JPH11329409A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH11329409A
JPH11329409A JP10133070A JP13307098A JPH11329409A JP H11329409 A JPH11329409 A JP H11329409A JP 10133070 A JP10133070 A JP 10133070A JP 13307098 A JP13307098 A JP 13307098A JP H11329409 A JPH11329409 A JP H11329409A
Authority
JP
Japan
Prior art keywords
active material
lithium ion
ion secondary
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10133070A
Other languages
Japanese (ja)
Inventor
Mikio Kawai
幹夫 川合
Toyoaki Nakagawa
豊昭 中川
Hideaki Horie
英明 堀江
Takeji Tanjo
雄児 丹上
Takaaki Abe
孝昭 安部
Takeshi Iwai
健 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10133070A priority Critical patent/JPH11329409A/en
Publication of JPH11329409A publication Critical patent/JPH11329409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a high output density by specifying the application thickness and particle size of an active material. SOLUTION: When the application thickness of an active material is set to 5-80 μm, more preferably, 8-60 μm, and the particle size thereof is set to 5 μm or less, a lithium ion secondary battery having an optimum high output density to hybrid vehicle can be provided. As the positive electrode active material, a metal oxide represented by LiCoO2 , LiNiO2 , LiMn2 O4 , LiFeOy , or Lix Vy Oz , and a composite oxide in which a part of elements thereof is substituted by another element, for example, LixCoyMzO2 in which metal element is substituted (M=Li, Ni, V or the like) or LixMn2 O4 -aFb in which oxygen is substituted can be used. As the negative electrode active material, a carbon material such as graphite, mesophase carbon, refractory graphite carbon (hard carbon) or low-temperature baked carbon, a metal oxide, or a nitride material can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に関する。
The present invention relates to a lithium ion secondary battery.

【0002】[0002]

【従来の技術とその問題点】正負電極と、リチウムイオ
ンと可逆的に電気化学反応を行う活物質と、リチウムイ
オンの移動を受け持つ非水電解液とを有し、充放電が可
能なリチウムイオン二次電池が知られている。また、走
行駆動源としてエンジンとモーターを備え、それらの両
方またはいずれか一方の駆動力により走行するハイブリ
ッド車両が知られている。このハイブリッド車両の一部
には、上述したリチウムイオン二次電池を搭載したもの
もある。
2. Description of the Related Art Lithium ions capable of being charged and discharged having a positive / negative electrode, an active material which reversibly electrochemically reacts with lithium ions, and a non-aqueous electrolyte solution for transferring lithium ions. Secondary batteries are known. There is also known a hybrid vehicle that includes an engine and a motor as traveling driving sources, and travels using both or any one of the driving forces. Some hybrid vehicles are equipped with the above-described lithium ion secondary battery.

【0003】ところで、ハイブリッド車両は、基本的
に、低速、軽負荷の領域ではエンジンよりも運転効率が
高いモーターで走行し、高速、高負荷の領域ではモータ
ーよりも運転効率が高いエンジンで走行する。したがっ
て、モーターは主として車両の発進、加速時や減速時に
用いられ、そのモーターに電力を供給する電池には、小
電力を長時間にわたって供給する高エネルギー密度より
も、短時間に大電力を供給する高出力密度であることが
要求される。
[0003] By the way, a hybrid vehicle basically travels with a motor whose operating efficiency is higher than that of an engine in a low speed and light load range, and runs with an engine whose operating efficiency is higher than that of a motor in a high speed and high load range. . Therefore, the motor is mainly used when starting, accelerating and decelerating the vehicle, and the battery that supplies power to the motor supplies large power in a short time rather than the high energy density that supplies small power for a long time. High power density is required.

【0004】しかし、従来のリチウムイオン電池は、主
にエネルギー密度の向上を目標に研究開発が進められ、
その体積および重量当たりのエネルギー密度は高い水準
に達しているが、出力密度は上述したハイブリッド車両
の要求を満たすものではない。
[0004] However, conventional lithium ion batteries have been researched and developed mainly for the purpose of improving energy density.
Although their energy density per volume and weight has reached a high level, their power density does not meet the requirements of the hybrid vehicles mentioned above.

【0005】本発明の目的は、高出力密度のリチウムイ
オン二次電池を提供することにある。
An object of the present invention is to provide a lithium ion secondary battery having a high output density.

【0006】[0006]

【課題を解決するための手段】(1) 請求項1の発明
は、リチウムイオンと電気化学反応を行う活物質と集電
体より構成される正、負電極と、リチウムイオンを移動
させるための電解液とを有するリチウムイオン二次電池
に適用され、活物質の塗布厚さを5〜80μmとするこ
とにより、上記目的を達成できる。 (2) 請求項2のリチウムイオン二次電池は、活物質
の塗布厚さを8〜60μmとしたものである。 (3) 請求項3のリチウムイオン二次電池は、活物質
の粒径を5μm以下としたものである。
According to a first aspect of the present invention, there is provided a positive electrode and a negative electrode each including an active material that performs an electrochemical reaction with lithium ions and a current collector; The above object can be achieved by applying the present invention to a lithium ion secondary battery having an electrolytic solution and setting the applied thickness of the active material to 5 to 80 μm. (2) In the lithium ion secondary battery of the second aspect, the active material is applied in a thickness of 8 to 60 μm. (3) In the lithium ion secondary battery according to claim 3, the particle diameter of the active material is set to 5 μm or less.

【0007】[0007]

【発明の効果】本発明によれば、活物質の塗布厚さを5
〜80μmとしたので、従来の塗布厚さ100μmの電
池のおよそ2倍の出力密度が得られる。さらに好ましく
は8〜60μmとすることにより、従来の塗布厚さ10
0μmの電池のおよそ3倍の出力密度が得られる。ま
た、活物質の粒径を5μm以下としたので、従来の粒径
20μmの電池のおよそ2倍の出力密度が得られる。い
ずれもハイブリッド車両に対して最適な高出力密度の電
池を提供できる。
According to the present invention, the coating thickness of the active material is 5
Since the thickness is set to 8080 μm, an output density approximately twice that of a conventional battery having a coating thickness of 100 μm can be obtained. More preferably, the thickness is set to 8 to 60 μm so that the conventional coating thickness 10
About three times the power density of a 0 μm battery is obtained. Further, since the particle diameter of the active material is set to 5 μm or less, an output density approximately twice as high as that of a conventional battery having a particle diameter of 20 μm can be obtained. In any case, it is possible to provide a battery with a high power density that is optimal for a hybrid vehicle.

【0008】[0008]

【発明の実施の形態】図1は一実施の形態のリチウムイ
オン二次電池の構造を示す。一実施の形態のリチウムイ
オン二次電池は、フィルム状の正極材とセパレーターと
負極材とを円筒状に巻き付けたものであり、図1(a)
にその断面を、図1(b)に断面の一部の詳細を示す。
正極材はアルミニウムの正極集電体の表裏に正極活物質
を塗布して形成され、負極材は銅の負極集電体の表裏に
負極活物質を塗布して形成される。
FIG. 1 shows a structure of a lithium ion secondary battery according to one embodiment. The lithium ion secondary battery according to one embodiment is obtained by winding a film-shaped positive electrode material, a separator, and a negative electrode material into a cylindrical shape, and FIG.
FIG. 1B shows a detail of a part of the section.
The positive electrode material is formed by applying a positive electrode active material on the front and back of an aluminum positive electrode current collector, and the negative electrode material is formed by applying a negative electrode active material on the front and back of a copper negative electrode current collector.

【0009】ここで、正極活物質には、LiCoO2、LiNiO
2、LiMn2O4、LixFeOy,LixVyOzに代表される金属酸化物
およびこれらの元素の一部を他の元素で置換した複合酸
化物、例えば、金属元素を置換したLixCoyMzO2(M=M
n,Ni,Vなど)やLixMnyMzO4(M=Li,Ni,Cr,Fe,Co
など)、あるいは酸素を置換したLixMn2O4-aFb、LixCoy
NizOwFaなどを用いることができる。また、負極活物質
には、黒鉛、メゾフェーズカーボン系炭素、難黒鉛性炭
素(ハードカーボン)、低温焼成炭素などの炭素材料
や、SnBxPyOz、Nb2O5、LiTixOyなどや、LiFexNy、LiMnx
Nyなどの金属酸化物、窒化物系の材料を用いることがで
きる。
Here, the positive electrode active material is LiCoO2, LiNiO
2. Metal oxides represented by LiMn2O4, LixFeOy, LixVyOz and composite oxides in which some of these elements are replaced by other elements, for example, LixCoyMzO2 (M = M
n, Ni, V, etc.) and LixMnyMzO4 (M = Li, Ni, Cr, Fe, Co
LixMn2O4-aFb, LixCoy substituted with oxygen
NizOwFa or the like can be used. In addition, carbon materials such as graphite, mesophase carbon-based carbon, non-graphitizable carbon (hard carbon), low-temperature calcined carbon, SnBxPyOz, Nb2O5, LiTixOy, LiFexNy, LiMnx
A metal oxide such as Ny or a nitride-based material can be used.

【0010】上述したように、従来のリチウムイオン二
次電池は、エネルギー密度を向上させるために、活物質
の塗布厚さを100μm程度まで厚くするとともに、2
0μm程度の粒径の大きな活物質を用いている。その結
果、内部抵抗が高くなり、高出力が出せないものとなっ
ている。
As described above, in the conventional lithium ion secondary battery, in order to improve the energy density, the thickness of the active material applied is increased to about 100 μm,
An active material having a large particle size of about 0 μm is used. As a result, the internal resistance is increased and high output cannot be obtained.

【0011】ハイブリッド車両では、短時間に大電流の
充放電が可能な高出力密度が要求されるが、短時間に大
電流の充放電は活物質の表面近傍の電池反応でまかなう
必要がある。つまり、従来の高エネルギー密度を目標と
した塗布厚さ100μmの活物質の内部は、短時間の大
電流の充放電には寄与しないことになる。
In a hybrid vehicle, a high output density capable of charging / discharging a large current in a short time is required, but charging / discharging a large current in a short time needs to be covered by a battery reaction near the surface of the active material. That is, the inside of the conventional active material having a coating thickness of 100 μm which aims at a high energy density does not contribute to short-time charging and discharging of a large current.

【0012】図2は、1μmの粒径の活物質を用いて塗
布厚さを変えた場合の出力密度の実験データであり、従
来の塗布厚さ100μmの出力密度に対する相対出力密
度で示す。図から明らかなように、活物質の塗布厚さを
5〜80μmとすると、100μmの従来の電池のおよ
そ2倍の出力密度が得られる。さらに、活物質の塗布厚
さを8〜60μmとすると、100μmの従来の電池の
およそ3倍の出力密度が得られる。つまり、活物質の塗
布厚さを、従来の100μmから5〜80μmに、さら
に好ましくは8〜60μmにすることによって、高出力
密度に特化した電池とすることができる。
FIG. 2 shows experimental data of the output density when the coating thickness is changed using an active material having a particle diameter of 1 μm, and is shown as a relative output density with respect to the conventional output density of 100 μm. As is clear from the figure, when the thickness of the active material applied is 5 to 80 μm, an output density approximately twice that of a conventional battery of 100 μm can be obtained. Furthermore, if the applied thickness of the active material is 8 to 60 μm, an output density approximately three times that of a conventional battery of 100 μm can be obtained. That is, by setting the applied thickness of the active material from the conventional 100 μm to 5 to 80 μm, and more preferably 8 to 60 μm, a battery specialized in high output density can be obtained.

【0013】図3は、活物質の粒径を変えた場合の出力
密度の実験データであり、従来の粒径20μmの出力密
度に対する相対出力密度を示す。活物質の粒径はその最
大のものが塗布厚さ以下であればよい。しかし、活物質
個体内の拡散が遅いため、高出力密度にするには5μm
以下にするのが好ましい。活物質の粒径を従来の20μ
mから5μmにすることによって、従来の電池のおよそ
2倍の出力密度が得られる。
FIG. 3 shows experimental data of the output density when the particle size of the active material is changed, and shows the relative output density with respect to the conventional output density with a particle size of 20 μm. The particle size of the active material may be such that the largest one is equal to or less than the coating thickness. However, since diffusion in the active material individual is slow, 5 μm
It is preferable to set the following. The particle size of the active material is
By setting m to 5 μm, an output density approximately twice that of a conventional battery can be obtained.

【0014】このように、活物質の塗布厚さを5〜80
μmとすることによって、従来の塗布厚さ100μmの
電池のおよそ2倍の出力密度が得られる。さらに、好ま
しくは8〜60μmとすることによって、従来の塗布厚
さ100μmの電池のおよそ3倍の出力密度が得られ
る。また、活物質の粒径を5μm以下にすることによっ
て、従来の粒径20μmの電池のおよそ2倍の出力密度
が得られる。いずれも特にハイブリッド車両に対して最
適な電池を提供することができる。
As described above, the coating thickness of the active material is 5 to 80.
By setting the thickness to μm, an output density approximately twice that of a conventional battery having a coating thickness of 100 μm can be obtained. Further, by preferably setting the thickness to 8 to 60 μm, an output density approximately three times that of a conventional battery having a coating thickness of 100 μm can be obtained. Further, by setting the particle size of the active material to 5 μm or less, it is possible to obtain approximately twice the output density of a conventional battery having a particle size of 20 μm. In any case, an optimal battery can be provided particularly for a hybrid vehicle.

【0015】なお、電池の構造と材質は上述した一実施
の形態の構造と材質に限定されない。
The structure and material of the battery are not limited to the structure and material of the above-described embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発明の一実施の形態の構造を示す図である。FIG. 1 is a diagram showing a structure of an embodiment of the present invention.

【図2】 活物質の塗布厚さに対する出力密度の実験デ
ータを示す図である。
FIG. 2 is a view showing experimental data of an output density with respect to a coating thickness of an active material.

【図3】 活物質の粒径に対する出力密度の実験データ
を示す図である。
FIG. 3 is a diagram showing experimental data of output density with respect to the particle diameter of an active material.

フロントページの続き (72)発明者 丹上 雄児 神奈川県横浜市神奈川区宝町2番地 日産 自動 車株式会社内 (72)発明者 安部 孝昭 神奈川県横浜市神奈川区宝町2番地 日産 自動 車株式会社内 (72)発明者 岩井 健 神奈川県横浜市神奈川区宝町2番地 日産 自動 車株式会社内Continuing on the front page (72) Inventor Yuji Tangami 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Nissan Motor Co., Ltd. (72) Inventor Takaaki Abe 2 Takaracho, Kanagawa-ku, Yokohama City, Kanagawa Nissan Motor Co., Ltd. 72) Inventor Ken Iwai Nissan Motor Co., Ltd., 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンと電気化学反応を行う活
物質と集電体より構成される正、負電極と、リチウムイ
オンを移動させるための電解液とを有するリチウムイオ
ン二次電池において、 前記活物質の塗布厚さを5〜80μmとすることを特徴
とするリチウムイオン二次電池。
1. A lithium ion secondary battery having positive and negative electrodes composed of an active material that performs an electrochemical reaction with lithium ions and a current collector, and an electrolyte solution for moving lithium ions. A lithium ion secondary battery characterized in that the applied thickness of the substance is 5 to 80 μm.
【請求項2】 請求項1のリチウムイオン二次電池にお
いて、 前記活物質の塗布厚さを8〜60μmとすることを特徴
とするリチウムイオン二次電池。
2. The lithium ion secondary battery according to claim 1, wherein the applied thickness of the active material is 8 to 60 μm.
【請求項3】 請求項1または請求項2に記載のリチウ
ムイオン二次電池において、 前記活物質の粒径を5μm以下とすることを特徴とする
リチウムイオン二次電池。
3. The lithium ion secondary battery according to claim 1, wherein the active material has a particle size of 5 μm or less.
JP10133070A 1998-05-15 1998-05-15 Lithium ion secondary battery Pending JPH11329409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133070A JPH11329409A (en) 1998-05-15 1998-05-15 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133070A JPH11329409A (en) 1998-05-15 1998-05-15 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11329409A true JPH11329409A (en) 1999-11-30

Family

ID=15096149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133070A Pending JPH11329409A (en) 1998-05-15 1998-05-15 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11329409A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184918A2 (en) * 2000-08-28 2002-03-06 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
JP2002100354A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Non aqueous electrolyte secondary battery
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US6423453B1 (en) * 1998-08-20 2002-07-23 Sony Corporation Solid electrolyte battery
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
WO2005013408A1 (en) 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006277990A (en) * 2005-03-28 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2007214086A (en) * 2006-02-13 2007-08-23 Sony Corp Electrode for battery, and battery using it
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
CN106784855A (en) * 2016-12-02 2017-05-31 西安瑟福能源科技有限公司 A kind of unmanned plane manufacture method of high temperature modification lithium ion battery
CN106784997A (en) * 2017-01-19 2017-05-31 西安瑟福能源科技有限公司 A kind of emergency starting ultra-high magnification lithium ion battery
CN113113571A (en) * 2014-01-03 2021-07-13 溧阳天目先导电池材料科技有限公司 Method for preliminary alkali metallization and application of method in battery material

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423453B1 (en) * 1998-08-20 2002-07-23 Sony Corporation Solid electrolyte battery
EP1184918A3 (en) * 2000-08-28 2007-04-04 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
EP1184918A2 (en) * 2000-08-28 2002-03-06 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
JP4626105B2 (en) * 2000-08-28 2011-02-02 日産自動車株式会社 Lithium ion secondary battery
US7138208B2 (en) 2000-08-28 2006-11-21 Nissan Motor Co., Ltd. Rechargeable lithium ion battery
JP2002100354A (en) * 2000-09-21 2002-04-05 Toshiba Battery Co Ltd Non aqueous electrolyte secondary battery
JP2002151157A (en) * 2000-11-13 2002-05-24 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
WO2005013408A1 (en) 2003-07-31 2005-02-10 Nec Lamilion Energy, Ltd. Lithium ion secondary cell
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
JP2006260786A (en) * 2005-03-15 2006-09-28 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006277990A (en) * 2005-03-28 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2007184219A (en) * 2005-12-29 2007-07-19 Ind Technol Res Inst Lithium-ion secondary battery of high output design
JP2007214086A (en) * 2006-02-13 2007-08-23 Sony Corp Electrode for battery, and battery using it
CN113113571A (en) * 2014-01-03 2021-07-13 溧阳天目先导电池材料科技有限公司 Method for preliminary alkali metallization and application of method in battery material
JP2016131123A (en) * 2015-01-14 2016-07-21 株式会社日立製作所 Lithium secondary battery, power storage device including lithium secondary battery, and method for manufacturing lithium secondary battery
CN106784855A (en) * 2016-12-02 2017-05-31 西安瑟福能源科技有限公司 A kind of unmanned plane manufacture method of high temperature modification lithium ion battery
CN106784997A (en) * 2017-01-19 2017-05-31 西安瑟福能源科技有限公司 A kind of emergency starting ultra-high magnification lithium ion battery

Similar Documents

Publication Publication Date Title
JP4407211B2 (en) Nonaqueous electrolyte secondary battery
JP4626013B2 (en) Lithium secondary battery negative electrode
US20010033972A1 (en) Lithium ion secondary battery
KR100936859B1 (en) Nonaqueous electrolyte battery, battery pack and vehicle
JPH11329409A (en) Lithium ion secondary battery
KR101414955B1 (en) positive-electrode active material with improved safety and Lithium secondary battery including them
JP4688604B2 (en) Lithium ion battery
JP2002358966A (en) Lithium secondary battery positive electrode plate and lithium secondary battery
JPH10208730A (en) Non-aqueous electrolyte secondary battery
CN111326712B (en) Method for producing sulfur electrode
JP2017174664A (en) Secondary battery
JP4714229B2 (en) Lithium secondary battery
JPH11283629A (en) Organic electrolyte battery
JP3526786B2 (en) Lithium secondary battery
JP2014120404A (en) Secondary battery
JP2000090895A (en) Lithium secondary battery for electric vehicle
JP2008300148A (en) Negative electrode for secondary battery
JP2012185911A (en) Composite positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2014087895A1 (en) Accumulation device, hybrid vehicle, and electric vehicle
JP2000090932A (en) Lithium secondary battery
JP2002203608A (en) Nonaqueous secondary battery for car use
CN112447941B (en) Nonaqueous electrolyte secondary battery
JP7311304B2 (en) power storage device
JP6864851B2 (en) Non-aqueous electrolyte secondary battery
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127