JP2013047383A - Method of producing ultrathin grain-oriented electromagnetic steel sheet - Google Patents

Method of producing ultrathin grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2013047383A
JP2013047383A JP2012166798A JP2012166798A JP2013047383A JP 2013047383 A JP2013047383 A JP 2013047383A JP 2012166798 A JP2012166798 A JP 2012166798A JP 2012166798 A JP2012166798 A JP 2012166798A JP 2013047383 A JP2013047383 A JP 2013047383A
Authority
JP
Japan
Prior art keywords
mass
steel sheet
annealing
grain
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166798A
Other languages
Japanese (ja)
Other versions
JP5988027B2 (en
Inventor
Masanori Kamisaka
正憲 上坂
Minoru Takashima
高島  稔
Takeshi Imamura
今村  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012166798A priority Critical patent/JP5988027B2/en
Publication of JP2013047383A publication Critical patent/JP2013047383A/en
Application granted granted Critical
Publication of JP5988027B2 publication Critical patent/JP5988027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing an ultrathin grain-oriented electromagnetic steel sheet exhibiting uniform and extremely low iron loss in a product coil thereof.SOLUTION: The method of producing the grain-oriented electromagnetic steel sheet comprises carrying out processes of hot rolling and subsequently cold rolling a steel slab to form a cold-rolled steel sheet with a final sheet thickness of 0.12 to 0.20 mm, and subjecting the same to primary recrystallization annealing and subsequently to finish-annealing, wherein the steel slab contains, in mass%, C: 0.04 to 0.12%, Si: 1.5 to 5.0%, Mn: 0.01 to 1.0%, Ni: 0.10 to 1.0%, sol. Al: 0.010 to 0.040%, N: 0.004 to 0.02%, Cu: 0.02 to 1.0%, Sb: 0.01 to 0.10% and one or more selected from S and Se: 0.005 to 0.05% in total. In the steel slab, the value of sol. Al/N is controlled within a range of 2.0 to 2.8. In the finish-annealing, the steel sheet before the secondary recrystallization is kept in a temperature range of 775 to 875°C for 40 to 200 hours.

Description

本発明は、主として変圧器や発電機等の鉄心に用いられる方向性電磁鋼板の製造方法に関し、具体的には、板厚が0.20mm以下の極薄かつ低鉄損の方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet mainly used for iron cores such as transformers and generators. Specifically, the thickness of the grain-oriented electrical steel sheet having a thickness of 0.20 mm or less and an extremely thin and low iron loss. It relates to a manufacturing method.

Siを含有し、結晶方位が{110}<001>方位(Goss方位)や{100}<001>方位(Cube方位)に高度に配向した方向性電磁鋼板は、優れた軟磁気特性を示すことから、商用周波数領域で用いられる各種電気機器の鉄心材料として広く用いられている。このような用途に用いられる方向性電磁鋼板には、一般に、50Hzの周波数で1.7Tに磁化させたときの磁気損失を表す鉄損W17/50(W/kg)が低いことが求められる。その理由は、発電機や変圧器の効率は、W17/50の値が低い鉄心材料を用いることで、大幅に向上することができるからである。そのため、鉄損の低い材料の開発が益々強く求められるようになってきている。 A grain-oriented electrical steel sheet containing Si and highly oriented in the {110} <001> orientation (Goss orientation) or {100} <001> orientation (Cube orientation) has excellent soft magnetic properties. Therefore, it is widely used as a core material for various electric devices used in the commercial frequency range. The grain-oriented electrical steel sheet used for such applications is generally required to have a low iron loss W 17/50 (W / kg) representing magnetic loss when magnetized to 1.7 T at a frequency of 50 Hz. . The reason is that the efficiency of the generator and the transformer can be greatly improved by using an iron core material having a low W 17/50 value. Therefore, development of materials with low iron loss has been increasingly demanded.

電磁鋼板の鉄損は、結晶方位や純度等に依存するヒステリシス損と、板厚や比抵抗、磁区の大きさ等に依存する渦電流損との和で表される。したがって、鉄損を低減する方法としては、結晶方位の集積度を高めて磁束密度を向上し、ヒステリシス損を低減する方法や、電気抵抗を高めるSiの含有量を増加させたり、鋼板の板厚を低減したり、磁区を細分化したりすることで渦電流損を低減する方法等が知られている。   The iron loss of an electrical steel sheet is represented by the sum of hysteresis loss that depends on crystal orientation and purity, and eddy current loss that depends on sheet thickness, specific resistance, magnetic domain size, and the like. Therefore, as a method of reducing the iron loss, the degree of integration of the crystal orientation is increased to improve the magnetic flux density, the hysteresis loss is reduced, the Si content is increased to increase the electric resistance, or the thickness of the steel plate is increased. There are known methods for reducing the eddy current loss by reducing the eddy current or by subdividing the magnetic domain.

これらの鉄損低減方法のうち、磁束密度を向上させる方法に関しては、例えば、特許文献1および特許文献2には、AlNをインヒビタとする方向性電磁鋼板の製造方法において、Niを添加しかつNi添加量に応じてSbを所定の範囲で添加することで、一次再結晶粒の成長に対し極めて強い抑制力効果が得られ、一次再結晶粒集合組織の改善と二次再結晶粒の微細化が図れるだけでなく、{110}<001>方位から圧延方向の平均面内ずれ角を小さくすることができ、鉄損を大きく低減できることが開示されている。   Among these iron loss reduction methods, with respect to the method of improving the magnetic flux density, for example, in Patent Document 1 and Patent Document 2, Ni is added in a method of manufacturing a grain-oriented electrical steel sheet using AlN as an inhibitor and Ni By adding Sb within a predetermined range according to the amount added, an extremely strong inhibitory effect on the growth of primary recrystallized grains can be obtained, improving the primary recrystallized grain texture and making secondary recrystallized grains finer It is disclosed that the average in-plane deviation angle in the rolling direction from the {110} <001> orientation can be reduced and the iron loss can be greatly reduced.

また、板厚を低減する方法に関しては、圧延による方法と、化学研磨する方法とが知られているが、化学研磨で薄くする方法は、歩留まりの低下が大きく、工業的規模での生産には適さない。そのため、板厚を薄くする方法には、専ら圧延による方法が用いられている。しかし、圧延して板厚を薄くすると、仕上焼鈍における二次再結晶が不安定となり、磁気特性の優れた製品を安定して製造することが難しくなるという問題がある。   In addition, as a method for reducing the plate thickness, a rolling method and a chemical polishing method are known, but the method of thinning by chemical polishing has a large decrease in yield, and for production on an industrial scale. Not suitable. For this reason, a rolling method is exclusively used as a method for reducing the plate thickness. However, when the sheet thickness is reduced by rolling, there is a problem that secondary recrystallization in finish annealing becomes unstable and it is difficult to stably manufacture a product having excellent magnetic properties.

この間題に対しては、例えば、特許文献3には、AlNを主インヒビタとし、強圧下最終冷延を特徴とする薄手一方向性電磁鋼板の製造において、SnとSeの複合添加に加えてさらにCuおよび/またはSbを添加することにより優れた鉄損値が得られることが、特許文献4には、板厚0.20mm以下の薄手一方向性電磁鋼板の製造方法において、Nbを添加することによって炭窒化物の微細分散が促進されてインヒビタが強化され、磁気特性が向上することが提案されている。また、特許文献5には、熱延板の板厚を薄くし、コイルの巻取温度を下げ、仕上焼鈍パターンを適性に制御することで、1回の冷延で磁気特性の優れた薄手一方向性電磁鋼板を製造する方法が、特許文献6には、熱延コイルの板厚を1.9mm以下とすることで、0.23mm以下の方向性電磁鋼板を一回冷延法で製造する方法が提案されている。   For this problem, for example, in Patent Document 3, in addition to the combined addition of Sn and Se, in the manufacture of a thin unidirectional electrical steel sheet characterized by AlN as the main inhibitor and the final cold rolling under strong pressure, According to Patent Document 4, Nb is added in the method of manufacturing a thin unidirectional electrical steel sheet having a thickness of 0.20 mm or less, because an excellent iron loss value can be obtained by adding Cu and / or Sb. It has been proposed that fine dispersion of carbonitrides is promoted by this to strengthen the inhibitor and improve the magnetic properties. Patent Document 5 discloses that the thickness of the hot-rolled sheet is reduced, the coil winding temperature is lowered, and the finish annealing pattern is controlled appropriately, so that the thin film having excellent magnetic properties can be obtained by one cold rolling. Patent Document 6 discloses a method of manufacturing a grain-oriented electrical steel sheet, in which a sheet thickness of a hot-rolled coil is set to 1.9 mm or less to produce a grain-oriented electrical steel sheet of 0.23 mm or less by a single cold rolling method. A method has been proposed.

特許3357601号公報Japanese Patent No. 3357601 特許3357578号公報Japanese Patent No. 3357578 特公平07−017956号公報Japanese Patent Publication No. 07-017956 特開平06−025747号公報Japanese Patent Laid-Open No. 06-025747 特公平07−042507号公報Japanese Patent Publication No. 07-042507 特開平04−341518号公報Japanese Patent Laid-Open No. 04-341518

方向性電磁鋼板の鉄損を低減する方法としては、上述した従来技術を適用し、圧延で板厚を薄くし、渦電流損を低下させることが有効である。しかし、最終冷延後の板厚が0.12〜0.20mmという極薄の方向性電磁鋼板では、上記従来技術に開示された技術を適用しても、依然としてコイルの一部で二次再結晶不良が発生し、歩留りが低下するという問題が発生している。   As a method of reducing the iron loss of the grain-oriented electrical steel sheet, it is effective to apply the above-described conventional technique, reduce the sheet thickness by rolling, and reduce the eddy current loss. However, in the ultrathin grain-oriented electrical steel sheet having a thickness of 0.12 to 0.20 mm after the final cold rolling, even if the technique disclosed in the above prior art is applied, the secondary recycle is still performed in a part of the coil. There is a problem that crystal defects occur and the yield decreases.

そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、板厚が0.12〜0.20mmの極薄方向性電磁鋼板でも二次再結晶を安定して起こさせ、製品コイル内の鉄損が均一でかつ極めて鉄損が低い方向性電磁鋼板を製造する有利な方法を提案することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to stably cause secondary recrystallization even in an ultrathin grained electrical steel sheet having a thickness of 0.12 to 0.20 mm, and to produce a product coil It is to propose an advantageous method for producing a grain-oriented electrical steel sheet having a uniform iron loss and a very low iron loss.

発明者らは、板厚が薄い方向性電磁鋼板における二次再結晶挙動が不安定となる原因を解明するため、一次再結晶焼鈍後の鋼板を仕上焼鈍する際、二次再結晶途中の鋼板を取り出して、インヒビタの析出状態および結晶粒の成長状態を調査した。その結果、仕上焼鈍の昇温過程においては、インヒビタが粗大化し、結晶粒成長を抑制する力が低下すること、875℃以上の温度領域では、鋼板の表面酸化によりインヒビタ成分が酸化、消失し、表層粒の粗大化が起きていること、特に、その傾向は975℃以上で著しくなること、そして、板厚が0.12〜0.20mmの極薄の方向性電磁鋼板では、上記したインヒビタの粗大化による結晶粒成長抑制力の低下、および、表層粒の粗大化の進行が二次再結晶不良の主原因であることが明らかとなった。   In order to elucidate the cause of unstable secondary recrystallization behavior in a grain-oriented electrical steel sheet with a thin plate thickness, the inventors have made a steel sheet in the middle of secondary recrystallization when finish annealing the steel sheet after primary recrystallization annealing. And the inhibitor precipitation state and crystal grain growth state were investigated. As a result, in the temperature raising process of finish annealing, the inhibitor is coarsened and the ability to suppress crystal grain growth is reduced, and in the temperature region of 875 ° C. or higher, the inhibitor component is oxidized and disappeared due to the surface oxidation of the steel sheet, The coarsening of the surface layer grains occurs, in particular, the tendency becomes remarkable at 975 ° C. or more, and in the ultrathin grain-oriented electrical steel sheet having a thickness of 0.12 to 0.20 mm, It has been clarified that the decrease in crystal grain growth inhibiting power due to coarsening and the progress of coarsening of surface grains are the main causes of secondary recrystallization failure.

そこで、発明者らは、さらに検討を重ねた結果、(1)Ni,CuおよびSbを複合添加すると共に、sol.AlとNの比(sol.Al/N)を適正範囲に制御することで、仕上焼鈍の昇温過程におけるインヒビタの抑制力低下を抑止できること、(2)仕上焼鈍の昇温過程で二次再結晶が起きる前に、775〜875℃の温度域で所定時間保定することにより、875℃以上での鋼板表面酸化による表層粒の粗大化を抑制し得ること、したがって、これらの知見を適用することで、コイル全長にわたって二次再結晶が安定して起こり、コイル内の鉄損が均一でしかも極めて低鉄損の極薄方向性電磁鋼板を製造することが可能となることを見出した。   As a result of further studies, the inventors have added (1) Ni, Cu and Sb in combination, and sol. By controlling the ratio of Al to N (sol.Al/N) within an appropriate range, it is possible to suppress a decrease in the inhibitory power of the inhibitor in the temperature raising process of finish annealing, and (2) secondary re-generation in the temperature raising process of finish annealing. By holding for a predetermined time in the temperature range of 775 to 875 ° C. before crystallization occurs, it is possible to suppress the surface grain coarsening due to steel plate surface oxidation at 875 ° C. or higher, and therefore apply these findings. Thus, it has been found that secondary recrystallization occurs stably over the entire length of the coil, and it is possible to manufacture an ultrathin grain-oriented electrical steel sheet having uniform iron loss in the coil and extremely low iron loss.

上記知見に基づき開発した本発明は、C:0.04〜0.12mass%、Si:1.5〜5.0mass%、Mn:0.01〜1.0mass%、Ni:0.10〜1.0mass%、sol.Al:0.010〜0.040mass%、N:0.004〜0.02mass%、Cu:0.02〜1.0mass%、Sb:0.01〜0.10mass%、SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1250℃以上の温度に加熱した後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚0.12〜0.20mmの冷延板とし、一次再結晶焼鈍し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造工程において、上記鋼スラブのsol.Al/Nの値を2.0〜2.8の範囲とし、かつ、仕上焼鈍における二次再結晶前の鋼板を775〜875℃の温度域に40〜200時間保定することを特徴とする方向性電磁鋼板の製造方法を提案する。   The present invention developed based on the above knowledge is C: 0.04-0.12 mass%, Si: 1.5-5.0 mass%, Mn: 0.01-1.0 mass%, Ni: 0.10-1 0.0 mass%, sol. Al: 0.010-0.040 mass%, N: 0.004-0.02 mass%, Cu: 0.02-1.0 mass%, Sb: 0.01-0.10 mass%, S and Se 1 type or 2 types selected: A steel slab containing 0.005 to 0.05 mass% in total and the balance being Fe and inevitable impurities is heated to a temperature of 1250 ° C. or higher, and then hot-rolled to obtain a plate thickness A hot-rolled sheet with a thickness of 1.8 mm or more is cold-rolled once or twice with an intermediate annealing in between to form a cold-rolled sheet with a final sheet thickness of 0.12 to 0.20 mm, subjected to primary recrystallization annealing, and finish annealing. In the manufacturing process of the grain-oriented electrical steel sheet comprising a series of processes, the sol. Direction in which the value of Al / N is in the range of 2.0 to 2.8, and the steel sheet before secondary recrystallization in finish annealing is held in a temperature range of 775 to 875 ° C. for 40 to 200 hours. We propose a method for manufacturing a magnetic steel sheet.

本発明の方向性電磁鋼板の製造方法は、上記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選ばれる1種または2種以上を合計で0.002〜1.0mass%含有することを特徴とする。   The method for producing a grain-oriented electrical steel sheet according to the present invention further includes one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn, and Mo in addition to the above component composition in a total of 0. It is characterized by containing 0.002 to 1.0 mass%.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の加熱過程における200〜700℃間を昇温速度50℃/s以上で加熱することを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet of this invention heats between 200-700 degreeC in the heating process of the said primary recrystallization annealing with the temperature increase rate of 50 degrees C / s or more.

また、本発明の方向性電磁鋼板の製造方法は、上記一次再結晶焼鈍の加熱過程における250〜600℃間のいずれかの温度において、1〜10秒間、等温に保持することを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet of this invention is hold | maintained isothermally for 1 to 10 seconds in any temperature between 250-600 degreeC in the heating process of the said primary recrystallization annealing.

また、本発明の方向性電磁鋼板の製造方法は、最終冷間圧延以降において、鋼板表面に磁区細分化処理を施すことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that a magnetic domain refinement process is performed on the steel sheet surface after the final cold rolling.

本発明によれば、Ni,CuおよびSbの添加量と、sol.Al/Nの値を適正範囲に制御することで、仕上焼鈍における二次再結晶前のインヒビタの抑制力低下を抑止し、さらに、仕上焼鈍における二次再結晶前の鋼板温度を一定の温度領域に保定することで、表層粒の粗大化を抑制し、二次再結晶を安定して生じさせることができるので、優れた鉄損特性を有する高磁束密度の極薄方向性電磁鋼板を高い歩留りをもって製造することが可能となる。   According to the present invention, the addition amount of Ni, Cu and Sb, and the sol. By controlling the value of Al / N within an appropriate range, it is possible to suppress a decrease in the inhibitory power of the inhibitor before secondary recrystallization in finish annealing, and the steel plate temperature before secondary recrystallization in finish annealing is in a certain temperature range. Therefore, it is possible to suppress the coarsening of the surface layer grains and stably generate secondary recrystallization. Therefore, a high magnetic flux density ultrathin grain-oriented electrical steel sheet having excellent iron loss characteristics can be obtained at a high yield. Can be manufactured.

鉄損W17/50のコイル内変動に及ぼすsol.Al/N、添加元素(Ni,Cu,Sb)および仕上焼鈍時の加熱パターンの影響を示す図である。The effect of sol. On the fluctuation in the coil of iron loss W 17/50 . It is a figure which shows the influence of the heating pattern at the time of Al / N, an additive element (Ni, Cu, Sb) and finish annealing. 磁束密度Bのコイル内変動に及ぼすsol.Al/N、添加元素(Ni,Cu,Sb)および仕上焼鈍時の加熱パターンの影響を示す図である。Sol on the coil fluctuation of the magnetic flux density B 8. It is a figure which shows the influence of the heating pattern at the time of Al / N, an additive element (Ni, Cu, Sb) and finish annealing.

以下、本発明を開発するに至った実験について説明する。
C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、Ni:0.3mass%、Cu:0.03mass%、Sb:0.04mass%およびSe:0.015mass%を含有し、さらにsol.Al/Nを1.8〜3.1の範囲で変化させた4種類の鋼(表1のNo.1〜4)と、C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.027mass%、N:0.01mass%およびSe:0.015mass%を含有し、さらにNi,CuおよびSbの含有量を変化させた3種類の鋼(表1のNo.5〜7)の計7種の鋼スラブを、熱間圧延して板厚:2.4mmの熱延コイルとした後、900℃×40秒の熱延板焼鈍を施し、酸洗し、冷間圧延して板厚:1.5mmの中間冷延板とし、1150℃×80秒の中間焼鈍を施した後、170℃で温間圧延して最終板厚:0.17mmの冷延板とした。
Hereinafter, experiments that have led to the development of the present invention will be described.
Contains C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Ni: 0.3 mass%, Cu: 0.03 mass%, Sb: 0.04 mass% and Se: 0.015 mass% And sol. Four types of steel (No. 1 to 4 in Table 1) with Al / N changed in the range of 1.8 to 3.1, C: 0.07 mass%, Si: 3.4 mass%, Mn: 0 .07 mass%, sol. Three types of steels containing Al: 0.027 mass%, N: 0.01 mass% and Se: 0.015 mass%, and further changing the contents of Ni, Cu and Sb (Nos. 5 to 7 in Table 1) )), And hot rolled into a hot rolled coil with a thickness of 2.4 mm, and then subjected to hot rolled sheet annealing at 900 ° C. for 40 seconds, pickled and cold rolled. An intermediate cold-rolled sheet having a thickness of 1.5 mm was subjected to intermediate annealing at 1150 ° C. for 80 seconds, and then warm-rolled at 170 ° C. to obtain a cold-rolled sheet having a final thickness of 0.17 mm.

その後、上記冷延板を脱脂処理し、H:60vol%とN:40vol%からなる湿水素雰囲気下で、850℃×2分間の脱炭を兼ねた一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、二次再結晶させる仕上焼鈍を施した。
なお、上記仕上焼鈍は、850℃までをN雰囲気下で20℃/hrの昇温速度で加熱し、その後、保定を行わない条件(FAパターン1)と、上記加熱に続き、850℃で50時間保定処理を施す条件(FAパターン2)の2水準で加熱し、その後、850〜1150℃の間をN:25vol%とH:75vol%の混合雰囲気下で、また、1150〜1200℃の間をH雰囲気下で、20℃/hrの昇温速度で加熱し、さらに、H雰囲気中で1200℃×10時間の均熱処理を施した後、冷却し、800℃以下をN雰囲気下で冷却する条件で行った。
仕上焼鈍した鋼板は、その後、未反応の焼鈍分離剤を除去した後、リン酸アルミニウムとコロイダルシリカを主成分とする絶縁被膜を被成して製品板とした。
Thereafter, the cold-rolled sheet was degreased and subjected to primary recrystallization annealing also serving as decarburization at 850 ° C. for 2 minutes in a wet hydrogen atmosphere composed of H 2 : 60 vol% and N 2 : 40 vol%, An annealing separator mainly composed of MgO was applied to the surface of the steel sheet and subjected to finish annealing for secondary recrystallization.
The finish annealing is performed at a temperature of 850 ° C. after heating up to 850 ° C. at a rate of temperature increase of 20 ° C./hr in an N 2 atmosphere and then performing no holding (FA pattern 1). Heating was performed at two levels of conditions (FA pattern 2) for 50 hours of retention treatment, and then between 850 and 1150 ° C. in a mixed atmosphere of N 2 : 25 vol% and H 2 : 75 vol%, and 1150 to 1200 ° C. during the under an H 2 atmosphere, heating rate of 20 ° C. / hr, further, subjected to soaking treatment of 1200 ° C. × 10 hours in an H 2 atmosphere, cooled, and 800 ° C. or less N It was performed under the condition of cooling under two atmospheres.
The steel sheet subjected to finish annealing was used as a product plate by removing an unreacted annealing separator and then applying an insulating coating composed mainly of aluminum phosphate and colloidal silica.

斯くして得られた全長4000mの製品コイルのコイル長手方向0m、1000m、2000m、3000mおよび4000mの計5箇所の位置から、磁気測定用の試験片を採取し、JIS C2550に記載の方法で、鉄損W17/50および磁束密度Bを測定し、それらの測定値の中で、特性が最も悪い値をコイル内保証値、最も良好な値をコイル内良好値とし、その結果を表2および図1および図2に示した。 The test pieces for magnetic measurement were collected from a total of five positions in the coil longitudinal direction 0 m, 1000 m, 2000 m, 3000 m and 4000 m of the product coil having a total length of 4000 m obtained in this way, and the method described in JIS C2550, The iron loss W 17/50 and the magnetic flux density B 8 were measured, and among these measured values, the worst value was the guaranteed value in the coil, and the best value was the good value in the coil. And shown in FIG. 1 and FIG.

Figure 2013047383
Figure 2013047383

Figure 2013047383
Figure 2013047383

図1および図2から、コイル内の最も良好な値を示すコイル内良好値は、鉄損W17/50および磁束密度Bとも、sol.Al/N、添加元素(Ni,Cu,Sb)および仕上焼鈍の加熱パターンによる影響は見られずほぼ同等の良好な値を示しているが、コイル内で特性が最も悪い値を示すコイル内保証値については、sol.Al/Nや添加元素(Ni,Cu,Sb)、仕上焼鈍の加熱パターンにより大きく変化していることがわかる。 1 and 2, the most satisfactory coil inner good value indicating the value of the coil, the iron loss W 17/50 and the magnetic flux density B 8 both, sol. Al / N, additive elements (Ni, Cu, Sb) and finish annealing are not affected by the heating pattern and show almost the same good value, but the guarantee in the coil shows the worst value in the coil For values, see sol. It can be seen that there are significant changes depending on the heating pattern of Al / N, additive elements (Ni, Cu, Sb), and finish annealing.

例えば、sol.Al/Nの値が2.1および2.7で、かつ、Ni,CuおよびSbを適性量含有しているNo.2およびNo.3の鋼は、850℃で50時間保定したFAパターン2において、コイル内保証値の磁気特性がコイル内良好値と同レベルの優れた値を示している。これに対して、sol.Al/Nの値が1.8および3.1であるか、Ni,CuおよびSbを適性量含有していないか、あるいは、850℃で50時間保定しなかったFAパターン1の鋼(No.1、4〜7)では、コイル内保証値はコイル内良好値と比較して大きく劣っている。   For example, sol. No. 2 having Al / N values of 2.1 and 2.7 and containing appropriate amounts of Ni, Cu and Sb. 2 and no. Steel No. 3 shows an excellent value of the magnetic property of the guaranteed value in the coil at the same level as the good value in the coil in the FA pattern 2 held at 850 ° C. for 50 hours. In contrast, sol. Steels with FA pattern 1 that have Al / N values of 1.8 and 3.1, do not contain appropriate amounts of Ni, Cu and Sb, or were not held at 850 ° C. for 50 hours (No. In 1, 4 to 7), the guaranteed value in the coil is greatly inferior to the good value in the coil.

そこで、この原因を調査するため、一次再結晶焼鈍後の鋼板を仕上焼鈍する際、二次再結晶焼鈍途中の鋼板を取り出して、インヒビタの析出状態および結晶粒の成長状態を調査した。その結果、sol.Al/Nの値や、Ni,CuおよびSbの添加量に伴ってインヒビタの抑制力が変化し、また、仕上焼鈍の加熱過程において850℃で50時間の保定を行った場合には、表層粒の粗大化の進行が抑制されること、したがって、sol.Al/Nの値を適性範囲に制御し、Ni,CuおよびSbを適性量複合添加することに加えて、仕上焼鈍の加熱過程で、二次再結晶前の鋼板を一定温度領域に所定時間保定することで、コイル内の変動がなくしかも優れた磁気特性を有する方向性電磁鋼板を製造し得ることがわかった。
本発明は、上記知見に基づいてなされたものである。
Therefore, in order to investigate this cause, when finish annealing the steel sheet after the primary recrystallization annealing, the steel sheet in the middle of the secondary recrystallization annealing was taken out and the precipitation state of the inhibitor and the growth state of the crystal grains were investigated. As a result, sol. When the inhibitory force of the inhibitor changes with the value of Al / N and the addition amount of Ni, Cu and Sb, and when holding for 50 hours at 850 ° C. in the heating process of finish annealing, Of the coarsening of the resin is suppressed, and accordingly, sol. In addition to controlling the Al / N value within the appropriate range and adding Ni, Cu and Sb in appropriate amounts, the steel plate before secondary recrystallization is maintained in a certain temperature range for a predetermined time during the heating process of finish annealing. Thus, it was found that a grain-oriented electrical steel sheet having no fluctuation in the coil and having excellent magnetic properties can be produced.
The present invention has been made based on the above findings.

次に、本発明の方向性電磁鋼板の素材となる鋼スラブの成分組成について説明する。
C:0.04〜0.12mass%
Cは、熱間圧延、冷間圧延中の組織の均一微細化ならびにGoss方位の発達のために有用な元素であり、少なくとも0.04mass%を含有させる必要がある。しかし、0.12mass%を超えて添加すると、一次再結晶焼鈍で脱炭不足を起こし、磁気特性が劣化するおそれがある。よって、Cは0.04〜0.12mass%の範囲とする。好ましくは0.05〜0.10mass%の範囲である。
Next, the component composition of the steel slab used as the raw material of the grain-oriented electrical steel sheet according to the present invention will be described.
C: 0.04 to 0.12 mass%
C is an element useful for uniform refinement of the structure during hot rolling and cold rolling and development of Goss orientation, and it is necessary to contain at least 0.04 mass%. However, if added over 0.12 mass%, decarburization may be insufficient due to primary recrystallization annealing, and the magnetic properties may deteriorate. Therefore, C is set to a range of 0.04 to 0.12 mass%. Preferably it is the range of 0.05-0.10 mass%.

Si:1.5〜5.0mass%
Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与する元素であり、良好な磁気特性を確保する観点から、本発明では1.5mass%以上含有させる。一方、5.0mass%を超える添加は、冷間加工性を著しく害するようになる。よって、Siは1.5〜5.0mass%の範囲とする。好ましくは2.0〜4.0mass%の範囲である。
Si: 1.5-5.0 mass%
Si is an element that increases the specific resistance of the steel sheet and contributes effectively to the reduction of iron loss. From the viewpoint of securing good magnetic properties, Si is contained in an amount of 1.5 mass% or more in the present invention. On the other hand, addition exceeding 5.0 mass% significantly impairs cold workability. Therefore, Si is set to a range of 1.5 to 5.0 mass%. Preferably it is the range of 2.0-4.0 mass%.

Mn:0.01〜1.0mass%
Mnは、熱間加工性を改善し、熱間圧延時の表面疵を防止するのに有効な元素であり、斯かる効果を得るためには0.01mass%以上含有させる必要がある。しかし、1.0mass%を超えて添加すると、磁束密度が低下するようになる。よって、Mnは0.01〜1.0mass%の範囲とする。好ましくは0.04〜0.2mass%の範囲である。
Mn: 0.01 to 1.0 mass%
Mn is an element effective for improving hot workability and preventing surface flaws during hot rolling, and in order to obtain such an effect, it is necessary to contain 0.01 mass% or more. However, when it is added exceeding 1.0 mass%, the magnetic flux density is lowered. Therefore, Mn is set to a range of 0.01 to 1.0 mass%. Preferably it is the range of 0.04-0.2 mass%.

sol.Al:0.010〜0.040mass%
Alは、インヒビタであるAlNを構成する必須の元素であり、sol.Alとして0.010mass%未満では、熱延時や熱延板焼鈍の昇温過程等において析出するAlNの量が不足し、インヒビタの効果を得ることができない。一方、0.040mass%を超えて添加すると、析出するインヒビタが複合粗大化し、逆に抑制力が低下してしまう。よって、AlNのインヒビタ効果を十分に得るためには、Alはsol.Alで0.010〜0.040mass%の範囲とする必要がある。好ましくは0.02〜0.03mass%の範囲である。
sol. Al: 0.010-0.040 mass%
Al is an essential element constituting AlN which is an inhibitor. If the Al content is less than 0.010 mass%, the amount of AlN precipitated during hot rolling or during the temperature rising process of hot-rolled sheet annealing is insufficient, and the inhibitor effect cannot be obtained. On the other hand, if added in excess of 0.040 mass%, the precipitated inhibitor becomes complex and coarse, and conversely, the suppressive power decreases. Therefore, in order to sufficiently obtain the inhibitor effect of AlN, Al is sol. It is necessary to make it into the range of 0.010-0.040 mass% with Al. Preferably it is the range of 0.02-0.03 mass%.

N:0.004〜0.02mass%
Nは、Alと同様、インヒビタであるAlNを構成する必須の元素である。ただし、このNは、冷延工程において窒化処理を施し、添加することが可能であるので、スラブ段階では、0.004mass%以上含有していればよい。ただし、冷延工程において窒化処理を施さない場合には0.005mass%以上含有させる必要がある。一方、Nを0.02mass%超え添加した場合には、熱間圧延においてふくれを生じるおそれがある。よって、Nは0.004〜0.02mass%の範囲とする。好ましくは0.005〜0.01mass%の範囲である。
N: 0.004 to 0.02 mass%
N, like Al, is an essential element constituting AlN, which is an inhibitor. However, since this N can be added after performing a nitriding treatment in the cold rolling process, it may be contained at 0.004 mass% or more in the slab stage. However, when nitriding is not performed in the cold rolling process, it is necessary to contain 0.005 mass% or more. On the other hand, when N is added in excess of 0.02 mass%, blistering may occur in hot rolling. Therefore, N is set to a range of 0.004 to 0.02 mass%. Preferably it is the range of 0.005-0.01 mass%.

SおよびSe:合計で0.005〜0.05mass%
SおよびSeは、CuSやCuSe等を、AlNと複合して微細析出させるために必要な必須の元素である。斯かる目的のため、本発明では単独もしくは合計で0.005mass%以上を含有させる必要がある。しかし、0.05mass%を超えて添加すると、析出物の粗大化を招く。よって、SおよびSeは単独または合計で0.005〜0.05mass%の範囲とする。好ましくは0.01〜0.03mass%の範囲である。
S and Se: 0.005-0.05 mass% in total
S and Se are indispensable elements that are required for fine precipitation of Cu 2 S, Cu 2 Se, and the like in combination with AlN. For this purpose, in the present invention, it is necessary to contain 0.005 mass% or more alone or in total. However, if added over 0.05 mass%, the precipitates become coarse. Therefore, S and Se are made into the range of 0.005-0.05 mass% individually or in total. Preferably it is the range of 0.01-0.03 mass%.

Ni:0.10〜1.0mass%
Niは、粒界にSbと共偏析し、Sbの偏析効果を促進し、インヒビタの粗大化を抑止する元素であるので、0.10mass%以上含有させる。しかし、1.0mass%を超えて添加すると、一次再結晶焼鈍後の集合組織が劣化し、磁気特性が低下する原因となる。よって、Niは0.10〜1.0mass%の範囲とする。好ましくは0.10〜0.50mass%の範囲である。
Ni: 0.10 to 1.0 mass%
Ni is an element that co-segregates with Sb at the grain boundary, promotes the segregation effect of Sb, and inhibits the coarsening of the inhibitor, so it is contained in an amount of 0.10 mass% or more. However, if added over 1.0 mass%, the texture after the primary recrystallization annealing deteriorates, which causes the magnetic properties to deteriorate. Therefore, Ni is set in the range of 0.10 to 1.0 mass%. Preferably it is the range of 0.10-0.50 mass%.

Cu:0.02〜1.0mass%
Cuは、CuSやCuSeを構成する必須の元素である。極薄方向性電磁鋼板においては、インヒビタがMnSやMnSeであると、仕上焼鈍中に抑制力が低下し、二次再結晶が不安定となる。一方、インヒビタがCuS、CuSeであり、かつ、Ni,Sbと共に複合添加されている場合には、インヒビタの抑制力は低下し難い。そのため、本発明では、Cuを0.02mass%以上添加することを必須とする。しかし、1.0mass%を超えて含有させると、インヒビタの粗大化を招く。よって、Cuは0.02〜1.0mass%の範囲とする。好ましくは0.04〜0.5mass%の範囲である。
Cu: 0.02-1.0 mass%
Cu is an essential element constituting Cu 2 S and Cu 2 Se. In an ultrathin grain-oriented electrical steel sheet, when the inhibitor is MnS or MnSe, the suppressive force decreases during finish annealing, and secondary recrystallization becomes unstable. On the other hand, when the inhibitor is Cu 2 S, Cu 2 Se and is added together with Ni and Sb, the inhibitor's inhibitory power is unlikely to decrease. Therefore, in this invention, it is essential to add 0.02 mass% or more of Cu. However, if the content exceeds 1.0 mass%, the inhibitor becomes coarse. Therefore, Cu is set to a range of 0.02 to 1.0 mass%. Preferably it is the range of 0.04-0.5 mass%.

Sb:0.01〜0.10mass%
Sbは、析出したインヒビタであるAlNやCuS,CuSe,MnS,MnSeの表面に偏析し、インヒビタの粗大化を抑止するために必要な元素である。斯かる効果は0.01mass%以上の添加で得られる。しかし、0.10mass%を超えて添加すると、脱炭反応を阻害し、磁気特性の劣化を招くようになる。よって、Sbは0.01〜0.10mass%の範囲とする。好ましくは0.02〜0.05mass%の範囲である。
Sb: 0.01-0.10 mass%
Sb is an element necessary for segregating on the surface of the precipitated inhibitors AlN, Cu 2 S, Cu 2 Se, MnS, and MnSe, and suppressing the coarsening of the inhibitors. Such an effect can be obtained by addition of 0.01 mass% or more. However, if it is added in excess of 0.10 mass%, the decarburization reaction is hindered and the magnetic properties are deteriorated. Therefore, Sb is set to a range of 0.01 to 0.10 mass%. Preferably it is the range of 0.02-0.05 mass%.

2.0≦sol.Al/N≦2.8
本発明の方向性電磁鋼板は、上記成分組成を満たすことの他に、酸可溶Alであるsol.Alの含有量(mass%)とNの含有量(mass%)との比が、下記式;
2.0≦sol.Al/N≦2.8
を満たして含有することが必要である。
sol.Al/Nが2.8より大きいと、微細AlNが分解し、酸化物を形成するため、AlNのインヒビタとしての抑制力が十分ではなく、表層粒の粗大化を招いてしまう。一方、2.0未満では、粒成長が強く抑制されるため、Goss方位粒が良好な二次再結晶するために必要な十分な大きさまで成長しなくなるため、磁気特性が劣化する。なお、sol.Al/Nの値が上記式の範囲内であっても、NiとSbが添加されていない場合には、AlNが仕上焼鈍中に粗大化して二次再結晶不良が発生する。したがって、上記式が成り立つためには、NiとSbの添加を必要とする。
2.0 ≦ sol. Al / N ≦ 2.8
The grain-oriented electrical steel sheet according to the present invention has a sol. The ratio of the Al content (mass%) and the N content (mass%) is the following formula:
2.0 ≦ sol. Al / N ≦ 2.8
It is necessary to satisfy and contain.
sol. When Al / N is larger than 2.8, fine AlN is decomposed to form an oxide, so that the inhibitory force of AlN as an inhibitor is not sufficient, and the surface grain is coarsened. On the other hand, if it is less than 2.0, the grain growth is strongly suppressed, and the Goss oriented grains do not grow to a sufficient size necessary for good secondary recrystallization, so that the magnetic characteristics are deteriorated. Note that sol. Even if the value of Al / N is within the range of the above formula, if Ni and Sb are not added, AlN becomes coarse during finish annealing and secondary recrystallization failure occurs. Therefore, it is necessary to add Ni and Sb in order to satisfy the above formula.

本発明の方向性電磁鋼板は、上記成分組成に加えてさらに、インヒビタ補助成分として、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選ばれる1種または2種以上を、合計で0.002〜1.0mass%の範囲で含有させることができる。
これらの元素は、いずれも析出物を形成し、結晶粒界や析出物の表面に偏析して抑制力を強化する補助的機能を果たす。斯かる作用を得るためには、これらの元素を1種または2種類以上の合計で0.002mass%以上含有させる必要がある。しかし、1.0mass%を超える添加は、鋼の脆化や脱炭不良を招くようになるからである。よって、上記元素は合計で0.002〜1.0mass%の範囲で含有させるのが好ましい。
In addition to the above component composition, the grain-oriented electrical steel sheet of the present invention further includes one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo as an inhibitor auxiliary component. It can be made to contain in 0.002 to 1.0 mass% in total.
All of these elements form precipitates and segregate on the grain boundaries and the surface of the precipitates to perform an auxiliary function of strengthening the suppression force. In order to obtain such an action, it is necessary to contain one or more of these elements in a total of 0.002 mass%. However, it is because the addition exceeding 1.0 mass% leads to embrittlement and poor decarburization of steel. Therefore, it is preferable to contain the said element in the range of 0.002-1.0 mass% in total.

次に、本発明の方向性電磁鋼板の製造方法ついて説明する。
本発明の方向性電磁鋼板の製造方法は、上述した成分組成に調整した鋼スラブを再加熱した後、熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍を施す一連の工程からなるものである。
上記鋼スラブは、上述した本発明の成分組成を満たして含有する限り、特に製造方法に制限はなく、通常公知の製造条件で製造することができる。
上記鋼スラブは、その後、1250℃以上の温度に再加熱した後、熱間圧延に供する。再加熱温度が1250℃未満では、添加した元素が鋼中に固溶しないからである。なお、再加熱する方法は、ガス炉、誘導加熱炉、通電炉などの公知の方法を用いることができる。また、熱間圧延の条件は、従来公知の条件であればよく、特に制限はない。
Next, the manufacturing method of the grain-oriented electrical steel sheet of this invention is demonstrated.
In the method for producing a grain-oriented electrical steel sheet according to the present invention, after reheating the steel slab adjusted to the above-described component composition, hot rolling is performed, and hot-rolled sheet annealing is performed as necessary. It consists of a series of steps of cold rolling at least times, primary recrystallization annealing, and finish annealing.
As long as the steel slab contains the above-described component composition of the present invention, the production method is not particularly limited and can be produced under generally known production conditions.
The steel slab is then reheated to a temperature of 1250 ° C. or higher and then subjected to hot rolling. This is because when the reheating temperature is less than 1250 ° C., the added element does not dissolve in the steel. In addition, the method of reheating can use well-known methods, such as a gas furnace, an induction heating furnace, and an electric furnace. Moreover, the conditions of hot rolling should just be conventionally well-known conditions, and there is no restriction | limiting in particular.

上記スラブ再加熱後、熱間圧延して板厚1.8mm以上の熱延板とする。ここで、熱延板の板厚を1.8mm以上に限定する理由は、圧延時間を短縮し、熱延鋼板の圧延方向の温度差を低減させるためである。なお、熱間圧延の条件は、常法に準じて行えばよく、特に制限はない。   After the slab reheating, hot rolling is performed to obtain a hot rolled sheet having a thickness of 1.8 mm or more. Here, the reason for limiting the thickness of the hot-rolled sheet to 1.8 mm or more is to shorten the rolling time and reduce the temperature difference in the rolling direction of the hot-rolled steel sheet. In addition, the hot rolling conditions may be performed according to a conventional method, and there is no particular limitation.

熱間圧延して得た熱延板は、その後、必要に応じて熱延板焼鈍を施した後、酸洗し、1回または中間焼鈍を挟む2回以上の冷間圧延によって最終板厚の冷延板とする。
上記熱延板焼鈍および中間焼鈍は、熱間圧延や冷間圧延で導入された歪を利用して再結晶せるため、800℃以上の温度で行うことが好ましい。また、上記焼鈍における冷却を、所定の冷却速度で急冷し、鋼中の固溶C量を高めることは、二次再結晶の核生成頻度を高める効果があるので好ましい。また、急速冷却した後、所定の温度範囲で保定することは、微細カーバイドを鋼中に析出させ上記効果を高めるのでより好ましい。なお、上記の冷間圧延では、パス間時効や温間圧延を適用してもよいことは勿論である。
The hot-rolled sheet obtained by hot rolling is then subjected to hot-rolled sheet annealing as necessary, and then pickled, and the final sheet thickness is obtained by cold rolling at least once with one or intermediate annealing in between. Cold-rolled sheet.
The hot-rolled sheet annealing and intermediate annealing are preferably performed at a temperature of 800 ° C. or higher in order to recrystallize using strain introduced by hot rolling or cold rolling. In addition, it is preferable to quench the cooling in the annealing at a predetermined cooling rate to increase the amount of solute C in the steel because it has an effect of increasing the nucleation frequency of secondary recrystallization. Moreover, it is more preferable to hold | maintain in a predetermined temperature range after rapid cooling, since a fine carbide precipitates in steel and the said effect is heightened. Of course, in the above cold rolling, aging between passes or warm rolling may be applied.

最終板厚とした冷延板は、その後、脱脂処理し、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した後、鋼板表面に焼鈍分離剤を塗布し、コイル状に巻き取った後、二次再結晶を起こさせる仕上焼鈍を施す。
なお、上記冷延板は、一次再結晶焼鈍する前に、製品板の鉄損を低減するため、鋼板表面にエッチングで溝を形成する磁区細分化処理を施してもよい。また、上記冷延板は、二次再結晶させる前までに、公知の磁区細分化処理、たとえば、微細結晶粒を生成させる点状の局所的熱処理や化学的処理を施してもよい。
さらに、一次再結晶焼鈍では、必要に応じて窒化処理を兼ねて行ってもよく、また、一次再結晶焼鈍とは別に、冷間圧延後から仕上焼鈍前までの間に、窒化処理工程を付加してもよい。
The cold-rolled sheet having the final thickness is then degreased and subjected to primary recrystallization annealing that also serves as decarburization annealing, and then an annealing separator is applied to the surface of the steel sheet and wound into a coil shape. Finish annealing that causes next recrystallization.
In addition, in order to reduce the iron loss of a product board, the said cold-rolled board may perform the magnetic domain refinement | purification process which forms a groove | channel by etching in the steel plate surface, in order to reduce the iron loss of a product board. Further, the cold-rolled plate may be subjected to a known magnetic domain refinement process, for example, a spot-like local heat treatment or chemical process for generating fine crystal grains, before secondary recrystallization.
Furthermore, in the primary recrystallization annealing, it may be performed as a nitriding treatment if necessary. In addition to the primary recrystallization annealing, a nitriding treatment step is added between the cold rolling and the finish annealing. May be.

上記の条件を満たして通常の一次再結晶焼鈍を施すことで、上述したような集合組織の改善効果を得ることができる。しかし、上記に加えて、一次再結晶焼鈍の加熱過程における200〜700℃間の昇温速度を50℃/s以上とすることにより、一次再結晶板集合組織におけるGoss方位粒の数を増加させ、二次再結晶粒を細粒化することができるので、鉄損特性をさらに改善することができる。   The texture improving effect as described above can be obtained by satisfying the above conditions and performing normal primary recrystallization annealing. However, in addition to the above, the number of Goss orientation grains in the primary recrystallized plate texture can be increased by increasing the heating rate between 200 and 700 ° C in the heating process of primary recrystallization annealing to 50 ° C / s or more. Since the secondary recrystallized grains can be made finer, the iron loss characteristics can be further improved.

その理由は、一次再結晶を起こす駆動力は、圧延(転位の導入)によって蓄積された歪エネルギーであり、その量には結晶方位依存性があり、<111>//ND方位が最も高く、Goss方位は相対的に低い。そのため、<111>//ND方位は再結晶し易く、Goss方位は再結晶し難いことが知られている。一次再結晶焼鈍の加熱過程では、比較的低温から圧延組織の回復が起こり、ある温度域を超えたところで転位の蓄積歪エネルギーが一気に解放され、一次再結晶粒の核発生とその成長が起こる。   The reason is that the driving force that causes primary recrystallization is the strain energy accumulated by rolling (introduction of dislocations), the amount of which depends on the crystal orientation, and the <111> // ND orientation is the highest, Goss orientation is relatively low. Therefore, it is known that the <111> // ND orientation is easy to recrystallize, and the Goss orientation is difficult to recrystallize. In the heating process of primary recrystallization annealing, the rolling structure recovers from a relatively low temperature, and the accumulated strain energy of dislocations is released at a stretch above a certain temperature range, and nucleation and growth of primary recrystallized grains occur.

ここで、先述したように、急速加熱技術の目的は、通常の昇温速度では、本質的に再結晶し難い方位であるGoss方位粒を、蓄積歪エネルギーを保持したまま高温域までもっていくことで、再結晶を容易にすることにある。したがって、再結晶を起こし易くするためには、急速加熱を行う温度範囲は、冷間圧延後の圧延組織の回復が起こり、かつ、再結晶核の発生が起こる200〜700℃の範囲であることが重要であり、この温度範囲を50℃/s以上で急速加熱することで、上記Goss方位粒の再結晶促進効果が得られる。昇温速度が50℃/s未満では、圧延組織の回復が起こり易く、抑制することができないからである。なお、この昇温速度は、下記に説明する等温保持時間を除いた昇温速度である。   Here, as described above, the purpose of the rapid heating technique is to bring the Goss orientation grains, which are essentially difficult to recrystallize at a normal heating rate, to a high temperature range while maintaining the accumulated strain energy. It is to facilitate recrystallization. Therefore, in order to facilitate recrystallization, the temperature range for rapid heating is in the range of 200 to 700 ° C. where recovery of the rolling structure after cold rolling occurs and recrystallization nuclei occur. Is important, and by rapidly heating the temperature range at 50 ° C./s or more, the above-mentioned Goss orientation grain recrystallization promotion effect can be obtained. This is because when the heating rate is less than 50 ° C./s, the rolling structure is easily recovered and cannot be suppressed. In addition, this temperature increase rate is a temperature increase rate excluding the isothermal holding time described below.

さらに、発明者らは、一次再結晶焼鈍の加熱過程において、上記急速加熱に加えて、一次再結晶核が発生する前の温度域、具体的には、転位が十分に移動できる250〜600℃の温度域で一時的に等温に保持し、適度の回復処理を施し、圧延加工組織に蓄積された歪エネルギーを最適化することによって、一次再結晶板集合組織におけるGoss方位粒の数を増加させて二次再結晶粒を細粒化し、鉄損特性をさらに改善することができることを見出した。   In addition, in the heating process of primary recrystallization annealing, the inventors, in addition to the rapid heating described above, a temperature range before primary recrystallization nuclei are generated, specifically, 250 to 600 ° C. at which dislocations can move sufficiently. The number of Goss orientation grains in the primary recrystallized plate texture is increased by maintaining the temperature isothermally in the temperature range, applying a moderate recovery process, and optimizing the strain energy accumulated in the rolled structure. It has been found that the secondary recrystallized grains can be refined to further improve the iron loss characteristics.

加熱途中で回復処理を施すことで鉄損特性が改善される理由については、まだ十分に明らかとなっていないが、発明者らは、次のように考えている。
上述したように、転位の蓄積歪エネルギーには結晶方位依存性があり、圧延組織においては<111>//ND方位が最も高い歪エネルギーを有している。歪エネルギーが高いことは、回復能が高いことを意味するので、一次再結晶核が発生しない温度域においては、<111>//ND方位が最も回復が進行する。したがって、一次再結晶核が発生する前の転位が容易に移動できる温度域(250〜600℃)で回復処理を施すことで、本来の<111>//ND方位の再結晶優位性が失われるので、所望とするGoss方位の再結晶優位性を相対的に向上させることができる。なお、当該温度範囲における回復処理時間は、短すぎても効果がなく、一方、長時間では、あらゆる結晶方位における一次再結晶の駆動力が減少して一次再結晶を起こさせること自体が困難となる。よって、回復処理する保定時間は、1秒以上10秒以下の範囲とするのが好ましい。
Although the reason why the iron loss characteristics are improved by performing the recovery process during the heating is not yet fully clarified, the inventors consider as follows.
As described above, the accumulated strain energy of dislocations has crystal orientation dependence, and the <111> // ND orientation has the highest strain energy in the rolled structure. A high strain energy means a high recovery ability, and therefore the recovery proceeds most in the <111> // ND orientation in a temperature range where primary recrystallization nuclei are not generated. Therefore, by performing the recovery process in a temperature range (250 to 600 ° C.) in which the dislocations before the primary recrystallization nuclei can easily move, the recrystallization advantage of the original <111> // ND orientation is lost. Therefore, the recrystallization superiority of the desired Goss orientation can be relatively improved. It should be noted that the recovery treatment time in the temperature range is not effective even if it is too short, while on the other hand, it is difficult to cause primary recrystallization by reducing the driving force of primary recrystallization in any crystal orientation in a long time. Become. Therefore, the retention time for the recovery process is preferably in the range of 1 second to 10 seconds.

また、鋼板表面に塗布する焼鈍分離剤は、公知のものを用いることができるが、鋼板表面にフォルステライト質の被膜を形成するか否かによって使い分けるのが好ましく、例えば、上記の被膜を形成させる場合にはMgOを主成分とする焼鈍分離剤を、一方、鋼板表面を鏡面化したい場合には、被膜を形成しないAl系等の焼鈍分離剤を用いることが好ましい。 Further, as the annealing separator applied to the steel sheet surface, a known one can be used, but it is preferable to use properly depending on whether or not a forsterite film is formed on the steel sheet surface. For example, the above-mentioned film is formed. In some cases, it is preferable to use an annealing separator having MgO as a main component. On the other hand, if it is desired to mirror the surface of the steel sheet, an annealing separator such as an Al 2 O 3 system that does not form a film is preferably used.

また、上記仕上焼鈍は、通常、二次再結晶焼鈍と純化焼鈍を兼ねて、最高1200℃程度の温度で行われる、本発明の製造方法において、最も重要な工程である。すなわち、本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍の昇温過程において、二次再結晶前の775〜875℃の温度域で40〜200時間保定することを特徴する。   In addition, the finish annealing is the most important step in the production method of the present invention, which is usually performed at a temperature of about 1200 ° C. at the maximum for both secondary recrystallization annealing and purification annealing. That is, the method for producing a grain-oriented electrical steel sheet according to the present invention is characterized in that, in the temperature raising process of the finish annealing, it is held for 40 to 200 hours in a temperature range of 775 to 875 ° C. before secondary recrystallization.

通常、二次再結晶は1000℃付近の温度で起こるが、875℃を超える温度域では、インヒビタ成分の酸化がおこり、鋼板表層の一次再結晶粒が粗大化する。そして、この表層一次再結晶粒の粗大化は、板厚が薄い方向性電磁鋼板においては、二次再結晶不良を引き起こす原因となる。   Usually, the secondary recrystallization occurs at a temperature around 1000 ° C., but in the temperature range exceeding 875 ° C., the inhibitor component is oxidized and the primary recrystallized grains of the steel sheet surface layer become coarse. And this coarsening of the surface primary recrystallized grains causes a secondary recrystallization failure in the grain-oriented electrical steel sheet having a thin plate thickness.

発明者らは、この問題点の解決策について研究を重ねた結果、二次再結晶を起こす前の鋼板を、775〜875℃の温度域で40〜200時間保定してやることによって、表層一次再結晶粒の粗大化が抑制されることを見出した。上記保定時間が40時間未満では、表層一次再結晶粒が粗大化し、二次再結晶不良となり、磁気特性が劣化する。一方、保定時間が200時間を超えると、一次再結晶粒が全体的に粗大化して、Goss方位以外の粒も粗大化するため二次再結晶が起こり難くなり、やはり、磁気特性が劣化する。
なお、上記二次再結晶前の保定処理は、775〜875℃間の特定温度で40〜200時間保定してもよいし、775〜875℃の間を40〜200時間かけて昇温するようにしてもよい。
As a result of repeated research on a solution to this problem, the inventors have retained the steel sheet before secondary recrystallization in a temperature range of 775 to 875 ° C. for 40 to 200 hours, whereby primary recrystallization of the surface layer is performed. It has been found that grain coarsening is suppressed. If the holding time is less than 40 hours, the primary recrystallized grains in the surface layer become coarse, secondary recrystallization failure occurs, and the magnetic properties deteriorate. On the other hand, when the holding time exceeds 200 hours, the primary recrystallized grains are coarsened as a whole, and grains other than the Goss orientation are also coarsened, so that secondary recrystallization hardly occurs and the magnetic properties are deteriorated.
The holding treatment before the secondary recrystallization may be held at a specific temperature between 775 and 875 ° C. for 40 to 200 hours, or between 775 and 875 ° C. over 40 to 200 hours. It may be.

上記のように、775〜875℃の温度域で40〜200時間保持することで、表層一次再結晶粒の粗大化が抑制される理由については、以下のように考えている。
インヒビタとしてAlNを用いる方向性電磁鋼板の製造では、凡そ920℃以上の温度でAlNが分解し、表層の一次再結晶粒の粗大化が生じる。ここで、二次再結晶を開始する前にAlNが分解するのを抑制するためには、二次再結晶温度域に速やかに昇温してやる必要があるが、コイル焼鈍では、加熱初期段階での昇温速度が緩やかとなるため、AlNの分解を抑制することができず、表層の一次再結晶粒の粗大化を招いていた。そこで、再結晶する温度まで加熱する前に、所定温度で所定時間の保定処理を行うことで、コイル内の温度分布が均一となり、AlNが分解する温度域での昇温速度が速くなり、二次再結晶前の一次再結晶粒の粗大化を抑制することができる。
As described above, the reason why the coarsening of the primary recrystallized grains in the surface layer is suppressed by holding in the temperature range of 775 to 875 ° C. for 40 to 200 hours is considered as follows.
In the manufacture of grain-oriented electrical steel sheets using AlN as an inhibitor, AlN decomposes at a temperature of about 920 ° C. or more, resulting in coarsening of primary recrystallized grains in the surface layer. Here, in order to suppress the decomposition of AlN before starting secondary recrystallization, it is necessary to quickly raise the temperature to the secondary recrystallization temperature range, but in coil annealing, in the initial heating stage Since the rate of temperature increase is slow, the decomposition of AlN cannot be suppressed, leading to the coarsening of primary recrystallized grains in the surface layer. Therefore, by performing a retention treatment at a predetermined temperature for a predetermined time before heating to the recrystallization temperature, the temperature distribution in the coil becomes uniform, and the rate of temperature increase in the temperature range where AlN decomposes increases. The coarsening of the primary recrystallized grains before the next recrystallization can be suppressed.

なお、保定処理後の昇温速度は10℃/hr以上が好ましく、20℃/hr以上がより好ましい。しかし、昇温速度を大きくし過ぎると、二次再結晶粒のGoss方位への先鋭度が低下して、磁気特性が劣化するおそれがあるので、上限は60℃/hr程度とするのが好ましい。   In addition, the temperature increase rate after the retention treatment is preferably 10 ° C./hr or more, and more preferably 20 ° C./hr or more. However, if the rate of temperature increase is too high, the sharpness of the secondary recrystallized grains in the Goss orientation decreases, and the magnetic properties may be deteriorated. Therefore, the upper limit is preferably about 60 ° C./hr. .

なお、上記の保定処理を十分に行おうとすると、AlN以外のインヒビタであるMnSやMnSeが粗大化して抑制力が低下するおそれがある。そこで、本発明では、インヒビタとして抑制力が低下し難いCuSやCuSeを用いると共に、Sbを添加し、析出したCuSやCuSeのインヒビタ表面にSbを偏析させて、インヒビタの粗大化を抑制する。さらに、Niを添加するとSbの偏析が促進されるので、CuSやCuSeの抑制力がより補強され、インヒビタの抑制力を高く保持することが可能となる。 In addition, if it is going to fully perform said holding | maintenance process, there exists a possibility that MnS and MnSe which are inhibitors other than AlN may coarsen, and suppression power may fall. Therefore, in the present invention, Cu 2 S or Cu 2 Se whose inhibitory power is hardly reduced is used as an inhibitor, and Sb is added, and Sb is segregated on the surface of the precipitated Cu 2 S or Cu 2 Se inhibitor. Suppresses the coarsening. Furthermore, since the segregation of Sb is promoted when Ni is added, the inhibitory power of Cu 2 S and Cu 2 Se is further reinforced, and the inhibitory power of the inhibitor can be kept high.

なお、上記仕上焼鈍における雰囲気ガスとしては、N、H,Arあるいはこれらの混合ガスを用いるが、一般に、温度が850℃以下の加熱過程および冷却過程では、Nが、それ以上の温度では、HまたはHとNあるいはHとArの混合ガスが用いられる。 Note that N 2 , H 2 , Ar, or a mixed gas thereof is used as the atmospheric gas in the above-described finish annealing. In general, in the heating process and the cooling process at a temperature of 850 ° C. or lower, N 2 is a temperature higher than that. Then, H 2 or a mixed gas of H 2 and N 2 or H 2 and Ar is used.

仕上焼鈍した鋼板は、その後、鋼板表面の未反応焼鈍分離剤を除去した後、必要に応じて、絶縁コーティングを塗布・焼付けたり、平坦化焼鈍を施したりして製品板とする。上記絶縁コーティングは、鉄損を低減するためには、張力コーティングを用いることが好ましい。また、仕上焼鈍後の鋼板に、鉄損を低減するため、プラズマジェットやレーザー照射、電子ビーム照射を線状に施したり、突起状ロールで線状の歪を付与したりする公知の磁区細分化処理を施してもよい。また、仕上焼鈍で鋼板表面にフォルステライト被膜を形成しない場合には、鋼板表面をさらに鏡面化処理したり、NaCl電解などで粒方位選別処理等を施したりした後、さらに、張力コーティングを施して製品板としてもよい。   Then, after finishing the unreacted annealing separator on the surface of the steel sheet, the finish-annealed steel sheet is coated with an insulating coating and baked or flattened annealed as necessary to obtain a product plate. The insulating coating is preferably a tension coating in order to reduce iron loss. In addition, in order to reduce iron loss to the steel sheet after finish annealing, a known magnetic domain subdivision is applied in which a plasma jet, laser irradiation, or electron beam irradiation is linearly applied, or linear distortion is imparted by a protruding roll. Processing may be performed. In addition, when the forsterite film is not formed on the steel plate surface by finish annealing, the steel plate surface is further mirror-finished or subjected to grain orientation selection processing by NaCl electrolysis, etc., and further subjected to tension coating. It is good also as a product board.

C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.022〜0.027mass%、N:0.005〜0.009mass%、Ni:0.3mass%、Cu:0.03mass%、Sb:0.04mass%およびSe:0.015mass%を含有し、sol.Al/Nの値を1.6〜3.1の範囲で変化させた成分組成からなる12種の鋼スラブを熱間圧延して板厚:2.4mmの熱延板とし、900℃×40秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して中間板厚:1.5mmとし、1150℃×80秒の中間焼鈍を施し、170℃の温度で温間圧延して最終板厚:0.17mmの冷延板とした。その後、上記冷延板に脱脂処理を施した後、H:60vol%とN:40vol%の湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した。なお、一部の冷延板に対しては、鋼板表面に幅:180μm×深さ:15μmで、圧延直角方向に延びる溝を圧延方向に5mmの間隔で形成する磁区細分化処理を施した。
その後、鋼板表面にMgOを主成分とする焼鈍分離剤として塗布した後、室温〜850℃までをN雰囲気下で20℃/hrで昇温し、引き続き、850℃の温度で50時間保定処理した後、850〜1150℃の間をN:50vol%+H:50vol%の混合雰囲気下で、1150〜1200℃の間をH雰囲気下で、それぞれ20℃/hrで昇温し、さらに、H雰囲気下で1200℃×10時間の均熱処理を施した後、冷却を開始し、800℃以下をN雰囲気下で冷却する、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施した。仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力コートを塗布・焼付けし、製品板とした。
C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, sol. Al: 0.022-0.027 mass%, N: 0.005-0.009 mass%, Ni: 0.3 mass%, Cu: 0.03 mass%, Sb: 0.04 mass% and Se: 0.015 mass% Containing, sol. Twelve kinds of steel slabs having a component composition in which the value of Al / N is changed in the range of 1.6 to 3.1 are hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm, and 900 ° C. × 40 After hot-rolled sheet annealing for 2 seconds, pickling, cold-rolling and intermediate sheet thickness: 1.5 mm, intermediate annealing of 1150 ° C. × 80 seconds, and warm-rolling at a temperature of 170 ° C. Final plate thickness: 0.17 mm cold rolled plate. Then, after performing a degreasing treatment to the cold-rolled sheet, H 2: 60 vol% and N 2: was subjected to primary recrystallization annealing, which also serves as a 40 vol% of the wet 850 ° C. × 2 minutes decarburization under a hydrogen atmosphere. A part of the cold-rolled sheets was subjected to a magnetic domain refinement process in which grooves on the steel sheet surface having a width of 180 μm × depth of 15 μm and extending in the direction perpendicular to the rolling direction were formed at intervals of 5 mm in the rolling direction.
Then, after applying as an annealing separator mainly composed of MgO on the steel sheet surface, the temperature was raised from room temperature to 850 ° C. at 20 ° C./hr in an N 2 atmosphere, and subsequently maintained at 850 ° C. for 50 hours. Then, the temperature was raised between 20 ° C. and 1150 ° C. in a mixed atmosphere of N 2 : 50 vol% + H 2 : 50 vol%, and between 1150 and 1200 ° C. in an H 2 atmosphere at 20 ° C./hr, respectively. After finishing soaking at 1200 ° C. for 10 hours in an H 2 atmosphere, cooling is started, and cooling at 800 ° C. or lower in an N 2 atmosphere is performed, and finish annealing that combines secondary recrystallization annealing and purification annealing is performed. gave. The steel sheet after the finish annealing was prepared by removing unreacted annealing separating agent and then applying and baking a tension coat composed of 50 mass% colloidal silica and magnesium phosphate.

斯くして得た全長:4000mの製品コイルから、コイル長手方向の0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、JIS C2550に記載の方法を用いて、鉄損W17/50および磁束密度Bを測定し、5箇所の測定結果の中で最も悪い鉄損W17/50および磁束密度Bの値をコイル内保証値とし、その結果を表3に示した。 Total length obtained in this way: From the 4000 m product coil, magnetic test specimens were collected from a total of 5 locations of 0 m, 1000 m, 2000 m, 3000 m and 4000 m in the longitudinal direction of the coil, and the method described in JIS C2550 was used. Then, the iron loss W 17/50 and the magnetic flux density B 8 are measured, and the worst iron loss W 17/50 and the magnetic flux density B 8 among the five measurement results are set as guaranteed values in the coil. It is shown in Table 3.

表3から、Ni,CuおよびSbを適正量添加すると共に、sol.Al/Nの値を2.0〜2.8の範囲に制御することで、コイル全長にわたって、鉄損W17/50および磁束密度Bが共に優れる方向性電磁鋼板が得られることがわかる。特に、冷延板に磁区細分化処理を施したものは、磁気特性が極めて良好である。 From Table 3, while adding appropriate amounts of Ni, Cu and Sb, sol. It can be seen that by controlling the value of Al / N in the range of 2.0 to 2.8, a grain- oriented electrical steel sheet having excellent iron loss W 17/50 and magnetic flux density B 8 can be obtained over the entire length of the coil. In particular, those obtained by subjecting a cold-rolled sheet to magnetic domain refinement have extremely good magnetic properties.

Figure 2013047383
Figure 2013047383

表4に示した成分組成を有するA〜Iの鋼スラブを熱間圧延して板厚:2.4mmの熱延板とし、900℃×40秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して板厚:1.5mmの中間板厚とし、1150℃×80秒の中間焼鈍を施した後、170℃の温度で温間圧延して最終板厚:0.17mmの冷延板とした。その後、上記冷延板を脱脂し、H:60vol%+N:40vol%の湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施し、鋼板表面にMgOを主成分とする焼鈍分離剤として塗布した後、室温〜850℃までをN雰囲気下で20℃/hrで昇温し、引き続き、850℃で50時間保定処理を実施し、その後さらに、850〜1150℃の間をN雰囲気下で、1150〜1200℃の間をH雰囲気下で、それぞれ20℃/hrで昇温し、さらに、H雰囲気下で1200℃×10時間の均熱処理後、冷却を開始し、800℃以下をN雰囲気下で冷却する、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施した。仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力コートを塗布・焼付けし、製品板とした。 A steel slab of A to I having the component composition shown in Table 4 is hot-rolled to form a hot-rolled sheet having a thickness of 2.4 mm, annealed at 900 ° C. for 40 seconds, and then pickled. And cold-rolled to an intermediate thickness of 1.5 mm, subjected to intermediate annealing at 1150 ° C. for 80 seconds, and then warm-rolled at a temperature of 170 ° C. to obtain a final thickness of 0.17 mm. Cold-rolled sheet was used. Thereafter, the cold-rolled sheet is degreased and subjected to primary recrystallization annealing that also serves as decarburization at 850 ° C. × 2 minutes in a wet hydrogen atmosphere of H 2 : 60 vol% + N 2 : 40 vol%. After coating as an annealing separator as a component, the temperature was raised from room temperature to 850 ° C. at 20 ° C./hr in an N 2 atmosphere, and subsequently, a holding treatment was performed at 850 ° C. for 50 hours. The temperature was raised at 20 ° C./hr in an N 2 atmosphere for 1 ° C. and 1250 to 1200 ° C. in an H 2 atmosphere, and after soaking at 1200 ° C. for 10 hours in an H 2 atmosphere, Cooling was started, and finish annealing was performed, in which secondary recrystallization annealing and purification annealing were performed at 800 ° C. or lower in an N 2 atmosphere. The steel sheet after the finish annealing was prepared by removing the unreacted annealing separator and applying and baking a tension coat composed of 50 mass% colloidal silica and magnesium phosphate.

斯くして得た全長:4000mの製品コイルから、コイル長手方向の0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、JIS C2550に記載の方法を用いて、鉄損W17/50および磁束密度Bを測定し、5箇所の測定結果の中で最も悪い鉄損W17/50および磁束密度Bの値をコイル内保証値とし、その結果を表4に併記した。 Total length obtained in this way: From the 4000 m product coil, magnetic test specimens were collected from a total of 5 locations of 0 m, 1000 m, 2000 m, 3000 m and 4000 m in the longitudinal direction of the coil, and the method described in JIS C2550 was used. Then, the iron loss W 17/50 and the magnetic flux density B 8 are measured, and the worst iron loss W 17/50 and the magnetic flux density B 8 among the five measurement results are set as guaranteed values in the coil. This is also shown in Table 4.

表4から、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちのいずれかを適正範囲で添加した鋼A〜Iは、それらの元素を含有していない鋼Aと比較して、鉄損W17/50が向上していることがわかる。 From Table 4, steels A to I to which any one of Ge, Bi, V, Nb, Te, Cr, Sn, and Mo is added in an appropriate range are compared with steel A that does not contain those elements. It can be seen that the iron loss W 17/50 is improved.

Figure 2013047383
Figure 2013047383

C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、sol.Al:0.027mass%、N:0.010mass%、Ni:0.3mass%、Cu:0.03mass%、Sb:0.04mass%およびSe:0.015%を含有する成分組成からなる鋼スラブを熱間圧延して板厚:2.4mmの熱延板とし、900℃×40秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して板厚:1.5mmの中間冷延板とし、1150℃×80秒の中間焼鈍を施し、170℃の温度で温間圧延して板厚:0.17mmの最終冷延板とした。その後、上記冷延板を脱脂し、H:60vol%+N:40vol%の湿水素雰囲気下で850℃×2分の脱炭を兼ねた一次再結晶焼鈍を施した後、鋼板表面にMgOを主成分とする焼鈍分離剤として塗布し、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施した。
なお、上記仕上焼鈍は、昇温過程を大きく分けて、
(A)室温〜850℃までをN雰囲気下で20℃/hrで昇温し、引き続き、850℃で20時間、30時間、40時間、50時間、100時間、200時間または300時間保定処理するA〜Gの7条件(昇温パターンA)、
(B)室温〜750℃、775℃、825℃、875℃または900℃までをN雰囲気下で20℃/hrで昇温し、引き続き、その温度で50時間保定処理を行うH〜Lの5条件(昇温パターンB)、
(C)室温〜775℃までをN雰囲気下で20℃/hrで昇温し、引き続き、775℃から850℃までを、30時間、40時間、50時間、100時間、200時間または300時間かけて一定の昇温速度で昇温するM〜Rの6条件(昇温パターンC)、
の3パターンに振り分けて行い、その後は、1150℃までを間をN:25vol%+H:75vol%の混合雰囲気下で、1150〜1200℃の間をH雰囲気下で、それぞれ20℃/hrで昇温し、さらに、H雰囲気下で1200℃×10時間の均熱処理を施した後、冷却を開始し、800℃以下をN雰囲気下で冷却する条件で行った。仕上焼鈍後の鋼板は、未反応の焼鈍分離剤を除去し、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力コートを塗布・焼付けし、製品板とした。
C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, sol. Steel slab having a component composition containing Al: 0.027 mass%, N: 0.010 mass%, Ni: 0.3 mass%, Cu: 0.03 mass%, Sb: 0.04 mass% and Se: 0.015% Is hot-rolled to obtain a hot-rolled sheet having a thickness of 2.4 mm, subjected to hot-rolled sheet annealing at 900 ° C. for 40 seconds, pickled, and cold-rolled to obtain an intermediate thickness of 1.5 mm. A cold-rolled sheet was subjected to intermediate annealing at 1150 ° C. for 80 seconds and warm-rolled at a temperature of 170 ° C. to obtain a final cold-rolled sheet having a thickness of 0.17 mm. Thereafter, the cold-rolled sheet was degreased and subjected to primary recrystallization annealing also serving as decarburization at 850 ° C. for 2 minutes in a wet hydrogen atmosphere of H 2 : 60 vol% + N 2 : 40 vol%. Was applied as an annealing separation agent containing as a main component, and finish annealing was performed which served as secondary recrystallization annealing and purification annealing.
In addition, the above-mentioned finish annealing is roughly divided into a temperature rising process,
(A) The temperature is raised from room temperature to 850 ° C. at 20 ° C./hr in an N 2 atmosphere, and subsequently maintained at 850 ° C. for 20 hours, 30 hours, 40 hours, 50 hours, 100 hours, 200 hours or 300 hours. 7 conditions of A to G (temperature increase pattern A)
(B) Room temperature to 750 ° C., 775 ° C., 825 ° C., 875 ° C. or 900 ° C. is heated at 20 ° C./hr in an N 2 atmosphere, and subsequently maintained at that temperature for 50 hours. 5 conditions (temperature rise pattern B),
(C) The temperature was raised from room temperature to 775 ° C. at 20 ° C./hr in an N 2 atmosphere, and subsequently from 775 ° C. to 850 ° C. for 30 hours, 40 hours, 50 hours, 100 hours, 200 hours or 300 hours. 6 conditions (temperature increase pattern C) of M to R that are heated at a constant temperature increase rate over time,
And then up to 1150 ° C. in a mixed atmosphere of N 2 : 25 vol% + H 2 : 75 vol% and between 1150 and 1200 ° C. in an H 2 atmosphere at 20 ° C. / The temperature was increased by hr, and further, a soaking process was performed at 1200 ° C. for 10 hours in an H 2 atmosphere. Then, cooling was started, and cooling was performed at a temperature of 800 ° C. or lower in an N 2 atmosphere. The steel sheet after the finish annealing was prepared by removing the unreacted annealing separator and applying and baking a tension coat composed of 50 mass% colloidal silica and magnesium phosphate.

斯くして得た全長:4000mの製品コイルから、コイル長手方向の0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、JIS C2550に記載の方法を用いて、鉄損W17/50および磁束密度Bを測定し、5箇所の測定結果の中で最も悪い鉄損W17/50および磁束密度Bの値をコイル内保証値とし、その結果を表5に示した。 Total length obtained in this way: From the 4000 m product coil, magnetic test specimens were collected from a total of 5 locations of 0 m, 1000 m, 2000 m, 3000 m and 4000 m in the longitudinal direction of the coil, and the method described in JIS C2550 was used. Then, the iron loss W 17/50 and the magnetic flux density B 8 are measured, and the worst iron loss W 17/50 and the magnetic flux density B 8 among the five measurement results are set as guaranteed values in the coil. Table 5 shows.

表5から、二次再結晶を起こす前に、775〜875℃の温度域で40〜200時間保定することで、磁気特性が大きく向上していることがわかる。また、同じ保定時間であれば、一定温度で保定する方が好ましい条件であることもわかる。   From Table 5, it can be seen that the magnetic properties are greatly improved by holding for 40 to 200 hours in the temperature range of 775 to 875 ° C. before secondary recrystallization occurs. It can also be seen that it is preferable to hold at a constant temperature for the same holding time.

Figure 2013047383
Figure 2013047383

C:0.07mass%、Si:3.4mass%、Mn:0.07mass%、Al:0.018mass%、N:0.007mass%、Se:0.04mass%、Ni:0.3mass%、Cu:0.03mass%およびSb:0.04mass%を含有する成分組成の鋼スラブを、熱間圧延して板厚2.4mmの熱延コイルとし、900℃で40秒保持する熱延板焼鈍を施し、酸洗し、一次冷間圧延して板厚1.5mmとし、1150℃で80秒保持する中間焼鈍した後、170℃の温度で温間圧延して最終板厚が0.17mmの冷延コイルとした。次いで、上記冷延コイルを2分し、一方には鋼板表面に幅180μmで圧延方向に対して直角方向に延びる溝を圧延方向に5mm間隔で形成する磁区細分化処理を施した後、他方には磁区細分化処理を施すことなく、50vol%H−50vol%Nの湿潤雰囲気下で、脱炭焼鈍を兼ねた一次再結晶焼鈍を施した。
上記一次再結晶焼鈍における840℃に達するまでの加熱は、200℃から700℃までの昇温速度を、表6に示したように、20℃/s〜200℃/sの範囲で種々に変化させた。ただし、上記昇温速度は一定とし、かつ、その加熱途中の450℃で0.5秒〜3秒間の保定を行う条件とした。なお、一部は保定しない条件とした。
その後、鋼板表面にMgOを主体とする焼鈍分離剤を塗布した後、N雰囲気下で850℃までを昇温速度20℃/hrで加熱し、850℃で50時間保定処理し、引き続き、昇温速度40℃/hrで、850〜1150℃までを50vol%N−50vol%Hの混合雰囲気下で、1150〜1200℃までをH雰囲気下で加熱し、さらに、H雰囲気下で1200℃×10時間の均熱を施した、その後、800℃以下をN雰囲気下で冷却する二次再結晶焼鈍(仕上焼鈍)を施した。次いで、仕上焼鈍を施した鋼板表面から未反応の焼鈍分離剤を除去した後、50mass%のコロイダルシリカとリン酸マグネシウムからなる張力被膜液を塗布し、焼き付けて製品コイルとした。
C: 0.07 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Al: 0.018 mass%, N: 0.007 mass%, Se: 0.04 mass%, Ni: 0.3 mass%, Cu : A steel slab having a composition containing 0.03 mass% and Sb: 0.04 mass% is hot-rolled to form a hot-rolled coil having a thickness of 2.4 mm, and hot-rolled sheet annealing is performed at 900 ° C for 40 seconds. Application, pickling, primary cold rolling to a sheet thickness of 1.5 mm, intermediate annealing held at 1150 ° C. for 80 seconds, and then warm rolling at a temperature of 170 ° C. to give a final sheet thickness of 0.17 mm. A rolled coil was used. Next, the cold-rolled coil is divided into two parts, and one is subjected to a magnetic domain refinement process in which a groove having a width of 180 μm and extending in a direction perpendicular to the rolling direction is formed on the steel plate surface at intervals of 5 mm in the rolling direction. Was subjected to primary recrystallization annealing also serving as decarburization annealing in a wet atmosphere of 50 vol% H 2 -50 vol% N 2 without being subjected to magnetic domain refinement treatment.
The heating up to 840 ° C. in the primary recrystallization annealing varies in various ways within the range of 20 ° C./s to 200 ° C./s, as shown in Table 6, at a rate of temperature increase from 200 ° C. to 700 ° C. I let you. However, the temperature rising rate was constant, and the condition was maintained at 450 ° C. during the heating for 0.5 seconds to 3 seconds. Some conditions were not retained.
Then, after applying an annealing separator mainly composed of MgO to the steel sheet surface, the steel plate was heated to 850 ° C. at a heating rate of 20 ° C./hr in an N 2 atmosphere, and maintained at 850 ° C. for 50 hours. in raising rate 40 ° C. / hr, up to 850-1150 ° C. under a mixed atmosphere of 50vol% N 2 -50vol% H 2 , up to 1150 to 1200 ° C. was heated under an atmosphere of H 2 addition, H 2 atmosphere at After soaking at 1200 ° C. for 10 hours, secondary recrystallization annealing (finish annealing) was performed in which 800 ° C. or lower was cooled in an N 2 atmosphere. Subsequently, after removing the unreacted annealing separator from the surface of the steel plate subjected to finish annealing, a tension coating liquid composed of 50 mass% colloidal silica and magnesium phosphate was applied and baked to obtain a product coil.

斯くして得た製品コイル(全長:約4000m)の長手方向:0m、1000m、2000m、3000mおよび4000mの計5箇所から、磁気測定用の試験片を採取し、1.7Tの磁束密度における鉄損値W17/50を測定し、その平均値を求めた。
上記測定の結果を、磁区細分化処理の有無に区分して、表6中に併記した。この表から、一次再結晶焼鈍における加熱過程を本発明の条件を満たして行うことにより、鉄損特性(W17/50)が大きく改善されること、特に、磁区細分化処理を施した場合における鉄損改善効果は著しいことがわかる。
The product coils (total length: about 4000 m) thus obtained were collected from a total of five locations in the longitudinal direction: 0 m, 1000 m, 2000 m, 3000 m, and 4000 m, and magnetic test specimens were collected and iron at a magnetic flux density of 1.7 T. The loss value W 17/50 was measured and the average value was obtained.
The results of the above measurements are shown in Table 6 with classification according to the presence or absence of magnetic domain fragmentation. From this table, by performing the heating process in the primary recrystallization annealing while satisfying the conditions of the present invention, the iron loss characteristics (W 17/50 ) are greatly improved, especially when the magnetic domain subdivision treatment is performed. It can be seen that the iron loss improvement effect is remarkable.

Figure 2013047383
Figure 2013047383

Claims (5)

C:0.04〜0.12mass%、
Si:1.5〜5.0mass%、
Mn:0.01〜1.0mass%、
Ni:0.10〜1.0mass%、
sol.Al:0.010〜0.040mass%、
N:0.004〜0.02mass%、
Cu:0.02〜1.0mass%、
Sb:0.01〜0.10mass%、
SおよびSeのうちから選ばれる1種または2種:合計0.005〜0.05mass%を含有し、残部がFeおよび不可避的不純物からなる鋼スラブを1250℃以上の温度に加熱した後、熱間圧延して板厚1.8mm以上の熱延板とし、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚0.12〜0.20mmの冷延板とし、一次再結晶焼鈍し、仕上焼鈍する一連の工程からなる方向性電磁鋼板の製造工程において、
上記鋼スラブのsol.Al/Nの値を2.0〜2.8の範囲とし、かつ、仕上焼鈍における二次再結晶前の鋼板を775〜875℃の温度域に40〜200時間保定することを特徴とする方向性電磁鋼板の製造方法。
C: 0.04-0.12 mass%,
Si: 1.5 to 5.0 mass%,
Mn: 0.01 to 1.0 mass%,
Ni: 0.10 to 1.0 mass%,
sol. Al: 0.010 to 0.040 mass%,
N: 0.004 to 0.02 mass%,
Cu: 0.02-1.0 mass%,
Sb: 0.01-0.10 mass%,
One or two selected from S and Se: a steel slab containing 0.005 to 0.05 mass% in total, the balance being Fe and unavoidable impurities is heated to a temperature of 1250 ° C. or higher, Hot rolled to a thickness of 1.8 mm or more by cold rolling and cold rolled to a final thickness of 0.12 to 0.20 mm by cold rolling one or more times with intermediate annealing. In the manufacturing process of grain-oriented electrical steel sheet consisting of a series of steps of crystal annealing and finish annealing,
Sol sol. Direction in which the value of Al / N is in the range of 2.0 to 2.8, and the steel sheet before secondary recrystallization in finish annealing is held in a temperature range of 775 to 875 ° C. for 40 to 200 hours. Method for producing an electrical steel sheet.
前記成分組成に加えてさらに、Ge,Bi,V,Nb,Te,Cr,SnおよびMoのうちから選ばれる1種または2種以上を合計で0.002〜1.0mass%含有することを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 In addition to the above component composition, the composition further contains one or more selected from Ge, Bi, V, Nb, Te, Cr, Sn and Mo in a total amount of 0.002 to 1.0 mass%. The manufacturing method of the grain-oriented electrical steel sheet according to claim 1. 前記一次再結晶焼鈍の加熱過程における200〜700℃間を昇温速度50℃/s以上で加熱することを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein heating is performed at a temperature rising rate of 50 ° C / s or more between 200 to 700 ° C in the heating process of the primary recrystallization annealing. 前記一次再結晶焼鈍の加熱過程における250〜600℃間のいずれかの温度において、1〜10秒間、等温に保持することを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 The directionality according to any one of claims 1 to 3, wherein the temperature is kept isothermal for 1 to 10 seconds at any temperature between 250 to 600C in the heating process of the primary recrystallization annealing. A method for producing electrical steel sheets. 最終の冷間圧延以降において、鋼板表面に磁区細分化処理を施すことを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein after the final cold rolling, a magnetic domain refinement process is performed on the steel sheet surface.
JP2012166798A 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet Active JP5988027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166798A JP5988027B2 (en) 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011165127 2011-07-28
JP2011165127 2011-07-28
JP2012166798A JP5988027B2 (en) 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2013047383A true JP2013047383A (en) 2013-03-07
JP5988027B2 JP5988027B2 (en) 2016-09-07

Family

ID=48010517

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012166793A Active JP5988026B2 (en) 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet
JP2012166798A Active JP5988027B2 (en) 2011-07-28 2012-07-27 Method for producing ultrathin grain-oriented electrical steel sheet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012166793A Active JP5988026B2 (en) 2011-07-28 2012-07-27 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (2) JP5988026B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017589A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
CN104438325A (en) * 2014-10-08 2015-03-25 武汉科技大学 Rolling method of ultra-thin silicon steel sheet
JP2015199974A (en) * 2014-04-04 2015-11-12 Jfeスチール株式会社 Manufacturing method of oriented magnetic steel sheet excellent in iron loss characteristics
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor
WO2020218329A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020218328A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP2021138984A (en) * 2020-03-03 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871137B2 (en) * 2012-12-12 2016-03-01 Jfeスチール株式会社 Oriented electrical steel sheet
US10431359B2 (en) 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
JP6702259B2 (en) * 2017-04-27 2020-05-27 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR102437377B1 (en) 2017-12-28 2022-08-26 제이에프이 스틸 가부시키가이샤 Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP6879320B2 (en) * 2018-05-31 2021-06-02 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042724A (en) * 1990-04-20 1992-01-07 Kawasaki Steel Corp Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2007138199A (en) * 2005-11-15 2007-06-07 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP2009164542A (en) * 2007-12-10 2009-07-23 Jfe Steel Corp Unidirectional electromagnetic steel plate and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2670108B2 (en) * 1988-10-21 1997-10-29 川崎製鉄株式会社 Method for manufacturing high magnetic flux density grain-oriented silicon steel sheet
JPH07188773A (en) * 1993-12-27 1995-07-25 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3438282B2 (en) * 1993-12-28 2003-08-18 Jfeスチール株式会社 Method of manufacturing oriented silicon steel sheet with high magnetic flux density
JP3644130B2 (en) * 1996-05-24 2005-04-27 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP3952570B2 (en) * 1998-01-14 2007-08-01 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042724A (en) * 1990-04-20 1992-01-07 Kawasaki Steel Corp Production of thin grain-oriented silicon steel sheet excellent in magnetic property
JP2002194445A (en) * 2000-12-27 2002-07-10 Kawasaki Steel Corp Method for manufacturing grain-oriented electrical steel sheet having high magnetic flux density and excellent film characteristic
JP2007138199A (en) * 2005-11-15 2007-06-07 Jfe Steel Kk Method for producing grain oriented silicon steel sheet
JP2009164542A (en) * 2007-12-10 2009-07-23 Jfe Steel Corp Unidirectional electromagnetic steel plate and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748028B2 (en) 2012-07-26 2017-08-29 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
WO2014017589A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Method for producing oriented electromagnetic steel sheet
US9617616B2 (en) 2012-07-26 2017-04-11 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9738949B2 (en) 2012-07-26 2017-08-22 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US9748029B2 (en) 2012-07-26 2017-08-29 Ginza Maronie P.C. Method of producing grain-oriented electrical steel sheet
JP2015199974A (en) * 2014-04-04 2015-11-12 Jfeスチール株式会社 Manufacturing method of oriented magnetic steel sheet excellent in iron loss characteristics
CN104438325A (en) * 2014-10-08 2015-03-25 武汉科技大学 Rolling method of ultra-thin silicon steel sheet
EP3214188A4 (en) * 2014-10-30 2017-09-06 JFE Steel Corporation Production method for oriented grain-electromagnetic steel sheet
JP2019119933A (en) * 2017-12-28 2019-07-22 Jfeスチール株式会社 Low iron loss directional electromagnetic steel sheet and manufacturing method therefor
WO2020218329A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
WO2020218328A1 (en) * 2019-04-23 2020-10-29 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP6813143B1 (en) * 2019-04-23 2021-01-13 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP6856179B1 (en) * 2019-04-23 2021-04-07 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP2021138984A (en) * 2020-03-03 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet
JP7338511B2 (en) 2020-03-03 2023-09-05 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP5988026B2 (en) 2016-09-07
JP2013047382A (en) 2013-03-07
JP5988027B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5988027B2 (en) Method for producing ultrathin grain-oriented electrical steel sheet
JP4840518B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014132354A1 (en) Production method for grain-oriented electrical steel sheets
JP2014152392A (en) Method for producing grain-oriented magnetic steel sheet
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
JP6191826B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP6838601B2 (en) Low iron loss directional electromagnetic steel sheet and its manufacturing method
JP2014167147A (en) Method for producing grain-oriented electromagnetic steel sheets
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JP6079092B2 (en) Method for producing grain-oriented electrical steel sheet having a thickness of 0.12 to 0.25 mm
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP5712652B2 (en) Method for producing grain-oriented electrical steel sheet
JP6572956B2 (en) Method for producing grain-oriented electrical steel sheet
JP5741308B2 (en) Manufacturing method of grain-oriented electrical steel sheet and material steel sheet thereof
JP2014173103A (en) Method of producing grain-oriented magnetic steel sheet
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022186300A1 (en) Method for producing grain-oriented electrical steel sheet
CN116940695A (en) Method for producing oriented electrical steel sheet, and hot-rolled steel sheet for oriented electrical steel sheet
KR20230159874A (en) Manufacturing method of grain-oriented electrical steel sheet
JP2000144250A (en) Production of grain oriented silicon steel sheet extremely low in core loss
JP2018087366A (en) Production method of grain-oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5988027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250