させることが必要で
ある。このうちAlは0.010 〜0.040 %含有させることが
必要である。ここでAlの含有量が0.010 %未満の場合、
熱延板焼鈍の昇温過程において析出するAlN の量が不足
し、インヒビターとしての機能を果たさない。逆に0.04
0 %を超える場合には析出する複合インヒビターが粗大
化して抑制力の劣化をもたらす。したがってAlの含有量
は0.010 〜0.040 %とする。
In addition to these components, the steel must contain an inhibitor component for inducing secondary recrystallization, and it is necessary to contain Al and N as the inhibitor components. Of these, Al must be contained at 0.010 to 0.040%. Here, when the Al content is less than 0.010%,
The amount of AlN precipitated during the heating process of hot-rolled sheet annealing is insufficient, and does not function as an inhibitor. 0.04
If it exceeds 0%, the precipitated composite inhibitor becomes coarse, resulting in deterioration of the suppressing power. Therefore, the content of Al is set to 0.010 to 0.040%.

【0034】Nも同様にAlN を構成する成分であるが、
スラブ段階において0.0010%以上存在すれば、冷間圧延
工程途中においても窒化により鋼中への添加が可能であ
るので0.0010%以上含有すれば十分である。しかし、0.
0150%を超えて含有させた場合、熱間圧延中においてふ
くれを生じ欠陥の原因となるので0.0010〜0.0150%の範
囲とする。
Similarly, N is a component constituting AlN.
If 0.0010% or more is present in the slab stage, it can be added to the steel by nitriding even during the cold rolling process, so that 0.0010% or more is sufficient. But 0.
If the content exceeds 0150%, blisters occur during hot rolling and cause defects, so the content is made 0.0010 to 0.0150%.

【0035】インヒビターとして、Sbを含有させること
が、この発明のひとつの特徴をなす。Sbは結晶粒界に偏
析してインヒビターとしての機能を発現するが、このた
めには0.01%以上の含有が必要である。しかし、0.15%
を超える場合、脱炭焼鈍における脱炭が不十分となるの
で0.15%までとする。
The inclusion of Sb as an inhibitor forms one feature of the present invention. Sb segregates at the crystal grain boundaries to exhibit a function as an inhibitor. For this purpose, 0.01% or more of Sb must be contained. But 0.15%
If it exceeds, the decarburization in the decarburization annealing will be insufficient, so it is set to 0.15%.

【0036】この他、インヒビター補助成分として、M
n, Cu, Sn, Ge, Bi, V, Nb, Cr, Te, Moを単独あるい
は2種以上の合計で0.005 〜2.5 wt%を含有させること
が必要である。これらの成分は析出物を形成したり、結
晶粒界界面や析出物の界面に偏析して抑制力強化のため
の補助的機能を果たす。また、MnやCuは固有の添加で電
気抵抗を高める作用があり、この点からも鉄損を低減す
る効果を有する。こうした作用を有するためには、これ
らの成分を単独あるいは2種以上の合計で0.005%以上
含有させることが必要であるが、2.5 %を超えた場合に
は鋼板の脆化や脱炭不良をもたらすので、0.005 〜2.5
%の範囲で含有させる。
In addition, as an auxiliary component of the inhibitor, M
It is necessary to contain 0.005 to 2.5 wt% of n, Cu, Sn, Ge, Bi, V, Nb, Cr, Te, and Mo alone or in combination of two or more. These components form precipitates or segregate at the grain boundary interface or the precipitate interface to perform an auxiliary function for enhancing the suppressing force. In addition, Mn and Cu have an effect of increasing the electric resistance by the inherent addition, and from this point also have an effect of reducing iron loss. In order to have such an effect, it is necessary to contain these components alone or in combination of two or more kinds in a total amount of 0.005% or more. However, if the content exceeds 2.5%, the steel sheet becomes brittle and has poor decarburization. So 0.005 ~ 2.5
%.

【0037】また、SもしくはSeはMnS, Cu2S, MnSe, C
u2Se等をAlN と複合微細析出させるために必要で、この
目的のためには単独もしくは複合で0.005 %以上含有さ
せることが必要であるが、0.04%を超えると析出物の粗
大化を招くので、0.005 〜0.04%の範囲で含有させる。
S or Se is MnS, Cu 2 S, MnSe, C
It is necessary to precipitate u 2 Se etc. with AlN in a fine composite. For this purpose, it is necessary to contain 0.005% or more alone or in combination, but if it exceeds 0.04%, the precipitates become coarse. Therefore, it is contained in the range of 0.005 to 0.04%.

【0038】さらに、必要に応じてBを含有させること
は微細粒の発現に有効で、そのために0.0003%以上含有
させることが有効である。しかし、0.0050%を超えると
この効果は飽和するので、このためには0.0003〜0.0050
%含有させる。さらにPを0.30%以下の範囲で含有させ
ることは電気抵抗を高め鉄損を低減する作用があるので
許容される。しかし、0.30%を超えた場合鋼板の硬度が
過剰に増加し冷間圧延工程において板破断を起こしやす
くなるので、0.30%以下の範囲とする。
Further, it is effective to add B if necessary to develop fine grains, and for that purpose, it is effective to add 0.0003% or more. However, when the content exceeds 0.0050%, the effect saturates.
%. Further, it is permissible to contain P in a range of 0.30% or less because it has an effect of increasing electric resistance and reducing iron loss. However, if it exceeds 0.30%, the hardness of the steel sheet is excessively increased and the sheet is easily broken in the cold rolling step, so the content is set to 0.30% or less.

【0039】かかる成分と成分範囲において、特にSbの
含有量(X%)に応じてNi(Y%)を調節することが、
この発明の重要な要件のひとつである。すなわち、Sb含
有量X(wt%)とNi含有量Y(wt%)の間に下式の関係
X>0.01かつY>0.01で0.3 −7.5 X<Y<1−10Xの
含有量を満足する範囲が適合し、この範囲より下まわる
場合には、Sbの偏析効果が低くなりすぎ磁気特性の改善
作用が十分でなく、この範囲より上まわる場合は、最終
製品板でCが0.0030%以上残存してしまう。
In such components and component ranges, it is particularly preferable to adjust Ni (Y%) according to the Sb content (X%).
This is one of the important requirements of the present invention. That is, the relationship X> 0.01 and Y> 0.01 between the Sb content X (wt%) and the Ni content Y (wt%) satisfies the content of 0.3−7.5 X <Y <1−10X. If the range conforms and falls below this range, the segregation effect of Sb is too low to improve the magnetic properties sufficiently, and if it exceeds this range, 0.0030% or more of C remains in the final product sheet. Resulting in.

【0040】かかる組成に調合された鋼スラブは通常13
00℃以上に加熱され、熱間圧延された後、1回もしくは
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
された後、脱炭焼鈍及びそれに続く最終仕上げ焼鈍に供
される。
The steel slab formulated to such a composition is usually 13
After being heated to 00 ° C. or higher and hot-rolled, it is subjected to decarburizing annealing and subsequent final finishing annealing after being made to have a final thickness by one or two or more cold rollings sandwiching intermediate annealing. .

【0041】また熱間圧延終了の温度を850 〜1100℃の
間の制御することが望ましい。ここで熱間圧延の終了温
度が850 未満の場合には熱間圧延中に表面欠陥疵の増加
を招く。しかしながら、1100℃を超える場合には硫化物
やセレン化物が熱間圧延中に粗大に析出してインヒビタ
ーの抑制力が低下し鉄損の劣化を招く。したがって熱間
圧延の終了温度は850 〜1100℃の間に制御するのが好ま
しい。
It is desirable to control the temperature at the end of hot rolling between 850 and 1100 ° C. If the end temperature of the hot rolling is less than 850, the number of surface defects increases during the hot rolling. However, when the temperature exceeds 1100 ° C., sulfides and selenides are coarsely precipitated during hot rolling, and the inhibitory power of inhibitors is reduced, leading to deterioration of iron loss. Therefore, the end temperature of the hot rolling is preferably controlled between 850 and 1100 ° C.

【0042】熱間圧延されたコイルはAlN の熱間圧延で
の粗大析出を抑制するために、急速冷却し700 ℃未満で
巻き取ることが好ましい。このようにして製造された熱
延板は1回又は2回以上の冷間圧延を伴う冷間圧延工程
で最終板厚とされる。このとき、通常、冷間圧延の前に
熱延組織の改善のための熱延板焼鈍を施すが、この発明
の技術は熱延焼鈍を伴わない製造方法にも、当然適用で
きる。
The hot-rolled coil is preferably cooled rapidly and wound at a temperature of less than 700 ° C. in order to suppress coarse precipitation of AlN during hot rolling. The hot-rolled sheet manufactured in this manner is made the final thickness in a cold rolling step involving one or more cold rolling operations. At this time, usually, hot-rolled sheet annealing for improving the hot-rolled structure is performed before cold rolling. However, the technique of the present invention can be naturally applied to a manufacturing method without hot-rolling annealing.

【0043】熱延板焼鈍と中間焼鈍は、900 ℃以上の高
温で行い熱間圧延及び冷間圧延で導入した歪みを利用し
て再結晶を行う。また、焼鈍後の冷却において、急速冷
却し鋼中の固溶C量を高める処理は2次再結晶の核生成
頻度を高める効果があるので好ましく、この時、急速冷
却と低温保持によって、微細カーバイドを鋼中に析出さ
せる処理はこの効果をより促進するのでさらに有利に適
合する。
The hot-rolled sheet annealing and the intermediate annealing are performed at a high temperature of 900 ° C. or more, and recrystallization is performed by using the strain introduced by hot rolling and cold rolling. In the cooling after annealing, rapid cooling to increase the amount of solute C in the steel is preferable because it has the effect of increasing the frequency of nucleation of secondary recrystallization. The process of precipitating in steel further promotes this effect and is therefore more advantageously adapted.

【0044】冷間圧延は、公知のパス間時効や温間圧延
などを有利に適用できる。冷間圧延後は脱炭焼鈍を施す
が、その前に製品の磁区を細分化し鉄損を低減するため
に、鋼板表面に溝を設ける処理を施すことも可能であ
る。また、冷間圧延後から2次再結晶前までにかけて、
微細結晶粒を生成するための点状の局所的熱処理や化学
的処理を人工的に行うこともできる。
For the cold rolling, known aging between passes and warm rolling can be advantageously applied. After cold rolling, decarburization annealing is performed, but before that, it is also possible to perform a process of forming grooves on the surface of the steel sheet in order to subdivide the magnetic domains of the product and reduce iron loss. Also, from after cold rolling to before secondary recrystallization,
Point-like local heat treatment or chemical treatment for generating fine crystal grains can also be artificially performed.

【0045】冷間圧延後の鋼板に脱脂処理を施し、脱炭
焼鈍を行う。脱炭焼鈍後の鋼板は焼鈍分離剤を塗布した
後コイル状に巻いて最終仕上げ焼鈍に供する。この時、
鋼板表面に被膜を形成するか否かによって公知の各種焼
鈍分離剤を選択することが可能である。すなわち、鋼板
表面にフォルステライト質の被膜を形成するためにはMg
O を主成分とした焼鈍分離剤が用いられるし、鋼板表面
を鏡面化したい場合には、多くの場合Al2O3 系の焼鈍分
離剤を用いる。また、この他の公知の焼鈍分離剤を適用
することが可能であることはいうまでもない。
The steel sheet after the cold rolling is subjected to a degreasing treatment and a decarburizing annealing is performed. The steel sheet after the decarburization annealing is coated with an annealing separator and then wound into a coil to be subjected to final finish annealing. At this time,
Various known annealing separators can be selected depending on whether or not a coating is formed on the steel sheet surface. That is, in order to form a forsterite coating on the steel sheet surface, Mg
An annealing separator containing O 2 as a main component is used, and an Al 2 O 3 -based annealing separator is used in many cases when the steel sheet surface is desired to be mirror-finished. It goes without saying that other known annealing separators can be applied.

【0046】最終仕上げ焼鈍工程は、高温でのH2 雰囲
気の焼鈍によってなされる。すなわち、H2 ガスは最終
仕上げ焼鈍の昇温時に鋼板表層の結晶粒を粒成長させる
作用があり、このため方位の劣る2〜8mmのサイズの2
次再結晶粒の発達を抑制し、方位集積度を高めて鉄損を
低減することができ、さらに、H2 ガスは鋼中のS,S
e、OやNなどの不純物を除去する作用も有する。
The final finish annealing step is performed by annealing in a H 2 atmosphere at a high temperature. That is, the H 2 gas has an effect of growing the crystal grains of the surface layer of the steel sheet at the time of raising the temperature of the final finish annealing.
The development of secondary recrystallized grains can be suppressed, the degree of orientation accumulation can be increased, and iron loss can be reduced. In addition, H 2 gas contains S, S in steel.
It also has the function of removing impurities such as e, O and N.

【0047】また二次再結晶焼鈍の500 〜900 ℃の平均
昇温速度を25℃/h以下と極めて低く制御することが特に
重要で、25℃/hより昇温速度が大きくなると粒径は大き
いが方位が劣った二次粒が生成し鉄損が劣化する。500
℃から900 ℃の範囲の低温度保持処理を行うことが最も
好ましく、この場合昇温速度は500 ℃から900 ℃に達す
る時間を用いて算出する。
It is particularly important to control the average rate of temperature increase in the secondary recrystallization annealing at 500 to 900 ° C. to an extremely low level of 25 ° C./h or less. Secondary grains having a large but inferior orientation are formed and iron loss is deteriorated. 500
It is most preferable to carry out a low-temperature holding treatment in the range from ℃ to 900 ℃. In this case, the rate of temperature rise is calculated using the time required to reach from 500 ℃ to 900 ℃.

【0048】最終仕上げ焼鈍後は鋼板表面の未反応焼鈍
分離剤を除去し、必要に応じてさらに絶縁コーティング
を塗布焼き付け平坦化焼鈍を施して製品とされる。この
時、絶縁コーティングとして張力コーティングを用いる
ことが鉄損の鋼板にはより適合する。最終焼鈍以降の鋼
板には、公知の磁区細分化処理、即ちプラズマジェット
やレーザー照射を線状領域に施したり、突起ロールによ
る線状のへこみ領域を設けたりする処理を施し鉄損を低
減することもできる。また、最終仕上げ焼鈍時被膜を形
成させない場合には、その後鋼板をさらに鏡面化処理し
たり、NaCl電解などで粒方位選別処理を施したりし、さ
らに以降の工程において、張力コーティングを施し製品
とする方法が最も製品の鉄損を低減するのに有効であ
る。
After the final annealing, the unreacted annealing separating agent on the surface of the steel sheet is removed, and if necessary, an insulating coating is further applied and baked for flattening annealing to obtain a product. At this time, using a tension coating as the insulating coating is more suitable for a steel sheet having iron loss. The steel sheet after the final annealing is subjected to a known magnetic domain refinement treatment, that is, a treatment of applying a plasma jet or a laser irradiation to a linear region or providing a linear dent region by a projection roll to reduce iron loss. Can also. In addition, if the film is not to be formed during the final annealing, the steel sheet is further subjected to a mirror finish treatment, or a grain orientation selection treatment is performed with NaCl electrolysis, etc. The method is most effective in reducing iron loss of the product.

【0049】[0049]

【実施例】【Example】

(実施例1)表3の成分を有する記号AからTの鋼スラ
ブを1435℃に加熱した後、1230℃で45mmのシートバーと
したのち仕上げ圧延終了温度890 ℃で2.2 mmの板厚と
し、冷却水を噴射させて冷却し600 ℃でコイル状に巻き
取り熱延鋼板とした。この鋼板を1100℃まで10℃/sの昇
温速度で昇温し、30秒間の均熱時間の熱延板焼鈍を施し
た後、ミスト冷却し酸洗し、1.5 mm厚に冷間圧延した。
その後、露点50℃のH2雰囲気中で1080℃で50秒間の中
間焼鈍を施し、約0.01%だけC含有量を低減し、固溶C
増加のため水ミストの噴射によって30℃/sの急冷処理を
施した。その後、220 ℃の鋼板温度での温間圧延により
0.22mmの最終板厚とした。この後、脱脂処理を施し、突
起ロールによって深さ20μm 、幅150 μm 圧延方向から
85度方向に溝を圧延方向の間隔5mmで設け、850 ℃で2
分間の脱炭焼鈍を施した。さらに、MgO にTiO2を3%添
加した焼鈍分離剤を鋼板に塗布し、最終仕上げ焼鈍とし
て、900 ℃までN2 中で18℃/hの昇温速度(500 ℃〜90
0 ℃の温度範囲の平均昇温速度:20℃)、900 ℃から10
50℃まで25%N2 と75%H2 の混合雰囲気中で26℃/hの
昇温速度、その後H2 中で25℃/hの速度で1150℃まで昇
温し、1150℃で6時間保持した後降温した。この時600
℃までH2 中で降温し600 ℃からN2 の雰囲気とした。
最終仕上げ焼鈍後は未反応の焼鈍分離剤を除去した後、
50%コロイダルシリカを含有するリン酸マグネシウムを
張力コーティングとして塗布したのち800 ℃で焼き付け
て、製品とした。これらの製品の成分を表4に磁気特性
及び二次粒分布を表5に示す。表4、表5に示されるよ
うにこの発明の成分範囲と平均粒径、結晶粒分布、方位
集積度ならびに不純物含有量の方向性電磁鋼板は極めて
優れた鉄損特性を有する。
(Example 1) After heating steel slabs of the symbols A to T having the components shown in Table 3 to 1435 ° C, forming a 45 mm sheet bar at 1230 ° C, and finishing the finish rolling at a temperature of 890 ° C to a thickness of 2.2 mm, It was cooled by spraying cooling water and wound into a coil at 600 ° C. to obtain a hot-rolled steel sheet. This steel sheet was heated to 1100 ° C at a heating rate of 10 ° C / s, subjected to hot-rolled sheet annealing for a soaking time of 30 seconds, mist-cooled, pickled, and cold-rolled to a thickness of 1.5 mm. .
Thereafter, an intermediate annealing is performed at 1080 ° C. for 50 seconds in an H 2 atmosphere with a dew point of 50 ° C. to reduce the C content by about 0.01%, and
A quench treatment of 30 ° C / s was performed by spraying water mist to increase the amount. Then, by hot rolling at a steel sheet temperature of 220 ° C
The final thickness was 0.22 mm. After that, it is degreased, and the depth is 20μm, width 150μm from the rolling direction
Grooves are provided in the direction of 85 degrees at intervals of 5 mm in the rolling direction.
For a minute. Further, an annealing separator in which 3% of TiO 2 is added to MgO is applied to the steel sheet, and as a final finish annealing, the temperature is raised to 900 ° C. in N 2 at a rate of 18 ° C./h (500 ° C. to 90 ° C.).
Average heating rate in the temperature range of 0 ° C: 20 ° C), from 900 ° C to 10
The temperature was raised to 50 ° C in a mixed atmosphere of 25% N 2 and 75% H 2 at a rate of 26 ° C / h. Then, the temperature was raised to 1150 ° C at a rate of 25 ° C / h in H 2 and then 6 hours at 1150 ° C. After holding, the temperature was lowered. At this time 600
The temperature was lowered in H 2 to 600 ° C. to form an atmosphere of N 2 from 600 ° C.
After the final annealing, after removing the unreacted annealing separator,
Magnesium phosphate containing 50% colloidal silica was applied as a tension coating and baked at 800 ° C. to obtain a product. Table 4 shows the components of these products, and Table 5 shows the magnetic properties and secondary particle distribution. As shown in Tables 4 and 5, the grain-oriented electrical steel sheet having the component range, average grain size, crystal grain distribution, orientation integration degree, and impurity content of the present invention has extremely excellent iron loss characteristics.

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【表5】 [Table 5]

【0053】(実施例2)表3のスラブ記号A〜Dで示
される成分からなる鋼スラブを1380℃に加熱した後、熱
間圧延によって2.1 mmの厚みの熱延コイルとする際、熱
延仕上げ終了温度を920 ℃の温度で熱間圧延を終了した
後、大量のコイル冷却水を噴射して50℃/sの速度で冷却
し、600 ℃で巻き取った。この熱延コイルは次いで速度
12℃/sで1000℃まで昇温した後30秒間保持する熱延板焼
鈍を施し、その後、酸洗し冷間圧延によって1.9 mmの厚
みに圧延してから露点40℃、35%N2 と65%H2 の雰囲
気中で1120℃、50秒間保持する中間焼鈍を施した。これ
らのコイルは酸洗後、180 ℃の温度での冷間圧延を施し
最終厚みである0.19mmとした後、脱脂処理を施し鋼板表
面に幅200 μm ,深さ26μm で圧延直角方向に溝を圧延
方向に7mmの間隔で形成した後、850 ℃で2分間の脱炭
焼鈍を施した。その後、被膜形成抑制のため3%のSb2O
3 と32%のCaO と25%のAl2O3 と40%のMgO からなる混
合粉末を焼鈍分離剤として鋼板表面に塗布しコイル状に
巻き取った後、最終仕上げ焼鈍として500 ℃から900 ℃
までをN2 雰囲気で15℃/hの昇温速度で、900 〜1050℃
までは25%のN2 と75%のH2 の混合雰囲気で20℃/hの
昇温温度で、1050〜1200℃まで及び1200℃で5時間の均
熱までH2 雰囲気で、昇温速度20℃/hの昇温で、降温は
800 ℃までH2 中で強制冷却を行い、800 ℃以下をN2
中で冷却する熱サイクルと雰囲気を採用した。最終仕上
げ焼鈍後は焼鈍分離剤を除去した後NaCl電解で鋼板表面
に粒方位選別処理を行い、(110)面方位を強調する
処理を施した。その後、下層部としてリン酸アルミニウ
ム、上層部として50%のコロイダルシリカとリン酸マグ
ネシウムからなる2層張力コートを塗布し製品とした。
各製品より圧延方向に沿ってエプスタインサイズの試験
片を切り出し800 ℃で3時間の歪取り焼鈍を施した後、
1.7 T の磁束密度における鉄損の値W17/50及び磁束密度
B8を測定した。さらに鋼板のマクロエッチを行い結晶粒
径の分布、(110)〔001〕からの結晶方位の平均
ずれ角α及び鋼中成分の分析値を求めた。結晶粒径は円
相当径で求め、分布は面積比率で表記し、方位の面内ず
れ角は2.5 mmピッチで300 mm四方の結晶方位を測定し
(粒界部分の異常値は除く)面内ずれ角の平均値αを求
めた2これらの結果を鉄損特性と併せて表6に示す。
(Example 2) A steel slab composed of the components indicated by the slab symbols A to D in Table 3 was heated to 1380 ° C, and then hot-rolled into a hot-rolled coil having a thickness of 2.1 mm. After finishing the hot rolling at a finishing end temperature of 920 ° C., a large amount of coil cooling water was sprayed to cool at a rate of 50 ° C./s and wound up at 600 ° C. This hot rolled coil is then speed
After raising the temperature to 1000 ° C. at 12 ° C./s, the sheet is annealed by hot-rolling for 30 seconds, then pickled, cold rolled to a thickness of 1.9 mm, and then subjected to a dew point of 40 ° C. and 35% N 2 . Intermediate annealing was performed in an atmosphere of 65% H 2 at 1120 ° C. for 50 seconds. After pickling, these coils were cold-rolled at a temperature of 180 ° C to a final thickness of 0.19 mm, and then degreased to form grooves on the steel plate surface at a width of 200 μm and a depth of 26 μm in the direction perpendicular to the rolling direction. After forming at intervals of 7 mm in the rolling direction, decarburizing annealing was performed at 850 ° C. for 2 minutes. Then, 3% Sb 2 O to suppress film formation
A mixed powder consisting of 3 and 32% CaO, 25% Al 2 O 3 and 40% MgO is applied to the steel sheet surface as an annealing separator and wound into a coil, and then 500 ° C to 900 ° C as final finish annealing
At heating rate of 15 ° C. / h in N 2 atmosphere until, 900 to 1050 ° C.
Until at a heating temperature of 20 ° C. / h in a mixed atmosphere of 25% N 2 and 75% H 2, with H 2 atmosphere until soaking 5 hours at up to 1050 to 1200 ° C. and 1200 ° C., heating rate With a temperature rise of 20 ° C / h,
To force cooling in H 2 to 800 ° C., a 800 ° C. or less N 2
A thermal cycle and atmosphere cooling inside was adopted. After the final finishing annealing, the annealing separator was removed, and then the steel sheet surface was subjected to grain orientation selection processing by NaCl electrolysis, thereby performing a processing to emphasize the (110) plane orientation. Thereafter, a two-layer tension coat composed of aluminum phosphate as the lower layer and 50% colloidal silica and magnesium phosphate as the upper layer was applied to obtain a product.
A specimen of Epstein size was cut out from each product along the rolling direction and subjected to strain relief annealing at 800 ° C. for 3 hours.
Iron loss value W 17/50 and magnetic flux density at 1.7 T magnetic flux density
The B 8 were measured. Further, the steel sheet was subjected to macroetching to obtain the distribution of crystal grain size, the average deviation angle α of the crystal orientation from (110) [001], and the analysis value of the components in the steel. The crystal grain size is determined by the equivalent circle diameter, the distribution is expressed by the area ratio, and the in-plane deviation angle of the orientation is measured at 300 mm square at 2.5 mm pitch (excluding abnormal values at the grain boundary part). Table 6 shows these results together with the iron loss characteristics.

【0054】[0054]

【表6】 [Table 6]

【0055】(実施例3)Cを0.055 %、Siを3.45%、
Mnを0.07%、Alを0.025 %、Pを0.08%、Sを0.015
%、Sbを0.068 %、Niを0.15%、Bを0.0010%かつNを
0.0075%含有し残部Feと不可避的不純物とからなる鋼ス
ラブ4本を1430℃に加熱して、シートバー厚35mmで粗圧
延し、仕上げ熱延終了温度を960 ℃とし、1.8 mmの板厚
とした後、ジェット水を噴射し65℃/sの速度で急冷し57
0 ℃でコイル状に巻き取り熱延鋼板とした。熱延板焼鈍
はN2 雰囲気中で1100℃30秒したのち30℃/sで冷却した
後350℃で30秒間保持し、カーバイドの析出処理を行っ
た。この後各鋼板はゼンジマー圧延機によって150 〜23
0 ℃での一定温度の温間圧延を施し、0.26mmの最終板厚
まで圧延した。この後脱脂処理を施し、850 ℃で2分間
の脱炭焼鈍を施し、0.08%のBを含有するMgO に7.5 %
のTiO2と3%のSnO2を添加した焼鈍分離剤を塗布し、コ
イル状に巻き取った。これらのコイルは最終仕上げ焼鈍
として表7に示す昇温速度と焼鈍雰囲気を850 ℃までを
2 雰囲気で、1180℃までを25%のN2 と75%のH2
混合雰囲気中で、さらに1180℃の均熱中はH2 中で5時
間保持した後降温した。この後、これらのコイルは未反
応焼鈍分離剤を除去した後50%コロイダルシリカを含有
する張力コーティングを塗布焼き付けた後、プラズマジ
ェットを6mmピッチで板幅方向に線状に照射し製品とし
た。これらの製品の磁気特性を表7に示す。表7に示さ
れるように、仕上げ焼鈍中の昇温速度をこの発明の範囲
内に制御した製品については極めて低い鉄損値が得られ
ている。
(Example 3) 0.055% of C, 3.45% of Si,
0.07% of Mn, 0.025% of Al, 0.08% of P, 0.015% of S
%, Sb 0.068%, Ni 0.15%, B 0.0010% and N
Four steel slabs containing 0.0075%, the balance being Fe and unavoidable impurities, were heated to 1430 ° C, rough rolled with a sheet bar thickness of 35mm, the finishing hot rolling end temperature was 960 ° C, and the sheet thickness was 1.8mm. After that, jet water is sprayed and quenched at a rate of 65 ° C / s.
It was wound into a coil at 0 ° C to obtain a hot-rolled steel sheet. The hot-rolled sheet annealing was performed at 1100 ° C. for 30 seconds in an N 2 atmosphere, then cooled at 30 ° C./s, and held at 350 ° C. for 30 seconds to perform a carbide precipitation treatment. After this, each steel sheet is 150 to 23 by Sendzimer mill.
It was subjected to a constant temperature warm rolling at 0 ° C. and rolled to a final thickness of 0.26 mm. Thereafter, degreasing is performed, decarburization annealing is performed at 850 ° C. for 2 minutes, and 7.5% MgO containing 0.08% B is added.
Of TiO 2 and 3% of SnO 2 were applied and wound into a coil. These coils were subjected to final finishing annealing at a heating rate and an annealing atmosphere shown in Table 7 up to 850 ° C. in an N 2 atmosphere, and up to 1180 ° C. in a mixed atmosphere of 25% N 2 and 75% H 2. During the soaking at 1180 ° C., the temperature was kept in H 2 for 5 hours and then the temperature was lowered. After removing the unreacted annealing separator, the coils were coated and baked with a tension coating containing 50% colloidal silica, and then plasma-irradiated with a plasma jet at a pitch of 6 mm in the width direction of the sheet to obtain products. Table 7 shows the magnetic properties of these products. As shown in Table 7, extremely low iron loss values were obtained for products in which the heating rate during the finish annealing was controlled within the range of the present invention.

【0056】[0056]

【表7】 [Table 7]

【0057】[0057]

【発明の効果】以上詳述したようにこの発明の方向性電
磁鋼板及びこの製造方法に従えば、極めて優れた鉄損特
性を有する高磁束密度方向性電磁鋼板の製造方法が可能
になる。
As described in detail above, according to the grain-oriented electrical steel sheet of the present invention and the method for producing the same, a method for producing a high magnetic flux density grain-oriented electrical steel sheet having extremely excellent iron loss characteristics becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の鋼のスラブ中に含有するNiとSbの含
有量と磁気特性(W17/50) との関係を示した図である。
FIG. 1 is a graph showing the relationship between the contents of Ni and Sb contained in a slab of the steel of the present invention and magnetic properties (W 17/50 ).

【図2】この発明の鋼スラブ中に含有するNiとSbの含有
量と磁気特性(B8)との関係を示した図である。
FIG. 2 is a diagram showing the relationship between the magnetic properties (B 8 ) and the contents of Ni and Sb contained in the steel slab of the present invention.

【図3】二次再結晶粒の(110)〔001〕方位の圧
延方向からの平均ずれ角と磁気特性(W17/50) との関係
を示した図である。
FIG. 3 is a graph showing a relationship between an average deviation angle of a (110) [001] orientation of a secondary recrystallized grain from a rolling direction and magnetic properties (W 17/50 ).

【図4】二次再結晶粒の(110)〔001〕方位の圧
延方向からの平均ずれ角が4度以内のもので、8mm以上
の隣接する二次再結晶粒の(110)〔001〕方位の
平均面内角度差と磁気特性(W17/50) との関係を示した
図である。
FIG. 4 shows that the average deviation angle of the (110) [001] orientation of the secondary recrystallized grains from the rolling direction is within 4 degrees, and that the adjacent secondary recrystallized grains of 8 mm or more have (110) [001]. FIG. 9 is a diagram showing a relationship between an average in-plane angle difference of azimuth and magnetic properties (W 17/50 ).

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の結晶粒について、結晶方位の(1
10)〔001〕方位から圧延方向の平均面内ずれ角が
4度以内、かつ圧延方向と直交する方向に隣接する結晶
粒径8mm以上の粒同士の平均面内角度差が7度以内であ
り、粒径8mm以上の結晶粒径の面積比率が75%以上、か
つ全結晶粒の平均結晶粒径が25mm以下であり、 鋼板の成分組成について、Siを1.5 〜7.0 wt%含み、か
つインヒビター補助成分としてMn, Cu, Sn, Ge, Bi,
V, Nb, Cr, Te及びMoを単独あるいは2種以上の合計で
0.005 〜2.5 wt%、Niを0.01〜1.5 wt%、Sbを0.01〜0.
15wt%及びBを0〜0.0050wt%含有し、不純物としてC
を0.003 wt%以下、S及びSeを合計して0.003 wt%以
下、Nを0.003 wt%以下、Alを0.002 wt%以下、Tiを0.
003 wt%以下、Pを0.30wt%以下に低減し、残部は鉄と
不可避的不純物とからなり、更にSb含有量X(wt%)と
Ni含有量Y(wt%)とが下式の関係を満足することを特
徴とする極めて鉄損の低い方向性電磁鋼板。X>0.01か
つY>0.01で0.3 −7.5 X<Y<1−10X
1. The steel sheet according to claim 1, wherein:
10) The average in-plane deviation angle in the rolling direction from the [001] orientation is within 4 degrees, and the average in-plane angle difference between grains having a crystal grain size of 8 mm or more adjacent in the direction perpendicular to the rolling direction is within 7 degrees. The area ratio of the crystal grains having a grain diameter of 8 mm or more is 75% or more, the average crystal grain diameter of all the crystal grains is 25 mm or less, and the composition of the steel sheet contains 1.5 to 7.0 wt% of Si. Mn, Cu, Sn, Ge, Bi,
V, Nb, Cr, Te and Mo alone or in combination of two or more
0.005 to 2.5 wt%, Ni 0.01 to 1.5 wt%, Sb 0.01 to 0.
15wt% and 0 ~ 0.0050wt% of B, C as impurity
0.003 wt% or less, S and Se in total 0.003 wt% or less, N 0.003 wt% or less, Al 0.002 wt% or less, and Ti in 0.
003 wt% or less, P is reduced to 0.30 wt% or less, the balance consists of iron and unavoidable impurities, and the Sb content X (wt%)
A grain-oriented electrical steel sheet having extremely low iron loss, wherein the Ni content Y (wt%) satisfies the following expression. 0.3-7.5 with X> 0.01 and Y> 0.01 X <Y <1-10X
【請求項2】 C:0.035 〜0.100 wt%、Si:1.5 〜7.
0 wt%、Mn:0.02〜0.20wt%、SもしくはSe:0.005 〜
0.04wt%、Al:0.010 〜0.04wt%、N:0.0010〜0.015
0、Sb:0.01〜0.15wt%を含み、かつCu, Sn, Ge, Bi,
V, Nb, Cr, Te及びMoを単独あるいは2種以上の合計で
0.005 〜2.5 wt%含有し、更にNiを0.01〜1.5 wt%、
B:0 〜0.050 wt%含有し、残部は鉄及び不可避的不純
物からなるスラブを1300℃以上に加熱した後、熱間圧延
し、熱延板焼鈍を施した後、1回又は中間焼鈍を挟む2
回以上の冷間圧延を施して最終製品厚の冷延鋼板とした
のち、脱炭・一次再結晶焼鈍を施し、鋼板表面にMgO を
主成分とする焼鈍分離剤を塗布してから、二次再結晶焼
鈍及び純化焼鈍を施す一連の工程からなる方向性珪素鋼
板の製造法において、 スラブ中のSb含有量X(wt%)とNi含有量Y(wt%)の
間に下式の関係を満足させ、更に二次再結晶焼鈍の500
℃〜900 ℃の温度範囲を平均昇温速度25℃/h以下で昇温
することを特徴とする極めて鉄損の低い方向性電磁鋼板
の製造方法。X>0.01かつY>0.01で0.3 −7.5 X<Y
<1−10X
2. C: 0.035 to 0.100 wt%, Si: 1.5 to 7.
0 wt%, Mn: 0.02 to 0.20 wt�, S or Se: 0.005 to
0.04 wt%, Al: 0.010 to 0.04 wt%, N: 0.0010 to 0.015
0, Sb: 0.01 to 0.15 wt%, Cu, Sn, Ge, Bi,
V, Nb, Cr, Te and Mo alone or in combination of two or more
0.005 to 2.5 wt%, Ni is 0.01 to 1.5 wt%,
B: 0 to 0.050 wt% is contained, the remainder is a slab composed of iron and unavoidable impurities, heated to 1300 ° C. or higher, hot-rolled, hot-rolled sheet annealing, and then one or intermediate annealing 2
After performing cold rolling at least twice to form a cold-rolled steel sheet of final product thickness, decarburizing and primary recrystallization annealing is performed, and an annealing separator containing MgO as a main component is applied to the steel sheet surface, In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of performing recrystallization annealing and purification annealing, the relationship between the Sb content X (wt%) and the Ni content Y (wt%) in a slab is represented by the following equation. Satisfaction, and 500 of secondary recrystallization annealing
A method for producing a grain-oriented electrical steel sheet having extremely low iron loss, characterized in that the temperature is raised in a temperature range of 25 ° C. to 900 ° C. at an average heating rate of 25 ° C./h or less. 0.3-7.5 X <Y with X> 0.01 and Y> 0.01
<1-10X
【請求項3】 鋼板表面に50〜1000μm の幅で10〜50μ
m の深さで圧延方向に交わる方向に溝が存在することを
特徴とする請求項1記載の極めて鉄損の低い方向性電磁
鋼板。
3. A steel sheet having a width of 50 to 1000 μm and a width of 10 to 50 μm.
2. The grain-oriented electrical steel sheet according to claim 1, wherein grooves are present in a direction intersecting the rolling direction at a depth of m.
【請求項4】 鋼板表面に鏡面処理もしくは結晶方位強
調処理を施してなり、その表面上に間接的あるいは直接
的に上塗コーティングを被成してなることを特徴とする
請求項1又は3に記載の極めて鉄損の低い方向性電磁鋼
板。
4. The steel sheet according to claim 1, wherein the surface of the steel sheet is subjected to a mirror surface treatment or a crystal orientation enhancement treatment, and the surface is coated with an overcoating indirectly or directly. Grain-oriented electrical steel sheet with extremely low iron loss.
【請求項5】 最終冷間圧延以降において鋼板表面に溝
を形成させる磁区細分化処理を施すことを特徴とする請
求項2に記載の極めて鉄損の低い方向性電磁鋼板の製造
方法。
5. The method for producing a grain-oriented electrical steel sheet according to claim 2, wherein a magnetic domain refining treatment for forming a groove on the surface of the steel sheet is performed after the final cold rolling.
JP20003297A 1997-07-25 1997-07-25 Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same Expired - Fee Related JP3357578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20003297A JP3357578B2 (en) 1997-07-25 1997-07-25 Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20003297A JP3357578B2 (en) 1997-07-25 1997-07-25 Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1143746A true JPH1143746A (en) 1999-02-16
JP3357578B2 JP3357578B2 (en) 2002-12-16

Family

ID=16417695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20003297A Expired - Fee Related JP3357578B2 (en) 1997-07-25 1997-07-25 Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same

Country Status (1)

Country Link
JP (1) JP3357578B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500541A (en) * 1999-05-26 2003-01-07 アクシアイ スペシャリ テルニ エス.ピー.エイ. Method of improving magnetic properties of grain-oriented electromagnetic silicon steel sheet by laser treatment
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
WO2012041054A1 (en) * 2010-09-30 2012-04-05 宝山钢铁股份有限公司 Production method of grain-oriented silicon steel with high magnetic flux density
JP2012102344A (en) * 2010-11-05 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet
CN102787276A (en) * 2012-08-30 2012-11-21 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
KR20160072704A (en) * 2014-12-15 2016-06-23 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
WO2018117642A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
JP2020514548A (en) * 2017-03-27 2020-05-21 バオシャン アイアン アンド スティール カンパニー リミテッド Laser scribed grain oriented silicon steel for stress relief anneal and method of making same
WO2022092112A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074476B (en) * 2012-12-07 2014-02-26 武汉钢铁(集团)公司 Method for producing high-magnetic-induction oriented silicon strips through three-stage normalizing
RU2610204C1 (en) 2013-02-27 2017-02-08 ДжФЕ СТИЛ КОРПОРЕЙШН Method of making plate of textured electrical steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500541A (en) * 1999-05-26 2003-01-07 アクシアイ スペシャリ テルニ エス.ピー.エイ. Method of improving magnetic properties of grain-oriented electromagnetic silicon steel sheet by laser treatment
JP2003193142A (en) * 2001-12-27 2003-07-09 Jfe Steel Kk Method of producing grain oriented silicon steel sheet having excellent magnetic property
WO2012041054A1 (en) * 2010-09-30 2012-04-05 宝山钢铁股份有限公司 Production method of grain-oriented silicon steel with high magnetic flux density
JP2012102344A (en) * 2010-11-05 2012-05-31 Jfe Steel Corp Grain-oriented electromagnetic steel sheet
CN102787276A (en) * 2012-08-30 2012-11-21 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
WO2014032216A1 (en) * 2012-08-30 2014-03-06 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
CN102787276B (en) * 2012-08-30 2014-04-30 宝山钢铁股份有限公司 High magnetic induction oriented silicon steel and manufacturing method thereof
US10236105B2 (en) 2012-08-30 2019-03-19 Baoshan Iron & Steel Co., Ltd High magnetic induction oriented silicon steel and manufacturing method thereof
WO2016098917A1 (en) * 2014-12-15 2016-06-23 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
KR20160072704A (en) * 2014-12-15 2016-06-23 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
WO2018117642A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
US11667984B2 (en) 2016-12-22 2023-06-06 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor
JP2020514548A (en) * 2017-03-27 2020-05-21 バオシャン アイアン アンド スティール カンパニー リミテッド Laser scribed grain oriented silicon steel for stress relief anneal and method of making same
WO2022092112A1 (en) * 2020-10-26 2022-05-05 日本製鉄株式会社 Wound core
JP7103553B1 (en) * 2020-10-26 2022-07-20 日本製鉄株式会社 Winding iron core

Also Published As

Publication number Publication date
JP3357578B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
EP0837149B1 (en) Grain-oriented electromagnetic steel sheet and process for producing the same
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
CN110651058B (en) Grain-oriented electromagnetic steel sheet and method for producing same
KR100336661B1 (en) Very low iron loss grain oriented electrical steel sheet and method of producing the same
JP2013047383A (en) Method of producing ultrathin grain-oriented electromagnetic steel sheet
KR20020013442A (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP2022514794A (en) Directional electrical steel sheet and its manufacturing method
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JP3674183B2 (en) Method for producing grain-oriented electrical steel sheet
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3415377B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JP3928275B2 (en) Electrical steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP2002105537A (en) Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
CN117363963A (en) Oriented silicon steel and manufacturing method thereof
JPH093541A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JPH02115319A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2023116341A (en) Production method of electromagnetic steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees