JPH11346002A - Manufacture of p-type gallium nitride based compound semiconductor - Google Patents

Manufacture of p-type gallium nitride based compound semiconductor

Info

Publication number
JPH11346002A
JPH11346002A JP19002998A JP19002998A JPH11346002A JP H11346002 A JPH11346002 A JP H11346002A JP 19002998 A JP19002998 A JP 19002998A JP 19002998 A JP19002998 A JP 19002998A JP H11346002 A JPH11346002 A JP H11346002A
Authority
JP
Japan
Prior art keywords
gas
gallium nitride
compound semiconductor
based compound
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19002998A
Other languages
Japanese (ja)
Inventor
Yasunari Oku
保成 奥
Hidenori Kamei
英徳 亀井
Hidemi Takeishi
英見 武石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19002998A priority Critical patent/JPH11346002A/en
Publication of JPH11346002A publication Critical patent/JPH11346002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain deterioration of crystallinity of a surface of a gallium nitride based compound semiconductor in the course of cooling, by growing a gallium nitride based compound semiconductor thin film, and cooling a substrate in atmospheric gas composed of material gas containing at least nitrogen element and nitrogen gas. SOLUTION: A substrate 2 composed of sapphire is mounted in a reaction tube 1. After a surface is cleaned, a buffer layer is grown, and a gallium nitride based compound semiconductor thin film is grown to be 2 μm thick. After that, supply of subcarrier gas of trimethyl gallium as material gas and Cp2 Mg(biscyclopentadienyl-Mg) gas is stopped, and the temperature of the substrate 2 is reduced down to 400 deg.C while nitrogen gas as main carrier gas and ammonia as atmospheric gas are newly made to flow. When the substrate temperature reaches 400 deg.C, ammonia is stopped, and the substrate temperature is reduced down to a room temperature while only nitrogen gas as atmospheric gas is made to flow. After cooling is performed down to a room temperature, a wafer is taken out from the reaction tube 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は青色、緑色発光ダイ
オードや青紫色半導体レーザダイオード等の発光デバイ
スに利用されるp型窒化ガリウム系化合物半導体の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a p-type gallium nitride-based compound semiconductor used for a light emitting device such as a blue or green light emitting diode or a blue-violet semiconductor laser diode.

【0002】[0002]

【従来の技術】最近、窒化ガリウム系化合物半導体を用
いた青色、緑色発光デバイスが注目されている。このよ
うな発光デバイスには、n型不純物をドープしたn型半
導体薄膜とp型不純物をドープしたp型半導体薄膜とを
積層してpn接合を形成し、p型及びn型半導体薄膜の
それぞれに接続させる金属等の電極を形成させチップ状
に分離した素子が一般的に用いられている。
2. Description of the Related Art Recently, blue and green light emitting devices using a gallium nitride-based compound semiconductor have attracted attention. In such a light emitting device, an n-type semiconductor thin film doped with an n-type impurity and a p-type semiconductor thin film doped with a p-type impurity are stacked to form a pn junction, and the p-type and the n-type semiconductor thin films are respectively formed. An element in which electrodes such as metals to be connected are formed and separated into chips is generally used.

【0003】ここで、窒化ガリウム系化合物半導体薄膜
を成長させる方法として、有機金属気相成長法が良く知
られている。この方法は、サファイア等からなる基板を
設置した反応管内に、原料ガスとして有機金属化合物ガ
ス(トリメチルガリウム(以下「TMG」と略称す
る。)、トリメチルアルミニウム(以下「TMA」と略
称する。)、トリメチルインジウム(以下「TMI」と
略称する。)等)とアンモニアとを、水素や窒素等のキ
ャリアガスとともに供給し、基板温度をおよそ900℃
〜1100℃の高温で保持して、反応管内に設置された
基板の上に窒化ガリウム系化合物半導体薄膜を成長さ
せ、必要に応じて他の不純物ガスを同時に供給しながら
n型、あるいはp型半導体薄膜を成長させる方法であ
る。n型不純物としてはケイ素(Si)やゲルマニウム
(Ge)が良く知られている。p型不純物としては、亜
鉛(Zn)やマグネシウム(Mg)等が良く知られてい
るが、マグネシウムが最も良く用いられている。そし
て、半導体薄膜の成長後、基板温度を室温程度にまで冷
却させた後、反応管から基板が取り出される。
As a method for growing a gallium nitride-based compound semiconductor thin film, a metal organic chemical vapor deposition method is well known. In this method, an organometallic compound gas (trimethyl gallium (hereinafter, abbreviated as “TMG”), trimethylaluminum (hereinafter, abbreviated as “TMA”) as a source gas is placed in a reaction tube in which a substrate made of sapphire or the like is installed. Trimethylindium (hereinafter abbreviated as "TMI") or the like and ammonia are supplied together with a carrier gas such as hydrogen or nitrogen, and the substrate temperature is set to about 900 ° C.
A gallium nitride-based compound semiconductor thin film is grown on a substrate placed in a reaction tube while maintaining the temperature at a high temperature of 1100 ° C., and n-type or p-type semiconductor is simultaneously supplied with another impurity gas if necessary. This is a method of growing a thin film. Silicon (Si) and germanium (Ge) are well known as n-type impurities. As the p-type impurity, zinc (Zn), magnesium (Mg), and the like are well known, but magnesium is most often used. After the growth of the semiconductor thin film, the substrate is cooled to about room temperature, and then the substrate is taken out of the reaction tube.

【0004】さらに、表面に半導体薄膜が積層形成され
た基板に対し、蒸着法やフォトリソグラフィー等を用い
て電極を形成した後、ダイシングやスクライブ等を用い
てチップ状に分離する工程を経て発光素子が得られる。
Further, a light emitting element is formed through a process in which electrodes are formed on a substrate having a surface on which a semiconductor thin film is laminated by using a vapor deposition method, photolithography or the like, and then separated into chips using dicing or scribing. Is obtained.

【0005】ところで、従来、p型窒化ガリウム系化合
物半導体を製造する方法としては、p型不純物をドープ
した窒化ガリウム系化合物半導体を成長した後、基板を
冷却して、同じ反応管内あるいは異なる容器内で実質的
に水素を含まない(水素ガスやアンモニア等を含まな
い)雰囲気中で400℃以上の温度でアニーリングを行
い低抵抗p型伝導化する方法(以下「第1の方法」とい
う。)が知られている。この方法は、p型不純物をドー
プした窒化ガリウム系化合物半導体からp型不純物と結
合した水素を追い出すことによりp型不純物を活性化さ
せて低抵抗p型伝導化するもので、これによれば、深さ
方向に均一に低抵抗化されたp型窒化ガリウム系化合物
半導体が得られるとされている。このような方法は特開
平5−183189号公報にて開示されている。
Conventionally, as a method of manufacturing a p-type gallium nitride-based compound semiconductor, a gallium nitride-based compound semiconductor doped with a p-type impurity is grown, and then the substrate is cooled and then placed in the same reaction tube or in a different vessel. A method in which annealing is performed at a temperature of 400 ° C. or more in an atmosphere containing substantially no hydrogen (containing no hydrogen gas, ammonia, or the like) to obtain low-resistance p-type conductivity (hereinafter, referred to as “first method”). Are known. This method activates the p-type impurity by driving out the hydrogen bonded to the p-type impurity from the gallium nitride-based compound semiconductor doped with the p-type impurity, thereby achieving low-resistance p-type conductivity. It is said that a p-type gallium nitride-based compound semiconductor having a uniformly reduced resistance in the depth direction can be obtained. Such a method is disclosed in JP-A-5-183189.

【0006】一方、p型不純物をドープした窒化ガリウ
ム系化合物半導体を成長させた後、アンモニア等の窒素
原料ガスや水素ガスの供給を止め、窒素ガス等の不活性
ガスを供給しながら不活性ガス中でアニーリングしなが
ら冷却する方法(以下「第2の方法」という。)が提案
されている。この方法は、p型不純物をドープした窒化
ガリウム系化合物半導体からp型不純物と結合した水素
を追い出すことによりp型不純物を活性化させてp型伝
導化するという点で上記第1の方法と共通しているが、
この方法によれば、p型不純物をドープした窒化ガリウ
ム系化合物半導体を成長させた後、基板を冷却させると
同時にp型伝導化させることができるので、製造工程の
簡素化が可能となるとされている。このような方法は、
例えば特開平8−125222号公報にて開示されてい
る。
On the other hand, after growing a gallium nitride-based compound semiconductor doped with a p-type impurity, supply of a nitrogen source gas such as ammonia or hydrogen gas is stopped, and an inert gas such as nitrogen gas is supplied. A method of cooling while annealing inside (hereinafter, referred to as "second method") has been proposed. This method is common to the first method in that the p-type impurity is activated by driving out the hydrogen bonded to the p-type impurity from the gallium nitride-based compound semiconductor doped with the p-type impurity to activate the p-type impurity. But
According to this method, after growing a gallium nitride-based compound semiconductor doped with a p-type impurity, the substrate can be cooled and made p-type conductive at the same time, so that the manufacturing process can be simplified. I have. Such a method
For example, it is disclosed in JP-A-8-125222.

【0007】[0007]

【発明が解決しようとする課題】上記の方法により、低
抵抗なp型窒化ガリウム系化合物半導体が得られるよう
になり、これを用いて発光出力の高い発光素子が得られ
るようになった。しかしながら、発光素子の発光出力を
さらに高くし、発光素子の消費電力を低減させる等の素
子特性の改善を進めるにつれ、上記の従来の方法を用い
る場合では以下のような問題が生じることがわかった。
According to the above method, a low-resistance p-type gallium nitride-based compound semiconductor can be obtained, and a light-emitting element having a high light-emission output can be obtained by using the same. However, it has been found that the following problems occur with the use of the above-described conventional method as the light emission output of the light emitting element is further increased and the element characteristics are improved, such as reducing the power consumption of the light emitting element. .

【0008】すなわち、第1の方法においては、高温で
アニーリングを行う間に窒化ガリウム系化合物半導体の
表面から窒素元素が離脱しやすいため、p型不純物をド
ープした窒化ガリウム系化合物半導体の表面の結晶性が
劣化し、この上に形成する電極のオーミック特性が不十
分となり発光素子のデバイス性能に悪影響を与えるとい
う問題がある。このような窒素元素の離脱を防ぐため
に、アニーリングの前にキャップ層を形成させた後、ア
ニーリングを行う方法もあるが、このような場合、p型
不純物をドープした窒化ガリウム系化合物半導体を成長
させた後、冷却後にキャップ層を形成させ、その後アニ
ーリングを行う必要があるため、製造工程が煩雑になる
という問題もある。
That is, in the first method, since the nitrogen element is easily released from the surface of the gallium nitride-based compound semiconductor during annealing at a high temperature, the crystal on the surface of the gallium nitride-based compound semiconductor doped with a p-type impurity is removed. However, there is a problem in that the ohmic characteristics of the electrodes formed thereon become insufficient and the device performance of the light emitting element is adversely affected. In order to prevent such release of the nitrogen element, there is a method of performing annealing after forming a cap layer before annealing.In such a case, a gallium nitride-based compound semiconductor doped with a p-type impurity is grown. After that, it is necessary to form a cap layer after cooling and then perform annealing, which causes a problem that the manufacturing process becomes complicated.

【0009】一方、第2の方法においては、窒化ガリウ
ム系化合物半導体を成長させた後、冷却中にアニーリン
グを行うので、製造工程は簡素化されるものの、アニー
リングの間に窒化ガリウム系化合物半導体の表面から窒
素元素が離脱しやすい傾向にあるため、第1の方法の場
合と同様に、発光素子のデバイス性能に悪影響を与える
という問題がある。
On the other hand, in the second method, the gallium nitride-based compound semiconductor is grown and then annealed during cooling, so that the manufacturing process is simplified, but the gallium nitride-based compound semiconductor is removed during the annealing. Since the nitrogen element tends to separate from the surface, there is a problem that the device performance of the light emitting element is adversely affected as in the case of the first method.

【0010】本発明は、上記の問題を解決するものであ
り、表面の結晶性を良好に保ったまま簡便にp型窒化ガ
リウム系化合物半導体を得るための方法を提供すること
を目的としている。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a method for easily obtaining a p-type gallium nitride-based compound semiconductor while maintaining good surface crystallinity.

【0011】[0011]

【課題を解決するための手段】本発明者等は、p型不純
物をドープした窒化ガリウム系化合物半導体を成長させ
た後の冷却中に行うアニーリングについて鋭意検討を重
ねた。その結果、冷却工程における雰囲気ガスを、従来
の方法のように実質的に水素を含まない雰囲気ガスとす
るのに代えて、少なくとも窒素元素を含む原料ガスと窒
素ガスとを供給した雰囲気ガスとすることにより、表面
の結晶性を良好に保ったまま簡便にp型窒化ガリウム系
化合物半導体が得られることを見出し、本発明をなすに
至った。
Means for Solving the Problems The present inventors have conducted intensive studies on annealing performed during cooling after growing a gallium nitride compound semiconductor doped with a p-type impurity. As a result, the atmosphere gas in the cooling step is changed to an atmosphere gas supplied with a source gas containing at least nitrogen element and a nitrogen gas instead of the atmosphere gas containing substantially no hydrogen as in the conventional method. As a result, they have found that a p-type gallium nitride-based compound semiconductor can be easily obtained while maintaining good surface crystallinity, and have accomplished the present invention.

【0012】すなわち、本発明は、気相成長法により、
少なくともガリウム元素を含む原料ガスと、窒素元素を
含む原料ガスと、マグネシウム元素を含む原料ガスを反
応管へ輸送し、前記反応管内に設置され加熱された基板
上にマグネシウムをドープした窒化ガリウム系化合物半
導体薄膜を成長させた後、前記反応管内で少なくとも前
記窒素元素を含む原料ガスと窒素ガスとを供給した雰囲
気ガス中で前記基板を冷却することを特徴とするもので
ある。
That is, the present invention provides a vapor phase growth method
A source gas containing at least a gallium element, a source gas containing a nitrogen element, and a source gas containing a magnesium element are transported to a reaction tube, and a gallium nitride-based compound doped with magnesium on a heated substrate installed in the reaction tube After the semiconductor thin film is grown, the substrate is cooled in the reaction tube in an atmosphere gas supplied with a source gas containing at least the nitrogen element and a nitrogen gas.

【0013】このような構成によれば、マグネシウムを
ドープした窒化ガリウム系化合物半導体を成長させた
後、冷却中に窒化ガリウム系化合物半導体の表面の結晶
性が劣化するのを抑制できるとともに、マグネシウムを
ドープした窒化ガリウム系化合物半導体の低抵抗p型伝
導化を簡素化することが可能となる。
According to such a configuration, it is possible to prevent the crystallinity of the surface of the gallium nitride-based compound semiconductor from deteriorating during cooling after the growth of the gallium nitride-based compound semiconductor doped with magnesium, and to reduce the magnesium content. It is possible to simplify the low-resistance p-type conduction of the doped gallium nitride-based compound semiconductor.

【0014】[0014]

【発明の実施の形態】請求項1に記載の発明は、気相成
長法により、少なくともガリウム元素を含む原料ガス
と、窒素元素を含む原料ガスと、マグネシウム元素を含
む原料ガスを反応管へ輸送し、前記反応管内に設置され
加熱された基板上にマグネシウムをドープした窒化ガリ
ウム系化合物半導体薄膜を成長させた後、前記反応管内
で少なくとも前記窒素元素を含む原料ガスと窒素ガスと
を供給した雰囲気ガス中で前記基板を冷却することを特
徴とするものであり、マグネシウムをドープした窒化ガ
リウム系化合物半導体の低抵抗p型伝導化を、半導体薄
膜の気相成長プロセスの中の連続した一工程として行う
ことができるとともに、気相成長後の冷却時に窒化ガリ
ウム系化合物半導体の表面から窒素元素が離脱するのを
抑制することができるという作用を有する。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, a source gas containing at least a gallium element, a source gas containing a nitrogen element, and a source gas containing a magnesium element are transported to a reaction tube by a vapor phase growth method. Then, after growing a magnesium-doped gallium nitride-based compound semiconductor thin film on a heated substrate provided in the reaction tube, an atmosphere in which a source gas containing at least the nitrogen element and a nitrogen gas are supplied in the reaction tube The method is characterized in that the substrate is cooled in a gas, and the low-resistance p-type conduction of the magnesium-doped gallium nitride-based compound semiconductor is performed as a continuous step in the vapor phase growth process of the semiconductor thin film. And at the same time, it is possible to suppress the detachment of the nitrogen element from the surface of the gallium nitride-based compound semiconductor during cooling after the vapor phase growth. It has the effect of.

【0015】請求項2に記載の発明は、請求項1に記載
の発明において、前記基板を冷却する工程において供給
する前記窒素元素を含む原料ガスがアンモニアであるこ
とを特徴とするものであり、気相成長後の冷却時にアン
モニアが高温で分解して窒素元素が供給され、窒化ガリ
ウム系化合物半導体の表面からの窒素元素の離脱を抑制
することができるという作用を有する。
According to a second aspect of the present invention, in the first aspect of the present invention, the source gas containing the nitrogen element supplied in the step of cooling the substrate is ammonia. At the time of cooling after vapor phase growth, ammonia is decomposed at a high temperature to supply a nitrogen element, which has an effect of suppressing the detachment of the nitrogen element from the surface of the gallium nitride-based compound semiconductor.

【0016】請求項3に記載の発明は、請求項1又は2
に記載の発明において、前記マグネシウムをドープした
窒化ガリウム系化合物半導体薄膜の成長温度が600℃
以上であり、前記基板を冷却する工程において前記基板
の温度が400℃以下に下がるまで前記窒素元素を含む
原料ガスを前記反応管内に供給することを特徴とするも
のであり、結晶性の良好な窒化ガリウム系化合物半導体
を形成した後、冷却時に表面の結晶性の劣化を抑制し
て、表面の結晶性を維持することができるという作用を
有する。
The third aspect of the present invention is the first or second aspect.
3. The method according to claim 1, wherein the growth temperature of the magnesium-doped gallium nitride-based compound semiconductor thin film is 600 ° C.
In the step of cooling the substrate, the source gas containing the nitrogen element is supplied into the reaction tube until the temperature of the substrate falls to 400 ° C. or lower, and the crystallinity is excellent. After the gallium nitride-based compound semiconductor is formed, the surface crystallinity can be suppressed from being deteriorated during cooling, and the surface crystallinity can be maintained.

【0017】請求項4に記載の発明は、請求項1ないし
請求項3に記載の発明において、前記基板を冷却する工
程において供給する前記窒素元素を含む原料ガスの前記
雰囲気ガス中における濃度が5%以上で50%以下であ
ることを特徴とするものであり、マグネシウムをドープ
した窒化ガリウム系化合物半導体の表面の結晶性の劣化
を抑制することができるとともに低抵抗なp型伝導とす
ることができるという作用を有する。
According to a fourth aspect of the present invention, in the first to third aspects, the concentration of the source gas containing the nitrogen element supplied in the step of cooling the substrate in the atmosphere gas is 5%. % Or more and not more than 50%, and it is possible to suppress the deterioration of the crystallinity of the surface of the magnesium-doped gallium nitride-based compound semiconductor and to achieve low-resistance p-type conduction. Has the effect of being able to.

【0018】以下に、本発明の実施の形態の具体例を図
面を参照しながら説明する。図1は本発明の一実施の形
態で使用した有機金属気相成長装置の主要部を示す概略
断面図であり、反応管の構造およびその反応管に通じる
ガス系統を示している。
Hereinafter, specific examples of the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing a main part of a metal organic chemical vapor deposition apparatus used in one embodiment of the present invention, showing a structure of a reaction tube and a gas system leading to the reaction tube.

【0019】反応管1の中には、図1に示すように、基
板2の薄膜成長面を下向きに保持する基板ホルダー3が
設置されており、基板ホルダー3に載置された基板2
は、基板ホルダー3とともに発熱体4によって加熱され
る。原料ガスである有機金属化合物ガスは、流量制御器
5c、5dおよび5eによって流量を制御された水素ガ
スからなる副キャリアガスを、それぞれTMG、TM
A、ビスシクロペンタジエニルマグネシウム(以下「C
2Mg」と略称する。)を内包するシリンダー内に導
入しバブリングさせることによって気化されて取り出さ
れる。これらの有機金属化合物ガスは、流量制御器5f
によって流量を制御された窒素元素の原料ガスであるア
ンモニアとともに、流量制御器5a、5bによって流量
を制御された窒素ガスおよび水素ガスの混合ガスからな
る主キャリアガスによって効率良く反応管に供給され、
原料ガスである有機金属化合物ガスとアンモニアが反応
した後、加熱された基板2の表面上に窒化ガリウム系化
合物半導体薄膜が成長形成される。未反応の原料ガスの
残りは主キャリアガスおよび副キャリアガスとともに排
気ガス6として反応管1の外へ排出される。
As shown in FIG. 1, a substrate holder 3 for holding the thin film growth surface of the substrate 2 downward is installed in the reaction tube 1. The substrate 2 placed on the substrate holder 3 is mounted on the substrate holder 3.
Is heated by the heating element 4 together with the substrate holder 3. The organometallic compound gas, which is a raw material gas, is used as a subcarrier gas composed of hydrogen gas whose flow rate is controlled by flow rate controllers 5c, 5d, and 5e, respectively, as TMG, TM
A, biscyclopentadienyl magnesium (hereinafter "C
abbreviated as “p 2 Mg”. ) Is vaporized and taken out by introducing and bubbling into a cylinder containing). These organometallic compound gases are supplied to a flow controller 5f.
Along with ammonia, which is a raw material gas of nitrogen element whose flow rate is controlled by the main carrier gas composed of a mixed gas of nitrogen gas and hydrogen gas whose flow rate is controlled by flow rate controllers 5a and 5b, is efficiently supplied to the reaction tube,
After the reaction between the organometallic compound gas and ammonia, which are the source gases, a gallium nitride-based compound semiconductor thin film is grown and formed on the heated surface of the substrate 2. The remaining unreacted raw material gas is exhausted out of the reaction tube 1 as the exhaust gas 6 together with the main carrier gas and the subcarrier gas.

【0020】次に、p型窒化ガリウム系化合物半導体薄
膜の成長工程について図面を参照しながら説明する。ま
ず、良く洗浄したサファイアからなる基板2を反応管1
の中に基板ホルダー3に載置する。水素ガスを流しなが
ら基板2を1100℃で10分間加熱し、基板2の表面
をクリーニングする。その後、基板温度を600℃にま
で降下させ、600℃において主キャリアガスとして窒
素ガスと、TMAの副キャリアガスと、アンモニアと、
を流しながら、AlNからなるバッファ層を25nmの
膜厚で成長させる。バッファ層には、GaNやAlGa
N、AlInN等を用いることもできる。次に、TMA
の副キャリアガスのみを止めて基板温度を1050℃に
まで上昇させた後、主キャリアガスとして窒素ガスと水
素ガスとからなる混合ガスと、新たにTMGの副キャリ
アガスと、Cp2Mgの副キャリアガスと、を流しなが
ら60分間成長させて、マグネシウムをドープした窒化
ガリウム系化合物半導体薄膜を2μmの膜厚で成長させ
る。成長後、原料ガスであるTMGの副キャリアガスと
Cp2Mgガスの供給を止め、新たに主キャリアガスと
して窒素ガスとアンモニアを雰囲気ガスとして流しなが
ら基板温度を400℃にまで降下させる。基板温度が4
00℃に到達したらアンモニアを止め、雰囲気ガスとし
て窒素ガスのみを流しながら基板温度を室温まで降下さ
せる。そして、室温まで冷却した後、ウェハーを反応管
から取り出す。
Next, the step of growing a p-type gallium nitride based compound semiconductor thin film will be described with reference to the drawings. First, a substrate 2 made of sapphire that has been well cleaned is placed in a reaction tube 1.
Is placed on the substrate holder 3. The substrate 2 is heated at 1100 ° C. for 10 minutes while flowing hydrogen gas to clean the surface of the substrate 2. Thereafter, the substrate temperature is lowered to 600 ° C., and at 600 ° C., a nitrogen gas as a main carrier gas, a sub-carrier gas of TMA, ammonia,
, A buffer layer made of AlN is grown to a thickness of 25 nm. For the buffer layer, GaN or AlGa
N, AlInN or the like can also be used. Next, TMA
After the substrate temperature was raised to 1050 ° C. by stopping only the subcarrier gas of the above, a mixed gas composed of nitrogen gas and hydrogen gas as the main carrier gas, a subcarrier gas of TMG and a sub gas of Cp 2 Mg were newly added. Growth is performed for 60 minutes while flowing a carrier gas to grow a gallium nitride-based compound semiconductor thin film doped with magnesium to a thickness of 2 μm. After the growth, the supply of the TMG sub-carrier gas and the Cp 2 Mg gas, which are the raw material gases, is stopped, and the substrate temperature is lowered to 400 ° C. while newly flowing nitrogen gas and ammonia as atmosphere gases as main carrier gases. Substrate temperature is 4
When the temperature reaches 00 ° C., the ammonia is stopped, and the substrate temperature is lowered to room temperature while flowing only nitrogen gas as an atmospheric gas. After cooling to room temperature, the wafer is taken out of the reaction tube.

【0021】ここで、p型不純物をドープした窒化ガリ
ウム系化合物半導体を成長させた後、実質的に水素を含
まない雰囲気中、400℃以上の温度でアニーリングを
行うというのが従来の技術(上記第1の方法)であっ
た。また、p型不純物をドープした窒化ガリウム系化合
物半導体を成長させた後、温度が室温まで降下する前
に、雰囲気ガスを水素ガス、アンモニア以外の不活性ガ
スに置換するというのが別の従来の技術(上記第2の方
法)であった。
Here, it is a conventional technique that, after growing a gallium nitride-based compound semiconductor doped with a p-type impurity, annealing is performed at a temperature of 400 ° C. or more in an atmosphere containing substantially no hydrogen (see above). First method). Another conventional method is to replace the atmospheric gas with an inert gas other than hydrogen gas and ammonia before growing the temperature to room temperature after growing the gallium nitride compound semiconductor doped with p-type impurities. Technology (the second method described above).

【0022】これらに対し、本発明においては、マグネ
シウムをドープした窒化ガリウム系化合物半導体を成長
させた後、雰囲気ガスとして窒素ガスとアンモニアを流
しながら基板温度を降下させて冷却している。これによ
り、成長後の冷却中に窒化ガリウム系化合物半導体の表
面の結晶性が劣化するのを抑制することができるととも
に、成長後にアニーリング等の処理を必要とすることな
く低抵抗p型伝導化された窒化ガリウム系化合物半導体
が得られる。以下、このことを説明する。
On the other hand, in the present invention, after growing a gallium nitride compound semiconductor doped with magnesium, the substrate is cooled by lowering the substrate temperature while flowing nitrogen gas and ammonia as atmosphere gases. This can prevent the crystallinity of the surface of the gallium nitride-based compound semiconductor from deteriorating during the cooling after the growth, and can realize the low-resistance p-type conductivity without requiring a treatment such as annealing after the growth. Gallium nitride-based compound semiconductor is obtained. Hereinafter, this will be described.

【0023】有機金属気相成長法により窒化ガリウム系
化合物半導体を結晶性良く成長させるためには、基板温
度を600℃以上、好ましくはおよそ900〜1100
℃と非常に高くする必要がある。窒化ガリウム系化合物
半導体を成長させた後、有機金属化合物ガスやアンモニ
ア等の原料ガスを止め、窒素ガス等の不活性ガスに置換
すると、成長終了直後では基板温度は900〜1100
℃と高温であるので、窒化ガリウム系化合物半導体の表
面から窒化ガリウム系化合物半導体の構成元素である窒
素元素が離脱しやすくなる。このため、p型伝導化は達
成されるものの表面の結晶性が劣化しやすくなる。
In order to grow a gallium nitride-based compound semiconductor with good crystallinity by the metal organic chemical vapor deposition method, the substrate temperature should be 600 ° C. or higher, preferably about 900 to 1100.
℃ must be very high. After the growth of the gallium nitride-based compound semiconductor, when the source gas such as the organometallic compound gas or ammonia is stopped and replaced with an inert gas such as nitrogen gas, the substrate temperature becomes 900 to 1100 immediately after the completion of the growth.
Since the temperature is as high as ° C., the nitrogen element which is a constituent element of the gallium nitride-based compound semiconductor is easily released from the surface of the gallium nitride-based compound semiconductor. For this reason, although p-type conductivity is achieved, the crystallinity of the surface tends to deteriorate.

【0024】そこで、本発明者等は、成長後の冷却中の
雰囲気ガスについて種々の検討を行ったところ、窒化ガ
リウム系化合物半導体を成長させた後、有機金属化合物
ガスを止め、雰囲気ガスとして、窒素ガスと窒素元素の
原料ガスであるアンモニアとを供給しながら基板温度を
降下させると、アンモニアが高温で分解して窒素元素が
供給されるので、窒化ガリウム系化合物半導体の表面か
ら窒素元素の離脱を抑制することができ、表面の結晶性
の劣化を抑制することができることを見出した。
Therefore, the present inventors conducted various studies on the atmosphere gas during cooling after the growth. After growing the gallium nitride-based compound semiconductor, the organometallic compound gas was stopped and the atmosphere gas was changed to When the substrate temperature is lowered while supplying nitrogen gas and ammonia which is a source gas of nitrogen element, the ammonia is decomposed at a high temperature and the nitrogen element is supplied, so that the nitrogen element is separated from the surface of the gallium nitride-based compound semiconductor. Has been found to be able to suppress the deterioration of the crystallinity of the surface.

【0025】ここで、窒化ガリウム系化合物半導体から
の窒素元素の離脱は、400℃以上の温度において起こ
りやすい傾向にあるので、雰囲気ガスとしての窒素ガス
とアンモニアの供給は400℃に達するまで行うことが
望ましい。室温に達するまで窒素ガスとアンモニアから
なる雰囲気ガス中で冷却しても良いが、基板温度が40
0℃よりも低くなれば窒素元素の離脱は起こりにくいの
で、反応管からの基板の取り出しの際の安全性を十分確
保するためにアンモニアの供給を止め、窒素ガス等の不
活性ガスを流しながら反応管内の雰囲気ガスを窒素ガス
等に置換して室温まで冷却することもできる。
Here, the desorption of the nitrogen element from the gallium nitride-based compound semiconductor tends to occur at a temperature of 400 ° C. or more. Therefore, supply of nitrogen gas and ammonia as the atmosphere gas should be performed until the temperature reaches 400 ° C. Is desirable. The substrate may be cooled in an atmosphere gas consisting of nitrogen gas and ammonia until it reaches room temperature.
If the temperature is lower than 0 ° C., the separation of the nitrogen element is unlikely to occur. Therefore, in order to sufficiently ensure the safety in taking out the substrate from the reaction tube, stop the supply of ammonia and allow the inert gas such as nitrogen gas to flow. The atmosphere gas in the reaction tube may be replaced with nitrogen gas or the like and cooled to room temperature.

【0026】成長後、基板を冷却する工程において供給
する窒素元素を含む原料ガスの雰囲気ガス中における濃
度は、5%以上で50%以下とすることが望ましい。図
2はマグネシウムをドープした窒化ガリウム系化合物半
導体を成長させた後、基板を冷却する工程において供給
する雰囲気ガス中のアンモニアの濃度を変えた場合に得
られたp型窒化ガリウム系化合物半導体の抵抗率と、表
面に電極を形成したときの接触比抵抗を示している。接
触比抵抗は、金(Au)とニッケル(Ni)とからなる
電極を形成し、TLM法(伝送線路モデル法)により測
定された。窒化ガリウム系化合物半導体の表面の結晶性
が悪くなるにつれ接触比抵抗は増加するため、接触比抵
抗が小さいほど表面の結晶性が良好に保たれていること
を示す。
After the growth, the concentration of the source gas containing the nitrogen element supplied in the step of cooling the substrate in the atmosphere gas is desirably 5% or more and 50% or less. FIG. 2 shows the resistance of the p-type gallium nitride-based compound semiconductor obtained when the concentration of ammonia in the atmosphere gas supplied in the step of cooling the substrate after the growth of the gallium nitride-based compound semiconductor doped with magnesium was changed. 2 shows the ratio and the specific contact resistance when an electrode is formed on the surface. The contact specific resistance was measured by forming an electrode made of gold (Au) and nickel (Ni) and using a TLM method (transmission line model method). Since the contact specific resistance increases as the crystallinity of the surface of the gallium nitride-based compound semiconductor deteriorates, the smaller the contact specific resistance, the better the crystallinity of the surface is maintained.

【0027】図2に示すように、冷却工程における雰囲
気ガスを窒素ガスのみとした場合、抵抗率は低くなるが
表面の結晶性が悪いために接触比抵抗は高くなる。窒素
ガスとアンモニアとを含む雰囲気ガスを用いると、抵抗
率は低くなるとともに表面の結晶性が良くなる傾向にあ
り、このため接触比抵抗は低くなる。しかしながら、雰
囲気ガス中におけるアンモニアの濃度がおよそ50%を
超えると、表面の結晶性が悪くなるため接触抵抗が高く
なり、抵抗率も高くなる傾向にある。
As shown in FIG. 2, when only nitrogen gas is used as the atmosphere gas in the cooling step, the resistivity decreases but the contact resistivity increases due to poor surface crystallinity. When an atmosphere gas containing nitrogen gas and ammonia is used, the resistivity tends to be low and the crystallinity of the surface tends to be good, so that the contact specific resistance is low. However, when the concentration of ammonia in the atmospheric gas exceeds about 50%, the crystallinity of the surface deteriorates, so that the contact resistance tends to increase and the resistivity tends to increase.

【0028】冷却工程における雰囲気ガスを窒素ガスと
アンモニアとを含む構成とすることにより表面の結晶性
が良好に保たれるのは、以下の理由によるものと考えら
れる。すなわち、雰囲気ガスを窒素ガスのみとした場
合、マグネシウムをドープした窒化ガリウム系化合物半
導体の中のマグネシウムと結合した水素が追い出されp
型伝導化するが、成長終了後の基板温度はまだ高温であ
るため表面から窒素元素が離脱しやすい。このため、冷
却中に表面から窒素元素が離脱し結晶性が悪くなる。こ
こで、窒素ガスにアンモニアを加えた雰囲気ガスとする
と、アンモニアが分解して窒素元素が供給されるので、
表面からの窒素元素の離脱が抑制され表面の結晶性が良
好に保たれる。この場合、アンモニアが分解して水素元
素も供給されるが、表面の結晶性が良好であるために窒
化ガリウム系化合物半導体中に拡散侵入するのが抑制さ
れているものと思われる。しかしながら、さらに雰囲気
ガス中におけるアンモニアの濃度を増加させていくと、
アンモニアが分解して供給される水素の量が過多とな
り、窒化ガリウム系化合物半導体の中へ拡散侵入しマグ
ネシウムと結合して不活性化され、抵抗率が高くなる。
The reason why the crystallinity of the surface is kept good when the atmosphere gas in the cooling step contains nitrogen gas and ammonia is considered to be as follows. That is, when only the nitrogen gas is used as the atmosphere gas, hydrogen bonded to magnesium in the magnesium-doped gallium nitride-based compound semiconductor is expelled and p
Although the substrate becomes conductive in the mold, the nitrogen element is easily released from the surface because the substrate temperature after the growth is still high. For this reason, the nitrogen element is released from the surface during cooling, and the crystallinity is deteriorated. Here, if the atmosphere gas is obtained by adding ammonia to nitrogen gas, since ammonia is decomposed and the nitrogen element is supplied,
Desorption of the nitrogen element from the surface is suppressed, and the crystallinity of the surface is kept good. In this case, although the ammonia is decomposed and the hydrogen element is also supplied, it is considered that the diffusion into the gallium nitride-based compound semiconductor is suppressed due to the good crystallinity of the surface. However, when the concentration of ammonia in the atmosphere gas is further increased,
Ammonia decomposes and the amount of supplied hydrogen becomes excessive, diffuses into the gallium nitride-based compound semiconductor, couples with magnesium, is inactivated, and increases the resistivity.

【0029】なお、窒素ガスとアンモニアに加えて、水
素ガスを微量含む場合でも同様の効果が得られることが
わかった。例えば、水素ガスの濃度が5%未満の場合で
は、表面の結晶性を劣化させることなく低抵抗p型伝導
化することが可能である。
It has been found that a similar effect can be obtained even when a small amount of hydrogen gas is contained in addition to nitrogen gas and ammonia. For example, when the concentration of the hydrogen gas is less than 5%, low-resistance p-type conduction can be achieved without deteriorating the crystallinity of the surface.

【0030】[0030]

【実施例】以下、本発明のp型窒化ガリウム系化合物半
導体の製造方法の実施例について図面を参照しながら説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for producing a p-type gallium nitride compound semiconductor according to the present invention will be described below with reference to the drawings.

【0031】まず、良く洗浄したサファイアからなる基
板2を反応管1の中に基板ホルダー3に載置する。水素
ガスを流しながら基板2を1100℃で10分間加熱
し、基板2の表面をクリーニングする。その後、基板温
度を600℃にまで降下させ、600℃において主キャ
リアガスとして窒素ガスを10リットル/分、TMAを
含むTMAの副キャリアガスを20cc/分、アンモニ
アを5リットルで流しながら、AlNからなるバッファ
層を25nmの膜厚で成長させる。次に、TMAの副キ
ャリアガスのみを止めて基板温度を1050℃にまで上
昇させた後、主キャリアガスとして窒素ガスを9リット
ル/分、水素ガスを0.90リットル/分で流し、新た
にTMG用の副キャリアガスを4cc/分、Cp2Mg
用の副キャリアガスを100cc/分で流しながら60
分間成長させて、マグネシウムをドープした窒化ガリウ
ム系化合物半導体薄膜を2μmの膜厚で成長させる。成
長後、原料ガスであるTMGの副キャリアガスとCp2
Mgガスの供給を止め、新たに雰囲気ガスとして窒素ガ
スを7リットル/分、アンモニアを3リットル/分で流
しながら基板温度を400℃にまで降下させる。基板温
度が400℃に到達したらアンモニアを止め、雰囲気ガ
スとして窒素ガスのみを流しながら基板温度を室温まで
降下させる。そして、室温まで冷却した後、ウェハーを
反応管から取り出す。
First, a substrate 2 made of sapphire that has been thoroughly cleaned is placed on a substrate holder 3 in a reaction tube 1. The substrate 2 is heated at 1100 ° C. for 10 minutes while flowing hydrogen gas to clean the surface of the substrate 2. Thereafter, the substrate temperature was lowered to 600 ° C., and at 600 ° C., nitrogen gas was used as a main carrier gas at a rate of 10 liters / minute, TMA containing a subcarrier gas containing TMA at 20 cc / minute, and ammonia at a rate of 5 liters. A buffer layer having a thickness of 25 nm is grown. Next, after stopping only the sub-carrier gas of TMA and raising the substrate temperature to 1050 ° C., nitrogen gas as a main carrier gas was flowed at 9 L / min and hydrogen gas was flowed at 0.90 L / min. 4 cc / min of the subcarrier gas for TMG, Cp 2 Mg
While flowing the auxiliary carrier gas at 100 cc / min.
Then, a gallium nitride-based compound semiconductor thin film doped with magnesium is grown to a thickness of 2 μm. After the growth, the subcarrier gas of TMG, which is the source gas, and Cp 2
The supply of the Mg gas is stopped, and the substrate temperature is lowered to 400 ° C. while flowing nitrogen gas as a new atmosphere gas at 7 L / min and ammonia at 3 L / min. When the substrate temperature reaches 400 ° C., ammonia is stopped, and the substrate temperature is lowered to room temperature while flowing only nitrogen gas as an atmospheric gas. After cooling to room temperature, the wafer is taken out of the reaction tube.

【0032】このウェハーから5mm角の試料を切り出
し、ホール効果測定によりマグネシウムをドープした窒
化ガリウム系化合物半導体薄膜の抵抗率を測定したとこ
ろ、2.1Ωcmと低い値が得られた。
A 5 mm square sample was cut out from the wafer, and the resistivity of the magnesium-doped gallium nitride-based compound semiconductor thin film was measured by the Hall effect measurement. As a result, a low value of 2.1 Ωcm was obtained.

【0033】さらに、残りのウェハーを用いて、電子ビ
ーム蒸着法により窒化ガリウム系化合物半導体薄膜の表
面にNiを10nmの膜厚で蒸着し、続いてAuを0.
1μmの膜厚で蒸着した後、フォトリソグラフィと反応
性イオンエッチング法によりTLMパターンを形成し
た。TLM法により接触比抵抗を測定したところ、0.
01Ωcm2と低い値が得られた。
Further, using the remaining wafer, Ni is vapor-deposited to a thickness of 10 nm on the surface of the gallium nitride-based compound semiconductor thin film by an electron beam vapor deposition method.
After vapor deposition with a thickness of 1 μm, a TLM pattern was formed by photolithography and reactive ion etching. When the contact specific resistance was measured by the TLM method, it was found that the specific resistance was 0.1.
A value as low as 01 Ωcm 2 was obtained.

【0034】[0034]

【発明の効果】請求項1に記載の発明によれば、マグネ
シウムをドープした窒化ガリウム系化合物半導体の低抵
抗p型伝導化を、半導体薄膜の気相成長プロセスの中の
連続した一工程として行うことができるとともに、気相
成長後の冷却時に窒化ガリウム系化合物半導体の表面か
らの窒素元素の離脱を抑制することができるので、窒化
ガリウム系化合物半導体の表面の結晶性を良好に保った
まま低抵抗p型伝導化することができ、発光素子の素子
特性を改善することができる。
According to the first aspect of the present invention, the low-resistance p-type conduction of the magnesium-doped gallium nitride-based compound semiconductor is performed as one continuous step in the vapor phase growth process of the semiconductor thin film. And at the same time, it is possible to suppress the detachment of the nitrogen element from the surface of the gallium nitride-based compound semiconductor during cooling after the vapor phase growth. Resistance can be changed to p-type conductivity, so that device characteristics of the light-emitting device can be improved.

【0035】請求項2に記載の発明によれば、気相成長
後の冷却時に窒化ガリウム系化合物半導体の表面からの
窒素元素の離脱を抑制できるので、表面の結晶性を良好
に保つことができ、電極の接触比抵抗を低減することが
できる。
According to the second aspect of the invention, it is possible to suppress the detachment of the nitrogen element from the surface of the gallium nitride-based compound semiconductor during cooling after the vapor phase growth, so that the crystallinity of the surface can be maintained well. In addition, the contact specific resistance of the electrode can be reduced.

【0036】請求項3に記載の発明によれば、結晶性の
良好な窒化ガリウム系化合物半導体を形成した後、冷却
時に表面の結晶性の劣化を抑制することができるので、
表面の結晶性を維持できるとともに製造工程の簡素化が
可能となる。
According to the third aspect of the present invention, after forming a gallium nitride-based compound semiconductor having good crystallinity, deterioration of the crystallinity of the surface during cooling can be suppressed.
The crystallinity of the surface can be maintained, and the manufacturing process can be simplified.

【0037】請求項4の記載の発明によれば、マグネシ
ウムをドープした窒化ガリウム系化合物半導体の表面の
結晶性の劣化を抑制することができるとともに低抵抗な
p型伝導とすることができるので、表面の結晶性をさら
に一層良好に維持した低抵抗なp型窒化ガリウム系化合
物半導体を得ることができる。
According to the fourth aspect of the present invention, it is possible to suppress the deterioration of the crystallinity of the surface of the gallium nitride-based compound semiconductor doped with magnesium and to achieve low-resistance p-type conduction. A low-resistance p-type gallium nitride-based compound semiconductor with further improved surface crystallinity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態で使用した有機金属気相
成長装置の主要部を示す概略断面図
FIG. 1 is a schematic sectional view showing a main part of a metal organic chemical vapor deposition apparatus used in an embodiment of the present invention.

【図2】冷却工程における雰囲気ガス中のアンモニアの
濃度を変えたときのp型窒化ガリウム系化合物半導体の
抵抗率と、電極の接触比抵抗の関係を示す図
FIG. 2 is a diagram showing the relationship between the resistivity of a p-type gallium nitride-based compound semiconductor and the contact specific resistance of an electrode when the concentration of ammonia in an atmosphere gas is changed in a cooling step.

【符号の説明】[Explanation of symbols]

1 反応管 2 基板 3 基板ホルダー 4 発熱体 5a,5b,5c,5d,5e,5f 流量制御器 6 排気ガス DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Substrate 3 Substrate holder 4 Heating element 5a, 5b, 5c, 5d, 5e, 5f Flow controller 6 Exhaust gas

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】気相成長法により、少なくともガリウム元
素を含む原料ガスと、窒素元素を含む原料ガスと、マグ
ネシウム元素を含む原料ガスとを反応管へ輸送し、前記
反応管内に設置され加熱された基板上にマグネシウムを
ドープした窒化ガリウム系化合物半導体薄膜を成長させ
た後、前記反応管内で少なくとも前記窒素元素を含む原
料ガスと窒素ガスとを供給した雰囲気ガス中で前記基板
を冷却することを特徴とするp型窒化ガリウム系化合物
半導体の製造方法。
A source gas containing at least a gallium element, a source gas containing a nitrogen element, and a source gas containing a magnesium element are transported to a reaction tube by a vapor phase growth method, and placed in the reaction tube and heated. After growing a gallium nitride-based compound semiconductor thin film doped with magnesium on the substrate, the substrate is cooled in an atmosphere gas supplied with a source gas containing at least the nitrogen element and a nitrogen gas in the reaction tube. A method for producing a p-type gallium nitride-based compound semiconductor.
【請求項2】前記基板を冷却する工程において供給する
前記窒素元素を含む原料ガスがアンモニアであることを
特徴とする請求項1に記載のp型窒化ガリウム系化合物
半導体の製造方法。
2. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 1, wherein the source gas containing the nitrogen element supplied in the step of cooling the substrate is ammonia.
【請求項3】前記マグネシウムをドープした窒化ガリウ
ム系化合物半導体薄膜の成長温度が600℃以上であ
り、前記基板を冷却する工程において前記基板の温度が
400℃以下に下がるまで前記窒素元素を含む原料ガス
を前記反応管内に供給することを特徴とする請求項1又
は2に記載のp型窒化ガリウム系化合物半導体の製造方
法。
3. A raw material containing the nitrogen element until the growth temperature of the magnesium-doped gallium nitride-based compound semiconductor thin film is 600 ° C. or more and the temperature of the substrate drops to 400 ° C. or less in the step of cooling the substrate. The method for producing a p-type gallium nitride-based compound semiconductor according to claim 1, wherein a gas is supplied into the reaction tube.
【請求項4】前記基板を冷却する工程において供給する
前記窒素元素を含む原料ガスの前記雰囲気ガス中におけ
る濃度が5%以上で50%以下であることを特徴とする
請求項1ないし3に記載のp型窒化ガリウム系化合物半
導体の製造方法。
4. The method according to claim 1, wherein the concentration of the source gas containing the nitrogen element supplied in the step of cooling the substrate in the atmosphere gas is 5% or more and 50% or less. Production method of a p-type gallium nitride-based compound semiconductor.
JP19002998A 1998-04-01 1998-07-06 Manufacture of p-type gallium nitride based compound semiconductor Pending JPH11346002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19002998A JPH11346002A (en) 1998-04-01 1998-07-06 Manufacture of p-type gallium nitride based compound semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-88484 1998-04-01
JP8848498 1998-04-01
JP19002998A JPH11346002A (en) 1998-04-01 1998-07-06 Manufacture of p-type gallium nitride based compound semiconductor

Publications (1)

Publication Number Publication Date
JPH11346002A true JPH11346002A (en) 1999-12-14

Family

ID=26429848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19002998A Pending JPH11346002A (en) 1998-04-01 1998-07-06 Manufacture of p-type gallium nitride based compound semiconductor

Country Status (1)

Country Link
JP (1) JPH11346002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522889A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
JP2006229219A (en) * 2004-05-12 2006-08-31 Showa Denko Kk P-type group iii nitride semiconductor and production method thereof
JP2008160137A (en) * 2000-03-02 2008-07-10 Ricoh Co Ltd Group iii nitride semiconductor, method for manufacturing same and semiconductor device using same
JP2009545140A (en) * 2006-07-27 2009-12-17 アイメック Growth of single crystal GeN on a substrate
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160137A (en) * 2000-03-02 2008-07-10 Ricoh Co Ltd Group iii nitride semiconductor, method for manufacturing same and semiconductor device using same
JP2005522889A (en) * 2002-04-15 2005-07-28 ザ リージェント オブ ザ ユニバーシティ オブ カリフォルニア Nonpolar a-plane gallium nitride thin films grown by metal / organic chemical vapor deposition
KR100992960B1 (en) * 2002-04-15 2010-11-09 더 리전츠 오브 더 유니버시티 오브 캘리포니아 Non-polar A-plane Gallium Nitride Thin Films Grown by Metalorganic Chemical Vapor Deposition
US7982208B2 (en) 2002-04-15 2011-07-19 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US8188458B2 (en) 2002-04-15 2012-05-29 The Regents Of The University Of California Non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices
US9039834B2 (en) 2002-04-15 2015-05-26 The Regents Of The University Of California Non-polar gallium nitride thin films grown by metalorganic chemical vapor deposition
JP2006229219A (en) * 2004-05-12 2006-08-31 Showa Denko Kk P-type group iii nitride semiconductor and production method thereof
US7956360B2 (en) 2004-06-03 2011-06-07 The Regents Of The University Of California Growth of planar reduced dislocation density M-plane gallium nitride by hydride vapor phase epitaxy
JP2009545140A (en) * 2006-07-27 2009-12-17 アイメック Growth of single crystal GeN on a substrate

Similar Documents

Publication Publication Date Title
US5656832A (en) Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JP2001342100A (en) Manufacturing method of substrate for epitaxial growth and manufacturing method of semiconductor device using substrate for this epitaxial growth
JP5072397B2 (en) Gallium nitride compound semiconductor light emitting device and method of manufacturing the same
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
KR100806262B1 (en) Method for manufacturing p-type group iii nitride semiconductor, and group iii niride semiconductor light-emitting device
US6248607B1 (en) Method for manufacturing semiconductor light emitting device
JPH08148718A (en) Compound semiconductor device
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JPH11177134A (en) Manufacture of semiconductor element, semiconductor, manufacture of light emitting element, and light emitting element
TWI295513B (en) Gallium nitride-based semiconductor device
JP2919788B2 (en) Semiconductor device, method of manufacturing semiconductor device, and method of growing gallium nitride based semiconductor
US20070015306A1 (en) Manufacturing method of P type group III nitride semiconductor layer and light emitting device
JP3497790B2 (en) Method for manufacturing p-type gallium nitride based semiconductor and light emitting device using p-type gallium nitride based semiconductor
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP3522610B2 (en) Method for manufacturing p-type nitride semiconductor
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JPH08274372A (en) Group iii nitride semiconductor light emitting element
JPH11346002A (en) Manufacture of p-type gallium nitride based compound semiconductor
JP3776538B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4705384B2 (en) Gallium nitride semiconductor device
JP2007288052A (en) Method of manufacturing group-iii nitride semiconductor light-emitting element
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
JP2002208732A (en) Compound semiconductor device
JP3785059B2 (en) Manufacturing method of nitride semiconductor
JPH11186605A (en) Electrode forming method of gallium nitride based compound semiconductor and manufacture of element