JPH1140526A - Wiring formation method and manufacture of semiconductor device - Google Patents

Wiring formation method and manufacture of semiconductor device

Info

Publication number
JPH1140526A
JPH1140526A JP19619897A JP19619897A JPH1140526A JP H1140526 A JPH1140526 A JP H1140526A JP 19619897 A JP19619897 A JP 19619897A JP 19619897 A JP19619897 A JP 19619897A JP H1140526 A JPH1140526 A JP H1140526A
Authority
JP
Japan
Prior art keywords
film
polishing
liquid
corrosion
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19619897A
Other languages
Japanese (ja)
Inventor
Seiichi Kondo
誠一 近藤
Yoshio Honma
喜夫 本間
Noriyuki Sakuma
憲之 佐久間
Kenichi Takeda
健一 武田
Kenji Hinode
憲治 日野出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19619897A priority Critical patent/JPH1140526A/en
Publication of JPH1140526A publication Critical patent/JPH1140526A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform chemical mechanical polishing at a high polishing speed, by forming a conductive film on a base body comprising a rough surface, removing the conductive film on the protruding part of the base body by chemical mechanical polishing, and making the conductive film contact a liquid containing an anti-corrosion material, for suppressing corrosion of a material forming wiring. SOLUTION: A silicon nitride film and a silicon oxide film are formed in order on a silicon substrate, and a wiring groove pattern is formed in a lithography process and a dry-etching process. Over it, a titanium nitride is film-formed as an adhesive layer, and a copper thin film is continuously film-formed in vacuum by a sputtering method. Then, an abrasive liquid is dropped from a first supply opening 15 onto an abrasive cloth, for chemical mechanical polishing. When the polishing ends, the first supply opening 15 is closed to stop supplying of the abrasive liquid, then an anti-corrosion liquid (water solution of anti- corrosion material or such non-aqueous liquid as alcohol) is supplied from a second supply opening 16 without delay while rotation of a level block 11 and a carrier 12 is kept, after that, flushing with pure water is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置等の製
造の際の微細加工に適した化学機械研磨法を用いた配線
形成方法及びその方法を用いた半導体装置の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a wiring using a chemical mechanical polishing method suitable for fine processing in the manufacture of a semiconductor device and the like, and a method for manufacturing a semiconductor device using the method.

【0002】[0002]

【従来の技術】近年、半導体集積回路(以下、LSIと
記す)の高集積化、高性能化に伴って新たな微細加工技
術が開発されている。化学機械研磨法(ケミカルメカニ
カルポリッシング、以下、CMPと略する)もその一つ
であり、LSI製造工程、特に多層配線形成工程におけ
る層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線
形成において利用される技術である。この方法は、例え
ば、U.S.P.4944836において報告されてい
るように、特定の研磨液に対して異なる研磨速度を持つ
2つの部材を有する基板を研磨布に接触させ、さらに基
板を研磨液と研磨剤粒子を含むスラリーに接触させ化学
的、機械的に研磨するものである。
2. Description of the Related Art In recent years, a new fine processing technology has been developed in accordance with high integration and high performance of a semiconductor integrated circuit (hereinafter, referred to as LSI). A chemical mechanical polishing method (Chemical Mechanical Polishing, hereinafter abbreviated as CMP) is one of them, and is used in the LSI manufacturing process, especially in the flattening of the interlayer insulating film, the formation of metal plugs, and the formation of buried wirings in the multilayer wiring formation process. Technology. This method is described, for example, in US Pat. S. P. As reported in US Pat. No. 4,944,836, a substrate having two members having different polishing rates for a particular polishing liquid is contacted with a polishing cloth, and further the substrate is contacted with a slurry containing the polishing liquid and abrasive particles. This is to polish mechanically and mechanically.

【0003】一方、LSIの高速性能化を達成するため
に、配線材料を従来のアルミニウムから低抵抗の銅合金
を利用しようとすることが試みられている。しかし、銅
合金はアルミニウム配線の形成で頻繁に用いられるドラ
イエッチング法による微細加工が困難であるため、絶縁
膜の溝加工後に銅合金薄膜を形成し、溝内に埋め込まれ
た部分以外を上記のCMPにより除去する埋め込み配線
形成法が主に採用されている。なお、この技術に関連す
るものとして、例えば、特開平2−278822号公報
等が挙げられる。
On the other hand, in order to achieve high-speed performance of LSI, attempts have been made to use a low-resistance copper alloy from conventional aluminum as a wiring material. However, since copper alloys are difficult to finely process by dry etching, which is frequently used in the formation of aluminum wiring, a copper alloy thin film is formed after forming a groove in an insulating film, and the above-described portions other than the portion embedded in the groove are formed. A buried wiring forming method for removing by CMP is mainly employed. In addition, as related to this technology, for example, Japanese Patent Application Laid-Open No. 2-278822 is cited.

【0004】しかし、銅等のメタルのCMPは、主に腐
食性の研磨液を用いるために、CMP処理を施したウエ
ハ上に研磨液や研磨砥粒が残存すると研磨面の銅が腐食
したり、凹み(ディシングとも呼ばれる)が発生する。
これを防止するために、研磨液中に銅の防食剤であるB
TA(ベンゾトリアゾール)を添加する方法が特開平8
−64594号公報に公開されている。
However, since CMP of metal such as copper mainly uses a corrosive polishing liquid, copper on the polished surface is corroded when polishing liquid or abrasive grains remain on a wafer subjected to CMP processing. Dents (also called dishing) occur.
In order to prevent this, copper anticorrosive B
A method of adding TA (benzotriazole) is disclosed in
-64594.

【0005】[0005]

【発明が解決しようとする課題】上記特開平8−645
94号公報に記載の従来技術は、銅の腐食を抑制するこ
とができるが、防食剤による強固な保護膜が銅表面に形
成されるために、研磨速度がBTAの添加に依存して大
きく低下するという問題があった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 8-645.
The prior art described in Japanese Patent No. 94 can suppress copper corrosion, but since a strong protective film is formed on the copper surface by an anticorrosive, the polishing rate is greatly reduced depending on the addition of BTA. There was a problem of doing.

【0006】本発明の第1の目的は、配線を形成する材
料の腐食を抑制し、かつ、高い研磨速度でCMPを行う
配線形成方法を提供することにある。本発明の第2の目
的は、そのような配線形成方法を用いた半導体装置の製
造方法を提供することにある。
A first object of the present invention is to provide a wiring forming method for suppressing corrosion of a material forming wiring and performing CMP at a high polishing rate. A second object of the present invention is to provide a method for manufacturing a semiconductor device using such a wiring forming method.

【0007】[0007]

【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の配線形成方法は、表面に凹凸を有す
る基体上に、銅、銅合金等からなる導体膜を形成し、基
体の凸部上の導体膜をCMPを用いて除去して導体膜を
所望の形状とし、防食性物質を含む水溶液又は非水性液
体を導体膜に接触させるようにしたものである。
In order to achieve the first object, a method for forming a wiring according to the present invention comprises forming a conductive film made of copper, a copper alloy, or the like on a substrate having a surface having irregularities, The conductor film on the convex portion of the base is removed by using CMP to form the conductor film into a desired shape, and an aqueous solution or a non-aqueous liquid containing an anticorrosive substance is brought into contact with the conductor film.

【0008】防食性物質を含む水溶液又は非水性液体の
導体膜への接触は、CMP装置が稼働して基体が回転し
ている研磨布に接触している状態で開始してもよく、或
は基体をCMP装置から取り外した後の洗浄前の段階
で、防食性物質を含む水溶液又は非水性液体中に浸して
もよい。後者の場合は超音波振動又はメガソニック振動
を伴う方が望ましい。CMP終了時又はその後の洗浄時
に研磨液が水で希釈されると研磨液の腐食性が非常に強
くなるが、防食液と置換することによってこれを防ぐこ
とができる。
[0008] The contact of the aqueous solution or non-aqueous liquid containing the anticorrosive substance with the conductive film may be started in a state where the CMP apparatus is operated and the substrate is in contact with the rotating polishing cloth, or The substrate may be immersed in an aqueous solution or a non-aqueous liquid containing an anticorrosive substance at a stage before cleaning after the substrate is removed from the CMP apparatus. In the latter case, it is more desirable to involve ultrasonic vibration or megasonic vibration. If the polishing liquid is diluted with water at the end of CMP or at the time of subsequent cleaning, the polishing liquid becomes extremely corrosive, but this can be prevented by replacing the polishing liquid with an anticorrosive liquid.

【0009】非水性液体としてはメタノール、エタノー
ル、イソプロピルアルコール(IPA)等のアルコール
類が好ましく、また、非水性液体に防食性物質を含んで
いてもよい。
As the non-aqueous liquid, alcohols such as methanol, ethanol and isopropyl alcohol (IPA) are preferable, and the non-aqueous liquid may contain an anticorrosive substance.

【0010】本発明は、腐食性の高い銅、銅合金に特に
有効であるが、その他導体膜の材質として、タングステ
ン、アルミニウム、チタン、タングステン合金、アルミ
ニウム合金又はチタン合金等が用いられる。
The present invention is particularly effective for highly corrosive copper and copper alloys, but other materials such as tungsten, aluminum, titanium, tungsten alloy, aluminum alloy or titanium alloy are used as the material of the conductor film.

【0011】防食性物質は、BTAが代表的であるが、
TTA(トリルトリアゾール)、BTA−COOH(B
TAカルボン酸)等のBTAの誘導体、シスチン、ハロ
酢酸、グルコース、ドデシルメルカプタン等でも同様の
効果があり、特に銅、銅合金に対して有効である。
The anticorrosive substance is typically BTA,
TTA (tolyltriazole), BTA-COOH (B
BTA derivatives such as TA carboxylic acid), cystine, haloacetic acid, glucose, dodecyl mercaptan and the like have the same effect, and are particularly effective for copper and copper alloys.

【0012】また、タングステン、タングステン合金に
対しては、N−ベンゾイル−N−フェニルヒドロキシル
アミンやその誘導体が有効である。これらについては、
前述の従来技術を記載した公報に説明されている。
For tungsten and a tungsten alloy, N-benzoyl-N-phenylhydroxylamine and its derivatives are effective. For these,
The above-mentioned prior art is described in the publication.

【0013】防食性物質の濃度は、0.001〜1重量
%の範囲であることが好ましい。これは非水性液体に防
食性物質を含むときも同様である。0.001重量%未
満では防食効果が顕著ではない。
The concentration of the anticorrosive substance is preferably in the range of 0.001 to 1% by weight. This is the same when the non-aqueous liquid contains an anticorrosive substance. If it is less than 0.001% by weight, the anticorrosion effect is not remarkable.

【0014】また、上記第2の目的を達成するために、
本発明の半導体装置の製造方法は、複数の半導体素子が
形成された半導体基板上に絶縁膜を形成し、さらにその
上に凹凸を有する第2の絶縁膜を形成し、この凹凸を有
する第2の絶縁膜を上記の基体として、上記の配線形成
方法を行うようにしたものである。この方法は、半導体
装置の埋め込み配線や層間絶縁膜のホール中の金属プラ
グの形成等に用いることができる。
Further, in order to achieve the second object,
According to the method of manufacturing a semiconductor device of the present invention, an insulating film is formed on a semiconductor substrate on which a plurality of semiconductor elements are formed, and a second insulating film having irregularities is further formed thereon. The above-described wiring forming method is performed by using the insulating film described above as the base. This method can be used, for example, for forming a buried wiring of a semiconductor device or a metal plug in a hole of an interlayer insulating film.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。 実施例1〜3 本実施例では銅のCMPの方法について説明する。図1
は本実施例において使用するCMP装置を示す概略図で
ある。研磨布が貼り付けられた定盤11の上をウエハ1
4を支持したキャリア12が回転してCMPを行う構造
になっている。CMP中にウエハ14がはずれないよう
にリテーナリング13が設けられている。CMP中にお
ける研磨荷重は150g/cm2、定盤とキャリアの回
転数はともに30rpmである。
Embodiments of the present invention will be described below with reference to the drawings. Embodiments 1 to 3 In this embodiment, a method of copper CMP will be described. FIG.
FIG. 2 is a schematic view showing a CMP apparatus used in the present embodiment. The wafer 1 is placed on the surface plate 11 to which the polishing cloth is attached.
4 has a structure in which the carrier 12 which supports 4 rotates and performs CMP. A retainer ring 13 is provided so that the wafer 14 does not come off during the CMP. The polishing load during CMP was 150 g / cm 2 , and the rotation speeds of the platen and the carrier were both 30 rpm.

【0016】研磨液と研磨砥粒のスラリー(以下、単に
研磨液という)が定盤上に設けられた第1の供給口15
から研磨布上に約30cc/minの速度で滴下されて
CMPを行う。CMPが終了した段階で第1の供給口1
5を閉じて研磨液の供給を停止し、定盤11とキャリア
12の回転を持続したまま、すぐに第2の供給口16か
ら防食液(防食性物質の水溶液又はアルコール類等の非
水性液体)を約500cc/minの速度で供給する
(第1フラッシングと称する)。第1フラッシングを1
5〜30秒間行って研磨液を防食液で置換した後、第2
の供給口16を閉じて第3の供給口17から純水を約3
000cc/minの速度で供給(第2フラッシングと
称する)を15〜30秒間行う。その後ウエハを乾燥し
ないように純水中に保管した状態で洗浄工程に移る。
A first supply port 15 provided on a surface plate is provided with a slurry of a polishing liquid and abrasive grains (hereinafter simply referred to as a polishing liquid).
Is dropped on the polishing pad at a rate of about 30 cc / min to perform CMP. At the stage when the CMP is completed, the first supply port 1
5, the supply of the polishing liquid is stopped, and while the rotation of the platen 11 and the carrier 12 is maintained, the anticorrosive liquid (an aqueous solution of an anticorrosive substance or a non-aqueous liquid such as alcohol) is immediately supplied from the second supply port 16. ) Is supplied at a rate of about 500 cc / min (referred to as first flushing). 1st flushing 1
After replacing the polishing liquid with an anticorrosive liquid for 5 to 30 seconds, the second
Of the pure water from the third supply port 17 is closed.
Supply (referred to as second flushing) at a speed of 000 cc / min is performed for 15 to 30 seconds. Thereafter, the process proceeds to the cleaning step in a state where the wafer is stored in pure water so as not to be dried.

【0017】効率的にCMP工程を進め、研磨液の無駄
をなくし、工程時間を短くする等のために、CMPを行
う定盤とフラッシングを行う定盤は別であってもよい。
その場合はそれら2つの定盤間をキャリアが数秒で移動
できることが望ましい。また、CMP工程後にウエハを
防食液を入れた洗浄槽に浸して研磨液を除去しても同様
の腐食抑制効果がある。
The surface plate for performing CMP and the surface plate for performing flashing may be different from each other in order to efficiently advance the CMP process, eliminate waste of the polishing liquid, shorten the process time, and the like.
In that case, it is desirable that the carrier can move between these two surface plates in a few seconds. Further, even if the polishing liquid is removed by immersing the wafer in a cleaning tank containing an anticorrosive liquid after the CMP step, the same corrosion suppressing effect can be obtained.

【0018】埋め込み配線を形成する試料の研磨前の断
面構造の例を図2(a)に示す。シリコン基板24上に
シリコン窒化膜23aを厚さ500nm、シリコン酸化
膜23bを厚さ500nm成膜し、リソグラフィ工程及
びドライエッチ工程によって深さ500nmの配線溝パ
ターンを形成した。その上に接着層として厚さ50nm
の窒化チタン層22を成膜した後に、厚さ800nmの
銅の薄膜21をスパッタリング法により真空中で連続し
て成膜した。さらに段差被覆性をよくするためにスパッ
タ装置内で450度で30分の熱処理を行った。CMP
を行った後、試料は図2(b)に示すような断面構造に
加工される。本実施例においては、埋め込み配線の形成
方法について説明したが、それ以外の用途の銅合金の研
磨方法に関しても同じ原理で行う。
FIG. 2A shows an example of a cross-sectional structure of a sample for forming an embedded wiring before polishing. A silicon nitride film 23a having a thickness of 500 nm and a silicon oxide film 23b having a thickness of 500 nm were formed on a silicon substrate 24, and a wiring groove pattern having a depth of 500 nm was formed by a lithography process and a dry etching process. On top of this, a 50 nm thick adhesive layer
After the titanium nitride layer 22 was formed, a copper thin film 21 having a thickness of 800 nm was continuously formed in a vacuum by a sputtering method. In order to further improve step coverage, heat treatment was performed at 450 ° C. for 30 minutes in a sputtering apparatus. CMP
Is performed, the sample is processed into a cross-sectional structure as shown in FIG. In the present embodiment, the method of forming the buried wiring has been described. However, the same principle is applied to the polishing method of the copper alloy for other uses.

【0019】上記の試料の加工の際、図1に示した第1
の供給口15から供給される研磨液と第2の供給口16
から供給される防食液の種類を変えた場合について、図
2(b)に示した銅の薄膜21の研磨面の腐食状態を比
較して表1に示した。研磨液はアルミナ系研磨液(ロデ
ールニッタ社製QCTT1010)に濃度9%の過酸化
水素(H22)を混合したもの(市販の30%過酸化水
素水を30%混合したもの)を用いた。防食液は、イソ
プロピルアルコール、BTA水を用いた。また、比較例
として防食液の代わりに第1のフラッシングの液に純水
を用いた場合を表1に示した。さらに従来例として、研
磨液自体にBTAを添加した液を用いてCMPを行い、
純水で第1のフラッシングをした例を加えた。
In processing the above sample, the first sample shown in FIG.
Polishing liquid supplied from the supply port 15 and the second supply port 16
Table 1 shows a comparison of the corrosion state of the polished surface of the copper thin film 21 shown in FIG. The polishing liquid used was a mixture of an alumina-based polishing liquid (QCTT1010 manufactured by Rodel Nitta) and hydrogen peroxide (H 2 O 2 ) having a concentration of 9% (a mixture of 30% of a commercially available 30% hydrogen peroxide solution). . As the anticorrosion liquid, isopropyl alcohol and BTA water were used. Table 1 shows a comparative example in which pure water was used as the first flushing liquid instead of the anticorrosive liquid. Further, as a conventional example, CMP is performed using a solution obtained by adding BTA to the polishing solution itself,
An example in which the first flushing was performed with pure water was added.

【0020】[0020]

【表1】 [Table 1]

【0021】比較例のように、BTA無添加の研磨液で
CMPを行った後、純水で第1のフラッシングを行うと
腐食が発生した。これに対してIPA(実施例1)や高
濃度(0.1%)のBTA水(実施例3)を第1のフラ
ッシングの液として用いると腐食は起こらなかった。ま
た、低濃度(0.01%)のBTA水(実施例2)を第
1のフラッシングの液として用いたときは、わずかに腐
食が生じた。一方、従来例のように研磨液にBTAを添
加したものを用いると、第1のフラッシングの液に純水
を用いても腐食は起こらなかったが、研磨速度はかなり
低下した。
As in the comparative example, when the first flushing was performed with pure water after the CMP was performed with the polishing liquid without BTA, corrosion occurred. In contrast, when IPA (Example 1) or high-concentration (0.1%) BTA water (Example 3) was used as the first flushing liquid, no corrosion occurred. In addition, when BTA water of low concentration (0.01%) (Example 2) was used as the first flushing liquid, corrosion occurred slightly. On the other hand, when a polishing liquid containing BTA was used as in the conventional example, no corrosion occurred even when pure water was used as the first flushing liquid, but the polishing rate was considerably reduced.

【0022】この原理を図3を用いて説明する。図3
は、銅を研磨液に浸したときの腐食速度の研磨液濃度依
存性である。研磨液の濃度は純水による希釈で調整し
た。その結果、研磨液濃度30%未満では、非常に速い
速度で腐食が進行し、例えば、研磨液濃度20%では腐
食速度が50nm/min程度にもなることが分かる。
従って、研磨後に純水を用いて洗浄しようとすると研磨
液が純水によって希釈されるために、強い腐食作用が現
れて銅表面が腐食される。これに対して、防食剤を加え
た純水やIPAのような液体で一度研磨液をフラッシン
グした後に純水で洗浄すれば、希釈研磨液による腐食を
抑制することができる。
This principle will be described with reference to FIG. FIG.
Is the polishing solution concentration dependency of the corrosion rate when copper is immersed in the polishing solution. The concentration of the polishing liquid was adjusted by dilution with pure water. As a result, it can be seen that when the polishing liquid concentration is less than 30%, the corrosion proceeds at a very high speed, and for example, when the polishing liquid concentration is 20%, the corrosion rate becomes about 50 nm / min.
Therefore, if the cleaning is performed using pure water after the polishing, the polishing liquid is diluted with the pure water, so that a strong corrosive action appears and the copper surface is corroded. On the other hand, if the polishing liquid is flushed once with a liquid such as pure water or IPA to which an anticorrosive agent has been added and then washed with pure water, corrosion due to the diluted polishing liquid can be suppressed.

【0023】実施例2のIPAのようなアルコールでフ
ラッシングを行う場合、研磨液中の酸化剤と水の組成が
変化せずにアルコールと置換されるので、腐食性が増加
しない状態のまま研磨液を除去できる。アルコールにB
TAを加えると、研磨面にBTA被膜が形成されるので
防食性がさらに向上した。
When flushing with an alcohol such as IPA in Example 2, the composition of the oxidizing agent and water in the polishing liquid is replaced with alcohol without changing, so that the polishing liquid is kept in a state where the corrosiveness does not increase. Can be removed. B to alcohol
When TA was added, a BTA coating was formed on the polished surface, so that the corrosion resistance was further improved.

【0024】一方、表1の従来例のように、研磨液にB
TAを添加した場合は研磨速度が低下する。図4に研磨
速度と腐食速度のBTA添加濃度依存性を示した。BT
Aのわずか0.01%の添加で腐食速度が10nm/m
inから1nm/minまで抑制できるが、研磨速度が
半分まで低下している。0.1%の添加では腐食速度が
ほとんど0nm/minであるが、研磨速度も約10分
の1に低下する。すなわち防食性を高めるためにBTA
を多量に研磨液に添加することはできない。これに対し
て実施例3のように、第1のフラッシング液に0.1%
のBTAを添加すれば、研磨速度を低下させることな
く、従来例と同等か又はそれ以上に防食性を高めること
が可能である。
On the other hand, as shown in the conventional example of Table 1, B was added to the polishing liquid.
When TA is added, the polishing rate decreases. FIG. 4 shows the dependency of the polishing rate and the corrosion rate on the BTA addition concentration. BT
Corrosion rate is 10 nm / m by adding only 0.01% of A
Although it can be suppressed from in to 1 nm / min, the polishing rate is reduced by half. With 0.1% addition, the corrosion rate is almost 0 nm / min, but the polishing rate is also reduced to about 1/10. That is, in order to improve the anticorrosion property, BTA
Cannot be added to the polishing liquid in a large amount. On the other hand, as in Example 3, the first flushing liquid contained 0.1%
If BTA is added, it is possible to increase the anticorrosion property to be equal to or higher than the conventional example without lowering the polishing rate.

【0025】なお、銅の代わりに銅合金を用いても上記
と同様な効果が得られた。また、BTAの代わりにTT
AやBTA−COOH等のBTA誘導体を用いても略同
様の結果が得られた。
The same effect as described above was obtained by using a copper alloy instead of copper. Also, TT instead of BTA
Almost the same results were obtained using BTA derivatives such as A and BTA-COOH.

【0026】このようにフラッシング液に防食液又はア
ルコール等の非水系の液体を用いて研磨液と置換するこ
とにより、高い研磨速度が得られ、かつ、防食性を高め
ることができる。
By replacing the polishing liquid by using a non-aqueous liquid such as an anticorrosive liquid or alcohol as the flushing liquid, a high polishing rate can be obtained and the anticorrosion property can be enhanced.

【0027】実施例4 上記実施例に用いた銅の薄膜に代えて、タングステン、
アルミニウム、チタン又はこれらの合金を用いて、上記
と同様な検討を行った。金属の種類により研磨速度や腐
食速度は異なるが、いずれも高い研磨速度が得られ、か
つ、防食性を高めることができる。
Embodiment 4 Instead of the copper thin film used in the above embodiment, tungsten,
The same study as above was conducted using aluminum, titanium or their alloys. Although the polishing rate and the corrosion rate differ depending on the type of metal, a high polishing rate can be obtained and the corrosion resistance can be enhanced.

【0028】実施例5 半導体基板上に、通常の方法により複数のMOSトラン
ジスタ等の半導体素子を形成し、これらの半導体素子上
に層間絶縁膜を形成した。この層間絶縁膜の所望の位
置、例えば、ソース及びドレインの各電極上にホールを
形成し、タングステンの化学気相成長法によりホールに
タングステンプラグを埋込み、表面を研磨して平坦化し
た。
Example 5 A plurality of semiconductor elements such as MOS transistors were formed on a semiconductor substrate by an ordinary method, and an interlayer insulating film was formed on these semiconductor elements. A hole was formed at a desired position of the interlayer insulating film, for example, on each of the source and drain electrodes, a tungsten plug was buried in the hole by a chemical vapor deposition method of tungsten, and the surface was polished and flattened.

【0029】この上に実施例1と同様にして、CMPを
行ったところ、高い研磨速度で、防食性の高い銅の配線
が形成された。銅の他に銅合金やタングステン、アルミ
ニウム、チタン又はこれらの合金を用いても同様に高い
研磨速度で、防食性の高い配線が形成された。
When CMP was performed thereon in the same manner as in Example 1, a copper wiring having a high anticorrosive property was formed at a high polishing rate. Even when a copper alloy, tungsten, aluminum, titanium or an alloy thereof was used in addition to copper, a wiring having a high anticorrosion property was formed at a similarly high polishing rate.

【0030】[0030]

【発明の効果】防食性物質を含む水溶液又はアルコール
類のような非水性液体を用いて研磨液を除去する方法
は、優れた腐食抑制効果があり、かつ、研磨液に防食剤
を添加する方法よりも高い研磨速度が得られる。
The method of removing the polishing liquid using an aqueous solution containing an anticorrosive substance or a non-aqueous liquid such as alcohols has an excellent corrosion inhibiting effect and a method of adding an anticorrosive to the polishing liquid. Higher polishing rate can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための化学機械研磨装置の模
式図。
FIG. 1 is a schematic view of a chemical mechanical polishing apparatus for carrying out the present invention.

【図2】CMP前の試料の断面図とCMP後の試料の断
面図。
FIG. 2 is a cross-sectional view of a sample before CMP and a cross-sectional view of a sample after CMP.

【図3】腐食速度の研磨液濃度依存性を示す図。FIG. 3 is a graph showing the dependency of the corrosion rate on the polishing solution concentration.

【図4】研磨速度及び腐食速度のBTA濃度依存性を示
す図。
FIG. 4 is a view showing the BTA concentration dependence of a polishing rate and a corrosion rate.

【符号の説明】[Explanation of symbols]

11…定盤 12…キャリア 13…リテ−ナリング 14…ウエハ 15…第1の供給口 16…第2の供給口 17…第3の供給口 21…銅の薄膜 22…窒化チタン層 23a…シリコン窒化膜 23b…シリコン酸化膜 24…シリコン基板 DESCRIPTION OF SYMBOLS 11 ... Surface plate 12 ... Carrier 13 ... Retaining ring 14 ... Wafer 15 ... 1st supply port 16 ... 2nd supply port 17 ... 3rd supply port 21 ... Copper thin film 22 ... Titanium nitride layer 23a ... Silicon nitride Film 23b: silicon oxide film 24: silicon substrate

フロントページの続き (72)発明者 武田 健一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 日野出 憲治 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内Continued on the front page (72) Inventor Kenichi Takeda 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Hitachi, Ltd. Central Research Laboratory (72) Inventor Kenji Hino 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Hitachi, Ltd. Inside

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】表面に凹凸を有する基体上に、銅、タング
ステン、アルミニウム、チタン又はこれらを含む合金か
らなる導体膜を形成し、上記基体の凸部上の上記導体膜
を化学機械研磨法を用いて除去して上記導体膜を所望の
形状とし、防食性物質を含む水溶液又は非水性液体を上
記所望の形状の導体膜に接触させることを特徴とする配
線形成方法。
1. A conductive film made of copper, tungsten, aluminum, titanium or an alloy containing these is formed on a substrate having irregularities on the surface, and the conductive film on the convex portion of the substrate is subjected to a chemical mechanical polishing method. And forming the conductive film into a desired shape by removing the conductive film by using an aqueous solution or a non-aqueous liquid containing an anticorrosive substance.
【請求項2】上記防食性物質を含む水溶液又は非水性液
体の上記導体膜への接触は、上記基体が研磨布に接触し
て化学機械研磨されている状態で開始されることを特徴
とする請求項1記載の配線形成方法。
2. The method according to claim 1, wherein the contact of the aqueous solution or the non-aqueous liquid containing the anticorrosive substance with the conductor film is started in a state where the substrate is in contact with a polishing cloth and is chemically and mechanically polished. The method for forming a wiring according to claim 1.
【請求項3】上記防食性物質を含む水溶液又は非水性液
体の上記導体膜への接触は、上記化学機械研磨が終了し
た後に、上記基体を上記防食性物質を含む水溶液又は非
水性液体中に浸すことにより行われることを特徴とする
請求項1記載の配線形成方法。
3. The method according to claim 1, wherein the aqueous solution or the non-aqueous liquid containing the anticorrosive substance is brought into contact with the conductor film after the chemical mechanical polishing is completed. The method according to claim 1, wherein the method is performed by immersion.
【請求項4】上記防食性物質は、ベンゾトリアゾール及
びその誘導体からなる群から選ばれた少なくとも1種の
物質であることを特徴とする請求項1から3のいずれか
一に記載の配線形成方法。
4. The method according to claim 1, wherein the anticorrosive substance is at least one substance selected from the group consisting of benzotriazole and its derivatives. .
【請求項5】上記防食性物質の濃度は、0.001〜1
重量%の範囲であることを特徴とする請求項1から4の
いずれか一に記載の配線形成方法。
5. The concentration of said anticorrosive substance is 0.001-1.
5. The wiring forming method according to claim 1, wherein the amount is in a range of% by weight.
【請求項6】上記非水性液体は、アルコール類であるこ
とを特徴とする請求項1から3のいずれか一に記載の配
線形成方法。
6. The method according to claim 1, wherein the non-aqueous liquid is an alcohol.
【請求項7】上記アルコール類は、イソプロピルアルコ
ールであることを特徴とする請求項6記載の配線形成方
法。
7. The method according to claim 6, wherein the alcohol is isopropyl alcohol.
【請求項8】上記非水性液体は、防食性物質を含むこと
を特徴とする請求項6又は7記載の配線形成方法。
8. The wiring forming method according to claim 6, wherein said non-aqueous liquid contains an anticorrosive substance.
【請求項9】半導体基板上に、複数の半導体素子を形成
し、該半導体素子上に絶縁膜を形成し、該絶縁膜上に凹
凸を有する第2の絶縁膜を形成し、該凹凸を有する第2
の絶縁膜を上記基体として、請求項1から8のいずれか
一に記載の配線形成方法を行うことを特徴とする半導体
装置の製造方法。
9. A semiconductor device comprising: a plurality of semiconductor elements formed on a semiconductor substrate; an insulating film formed on the semiconductor element; a second insulating film having irregularities formed on the insulating film; Second
9. A method for manufacturing a semiconductor device, comprising performing the wiring forming method according to claim 1 using the insulating film as the base.
JP19619897A 1997-07-22 1997-07-22 Wiring formation method and manufacture of semiconductor device Pending JPH1140526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19619897A JPH1140526A (en) 1997-07-22 1997-07-22 Wiring formation method and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19619897A JPH1140526A (en) 1997-07-22 1997-07-22 Wiring formation method and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH1140526A true JPH1140526A (en) 1999-02-12

Family

ID=16353832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19619897A Pending JPH1140526A (en) 1997-07-22 1997-07-22 Wiring formation method and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH1140526A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093161A1 (en) * 1999-10-12 2001-04-18 Applied Materials, Inc. Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
JP2001156029A (en) * 1999-08-23 2001-06-08 Applied Materials Inc POST Cu CMP POLISHING FOR REDUCED DEFECTS
EP1111665A2 (en) * 1999-12-21 2001-06-27 Applied Materials, Inc. Method of planarizing a substrate surface
WO2001071789A1 (en) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
US6436832B1 (en) 2000-05-23 2002-08-20 Applied Materials, Inc Method to reduce polish initiation time in a polish process
JP2002270561A (en) * 2001-03-14 2002-09-20 Ebara Corp Method and apparatus for treating substrate
JP2003510846A (en) * 1999-09-30 2003-03-18 ラム リサーチ コーポレーション Processing method and processing apparatus for seed layer of copper connection
US6579153B2 (en) 2000-01-12 2003-06-17 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing process
US6653267B2 (en) 2000-06-30 2003-11-25 Kabushiki Kaisha Toshiba Aqueous dispersion for chemical mechanical polishing used for polishing of copper
US6833109B1 (en) 1999-03-26 2004-12-21 Nec Electronics Corporation Method and apparatus for storing a semiconductor wafer after its CMP polishing
JPWO2003036705A1 (en) * 2001-10-26 2005-02-17 旭硝子株式会社 Abrasive, manufacturing method thereof and polishing method
US6897150B1 (en) 1999-11-19 2005-05-24 Nec Electronics Corporation Semiconductor wafer surface and method of treating a semiconductor wafer surface
US7087530B2 (en) 2000-03-27 2006-08-08 Jsr Corporation Aqueous dispersion for chemical mechanical polishing
WO2013162020A1 (en) * 2012-04-27 2013-10-31 和光純薬工業株式会社 Cleaning agent for semiconductor substrates and method for processing semiconductor substrate surface

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833109B1 (en) 1999-03-26 2004-12-21 Nec Electronics Corporation Method and apparatus for storing a semiconductor wafer after its CMP polishing
JP2001156029A (en) * 1999-08-23 2001-06-08 Applied Materials Inc POST Cu CMP POLISHING FOR REDUCED DEFECTS
JP2003510846A (en) * 1999-09-30 2003-03-18 ラム リサーチ コーポレーション Processing method and processing apparatus for seed layer of copper connection
EP1093161A1 (en) * 1999-10-12 2001-04-18 Applied Materials, Inc. Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
US6897150B1 (en) 1999-11-19 2005-05-24 Nec Electronics Corporation Semiconductor wafer surface and method of treating a semiconductor wafer surface
EP1111665A2 (en) * 1999-12-21 2001-06-27 Applied Materials, Inc. Method of planarizing a substrate surface
JP2001308040A (en) * 1999-12-21 2001-11-02 Applied Materials Inc High throughput copper cmp with reduced erosion and dishing
US7041599B1 (en) 1999-12-21 2006-05-09 Applied Materials Inc. High through-put Cu CMP with significantly reduced erosion and dishing
EP1111665A3 (en) * 1999-12-21 2004-01-02 Applied Materials, Inc. Method of planarizing a substrate surface
US6579153B2 (en) 2000-01-12 2003-06-17 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing process
WO2001071789A1 (en) * 2000-03-21 2001-09-27 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
US7375066B2 (en) 2000-03-21 2008-05-20 Wako Pure Chemical Industries, Ltd. Semiconductor wafer cleaning agent and cleaning method
US7087530B2 (en) 2000-03-27 2006-08-08 Jsr Corporation Aqueous dispersion for chemical mechanical polishing
US6436832B1 (en) 2000-05-23 2002-08-20 Applied Materials, Inc Method to reduce polish initiation time in a polish process
US6653267B2 (en) 2000-06-30 2003-11-25 Kabushiki Kaisha Toshiba Aqueous dispersion for chemical mechanical polishing used for polishing of copper
JP2002270561A (en) * 2001-03-14 2002-09-20 Ebara Corp Method and apparatus for treating substrate
JPWO2003036705A1 (en) * 2001-10-26 2005-02-17 旭硝子株式会社 Abrasive, manufacturing method thereof and polishing method
JP2010251778A (en) * 2001-10-26 2010-11-04 Agc Seimi Chemical Co Ltd Polishing compound and polishing method
JP4576117B2 (en) * 2001-10-26 2010-11-04 旭硝子株式会社 Abrasive, manufacturing method thereof and polishing method
US7854777B2 (en) 2001-10-26 2010-12-21 Asahi Glass Company, Limited Polishing compound, method for production thereof, and polishing method
WO2013162020A1 (en) * 2012-04-27 2013-10-31 和光純薬工業株式会社 Cleaning agent for semiconductor substrates and method for processing semiconductor substrate surface
JPWO2013162020A1 (en) * 2012-04-27 2015-12-24 和光純薬工業株式会社 Semiconductor substrate cleaning agent and semiconductor substrate surface processing method
US9803161B2 (en) 2012-04-27 2017-10-31 Wako Pure Chemical Industries, Ltd. Cleaning agent for semiconductor substrates and method for processing semiconductor substrate surface

Similar Documents

Publication Publication Date Title
US5897375A (en) Chemical mechanical polishing (CMP) slurry for copper and method of use in integrated circuit manufacture
KR100514536B1 (en) A method of polishing
US6774041B1 (en) Polishing method, metallization fabrication method, method for manufacturing semiconductor device and semiconductor device
KR101260597B1 (en) Metal polishing liquid and method for polishing film to be polished
US6750128B2 (en) Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US6787473B2 (en) Post-planarization clean-up
TWI382082B (en) Cmp polishing slurry and polishing method for substrate using the polishing slurry
TWI288175B (en) Post-CMP washing liquid composition
US20080119050A1 (en) Semiconductor device manufacture method
JP2000315666A (en) Manufacture of semiconductor integrated circuit device
JP2004006628A (en) Method for manufacturing semiconductor device
KR20010051992A (en) Planarized copper cleaning for reduced defects
JPH1140526A (en) Wiring formation method and manufacture of semiconductor device
JP2008112969A (en) Polishing liquid, and polishing method using the polishing liquid
JP5369597B2 (en) CMP polishing liquid and polishing method
JP2001127019A (en) Polishing fluid for metal and method for polishing substrate using the same
JP2004193377A (en) Method for manufacturing semiconductor device
EP1093161A1 (en) Method and composite arrangement inhibiting corrosion of a metal layer following chemical mechanical polishing
US6436832B1 (en) Method to reduce polish initiation time in a polish process
JP2003077921A (en) Method for manufacturing semiconductor device
JP2002110595A (en) Wiring forming method, polishing method, and method of manufacturing semiconductor device
JP2002305198A (en) Method for manufacturing electronic device
US20040140288A1 (en) Wet etch of titanium-tungsten film
JP2000299320A (en) Method of forming wiring
JP2004149667A (en) Polishing solution and and method of polishing metal using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

A521 Written amendment

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060517

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20060623

Free format text: JAPANESE INTERMEDIATE CODE: A912