JPH11329476A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH11329476A
JPH11329476A JP10140549A JP14054998A JPH11329476A JP H11329476 A JPH11329476 A JP H11329476A JP 10140549 A JP10140549 A JP 10140549A JP 14054998 A JP14054998 A JP 14054998A JP H11329476 A JPH11329476 A JP H11329476A
Authority
JP
Japan
Prior art keywords
carbon
specific gravity
lead
life performance
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10140549A
Other languages
Japanese (ja)
Inventor
Makoto Hisai
久井  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10140549A priority Critical patent/JPH11329476A/en
Publication of JPH11329476A publication Critical patent/JPH11329476A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a cycle life performance under the condition of hardly attaining a perfect charging without loosing the output characteristic by adding carbon in a specified ratio to the negative electrode active material of a sealed battery having a specified electrolyte specific gravity in a perfectly charging state. SOLUTION: To the negative electrode active material of a sealed lead-acid battery having an electrolyte specific gravity in perfectly charging state of 1.33-1.40 (20 deg.C), 0.5 wt.%-3.0 wt.% of carbon is added. According to this, extremely satisfactory life performance can be provided, and particularly, in the area where the addition quantity of carbon is 1 wt.%, life performance of 90,000-100,000 cycles is exhibited. When the electrolyte specific gravity is increased, the solubility of lead in discharge can be reduced, whereby the particle of lead sulfate that is the discharge product can be suppressed small to make the conductive network by addition of carbon close, so that an active state where the conductivity possessed by carbon is easily exhibited can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉形鉛蓄電池の負
極板の改良に関するもので、特に出力特性を損なうこと
なく、完全に充電することがほとんどない使用条件下で
のサイクル寿命性能を向上させることを目的とするもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a negative electrode plate of a sealed lead-acid battery, and more particularly to an improvement in cycle life performance under a use condition in which a battery is hardly completely charged without deteriorating output characteristics. The purpose is to do so.

【0002】[0002]

【従来の技術】近年、密閉形鉛蓄電池は、電気自動車用
途だけでなく、エンジンとモーターとを併用したハイブ
リッド電気自動車用途としても急速に適用範囲が拡大し
ている。後者の中には、別段の充電器で充電を一切行わ
ないシステムの電気自動車も開発されており、このよう
な用途では、車全体のエネルギー効率を向上させるた
め、制動時やアクセルオフ時等に発生するエネルギーを
回生エネルギーとして電池に蓄える技術、すなわち蓄電
池の回生充電効率の向上がますます電池設計のポイント
となっている。
2. Description of the Related Art In recent years, the application range of a sealed lead-acid battery has been rapidly expanding not only for electric vehicles but also for hybrid electric vehicles using both an engine and a motor. Among the latter, electric vehicles with a system that does not charge at all with a separate charger have also been developed.In such applications, in order to improve the energy efficiency of the entire vehicle, it is necessary to use it during braking or accelerator off. Technology for storing generated energy as regenerative energy in a battery, that is, improvement in regenerative charging efficiency of a storage battery has become an increasingly important point in battery design.

【0003】回生充電は、通常走行においては数秒から
数十秒という短時間であり、できるだけこの間に加速時
に生成した硫酸鉛を効率よく還元し続けてやることが蓄
電池の寿命性能向上のカギを握っている。
[0003] Regenerative charging is a short time of several seconds to several tens of seconds during normal running, and the key to improving the life performance of a storage battery is to continue to efficiently reduce the lead sulfate generated during acceleration as much as possible during this time. ing.

【0004】しかし、一般に鉛蓄電池は他の二次電池に
比べ大電流での充電効率が低く、放電生成物である硫酸
鉛が徐々に蓄積するのが現状である。また、これらの用
途では自動車始動用とは違って、通常、不完全な充電状
態下で使用されるため、放電生成物である硫酸鉛が、充
電によって容易に元に戻すことができない不活性な硫酸
鉛へと結晶形態が変化しやすく、充電効率の低い電池に
おいては、より一層硫酸鉛を解消しにくく、寿命性能の
飛躍的向上を望めなかった。
However, lead storage batteries generally have lower charging efficiency at large currents than other secondary batteries, and at present, lead sulfate, which is a discharge product, gradually accumulates. In addition, unlike those used for starting automobiles, these applications are usually used under an imperfectly charged state, so that lead sulfate, which is a discharge product, is an inert substance that cannot be easily restored by charging. In a battery in which the crystal form is easily changed to lead sulfate and the charging efficiency is low, it is more difficult to eliminate lead sulfate, and a dramatic improvement in life performance could not be expected.

【0005】一般的に、鉛蓄電池は電解液比重が低いほ
ど充電反応が起こりやすいことが知られており、回生充
電効率が電池の寿命性能を大きく左右するような完全に
充電することがほとんどない使用条件下では、電解液比
重を下げる方法が採られている。一般的には、1.27
近辺の電解液比重が用いられている。電解液の低比重化
により、回生充電効率が向上し、高比重電解液の場合に
比べて負極板への硫酸鉛の蓄積速度をかなり抑えられる
ため、完全に充電することがほとんどない使用条件下で
のサイクル寿命性能を向上させることが可能であった。
In general, it is known that a lead storage battery is more likely to cause a charging reaction as the specific gravity of the electrolyte is lower, and there is almost no complete recharging in which the regenerative charging efficiency greatly affects the life performance of the battery. Under use conditions, a method of lowering the specific gravity of the electrolytic solution has been adopted. Generally, 1.27
A nearby electrolyte specific gravity is used. Reducing the specific gravity of the electrolyte improves the regenerative charging efficiency, and significantly reduces the rate of accumulation of lead sulfate on the negative electrode plate compared to the case of a high specific gravity electrolyte. Cycle life performance was improved.

【0006】[0006]

【発明が解決しようとする課題】しかし、飛躍的な寿命
性能の向上には至っておらず、また、電解液の低比重化
によって放電時の電圧特性、特に大電流放電特性や出力
特性を犠牲にしているために、高出力という点において
は課題が残っていた。
However, the life performance has not been dramatically improved, and the voltage characteristics at the time of discharge, particularly large current discharge characteristics and output characteristics, are sacrificed due to the low specific gravity of the electrolyte. Therefore, there remains a problem in terms of high output.

【0007】本発明は、出力特性を損なうことなく、ハ
イブリッド電気自動車用途などの完全に充電することが
ほとんどない使用条件下でのサイクル寿命性能の向上を
図るものである。
An object of the present invention is to improve the cycle life performance under a use condition in which a battery is hardly completely charged, such as a hybrid electric vehicle, without impairing output characteristics.

【0008】[0008]

【課題を解決するための手段】本発明密閉形鉛蓄電池
は、大電流放電特性や出力密度特性が良好である電解液
比重の高い領域、具体的には、完全充電状態での電解液
比重が1.33〜1.40(20℃)の密閉形鉛蓄電池
であって、負極活物質中にカーボンを0.5wt%〜
3.0wt%添加したことを特徴とする。
SUMMARY OF THE INVENTION The sealed lead-acid battery according to the present invention has a high specific gravity in a region where the specific gravity of the electrolytic solution is good, in which the large current discharge characteristics and the output density characteristics are good. A sealed lead-acid battery having a capacity of 1.33 to 1.40 (20 ° C.), wherein 0.5 wt% of carbon is contained in a negative electrode active material.
It is characterized by adding 3.0 wt%.

【0009】[0009]

【発明の実施の形態】大電流放電特性や出力特性を損な
うことなく完全に充電することがほとんどない使用条件
下でのサイクル寿命性能を向上できないかと実験を重ね
た結果、従来から充電効率が電池の寿命性能を大きく左
右するような用途では、致命的であると考えられていた
電解液比重の高い領域、具体的には完全充電状態での電
解液比重が1.33〜1.40(20℃)の領域の密閉
形鉛蓄電池において、カーボンを負極活物質中に添加す
ることによって著しく寿命性能を向上できることを見出
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of repeated experiments, it was found that the cycle life performance under use conditions under which the battery was hardly completely charged without deteriorating large current discharge characteristics and output characteristics could be improved. In applications that greatly affect the life performance of a battery, a region having a high electrolyte specific gravity, which is considered to be fatal, specifically, an electrolyte specific gravity in a fully charged state of 1.33 to 1.40 (20) It has been found that, in a sealed lead-acid battery in the region of (° C.), the life performance can be significantly improved by adding carbon to the negative electrode active material.

【0010】これは、電解液比重を高くすることにより
放電時の鉛の溶解度が低くなるため、放電生成物である
硫酸鉛の粒子を非常に小さく抑えられること、生成した
硫酸鉛の粒子が小さく細かいほどカーボン添加による導
電性のネットワークが密なものになり、カーボンがもつ
導電性効果を素早く如何なく発揮できるようになること
の相乗効果によるものと考えられる。これにより電気自
動車用途、特に、エンジンとモーターとを併用したハイ
ブリッド電気自動車用途に対して高性能な密閉形鉛蓄電
池を提供することが可能となった。
[0010] This is because, by increasing the specific gravity of the electrolyte, the solubility of lead at the time of discharge decreases, so that the particles of lead sulfate, which is a discharge product, can be kept very small. This is considered to be due to a synergistic effect that the finer the finer the conductive network due to the addition of carbon becomes, the more quickly the conductive effect of carbon can be exhibited. As a result, it has become possible to provide a high-performance sealed lead-acid battery for electric vehicles, particularly for hybrid electric vehicles using both an engine and a motor.

【0011】[0011]

【実施例】以下に本発明の一実施例につき説明する。An embodiment of the present invention will be described below.

【0012】常法により得られた鉛粉に各添加量のカー
ボン粉末およびその他のバリウム等の公知の添加剤を共
に添加し、十分に混合した後、所定量の希硫酸と練膏
し、負極ペーストを作製し、負極板A〜Hを得た。な
お、カーボン粉末としては、見掛密度0.1〜0.3g
/cc,比表面積55〜65m2 /gのアセチレンブラ
ックを用いた。これらの負極板と公知の方法によって作
製した正極板およびガラスセパレータを用いて、完全充
電状態での電解液比重が1.27〜1.40(20℃換
算値)の、3hR容量13〜16Ah(2V)のリテー
ナ式密閉形鉛蓄電池を通常の製法に従って製作した。各
電池の負極活物質へのカーボン添加量および完全充電状
態での電解液比重を表1に示す。
[0012] Each amount of carbon powder and other known additives such as barium are added together to the lead powder obtained by a conventional method, mixed well, and then mixed with a predetermined amount of dilute sulfuric acid to form a negative electrode. A paste was prepared, and negative plates A to H were obtained. The carbon powder has an apparent density of 0.1 to 0.3 g.
/ Cc and acetylene black having a specific surface area of 55 to 65 m 2 / g were used. Using these negative electrode plates, a positive electrode plate and a glass separator manufactured by a known method, the electrolyte has a specific gravity of 1.27 to 1.40 (converted value at 20 ° C.) in a fully charged state, and a 3 hR capacity of 13 to 16 Ah ( 2V) A retainer-type sealed lead-acid battery was manufactured according to a normal manufacturing method. Table 1 shows the amount of carbon added to the negative electrode active material of each battery and the specific gravity of the electrolyte in a fully charged state.

【0013】[0013]

【表1】 本発明技術への効果の期待は、特に、完全に充電するこ
とがほとんどない使用条件下で電池が使用されるエンジ
ンとモーターとを併用したハイブリッド形電気自動車用
途であり、本用途では、電池容量(エネルギー密度)よ
りも出力密度の方がより重要な性能項目であると考えら
れるため、電池性能の評価は出力密度により行った。
[Table 1] The expectation of the effect of the technology of the present invention is particularly for hybrid electric vehicles using an engine and a motor in which the battery is used under a use condition in which the battery is rarely fully charged. Since the output density is considered to be a more important performance item than (energy density), the battery performance was evaluated based on the output density.

【0014】まずこれらの電池の放電深度50%での出
力密度を測定した。なお、測定は、日本電動車両協会制
定のJEVS D 703の規定に従って行った。その
結果を図1に示す。カーボンの添加量に関わらず、電解
液比重の増加に伴って、出力密度は増加しており、電解
液比重が1.33(20℃)よりも低い領域では出力密
度の低下が大きくなる傾向があった。
First, the output densities of these batteries at a discharge depth of 50% were measured. The measurement was performed in accordance with the rules of JEVS D 703 established by the Japan Electric Vehicle Association. The result is shown in FIG. Regardless of the amount of carbon added, the output density increases with an increase in the specific gravity of the electrolytic solution. In a region where the specific gravity of the electrolytic solution is lower than 1.33 (20 ° C.), the decrease in the output density tends to increase. there were.

【0015】次に、同じ容量すなわち同一電解液比重の
電池をシリーズに接続して、3C3Aの充放電を5秒間
ずつ繰り返す寿命試験を25℃中でそれぞれ実施した。
寿命試験中5000サイクル毎に初期と同様の方法でS
OC50%での出力密度を測定し、出力密度が初期のそ
れの50%以下となった時点を寿命と判定した。電解液
比重と寿命サイクル数との関係を図2に示す。
Next, batteries having the same capacity, that is, the same specific gravity of the electrolytic solution were connected to the series, and a life test in which charging and discharging of 3C 3 A were repeated for 5 seconds each was performed at 25 ° C.
S every 5,000 cycles during the life test in the same manner as the initial
The output density at an OC of 50% was measured, and the point in time when the output density became 50% or less of the initial value was determined as the life. FIG. 2 shows the relationship between the specific gravity of the electrolyte and the number of life cycles.

【0016】完全充電状態での電解液比重が1.33以
上で、かつ負極活物質中にカーボンを0.5wt%以上
3wt%以下添加した電池(D−4〜6、E−4〜6、
F−4〜6、G−4〜6)は、電解液比重が1.33未
満の電池(A−系列、B−系列、C−系列)に比べ、極
めて良好な寿命性能を示した。特に、カーボンの添加量
が1wt%以上の領域では、9〜10万サイクルの寿命
性能を示しており、電解液比重が低い電池(電解液比重
1.33未満)の約1.5倍の寿命性能を示した。
Batteries having a specific gravity of the electrolytic solution of 1.33 or more in a fully charged state and containing carbon in the negative electrode active material in an amount of 0.5 wt% to 3 wt% (D-4 to 6, E-4 to 6,
F-4 to 6 and G-4 to 6) showed extremely good life performance as compared to batteries (A-series, B-series, C-series) having an electrolyte specific gravity of less than 1.33. In particular, in the region where the amount of carbon added is 1 wt% or more, the life performance of 90,000 to 100,000 cycles is exhibited, and the life of the battery having a low specific gravity of electrolyte (less than 1.33 of specific gravity of electrolyte) is about 1.5 times as long. Performance was shown.

【0017】これは、電解液比重を従来から用いられて
いる範囲よりも高くすることにより、放電時の鉛の溶解
度が低くし、そのことにより放電生成物である硫酸鉛の
粒子を小さく抑えられ、硫酸鉛の粒子が小さいことによ
ってカーボン添加による導電性のネットワークが密なも
のになったために、カーボンのもつ導電性を発揮しやす
い活物質状態になったと考えられる。
This is because by increasing the specific gravity of the electrolytic solution higher than the conventionally used range, the solubility of lead at the time of discharge is lowered, and as a result, the particles of lead sulfate, which is a discharge product, can be kept small. It is considered that the conductive network formed by the addition of carbon became dense due to the small size of the lead sulfate particles, and the active material state became easy to exhibit the conductivity of carbon.

【0018】カーボンの添加量が少ない領域(0.5w
t%未満)においては、カーボン添加による効果は少な
かったが、カーボンの絶対量が少ないために、いま一つ
密な導電性ネットワークが形成できなかったためと考え
られる。電解液比重が低い電池においては、カーボン添
加の効果はその添加量の多少にかかわらず小さかった。
これは低比重のため生成する硫酸鉛の粒子が大きく、高
比重の場合のようには導電性ネットワークが上手く形成
できなかったと考えられる。
The region where the amount of added carbon is small (0.5 w
(less than t%), the effect of the addition of carbon was small, but it is considered that a dense conductive network could not be formed because the absolute amount of carbon was small. In the battery having a low specific gravity of the electrolyte, the effect of carbon addition was small irrespective of the addition amount.
This is presumably because the particles of lead sulfate generated were large due to the low specific gravity, and the conductive network could not be formed well as in the case of the high specific gravity.

【0019】さらにカーボンの添加量を3wt%を超え
る領域にまで増やすことによって、同様の効果が得られ
たが、3wt%を超える量のカーボンを活物質中へ添加
することは、負極活物質量の減少やペースト充填性能の
低下等の問題が発生するため実用的ではないため、添加
量の上限は3wt%が望ましい。また、予備検討の結
果、1.40を超える領域での電解液比重では、正極活
物質や正極格子等に悪影響を及ぼし、本発明による効果
が十分に生かされず、別の要因によって寿命性能が制限
されたため、電解液比重の上限を1.40にとどめた。
The same effect was obtained by further increasing the amount of carbon added to a region exceeding 3 wt%. However, adding carbon in an amount exceeding 3 wt% to the active material requires only a small amount of the negative electrode active material. Therefore, it is not practical because problems such as a decrease in the amount of paste and a decrease in the paste filling performance occur. In addition, as a result of the preliminary study, if the specific gravity of the electrolytic solution exceeds 1.40, the positive electrode active material and the positive electrode grid will be adversely affected, the effect of the present invention will not be fully utilized, and the life performance will be limited by another factor. Therefore, the upper limit of the specific gravity of the electrolytic solution was kept at 1.40.

【0020】[0020]

【発明の効果】以上述べてきたように、本発明による密
閉形鉛蓄電池は、出力特性を損なうことなく、電気自動
車用途などの完全に充電されることがほとんどない使用
条件下でのサイクル寿命性能に優れたものであり、その
工業的価値は大きい。
As described above, the sealed lead-acid battery according to the present invention does not impair the output characteristics and has a cycle life performance under use conditions that are hardly completely charged, such as for electric vehicles. And its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電深度50%での出力密度と電解液比重との
関係を示す特性図
FIG. 1 is a characteristic diagram showing a relationship between an output density at a discharge depth of 50% and an electrolyte specific gravity.

【図2】充放電サイクル特性の比較を示す特性図FIG. 2 is a characteristic diagram showing a comparison of charge / discharge cycle characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 完全充電状態での電解液比重が1.33
〜1.40(20℃)の密閉形鉛蓄電池であって、負極
活物質中にカーボンを0.5wt%〜3.0wt%添加
したことを特徴とする密閉形鉛蓄電池。
1. A specific gravity of an electrolyte in a fully charged state is 1.33.
A sealed lead-acid battery having a capacity of from 0.5 to 1.40 (20 ° C.), wherein carbon is added to the negative electrode active material in an amount of 0.5 wt% to 3.0 wt%.
JP10140549A 1998-05-07 1998-05-07 Sealed lead-acid battery Pending JPH11329476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10140549A JPH11329476A (en) 1998-05-07 1998-05-07 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10140549A JPH11329476A (en) 1998-05-07 1998-05-07 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11329476A true JPH11329476A (en) 1999-11-30

Family

ID=15271267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10140549A Pending JPH11329476A (en) 1998-05-07 1998-05-07 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11329476A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075430A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Lead storage battery
JP2003036882A (en) * 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The Sealed type lead storage battery
JP2009289576A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Negative electrode active material mixture for lead-acid storage battery
US7842416B2 (en) 2004-06-29 2010-11-30 Samsung Sdi Co., Ltd. Rechargeable battery having a cap assembly
JP2013089450A (en) * 2011-10-18 2013-05-13 Gs Yuasa Corp Lead acid battery
JP2016103489A (en) * 2016-01-26 2016-06-02 株式会社Gsユアサ Lead storage battery
JPWO2020241880A1 (en) * 2019-05-31 2020-12-03

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075430A (en) * 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd Lead storage battery
JP2003036882A (en) * 2001-07-19 2003-02-07 Furukawa Battery Co Ltd:The Sealed type lead storage battery
JP4544791B2 (en) * 2001-07-19 2010-09-15 古河電池株式会社 Sealed lead acid battery
US7842416B2 (en) 2004-06-29 2010-11-30 Samsung Sdi Co., Ltd. Rechargeable battery having a cap assembly
JP2009289576A (en) * 2008-05-29 2009-12-10 Furukawa Battery Co Ltd:The Negative electrode active material mixture for lead-acid storage battery
JP2013089450A (en) * 2011-10-18 2013-05-13 Gs Yuasa Corp Lead acid battery
JP2016103489A (en) * 2016-01-26 2016-06-02 株式会社Gsユアサ Lead storage battery
JPWO2020241880A1 (en) * 2019-05-31 2020-12-03

Similar Documents

Publication Publication Date Title
US5547783A (en) Valve-regulated lead-acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2000149981A (en) Lead-acid battery, and additive therefor
JP2008130516A (en) Liquid lead-acid storage battery
JP2003151617A (en) Lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JPH11329476A (en) Sealed lead-acid battery
US7160645B2 (en) Lead-acid battery having an organic polymer additive and process thereof
JP2949773B2 (en) Lead storage battery
JP2712400B2 (en) Lead storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP3374462B2 (en) Sealed lead storage battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP2001250589A (en) Charging method of sealed lead storage battery
JP4984786B2 (en) Lead acid battery
JPH0850896A (en) Manufacture of lead-acid battery
JP4411729B2 (en) Lead-acid battery charging method
JP3498560B2 (en) Lead storage battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH0654661B2 (en) Sealed lead acid battery
JPH07111164A (en) Life increasing method for lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2518090B2 (en) Lead acid battery
JP2000058105A (en) Lead-acid battery
JP2004171872A (en) Lead-acid battery