JP2006260786A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2006260786A
JP2006260786A JP2005072585A JP2005072585A JP2006260786A JP 2006260786 A JP2006260786 A JP 2006260786A JP 2005072585 A JP2005072585 A JP 2005072585A JP 2005072585 A JP2005072585 A JP 2005072585A JP 2006260786 A JP2006260786 A JP 2006260786A
Authority
JP
Japan
Prior art keywords
active material
thickness
negative electrode
containing layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005072585A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawai
徹夫 川合
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005072585A priority Critical patent/JP2006260786A/en
Publication of JP2006260786A publication Critical patent/JP2006260786A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery with excellent safety while securing a practical capacity through restraint of capacity deterioration and capable of quickly charging. <P>SOLUTION: Of the nonaqueous secondary battery, a thickness t<SB>1</SB>of a collector for a cathode is 12 to 25 μm, and that t<SB>2</SB>of a collector for an anode is 6 to 12 μm. At a part where an active material-containing layer of the cathode faces an active material-containing layer of the anode, a ratio d<SB>1</SB>/t<SB>1</SB>of a thickness d<SB>1</SB>(μm) of the active material-containing layer of the cathode to that t<SB>1</SB>(μm) of the collector is 0.1 to 1, and a ratio d<SB>2</SB>/t<SB>2</SB>of a thickness d<SB>2</SB>(μm) of the active material-containing layer of the anode to that t<SB>2</SB>(μm) of the collector is 0.15 to 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、急速充電可能な高出力非水電解質二次電池に関するものである。   The present invention relates to a high-power nonaqueous electrolyte secondary battery that can be rapidly charged.

近年、高エネルギー密度を有する電池として、リチウムイオン二次電池などの非水電解質二次電池が注目されている。リチウムイオン二次電池は、例えば、以下のように構成されている。すなわち、密閉容器の内部に電極体が収容されており、該密閉容器の蓋体には、正負一対の電極端子機構が取り付けられていて、電極体が発生する電力を電極端子機構から外部に取り出すことが可能となっている。そして、各蓋体には圧力開閉式のガス排出弁が取り付けられている。   In recent years, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have attracted attention as batteries having high energy density. The lithium ion secondary battery is configured as follows, for example. That is, the electrode body is accommodated in the sealed container, and a pair of positive and negative electrode terminal mechanisms are attached to the lid body of the sealed container, and the electric power generated by the electrode body is taken out from the electrode terminal mechanism. It is possible. Each lid is provided with a pressure open / close type gas discharge valve.

電極体は、それぞれ帯状の正極と負極とを、セパレータを介して重ね合わせ、これらを巻回して構成されている。正極は、アルミニウム箔などからなる集電体と、該集電体表面に存在する正極活物質を含有する活物質含有層で構成されており、負極は,銅箔などからなる集電体と、該集電体表面に存在する負極活物質を含有する活物質含有層で構成されている。正極の活物質含有層は、セパレータを介して負極の活物質含有層と対向している。正極活物質は、例えば、リチウム遷移金属複合酸化物であり,負極活物質は黒鉛や、各種合金などの、リチウムイオンを吸蔵・放出できる材料である。   The electrode body is configured by stacking a belt-like positive electrode and a negative electrode via a separator and winding them. The positive electrode is composed of a current collector made of aluminum foil and the like, and an active material containing layer containing a positive electrode active material present on the current collector surface, and the negative electrode is made of a current collector made of copper foil and the like, The active material containing layer contains the negative electrode active material present on the current collector surface. The active material-containing layer of the positive electrode faces the active material-containing layer of the negative electrode with a separator interposed therebetween. The positive electrode active material is, for example, a lithium transition metal composite oxide, and the negative electrode active material is a material that can occlude and release lithium ions, such as graphite and various alloys.

上記リチウムイオン二次電池の充放電反応においては、リチウムイオンが、電解液を介して互いに対向する正極の活物質含有層と負極の活物質含有層の間を移動する。   In the charge / discharge reaction of the lithium ion secondary battery, lithium ions move between the active material containing layer of the positive electrode and the active material containing layer of the negative electrode facing each other through the electrolytic solution.

正極活物質として用いられるリチウム遷移金属複合酸化物としては、リチウム・コバルト複合酸化物(LiCoO)、リチウム・ニッケル複合酸化物(LiNiO)、リチウム・マンガン・ニッケル・コバルト複合酸化物(LiMnNiCo)などが知られている(ただし、0.9≦a≦1.1、x+y+z=1)。 Examples of the lithium transition metal composite oxide used as the positive electrode active material include lithium / cobalt composite oxide (LiCoO 2 ), lithium / nickel composite oxide (LiNiO 2 ), and lithium / manganese / nickel / cobalt composite oxide (Li a Mn x Ni y Co z O 2 ) and the like are known (provided that 0.9 ≦ a ≦ 1.1, x + y + z = 1).

ところで、携帯電話などの電源として用いられる非水電解液二次電池は、高容量化や貯蔵特性の改善および充放電サイクル特性の改善と共に、利便性に優れることが望まれる。充電に要する時間が長い二次電池を電源に用いると、機器の使用中に容量が無くなった場合に、すぐに充電が完了できず、機器が使用できなくなることが多々発生する。充電に要する時間はリチウムイオン二次電池の場合、満充電状態には2.5〜3時間もしくはそれ以上を要するのが一般的である。簡易的な充電器なども販売されているが、満充電に近い状態まで充電するのは短時間では難しい。緊急度の違いにもよるが、例えば、10分以下、好ましくは5分以下の充電時間によって実用容量が確保できるようになると、ユーザーは充電の煩雑さ、充電を待つ時間の長さを殆ど感じずにすむといえる。   By the way, a non-aqueous electrolyte secondary battery used as a power source for a cellular phone or the like is desired to have excellent convenience as well as higher capacity, improved storage characteristics, and improved charge / discharge cycle characteristics. When a secondary battery that takes a long time to charge is used as a power source, if the capacity is lost during use of the device, charging often cannot be completed immediately and the device cannot be used. In the case of a lithium ion secondary battery, the time required for charging is generally 2.5 to 3 hours or more in a fully charged state. Simple chargers are also on the market, but it is difficult to charge to near full charge in a short time. Depending on the level of urgency, for example, when practical capacity can be secured with a charging time of 10 minutes or less, preferably 5 minutes or less, the user feels the complexity of charging and the length of time to wait for charging. It can be said that it is unnecessary.

また、リチウムイオン二次電池は有機溶剤を電解液に使用しており、更に高エネルギー密度であるが故に、異常時には発熱、発火などの危険性があることは否めない。リチウムイオン二次電池では、開発当初から薄いセパレータを用い、集電体にも金属箔体を用いて電極を大面積化することで、実用レベルの負荷特性、可逆性などを確保した経緯がある。リチウムイオン二次電池の現在の主な用途は、携帯電話やビデオカメラ、デジタルカメラなどであるが、これらの用途では、高容量(高エネルギー密度)が最も必要とされる要件であり、例えば、活物質の改良をメインとし、更に容量低下につながる電極表面積の増加を抑えることで集電体やセパレータの電池内における占有率を上げることなく高容量化を行ってきたといえる。そのため従来のリチウムイオン二次電池の場合は、単位面積当たりの充放電電流値が大きくなる方向にあり、使用している電解液の抵抗が高いこともあって、水溶液系の二次電池であるNi−Cd電池のような急速充電は難しく、短時間の充電を行うと、発熱や反応の不均一によるデンドライト発生に起因して短絡など充電異常によって安全面でのトラブルを起こす可能性が高まるため、少なくとも2、3時間を要する現状の充電時間を維持するのが限界であった。   In addition, since lithium ion secondary batteries use an organic solvent as an electrolyte and have a high energy density, there is a risk that heat and ignition may occur in abnormal situations. Lithium ion secondary batteries have a history of securing practical load characteristics and reversibility by using a thin separator from the beginning of development and using a metal foil as a current collector to increase the electrode area. . The current main applications of lithium ion secondary batteries are mobile phones, video cameras, digital cameras, etc., but in these applications, high capacity (high energy density) is the most required requirement. It can be said that the capacity has been increased without increasing the occupation ratio of the current collector and the separator in the battery by mainly improving the active material and further suppressing the increase in the electrode surface area that leads to a decrease in capacity. Therefore, in the case of a conventional lithium ion secondary battery, the charge / discharge current value per unit area tends to increase, and the resistance of the electrolyte used is high, so it is an aqueous secondary battery. Rapid charging like Ni-Cd battery is difficult, and if charging is performed for a short time, there is a high possibility of causing a safety problem due to abnormal charging such as short circuit due to generation of dendrites due to heat generation and non-uniform reaction. However, it was the limit to maintain the current charging time that required at least a few hours.

このような事情の下、パルスでの充電を行うなど、充電方法を工夫して充電時間を短縮する手法が種々提案されている(特許文献1)。   Under such circumstances, various methods for shortening the charging time by devising the charging method, such as charging with a pulse, have been proposed (Patent Document 1).

また、非水電解質電池に用いるシート状極板を形成するに当たり、導電性金属箔体上に、活物質などを含む塗布層の厚みを制御して、電池の短時間充電を達成する試みがなされている(特許文献2)。   In forming a sheet electrode used for a non-aqueous electrolyte battery, an attempt is made to achieve short-time charging of the battery by controlling the thickness of the coating layer containing the active material on the conductive metal foil. (Patent Document 2).

特開2002−199605号公報JP 2002-199605 A 特開2004−296255号公報JP 2004-296255 A

このように、二次電池の充電方法や構成部材の最適化によって、充電時間の短縮化が試みられており、こうした急速充電特性と、二次電池に要求される他の特性(例えば、容量や安全性の確保)との両立についても種々検討がなされているものの、十分とはいえないのが現状である。   In this way, attempts have been made to shorten the charging time by optimizing the charging method and components of the secondary battery, and these quick charging characteristics and other characteristics required for the secondary battery (for example, capacity and Although various studies have been made on ensuring safety, the current situation is not sufficient.

本発明は、上記事情に鑑みてなされたものであり、容量の低下を可及的に抑制して実用的な容量を確保しつつ、優れた安全性を有し、更には急速充電可能な非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it has excellent safety while suppressing a decrease in capacity as much as possible to ensure a practical capacity, and further capable of rapid charging. An object is to provide a water electrolyte secondary battery.

上記目的を達成し得た本発明の非水電解質二次電池は、正極活物質を含む活物質含有層が金属箔集電体(金属箔で構成されている集電体、以下同じ)表面に形成されてなる正極と、負極活物質を含む活物質含有層が金属箔集電体表面に形成されてなる負極とが、セパレータを介して配置されている非水電解質二次電池であって、正極の集電体の厚みtが12〜40μmであり、負極の集電体の厚みtが6〜30μmであり、正極の活物質含有層と負極の活物質含有層の対向する部分において、正極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが0.1〜1であり、負極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが0.15〜2であることを特徴とする非水電解質二次電池である。 The non-aqueous electrolyte secondary battery of the present invention that has achieved the above object has an active material-containing layer containing a positive electrode active material on the surface of a metal foil current collector (current collector made of metal foil, the same shall apply hereinafter). A non-aqueous electrolyte secondary battery in which a positive electrode formed and a negative electrode in which an active material-containing layer containing a negative electrode active material is formed on the surface of a metal foil current collector are disposed via a separator, The positive electrode current collector thickness t 1 is 12 to 40 μm, the negative electrode current collector thickness t 2 is 6 to 30 μm, and the positive electrode active material-containing layer and the negative electrode active material-containing layer are opposed to each other. The ratio d 1 / t 1 between the thickness d 1 (μm) of the active material containing layer of the positive electrode and the thickness t 1 (μm) of the current collector is 0.1 to 1, and the thickness of the active material containing layer of the negative electrode The ratio d 2 / t 2 between d 2 (μm) and the thickness t 2 (μm) of the current collector is 0.15 to 2. It is a water electrolyte secondary battery.

本発明によれば、実用的な容量を備えつつ、安全性と急速充電特性に優れた高出力非水電解質二次電池が提供できる。   According to the present invention, it is possible to provide a high-power non-aqueous electrolyte secondary battery that has a practical capacity and is excellent in safety and quick charge characteristics.

一般的な電極反応においては、電極面積当たりの充放電電流が小さくなり且つ電極が薄くなると、反応速度が向上することが知られており、特に電極が厚くなると反応性の低下が顕著となる。本発明者らは、鋭意検討を重ねた結果、正極集電体の厚み、負極集電体の厚み、正極の活物質含有層の厚みと集電体の厚みとの比および負極の活物質含有層の厚みと集電体の厚みとの比を規定することで、容量を確保しつつ電極の薄形化を達成し、更に、充電反応を円滑にして急速充電を可能にしつつ安全性も確保し、本発明を完成させた。すなわち、本発明の非水電解質二次電池では、急速充電を可能とする構成を備えつつ、容量の低下を可及的に抑制して実用的な容量を維持したまま、非常に高い安全性も達成しており、例えば、過充電や短絡、加熱といった異常事態を想定した評価においても従来のリチウムイオン電池と同等の安全性を確保している。以下、本発明の電池を詳細に説明する。   In a general electrode reaction, it is known that when the charge / discharge current per electrode area is reduced and the electrode is thin, the reaction rate is improved, and particularly when the electrode is thick, the reactivity is significantly reduced. As a result of intensive studies, the inventors have found that the thickness of the positive electrode current collector, the thickness of the negative electrode current collector, the ratio of the thickness of the active material-containing layer of the positive electrode to the thickness of the current collector, and the active material content of the negative electrode By defining the ratio between the thickness of the layer and the thickness of the current collector, thinning of the electrode is achieved while securing capacity, and further, charging is facilitated to enable rapid charging and ensure safety. The present invention has been completed. That is, the non-aqueous electrolyte secondary battery of the present invention has a configuration that enables rapid charging, and also has extremely high safety while maintaining a practical capacity while suppressing a decrease in capacity as much as possible. For example, even in an evaluation assuming an abnormal situation such as overcharge, short circuit, and heating, safety equivalent to that of a conventional lithium ion battery is ensured. Hereinafter, the battery of the present invention will be described in detail.

本発明においては、セパレータの厚みが、10μm以上であることが好ましく、15μm以上であることがより好ましく、30μm以下であることが好ましく、25μm以下であることがより好ましい。セパレータが厚すぎると、電池のエネルギー密度の低下を引き起こし、また、イオンの移動距離が大きくなることで分極が大きくなるため、急速に充電できるメリットが少なくなる。逆にセパレータを薄くすることは、エネルギー密度向上の点では有利であるが、急速充電時には短時間に多くのイオンが移動しなければ、充電反応の分極が大きくなる。そのため、セパレータが薄すぎると電極間に存在する電解液量が減少し、必要なイオンが供給不足となって充電反応が円滑に進行しない虞があり、また、セパレータ本来の機能である正負極の隔離機能が損なわれて短絡の原因ともなる。なお、本明細書でいうセパレータの厚みは、紙、不織布用のダイアル式シックネスゲージを用いて測定したものである。   In the present invention, the thickness of the separator is preferably 10 μm or more, more preferably 15 μm or more, preferably 30 μm or less, and more preferably 25 μm or less. When the separator is too thick, the energy density of the battery is lowered, and the polarization is increased by increasing the ion movement distance, so that the merit of rapid charging is reduced. Conversely, thinning the separator is advantageous in terms of improving the energy density, but if many ions do not move in a short time during rapid charging, the polarization of the charging reaction increases. For this reason, if the separator is too thin, the amount of electrolyte present between the electrodes decreases, and there is a risk that the required ions will be insufficiently supplied and the charging reaction will not proceed smoothly. The isolation function is impaired, causing a short circuit. In addition, the thickness of the separator as used in this specification is measured using a dial type thickness gauge for paper and nonwoven fabric.

また、本発明の電池では、正極の集電体は、アルミニウム箔もしくはアルミニウム合金箔などの金属箔で構成されており、且つその厚みが、12μm以上、好ましくは14μm以上であって、40μm以下、好ましくは25μm以下である。更に、負極の集電体は、銅箔もしくは銅合金箔などの金属箔で構成されており、且つその厚みが、6μm以上、好ましくは8μm以上であって、30μm以下、好ましくは12μm以下である。急速充電時には大きな電流が流れるために、集電体の抵抗が大きいと発熱などのトラブルを起こす。この点からは、集電体は厚いことが好ましいが、あまり厚すぎると、電池のエネルギー密度を過大に低下させることになり、一方、集電体が薄すぎると、抵抗が上がり、特性の低下を来すとともに発熱の原因となる他、電池組み立て時の強度を確保することが困難となり、電池の生産性が損なわれてしまう。従って、集電体の厚みは、適度の強度と電導性を確保できる範囲であるのが望ましい。   In the battery of the present invention, the current collector of the positive electrode is composed of a metal foil such as an aluminum foil or an aluminum alloy foil, and the thickness thereof is 12 μm or more, preferably 14 μm or more, and 40 μm or less. Preferably it is 25 micrometers or less. Furthermore, the negative electrode current collector is made of a metal foil such as a copper foil or a copper alloy foil, and the thickness thereof is 6 μm or more, preferably 8 μm or more, and is 30 μm or less, preferably 12 μm or less. . Since a large current flows during rapid charging, problems such as heat generation occur if the current collector resistance is large. From this point, it is preferable that the current collector is thick. However, if the current collector is too thick, the energy density of the battery is excessively reduced. On the other hand, if the current collector is too thin, the resistance increases and the characteristics deteriorate. In addition to causing heat generation, it is difficult to ensure the strength when assembling the battery, and the productivity of the battery is impaired. Therefore, it is desirable that the thickness of the current collector is within a range where appropriate strength and electrical conductivity can be secured.

なお、本明細書でいう正負極の集電体の厚みは、通常はマイクロメータを用いて測定されるが、材料の密度が既知である場合は、面積と重量を測定し計算により求めることもできる。   Note that the thickness of the positive and negative electrode current collectors in this specification is usually measured using a micrometer, but if the density of the material is known, the area and weight may be measured and calculated. it can.

また、正負極の集電体を構成するための金属箔として用いることのできる材料は、上記材料のほかに、ニッケル、ニッケル合金、チタン、チタン合金、ステンレスなどを例示することができ、電極の電位に応じて材料を適宜選択することができる。   In addition to the above materials, examples of the material that can be used as the metal foil for forming the positive and negative electrode current collectors include nickel, nickel alloy, titanium, titanium alloy, and stainless steel. A material can be appropriately selected depending on the potential.

加えて、本発明の電池では、正極活物質含有層と負極活物質含有層との対向する部分における正極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが、0.1以上、好ましくは0.2以上であって、1以下、好ましくは0.8以下であり、負極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが、0.15以上、好ましくは0.25以上であって、2以下、好ましくは1.5以下である。集電体の厚みに対して活物質含有層の厚みが薄すぎると、充電時間の短縮は図れるが、エネルギー密度が小さくなりすぎ実用的な電池とならない。他方、集電体の厚みに対して活物質含有層の厚みが厚すぎると、反応速度が低下し急速充電が困難となるとともに、電池のエネルギー密度が大きくなり異常時の発熱などトラブルの原因となるため好ましくない。 In addition, in the battery of the present invention, the thickness d 1 (μm) of the active material-containing layer of the positive electrode and the thickness t 1 (μm) of the current collector in the portion where the positive electrode active material-containing layer and the negative electrode active material-containing layer face each other. Ratio d 1 / t 1 is 0.1 or more, preferably 0.2 or more, 1 or less, preferably 0.8 or less, and the thickness d 2 (μm) of the active material-containing layer of the negative electrode The ratio d 2 / t 2 between the thickness t 2 (μm) of the current collector and the current collector is 0.15 or more, preferably 0.25 or more, and 2 or less, preferably 1.5 or less. If the thickness of the active material-containing layer is too thin relative to the thickness of the current collector, the charging time can be shortened, but the energy density becomes too small to make a practical battery. On the other hand, if the thickness of the active material-containing layer is too thick relative to the thickness of the current collector, the reaction rate decreases and rapid charging becomes difficult, and the energy density of the battery increases, causing problems such as heat generation during abnormalities. Therefore, it is not preferable.

また、上記電池の実用的な容量、急速充電性能および安全性を適正な範囲とするために、正極活物質含有層と負極活物質含有層との対向する部分における電気容量を、0.1mAh/cm以上、好ましくは0.3mAh/cm以上であって、0.7mAh/cm以下、好ましくは0.5mAh/cm以下とすることが望ましい。なお、本明細書でいう上記の電気容量は、充電状態の電池を0.2Cで3.0Vまで放電したときの放電容量M(mAh)を正極活物質含有層と負極活物質含有層との対向する部分の面積S(cm)で除した値(M/S)であり、単位面積あたりの放電容量として表される。 Further, in order to make the practical capacity, quick charge performance and safety of the battery within an appropriate range, the electric capacity in the facing portion between the positive electrode active material-containing layer and the negative electrode active material-containing layer is set to 0.1 mAh / cm 2 or more, preferably a is 0.3MAh / cm 2 or more, 0.7 mAh / cm 2 or less, preferably to 0.5 mAh / cm 2 or less. In addition, said electric capacity said by this specification is the discharge capacity M (mAh) when a battery in a charged state is discharged to 3.0 V at 0.2 C. The positive electrode active material-containing layer and the negative electrode active material-containing layer It is a value (M / S) divided by the area S (cm 2 ) of the facing portion, and is expressed as the discharge capacity per unit area.

本発明の電池に係る正極は、集電体表面に、活物質、導電助剤および結着剤を含む正極合剤で構成される活物質含有層が形成されてなるものである。正極活物質としては、例えば、マンガン(Mn)、ニッケル(Ni)およびコバルト(Co)の少なくとも1種の金属元素とリチウム(Li)とを含有する複合酸化物、すなわち、LiMO(Mは、Mn、NiおよびCoのうちの少なくとも1種の金属元素)の一般式で示される複合酸化物が好ましく用いられる。正極活物質は、上記の一般式で示される複合酸化物のうち、1種のみを使用してもよく、2種以上を併用しても構わない。 The positive electrode according to the battery of the present invention is obtained by forming an active material-containing layer composed of a positive electrode mixture containing an active material, a conductive additive and a binder on the surface of a current collector. As the positive electrode active material, for example, a composite oxide containing at least one metal element of manganese (Mn), nickel (Ni), and cobalt (Co) and lithium (Li), that is, LiMO 2 (M is A composite oxide represented by the general formula of at least one metal element of Mn, Ni, and Co) is preferably used. Only 1 type may be used for a positive electrode active material among the complex oxide shown by said general formula, and 2 or more types may be used together.

なお、本発明の電池のように電極厚みが薄い場合、正極活物質である上記複合酸化物は、一般的なリチウムイオン電池に用いる活物質の平均粒径が20μm程度であるのに比べ、数μm以下のものが好ましく用いられる。一般には、粒径が小さくなるほど比表面積が大きくなり、急速充電での反応性を向上させることができると考えられるが、比表面積が大きくなると活物質の活性度が増し、安全性や貯蔵性に悪影響を及ぼす恐れがあるため、本発明においては、粒径は小さいが、比表面積が大きくない材料とすることが好ましい。例えば、比表面積は、好ましくは0.1m/g以上、より好ましくは0.5m/g以上であって、好ましくは5m/g以下、より好ましくは2m/g以下であるものが用いられる。なお、上記複合酸化物の比表面積は、Nガス吸着を利用した1点式のBET測定装置により測定することができ、本発明の実施例では、Mountech Co Ltd社製「Macsorb HM−model−1201」により測定した値を用いた。また、活物質の粒径は、レーザー式の粒度分布測定装置などにより測定することができる。 When the electrode thickness is thin as in the battery of the present invention, the composite oxide that is a positive electrode active material is several times the average particle size of an active material used in a general lithium ion battery is about 20 μm. Those having a size of μm or less are preferably used. In general, the smaller the particle size, the larger the specific surface area, and it is thought that the reactivity during rapid charging can be improved. However, as the specific surface area increases, the activity of the active material increases, which increases safety and storage. In the present invention, it is preferable to use a material having a small particle size but not a large specific surface area because of the possibility of adverse effects. For example, the specific surface area is preferably 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, preferably 5 m 2 / g or less, more preferably 2 m 2 / g or less. Used. The specific surface area of the composite oxide can be measured by a one-point BET measuring apparatus using N 2 gas adsorption. In the examples of the present invention, “Macsorb HM-model-” manufactured by Mounttech Co Ltd. The value measured by “1201” was used. The particle size of the active material can be measured with a laser type particle size distribution measuring device or the like.

導電助剤としては、本発明の電極を用いた電池において、実質上、化学的に安定な電子伝導性材料であれば特に限定されない。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛;チタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、アセチレンブラック、ケッチェンブラック、カーボンブラックといった炭素材料が特に好ましい。   The conductive auxiliary agent is not particularly limited as long as it is a substantially chemically stable electron conductive material in the battery using the electrode of the present invention. For example, graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon fibers; Other conductive fibers such as metal fibers; carbon fluoride; metal powders such as aluminum; zinc oxide; conductive whiskers such as potassium titanate; conductive metal oxides such as titanium oxide; organics such as polyphenylene derivatives These may be used alone, or these may be used alone or in combination of two or more. Among these, carbon materials such as acetylene black, ketjen black, and carbon black are particularly preferable.

結着剤(バインダ)は、活物質含有層において、上記活物質や導電助剤を結着する役割を担うものである。本発明の電極に係る結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロメチルビニルエーテル−テトラフルオロエチレン共重合体などのフッ素樹脂;スチレンブタジエンゴム(SBR);エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体;エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体;エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体;などが挙げられ、これらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。これらの材料の中でも、PVDF、PTFEが特に好ましい。 The binder (binder) plays a role of binding the active material and the conductive additive in the active material-containing layer. The binder according to the electrode of the present invention may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, polyolefins such as polyethylene and polypropylene; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, ethylene-chloro Fluoropolymers such as trifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer; styrene butadiene rubber (SBR) ); Ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer; ethylene-methyl acrylate copolymer or the copolymer Copolymer Na + ion cross-linked product; ethylene-methyl methacrylate copolymer or Na + ion cross-linked product of the copolymer; and the like, and these materials may be used alone or in combination. You may use the above together. Among these materials, PVDF and PTFE are particularly preferable.

正極の活物質含有層は、上記の活物質、導電助剤、結着剤を含む正極合剤を分散媒に分散させて調製される組成物(ペースト、スラリーなど)を、集電体表面に塗布し、乾燥して分散媒を除去することにより形成される。正極合剤の成分の一部(例えば、結着剤)は、分散媒中に溶解していても構わない。分散媒としては、N−メチル−2−ピロリドン(NMP)、トルエン、水などを用いることができる。   The active material-containing layer of the positive electrode has a composition (paste, slurry, etc.) prepared by dispersing a positive electrode mixture containing the above active material, conductive additive, and binder in a dispersion medium. It is formed by applying and drying to remove the dispersion medium. Part of the components of the positive electrode mixture (for example, the binder) may be dissolved in the dispersion medium. As the dispersion medium, N-methyl-2-pyrrolidone (NMP), toluene, water or the like can be used.

正極の活物質含有層の組成としては、例えば、活物質を90〜98質量%、導電助剤を4〜0.5質量%、結着剤を4〜0.5質量%とすることが好ましい。   As the composition of the active material-containing layer of the positive electrode, for example, the active material is preferably 90 to 98% by mass, the conductive additive is 4 to 0.5% by mass, and the binder is preferably 4 to 0.5% by mass. .

本発明の電池に係る負極は、リチウムを吸蔵、排出可能な材料を活物質とし、該活物質を含む活物質含有層が集電体表面に形成されてなるものである。負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、Si、Sn、Alなどのリチウムと合金化可能な元素;これらのリチウムと合金化可能な元素とCo、Ni、Mn、Ti、Feなどのリチウムと合金化しない元素などとの合金;などが挙げられる。   The negative electrode according to the battery of the present invention comprises a material capable of inserting and extracting lithium as an active material, and an active material containing layer containing the active material is formed on the surface of the current collector. Examples of the negative electrode active material include carbon materials such as graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; non-graphitizable carbonaceous materials. In addition, elements that can be alloyed with lithium such as Si, Sn, and Al; alloys of these elements that can be alloyed with lithium and elements that do not alloy with lithium such as Co, Ni, Mn, Ti, and Fe; Is mentioned.

導電助剤は、電子伝導性材料であれば特に限定されないし、使用しなくても構わない。導電助剤の具体例としては、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類;アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。これらの中でも、ケチェンブラックやアセチレンブラックや炭素繊維が特に好ましい。負極に導電助剤を使用する場合には、負極の活物質含有層中における導電助剤含有量を1〜50質量%とすることが望ましい。   The conductive aid is not particularly limited as long as it is an electron conductive material, and may not be used. Specific examples of conductive aids include graphites such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black and thermal black; carbon In addition to carbon materials such as fibers; conductive fibers such as metal fibers; carbon fluorides; metal powders such as copper and nickel; and organic conductive materials such as polyphenylene derivatives. Or two or more of them may be used in combination. Among these, ketjen black, acetylene black, and carbon fiber are particularly preferable. When using a conductive additive for the negative electrode, the conductive auxiliary agent content in the active material-containing layer of the negative electrode is preferably 1 to 50% by mass.

負極合剤層に係る結着剤は、負極合剤層において、負極活物質や導電助剤などを結着する役割を担うものである。かかる結着剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよい。具体的には、例えば、上記本発明の電極に係る結着剤と同じ材料が使用でき、それらの材料を1種単独で用いてもよく、2種以上を併用しても構わない。その中でも、PVDF、SBR、エチレン−アクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸共重合体または該共重合体のNaイオン架橋体、エチレン−アクリル酸メチル共重合体または該共重合体のNaイオン架橋体、エチレン−メタクリル酸メチル共重合体または該共重合体のNaイオン架橋体が特に好ましい。負極の活物質含有層中における結着剤含有量は、例えば、4〜0.5質量%であることが望ましい。 The binder related to the negative electrode mixture layer plays a role of binding the negative electrode active material, the conductive auxiliary agent and the like in the negative electrode mixture layer. Such a binder may be either a thermoplastic resin or a thermosetting resin. Specifically, for example, the same materials as the binder according to the electrode of the present invention can be used, and these materials may be used alone or in combination of two or more. Among them, PVDF, SBR, ethylene-acrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methacrylic acid copolymer or Na + ion crosslinked product of the copolymer, ethylene-methyl acrylate A copolymer or a Na + ion crosslinked product of the copolymer, an ethylene-methyl methacrylate copolymer or a Na + ion crosslinked product of the copolymer is particularly preferred. The binder content in the active material-containing layer of the negative electrode is preferably 4 to 0.5% by mass, for example.

負極の活物質含有層は、上記の活物質および結着剤、更には必要に応じて導電助剤も含む負極合剤を分散媒に分散させて調製される組成物(ペースト、スラリーなど)を、集電体表面に塗布し、乾燥して分散媒を除去することにより形成される。負極合剤の成分の一部(例えば、結着剤)は、分散媒中に溶解していても構わない。分散媒としては、水、NMP、トルエンなどを用いることができる。   The active material-containing layer of the negative electrode comprises a composition (paste, slurry, etc.) prepared by dispersing a negative electrode mixture containing the above active material and binder and, if necessary, a conductive additive in a dispersion medium. It is formed by applying to the surface of the current collector and drying to remove the dispersion medium. A part of the components of the negative electrode mixture (for example, the binder) may be dissolved in the dispersion medium. As the dispersion medium, water, NMP, toluene or the like can be used.

正負極の活物質、および正負極の導電助剤の具体的な粒径としては、粒径が1μm以上であることが好ましく、また10μm以下であることが好ましい。これは、正負極の活物質含有層の厚みに応じて適宜選択されるものであり、例えば5μmの厚みの活物質含有層層を形成するには、4μm以下程度の粒子を用いる必要がある。   Specific particle diameters of the positive and negative electrode active materials and the positive and negative electrode conductive assistants are preferably 1 μm or more, and preferably 10 μm or less. This is appropriately selected according to the thickness of the active material-containing layer of the positive and negative electrodes. For example, in order to form an active material-containing layer layer having a thickness of 5 μm, it is necessary to use particles of about 4 μm or less.

また、正極および負極では、電気を取り出すために集電タブを、例えば、集電体に設けるが、その集電タブは、正極および負極のそれぞれについて、長さ300mm毎に少なくとも1箇所設けられていることが望ましい。充電時間を短くしたり高出力にするには、電流を大きくする必要があるが、例えば同じ抵抗値の場合には、充電電流をあげると、電流の2乗に比例して発熱が大きくなるため、電池内温度の上昇が大きくなる虞がある。よって、特に長尺の電極(正極および負極)を用いる場合には、集電タブの設置間隔をある程度狭くして、1本のタブに集中する電流値を低下させ、電極の分極を小さくして、電池特性向上、発熱の低下を図ることが望ましい。300mmに1本以上のタブを設けることにより、発熱や、分極の問題を低減することができる。より好ましくは50mmに1本以上であり、このようにすれば、電池特性向上、更なる発熱の低下などを図ることができる。一方、電力を外部に取り出すためには、タブを外部端子と溶接などの方法で接続する必要があるが、接続の個数が増加するほど、溶接不良などにより信頼性を確保することが難しくなり、また工程が煩雑になるため、適宜タブの間隔、個数を選択することが推奨される。   Further, in the positive electrode and the negative electrode, a current collecting tab is provided, for example, on the current collector for taking out electricity, and the current collecting tab is provided in at least one place for each length of 300 mm for each of the positive electrode and the negative electrode. It is desirable. To shorten the charging time or increase the output, it is necessary to increase the current. For example, in the case of the same resistance value, if the charging current is increased, the heat generation increases in proportion to the square of the current. There is a risk that the temperature inside the battery will increase significantly. Therefore, especially when using long electrodes (positive electrode and negative electrode), the installation interval of the current collecting tabs is narrowed to some extent, the current value concentrated on one tab is lowered, and the polarization of the electrodes is reduced. It is desirable to improve battery characteristics and reduce heat generation. By providing one or more tabs at 300 mm, heat generation and polarization problems can be reduced. More preferably, the number is one or more per 50 mm. In this way, battery characteristics can be improved and heat generation can be further reduced. On the other hand, in order to extract electric power to the outside, it is necessary to connect the tab to the external terminal by a method such as welding, but as the number of connections increases, it becomes difficult to ensure reliability due to poor welding, etc. Also, since the process becomes complicated, it is recommended to select the interval and number of tabs as appropriate.

タブの形状は、流す電流値により適宜選択可能であるが、幅が狭く、薄ければ抵抗が高く、分極が大きくなり、短絡などで大電流が流れた場合の発熱が大きくなる。幅を広く、厚くすれば抵抗が低下し、大電流が流れた場合の信頼性が増加する。しかし、タブの体積、重量が増加し、電池のエネルギー密度を低下させてしまう。タブの厚みは、0.05mm〜0.5mm程度が好ましく、幅は、2〜10mm程度が好ましい。さらに好ましくは、厚みが0.1mm〜0.2mm、幅は3mm〜6mm程度である。   The shape of the tab can be selected as appropriate depending on the value of the current to flow. However, if the width is narrow and thin, the resistance is high, the polarization is large, and the heat generation is large when a large current flows due to a short circuit or the like. Increasing the width and thickness reduces the resistance and increases the reliability when a large current flows. However, the volume and weight of the tab increase, and the energy density of the battery decreases. The thickness of the tab is preferably about 0.05 mm to 0.5 mm, and the width is preferably about 2 to 10 mm. More preferably, the thickness is about 0.1 mm to 0.2 mm, and the width is about 3 mm to 6 mm.

本発明の非水電解質二次電池に係る非水電解質としては、例えば、下記の非水系溶媒中に、下記の無機イオン塩を溶解させることで調製した溶液(非水電解液)が使用できる。   As the nonaqueous electrolyte according to the nonaqueous electrolyte secondary battery of the present invention, for example, a solution (nonaqueous electrolyte) prepared by dissolving the following inorganic ion salt in the following nonaqueous solvent can be used.

溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート(MEC)、γ−ブチロラクトン、1,2−ジメトキシエタン、プロピレンカーボネート誘導体、1,3−プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。   Examples of the solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate (MEC), γ-butyrolactone, 1,2-dimethoxyethane, propylene carbonate. An aprotic organic solvent such as a derivative or 1,3-propane sultone can be used alone or as a mixed solvent in which two or more are mixed.

非水電解質に係る無機イオン塩としては、例えば、LiClO 、LiPF 、LiBF、LiCFSO 、LiCFCO 、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種が挙げられる。このリチウム塩の電解液中の濃度としては、0.5〜2mol/lとすることが好ましく、0.8〜1.2mol/lとすることがより好ましい。 Examples of the inorganic ion salt related to the non-aqueous electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and at least one selected from lithium salts Can be mentioned. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2 mol / l, and more preferably 0.8 to 1.2 mol / l.

本発明の非水電解質二次電池内では、正極(本発明の電極)と上記負極との間に、上記の非水電解質を含ませたセパレータが配される。セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、セパレータとしては、一定温度以上(例えば100〜140℃)で構成材料の溶融によって孔が閉塞するといったシャットダウン現象を発現することで、抵抗を上げる機能を有するもの(すなわち、シャットダウン機能を有するもの)が好ましい。セパレータの具体例としては、耐有機溶剤性および疎水性を有するポリオレフィン系ポリマー(ポリエチレン、ポリプロピレンなど)、またはガラス繊維などの材料で構成されるシート(多孔質シート)、不織布若しくは織布;該ポリオレフィン系ポリマーの微粒子を接着剤で固着したもの;などの各種多孔体が挙げられる。セパレータの孔径は、正負極より脱離した正負極の活物質、導電助剤および結着剤などが通過しない程度であることが好ましく、例えば、0.01〜1μmであることが望ましい。また、セパレータの空孔率は、電子やイオンの透過性、構成材料や厚みに応じて決定されるが、30〜80%であることが一般的である。   In the non-aqueous electrolyte secondary battery of the present invention, a separator containing the non-aqueous electrolyte is disposed between the positive electrode (the electrode of the present invention) and the negative electrode. As the separator, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. In addition, the separator has a function of increasing resistance by exhibiting a shutdown phenomenon in which pores are blocked by melting of constituent materials at a certain temperature or higher (for example, 100 to 140 ° C.) (that is, having a shutdown function) ) Is preferred. Specific examples of the separator include a polyolefin polymer (polyethylene, polypropylene, etc.) having resistance to organic solvents and hydrophobicity, or a sheet (porous sheet) made of a material such as glass fiber, a nonwoven fabric or a woven fabric; the polyolefin And various porous materials such as those obtained by fixing fine particles of a polymer with an adhesive. The pore diameter of the separator is preferably such that the active material of the positive and negative electrodes, the conductive auxiliary agent, the binder and the like separated from the positive and negative electrodes do not pass through, and is preferably 0.01 to 1 μm, for example. Further, the porosity of the separator is determined according to the permeability of electrons and ions, the constituent material, and the thickness, but is generally 30 to 80%.

一般に用いられるポリエチレンやポリプロピレンの微孔性フィルムの場合には、温度が上がると微孔がふさがり(シャットダウン)フィルム化するが更に、温度が上昇すると溶融することで短絡に至る。一般的なリチウムイオン電池では電極厚み>セパレータ厚みとなっているが、電極厚みが薄くなってもセパレータを厚くし信頼性を確保する必要がある。   In the case of a microporous film of polyethylene or polypropylene that is generally used, when the temperature rises, the micropores are blocked (shut down) to form a film, but when the temperature rises, it melts to cause a short circuit. In a general lithium ion battery, the electrode thickness is greater than the separator thickness. However, even when the electrode thickness is reduced, it is necessary to increase the separator thickness to ensure reliability.

上記の正極と負極とは、例えば、セパレータを介して積層した積層電極体としたり、更に正極と負極とをセパレータを介して積層した後に巻回し、巻回電極体として用いることができる。   The positive electrode and the negative electrode can be used, for example, as a laminated electrode body laminated via a separator, or after the positive electrode and the negative electrode are laminated via a separator and wound.

本発明の非水電解質二次電池の形態としては、例えば、スチール缶やアルミニウム缶などの金属製の外装缶として使用した角形または筒形(角筒形や円筒形など)などが挙げられる。また、外装体として、アルミニウム箔などの金属箔のラミネート外装体を用いることもできる。   Examples of the form of the nonaqueous electrolyte secondary battery of the present invention include a rectangular shape or a cylindrical shape (such as a rectangular cylindrical shape or a cylindrical shape) used as a metal outer can such as a steel can or an aluminum can. In addition, a laminated outer body of a metal foil such as an aluminum foil can be used as the outer body.

なお、急速充電を行うためには、充電電流を大きくする必要があり、一般に充電器は流せる電流が大きくなると大型化と同時に高価格となる。必然的に、大容量の電池を充電するには大きな充電器が必要であるが、携帯用機器の電源の場合などでは、大型の質量の大きな充電器は現実的ではない。充電時間および充電器の大きさ(能力)を考慮した場合、小型で低コストの充電器を用いることができ、また、短時間での充電にも対応しやすくするために、電池の容量を200〜700mAh程度とするのが望ましく、400mAh以下とするのがより望ましい。   In order to perform rapid charging, it is necessary to increase the charging current. Generally, when the current that can be supplied to the charger increases, the charger becomes larger and the price increases. Inevitably, a large charger is required to charge a large-capacity battery, but in the case of a power source for a portable device, a large charger with a large mass is not practical. In consideration of the charging time and the size (capability) of the charger, a small and low-cost charger can be used, and the battery capacity is set to 200 in order to make it easy to handle charging in a short time. ˜700 mAh is desirable, and 400 mAh or less is more desirable.

通常の非水電解質二次電池では充電時間が2〜3時間であり、1時間の充電では、充電可能な容量の60%程度の容量しか充電することができない。本発明の非水電解質二次電池では、例えば、5分以内、好ましくは3分以内という短時間で、容量の80%以上を充電することができる。   A normal nonaqueous electrolyte secondary battery has a charging time of 2 to 3 hours, and charging for 1 hour can charge only about 60% of the chargeable capacity. In the nonaqueous electrolyte secondary battery of the present invention, 80% or more of the capacity can be charged in a short time, for example, within 5 minutes, preferably within 3 minutes.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
正極の作製:
活物質であるLiCoO:95質量部に、導電助剤であるケッチェンブラック:3質量部、および結着剤であるPVDF:2質量部を加え、NMPに分散させて正極合剤含有ペーストを調製し、これを12μmの厚みのアルミニウム箔(集電体)表面に塗布し、乾燥させることにより活物質含有層を形成した。その後、所定厚みにプレスした後、スリットして、この場合は厚み4mm、幅34mm、高さ50mmの角形電池(463450タイプ)の中に入るべく幅43mmにし、長さを調整した正極を得た。つまり正極合剤含有ペーストの塗布量は、活物質含有量形成後の電気容量(単位面積当たりの放電容量)が表1に示す値となるように調整した。更に、正極活物質には、粒子径が、正極の活物質含有層の厚みの70%以下(6μm以下)のものを篩い分けにより選別して使用した。集電タブについては電極長さに応じてタブの本数を定め、幅3mm、厚み0.1mmのアルミニウムリボンを電極に超音波溶接して、正極リード部分との接続を行った。
Example 1
Production of positive electrode:
Add 95 parts by mass of LiCoO 2 as an active material, 3 parts by mass of Ketjen black as a conductive additive, and 2 parts by mass of PVDF as a binder, and disperse in NMP to obtain a positive electrode mixture-containing paste. The active material containing layer was formed by applying and drying this on the surface of an aluminum foil (current collector) having a thickness of 12 μm. Then, after pressing to a predetermined thickness, slitting was performed, and in this case, a positive electrode having a length of 43 mm and a length adjusted to fit into a rectangular battery (463450 type) having a thickness of 4 mm, a width of 34 mm, and a height of 50 mm was obtained. . That is, the coating amount of the positive electrode mixture-containing paste was adjusted so that the electric capacity (discharge capacity per unit area) after the formation of the active material content was the value shown in Table 1. Further, a positive electrode active material having a particle diameter of 70% or less (6 μm or less) of the thickness of the active material containing layer of the positive electrode was selected by sieving. Regarding the current collecting tab, the number of tabs was determined according to the electrode length, and an aluminum ribbon having a width of 3 mm and a thickness of 0.1 mm was ultrasonically welded to the electrode to be connected to the positive electrode lead portion.

負極の作製:
活物質である黒鉛:96質量部に、結着剤であるPVDF:4部を加え、NMPに分散させて負極合剤含有ペーストを調製し、これを厚み6μmの銅箔(集電体)表面に塗布し、乾燥させることにより所定電気量の活物質含有層を形成した。その後、所定厚みにプレスした後、スリットして、幅44mm、長さを正極同様調整した負極を得た。なお、負極合剤含有ペーストの塗布量は、活物質含有量形成後の電気容量(単位面積当たりの放電容量)が表1に示す値となるように調整した。更に、負極活物質には、粒子径が、負極の活物質含有層の厚みの70%以下(6μm以下)のものを使用した。負極タブには幅3mm、厚み0.1mmの銅リボンを、負極に所定間隔で超音波溶接しタブと負極リード端子の間も超音波溶接した。
Production of negative electrode:
Graphite as an active material: 96 parts by mass, 4 parts of PVDF as a binder are added and dispersed in NMP to prepare a paste containing a negative electrode mixture, and this is a 6 μm thick copper foil (current collector) surface The active material-containing layer having a predetermined amount of electricity was formed by applying and drying. Then, after pressing to predetermined thickness, it slitted and the negative electrode which adjusted 44 mm in width and length similarly to the positive electrode was obtained. The coating amount of the negative electrode mixture-containing paste was adjusted so that the electric capacity (discharge capacity per unit area) after the formation of the active material content was the value shown in Table 1. Further, a negative electrode active material having a particle size of 70% or less (6 μm or less) of the thickness of the active material-containing layer of the negative electrode was used. A copper ribbon having a width of 3 mm and a thickness of 0.1 mm was ultrasonically welded to the negative electrode at a predetermined interval, and the tab and the negative electrode lead terminal were also ultrasonically welded.

電池組み立て:
セパレータに、厚み10μmのポリエチレン製微孔性フィルムを、幅46mmにスリットして用い、正極と負極とをこのセパレータを介して重ね合わせ、渦巻状に巻回して巻回電極体を得た。これを、アルミ製の外装缶(電池容器)に挿入し、電解液を2.3mL注入し、封止して、厚み4mm、幅34mm、高さ50mmの463450タイプ(電池体積が約7.8cm)の非水電解質二次電池を得た。なお、電解液には、ECとMECの体積比が1:2の混合溶媒に、LiPFを1mol/lの濃度で溶解させた溶液を用いた。
Battery assembly:
A polyethylene microporous film having a thickness of 10 μm was used as a separator by slitting it to a width of 46 mm, and the positive electrode and the negative electrode were overlapped through this separator and wound into a spiral shape to obtain a wound electrode body. This was inserted into an aluminum outer can (battery container), 2.3 mL of electrolyte was injected, sealed, and a 463450 type having a thickness of 4 mm, a width of 34 mm, and a height of 50 mm (the battery volume was about 7.8 cm). 3 ) A nonaqueous electrolyte secondary battery was obtained. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent having a volume ratio of EC and MEC of 1: 2 was used.

実施例2〜15、比較例1〜8
正負極における活物質含有層および集電体の厚み、セパレータの厚み、またはタブの個数を表1および表2に示すように変更した他は、実施例1と同様にして非水電解質二次電池を作製した。
Examples 2 to 15 and Comparative Examples 1 to 8
The nonaqueous electrolyte secondary battery is the same as in Example 1 except that the thickness of the active material-containing layer and current collector, the thickness of the separator, or the number of tabs in the positive and negative electrodes are changed as shown in Table 1 and Table 2. Was made.

上記実施例1〜15および比較例1〜8の非水電解質二次電池の構成について、表1および表2にまとめた。   The configurations of the nonaqueous electrolyte secondary batteries of Examples 1 to 15 and Comparative Examples 1 to 8 are summarized in Tables 1 and 2.

Figure 2006260786
Figure 2006260786

Figure 2006260786
Figure 2006260786

実施例1〜15および比較例1〜8の非水電解質二次電池について、以下の各評価を行った。結果を表3および表4に示す。   The following evaluation was performed about the nonaqueous electrolyte secondary battery of Examples 1-15 and Comparative Examples 1-8. The results are shown in Table 3 and Table 4.

<放電容量および体積エネルギー密度>
実施例および比較例の各電池について、20℃で、定電流−定電圧充電(定電流:1C、定電圧:4.2V、総充電時間:3時間)の条件で充電し、0.2Cで終止電圧を3Vとして放電した際の放電容量を測定し、この値から、各電池について、電気容量(正極と負極の活物質含有層の対向する部分における単位面積当たりの放電容量)および体積エネルギー密度を求めた。なお、本発明において体積エネルギー密度は、電池の作動電圧を3.7Vと仮定し、〔放電容量×作動電圧(3.7V)÷電池の容積(7.8cm)〕により求め、単位を(Wh/l)で表した値である。
<Discharge capacity and volumetric energy density>
About each battery of an Example and a comparative example, it charged at 20 degreeC on the conditions of constant current-constant voltage charge (constant current: 1C, constant voltage: 4.2V, total charge time: 3 hours), and 0.2C The discharge capacity at the time of discharging with a final voltage of 3 V was measured, and from this value, the electric capacity (discharge capacity per unit area in the facing portion of the active material containing layer of the positive electrode and the negative electrode) and volume energy density were determined for each battery. Asked. In the present invention, the volume energy density is determined by [discharge capacity × operating voltage (3.7 V) ÷ battery volume (7.8 cm 3 )] assuming that the operating voltage of the battery is 3.7 V, and the unit is ( (Wh / l).

<急速充電性能>
実施例および比較例の各電池について、上記充電条件の定電流部分を、それぞれの電池の20Cに相当する電流値に設定し、総充電時間を3分間として充電を行った。このときの各電池の充電電気量(mAh)を測定し、上記放電容量に対する百分率を求め、この値で急速充電性能を評価した。
<Quick charging performance>
About each battery of an Example and a comparative example, the constant current part of the said charging conditions was set to the electric current value equivalent to 20C of each battery, and it charged by making total charge time into 3 minutes. The amount of charge electricity (mAh) of each battery at this time was measured, the percentage with respect to the discharge capacity was determined, and the rapid charge performance was evaluated with this value.

<短絡試験>
上記の放電容量の測定時と同様の充電条件で、定電流−定電圧充電により電池を充電し、正極リード端子と負極リード端子の間を10mΩのリード線で接続して電池を短絡させ、1時間放置した。その間の電池の表面温度を測定し、80℃以上になった場合を「発熱」として評価した。
<Short-circuit test>
The battery is charged by constant current-constant voltage charging under the same charging conditions as in the measurement of the discharge capacity, and the battery is short-circuited by connecting the positive electrode lead terminal and the negative electrode lead terminal with a 10 mΩ lead wire. Left for hours. During this time, the surface temperature of the battery was measured, and when it reached 80 ° C. or higher, it was evaluated as “heat generation”.

<組み立て時の不良発生率>
電極をセパレータと共に巻回する際に、セパレータや電極に破断が生じたり、巻きずれを生じた場合を不良と判断し、その発生率を求めた。
<Defect occurrence rate during assembly>
When the electrode was wound together with the separator, the case where the separator or the electrode was broken or wound was judged as defective, and the occurrence rate was determined.

Figure 2006260786
Figure 2006260786

Figure 2006260786
Figure 2006260786

表1〜4から以下のことが分かる。実施例1〜15の電池では、電池の構成を制御することにより、電池の放電容量の80%以上に相当する電気量を3分間という短時間で安全に充電することが可能となり、優れた急速充電性能を得ることができた。   The following can be understood from Tables 1 to 4. In the batteries of Examples 1 to 15, by controlling the configuration of the battery, it was possible to safely charge an amount of electricity corresponding to 80% or more of the discharge capacity of the battery in a short time of 3 minutes, and excellent rapidity. The charging performance could be obtained.

また、タブの数を変化させ、各々のタブの間隔を変えた電池を実施例13〜15で示した。電極の長さが300mm毎に少なくとも1個のタブを設けた実施例13および14の電池の方が、各々のタブの間隔を上記より広くした実施例15の電池よりも急速充電性能に優れる結果が得られた。   Moreover, the batteries which changed the space | interval of each tab by changing the number of tabs were shown in Examples 13-15. Results of the batteries of Examples 13 and 14 in which at least one tab is provided for every 300 mm of electrode length are superior to the battery of Example 15 in which the distance between the tabs is wider than that of the battery of Example 15 above. was gotten.

表には記載していないが、3分間での充電電気量が放電容量の95%以上となった実施例2、実施例6、実施例9、実施例13および実施例14の電池では、放電容量の80%の電気量を充電するのに要する時間は2.5分程度である。   Although not shown in the table, in the batteries of Example 2, Example 6, Example 9, Example 13 and Example 14 in which the amount of charge in 3 minutes was 95% or more of the discharge capacity, The time required to charge 80% of the capacity is about 2.5 minutes.

上記結果は、以下の要因によるものと考えられる。すなわち、上記実施例においては、定電流(20C)での充電が進行するにつれて電池の電圧が高くなり、一定電圧(上記実施例では4.2V)に達すると定電圧充電に切り替わるのであるが、定電圧充電における充電電流値は、定電流充電のときの電流値よりも大幅に低下するため、定電流充電にかかる時間が長いほど多くの電気量を充電することができる。20Cのような大電流での充電では、従来の電池の場合は、充電時の分極が極めて大きくなり、電池の電圧が充電開始と共に大幅に上昇してしまう。このため、すぐに電池電圧が上限電圧に達して定電圧充電に移行してしまい、短時間で充電できる電気量は限られてしまうが、本発明の電池では、上記構成とすることにより、分極を抑え、定電流充電にかかる時間を長くすることができるので、短時間でも多くの電気量を充電することが可能となる。   The above results are thought to be due to the following factors. That is, in the above embodiment, the battery voltage increases as charging at a constant current (20 C) proceeds, and when it reaches a certain voltage (4.2 V in the above embodiment), it switches to constant voltage charging. Since the charging current value in the constant voltage charging is significantly lower than the current value in the constant current charging, a larger amount of electricity can be charged as the time required for the constant current charging becomes longer. In the case of charging with a large current such as 20C, in the case of a conventional battery, the polarization at the time of charging becomes extremely large, and the voltage of the battery greatly increases with the start of charging. For this reason, the battery voltage immediately reaches the upper limit voltage and shifts to constant voltage charging, and the amount of electricity that can be charged in a short time is limited. Since the time required for constant current charging can be reduced, a large amount of electricity can be charged even in a short time.

なお、本発明は急速充電が可能な電池構成としたものであるが、電流値を下げて長時間の充電を行なうのを妨げるものではない。また、これらの電池では、エネルギー密度が、従来の電池のおよそ1/2〜1/5の範囲であり、容量の低下が可及的に抑制されており、充電時間の短縮、大電流放電性から利便性の高い二次電池であることも分かる。つまり、実施例の電池では、容量の低下の割合以上に充電時間の短縮がなされており、実質的な利用性は容量が低下しても損なわれていない。さらに、これらの実施例でもわかるように、組み立て時に短絡を発生したり、捲回作業時に電極が破断するなどのトラブルの発生はなかった。安全性については、短絡状態においても、80℃以上になる発熱を生じず、発火や破裂などの重大欠点は発生しないことが確認できた。   In addition, although this invention is set as the battery structure which can be charged rapidly, it does not prevent performing a long time charge by reducing an electric current value. Moreover, in these batteries, the energy density is in the range of about 1/2 to 1/5 that of conventional batteries, and the decrease in capacity is suppressed as much as possible. It can also be seen that this is a highly convenient secondary battery. That is, in the battery of the example, the charging time is shortened more than the rate of the capacity decrease, and the substantial usability is not impaired even if the capacity is decreased. Furthermore, as can be seen from these examples, there was no trouble such as a short circuit during assembly or the electrode breaking during winding. As for safety, it was confirmed that even in a short-circuit state, no heat was generated at 80 ° C. or higher, and no serious defects such as ignition or rupture occurred.

これに対し、比較例1では、負極集電体が薄すぎるため、組み立て時に集電体の破断が発生する場合があり、また、短絡試験では発熱が大きくなった。比較例2では、正極集電体が薄すぎるため、比較例1と同様、破断と発熱が顕著に観察された。いずれの場合も、集電体の体積が減少するため活物質を増やすことができるが、信頼性の面からは、好ましいとはいえない。また、比較例3および4の電池は、負極集電体または正極集電体が厚すぎるものである。いずれも組み立て、安全性などの面からは支障がないが、電池の容積を一定とすると活物質充填量の低下を招くため、放電容量が低下してしまい、好ましいとはいえない。   On the other hand, in Comparative Example 1, since the negative electrode current collector was too thin, the current collector might break during assembly, and heat generation increased in the short circuit test. In Comparative Example 2, the positive electrode current collector was too thin, and as in Comparative Example 1, breakage and heat generation were significantly observed. In either case, the active material can be increased because the volume of the current collector is reduced, but it is not preferable from the viewpoint of reliability. In the batteries of Comparative Examples 3 and 4, the negative electrode current collector or the positive electrode current collector is too thick. In either case, there is no problem in terms of assembly and safety, but if the volume of the battery is constant, the active material filling amount is reduced, so that the discharge capacity is reduced, which is not preferable.

比較例5には、正極の活物質含有層厚みと集電体厚みの比率が小さすぎる例、比較例6には、負極の活物質含有層厚みと集電体厚みの比率が小さすぎる例を示す。いずれも、容量が低下し好ましくない。また、比較例7には、正極の活物質含有層厚みと集電体厚みの比率が大きすぎる例、比較例8には負極の活物質含有層厚みと集電体厚みの比率が大きすぎる例を示す。比較例7の場合には、容量は大きくなるが、充電時間が長くなり、好ましくない。比較例8では正極活物質の量が減少し、容量低下をきたしてしまう。また、例示はしなかったが、巻回性が損なわれるほど厚く剛性のある集電体を用いることになり、実用的とはいえない。   In Comparative Example 5, the ratio of the active material containing layer thickness of the positive electrode to the current collector thickness is too small. In Comparative Example 6, the ratio of the negative electrode active material containing layer thickness to the current collector thickness is too small. Show. In either case, the capacity decreases, which is not preferable. In Comparative Example 7, the ratio of the active material-containing layer thickness of the positive electrode to the current collector thickness is too large. In Comparative Example 8, the ratio of the negative electrode active material-containing layer thickness to the current collector thickness is too large. Indicates. In the case of Comparative Example 7, the capacity increases, but the charging time becomes longer, which is not preferable. In Comparative Example 8, the amount of the positive electrode active material decreases, resulting in a decrease in capacity. Although not illustrated, a current collector that is so thick and rigid that the winding property is impaired is used, which is not practical.

以上のように、本発明の構成にすることで、安全性に優れ、実使用上問題ないエネルギー密度を確保し、急速充電可能な非水電解質二次電池を実現することができる。
As described above, by adopting the configuration of the present invention, it is possible to realize a non-aqueous electrolyte secondary battery that is excellent in safety, secures an energy density that causes no problem in actual use, and can be rapidly charged.

Claims (5)

正極活物質を含む活物質含有層が金属箔集電体表面に形成されてなる正極と、負極活物質を含む活物質含有層が金属箔集電体表面に形成されてなる負極とが、セパレータを介して配置されている非水電解質二次電池であって、
正極の集電体の厚みtが12〜40μmであり、
負極の集電体の厚みtが6〜30μmであり、
正極の活物質含有層と負極の活物質含有層の対向する部分において、正極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが0.1〜1であり、負極の活物質含有層の厚みd(μm)と集電体の厚みt(μm)との比d/tが0.15〜2であることを特徴とする非水電解質二次電池。
A positive electrode in which an active material-containing layer containing a positive electrode active material is formed on the surface of the metal foil current collector, and a negative electrode in which an active material-containing layer containing a negative electrode active material is formed on the surface of the metal foil current collector A non-aqueous electrolyte secondary battery disposed via
The positive electrode current collector has a thickness t 1 of 12 to 40 μm,
The negative electrode current collector has a thickness t2 of 6 to 30 μm,
The ratio d 1 / t of the thickness d 1 (μm) of the active material-containing layer of the positive electrode to the thickness t 1 (μm) of the current collector in the facing portion of the active material-containing layer of the positive electrode and the active material-containing layer of the negative electrode 1 is 0.1 to 1, and the ratio d 2 / t 2 between the thickness d 2 (μm) of the active material-containing layer of the negative electrode and the thickness t 2 (μm) of the current collector is 0.15 to 2. A non-aqueous electrolyte secondary battery.
正極の活物質含有層と負極の活物質含有層との対向する部分における電気容量が、0.1〜0.7mAh/cmである請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein an electric capacity in a portion where the active material-containing layer of the positive electrode and the active material-containing layer of the negative electrode are opposed to each other is 0.1 to 0.7 mAh / cm 2 . 正極の集電体が、アルミニウム箔またはアルミニウム合金箔である請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector of the positive electrode is an aluminum foil or an aluminum alloy foil. 負極の集電体が、銅箔または銅合金箔である請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode current collector is a copper foil or a copper alloy foil. 正極および負極は集電タブを備えており、該集電タブは、正極、負極のそれぞれについて、長さ300mm毎に少なくとも1箇所設けられている請求項1〜4のいずれかに記載の非水電解質二次電池。
The non-aqueous solution according to any one of claims 1 to 4, wherein the positive electrode and the negative electrode are each provided with a current collecting tab, and the current collecting tab is provided in at least one place for each length of 300 mm for each of the positive electrode and the negative electrode. Electrolyte secondary battery.
JP2005072585A 2005-03-15 2005-03-15 Nonaqueous electrolyte secondary battery Pending JP2006260786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072585A JP2006260786A (en) 2005-03-15 2005-03-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072585A JP2006260786A (en) 2005-03-15 2005-03-15 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2006260786A true JP2006260786A (en) 2006-09-28

Family

ID=37099806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072585A Pending JP2006260786A (en) 2005-03-15 2005-03-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2006260786A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069266A1 (en) * 2007-11-26 2009-06-04 Panasonic Corporation Nonaqueous electrolyte secondary battery
EP2187466A1 (en) 2008-11-14 2010-05-19 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, cutter and method of manufacturing electrode
JP2010192248A (en) * 2009-02-18 2010-09-02 Japan Vilene Co Ltd Lithium ion secondary battery
JP2010192249A (en) * 2009-02-18 2010-09-02 Japan Vilene Co Ltd Lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148141A (en) * 1994-11-25 1996-06-07 Murata Mfg Co Ltd Manufacture of electrode for lithium secondary battery
JPH09283183A (en) * 1996-04-18 1997-10-31 Murata Mfg Co Ltd Non-aqueous electrolyte secondary battery
JPH11329409A (en) * 1998-05-15 1999-11-30 Nissan Motor Co Ltd Lithium ion secondary battery
JP2000156246A (en) * 1997-11-10 2000-06-06 Ngk Insulators Ltd Lithium secondary battery
JP2000173666A (en) * 1998-12-10 2000-06-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004335167A (en) * 2003-05-01 2004-11-25 Nissan Motor Co Ltd Electrode as well as battery for high-speed charge and discharge
JP2005025973A (en) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2005243365A (en) * 2004-02-25 2005-09-08 Tdk Corp Lithium ion secondary battery, and its charging method
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148141A (en) * 1994-11-25 1996-06-07 Murata Mfg Co Ltd Manufacture of electrode for lithium secondary battery
JPH09283183A (en) * 1996-04-18 1997-10-31 Murata Mfg Co Ltd Non-aqueous electrolyte secondary battery
JP2000156246A (en) * 1997-11-10 2000-06-06 Ngk Insulators Ltd Lithium secondary battery
JPH11329409A (en) * 1998-05-15 1999-11-30 Nissan Motor Co Ltd Lithium ion secondary battery
JP2000173666A (en) * 1998-12-10 2000-06-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004335167A (en) * 2003-05-01 2004-11-25 Nissan Motor Co Ltd Electrode as well as battery for high-speed charge and discharge
JP2005025973A (en) * 2003-06-30 2005-01-27 Nissan Motor Co Ltd Lithium-ion secondary battery
JP2005243365A (en) * 2004-02-25 2005-09-08 Tdk Corp Lithium ion secondary battery, and its charging method
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069266A1 (en) * 2007-11-26 2009-06-04 Panasonic Corporation Nonaqueous electrolyte secondary battery
JP2009152182A (en) * 2007-11-26 2009-07-09 Panasonic Corp Nonaqueous electrolyte secondary battery
US9093704B2 (en) 2007-11-26 2015-07-28 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
EP2187466A1 (en) 2008-11-14 2010-05-19 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, cutter and method of manufacturing electrode
EP2448042A1 (en) 2008-11-14 2012-05-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
EP2448041A1 (en) 2008-11-14 2012-05-02 Kabushiki Kaisha Toshiba Cutter
JP2010192248A (en) * 2009-02-18 2010-09-02 Japan Vilene Co Ltd Lithium ion secondary battery
JP2010192249A (en) * 2009-02-18 2010-09-02 Japan Vilene Co Ltd Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
US20080248375A1 (en) Lithium secondary batteries
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
WO2000033402A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP5053044B2 (en) Nonaqueous electrolyte secondary battery
JP2001006747A (en) Nonaqueous electrolyte secondary battery
JP5203632B2 (en) Non-aqueous electrolyte battery
JP2011192541A (en) Nonaqueous secondary battery
JP2006216305A (en) Secondary battery
JP4919613B2 (en) Nonaqueous electrolyte secondary battery
JP5150095B2 (en) Non-aqueous electrolyte battery
CN111919325A (en) Lithium secondary battery
JP2006260786A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP2006024392A (en) Charging method of lithium-ion secondary battery
JP4688527B2 (en) Lithium secondary battery
WO2004042861A1 (en) Method for charging nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell
KR102064011B1 (en) Aluminum alloy foil for lithium ion secondary battery current collector and lithium ion secondary battery using same
JP5786137B2 (en) Cylindrical lithium ion secondary battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2017182993A (en) Method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120105