JPH11322649A - Production of optically active alcohol - Google Patents

Production of optically active alcohol

Info

Publication number
JPH11322649A
JPH11322649A JP10303951A JP30395198A JPH11322649A JP H11322649 A JPH11322649 A JP H11322649A JP 10303951 A JP10303951 A JP 10303951A JP 30395198 A JP30395198 A JP 30395198A JP H11322649 A JPH11322649 A JP H11322649A
Authority
JP
Japan
Prior art keywords
group
reaction
formic acid
amine
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10303951A
Other languages
Japanese (ja)
Inventor
Kazuya Okano
一哉 岡野
Yoshikazu Miyagi
美和 宮城
Hiroshi Iwane
寛 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10303951A priority Critical patent/JPH11322649A/en
Publication of JPH11322649A publication Critical patent/JPH11322649A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To obtain in a high yield, an optically active alcohol at a high enantiomer excess ratio using a small amount of a catalyst by the hydrogen- transfer type asymmetric reduction of a specific ketone by a specific amount of formic acid as a hydrogen donor in thepresence of a specific catalyst and an amine. SOLUTION: This composition shown by formula II is obtained by the hydrogen-transfer type asymmetric reduction of (A) a ketone shown by formula I [R<1> and R<2> are each a (substituted) aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, or a heterocyclic group, or can form a ring together] by (B) formic acid at a 1-100 molar ratio to component A as a hydrogen donor in the presence of (C) a transition metal catalyst and (D) a tertiary amine (e.g. triethylamine) in an excess amount to component C and a 0.01-100 molar ratio to component A, with a B/D molar ratio being 2.2 or smaller in the reaction system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性アルコー
ルの製造方法に関する。詳しくは、ケトン類を、アミン
の存在下、ギ酸を水素供与体とする水素移動型不斉還元
反応により還元する方法の改良に関する。本発明の方法
は、医薬、農薬の合成中間体として有用な光学活性α−
メチルベンジルアルコール類の合成に好適である。
[0001] The present invention relates to a method for producing an optically active alcohol. More specifically, the present invention relates to an improvement in a method for reducing ketones by a hydrogen transfer type asymmetric reduction reaction using formic acid as a hydrogen donor in the presence of an amine. The method of the present invention provides an optically active α- useful as a synthetic intermediate for pharmaceuticals and pesticides.
It is suitable for the synthesis of methylbenzyl alcohols.

【0002】[0002]

【従来の技術】光学活性アルコールは医薬、農薬の中間
体として重要な化合物であり、その有効な合成法の一つ
として、ケトンを基質とする水素移動型不斉還元反応が
知られている。水素移動型不斉還元反応はイソプロパノ
ールやギ酸等の水素供与性化合物を水素源とする不斉還
元反応であり、水素ガス還元やボロヒドリド還元に比べ
安全性や経済性の面で優れた反応である。
2. Description of the Related Art Optically active alcohols are important compounds as intermediates for pharmaceuticals and agricultural chemicals. As one of effective synthetic methods, a hydrogen-transfer type asymmetric reduction reaction using a ketone as a substrate is known. The hydrogen-transfer-type asymmetric reduction reaction is an asymmetric reduction reaction using a hydrogen-donating compound such as isopropanol or formic acid as a hydrogen source, and is more excellent in safety and economy than hydrogen gas reduction and borohydride reduction. .

【0003】NoyoriらはJ.Am.Chem.S
oc.,118,2521(1996)においてギ酸−
トリエチルアミン共沸混合物(ギ酸:トリエチルアミン
=5:2(モル比))を水素源とし、ルテニウム化合物
を触媒とするケトンの不斉還元方法を開示している。本
反応においてはギ酸から生ずる二酸化炭素が系外に除去
されるため、イソプロパノールを水素源に用いた場合に
比べると高い平衡転化率が達成され、また分子触媒によ
り高い不斉収率が達成されている。
Noyori et al. Am. Chem. S
oc. , 118, 2521 (1996).
A method for asymmetric reduction of ketones using a triethylamine azeotrope (formic acid: triethylamine = 5: 2 (molar ratio)) as a hydrogen source and a ruthenium compound as a catalyst is disclosed. In this reaction, carbon dioxide generated from formic acid is removed out of the system, so that a higher equilibrium conversion is achieved than when isopropanol is used as a hydrogen source, and a higher asymmetric yield is achieved by a molecular catalyst. I have.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法を含め水素移動型不斉還元反応は、本来反応速度が遅
く、触媒に対する基質のモル比(S/C)が200の条
件下でも室温では約20時間の反応時間を要するという
問題がある。本発明は、工業的製造の場合、より少ない
触媒量で高い化学収率、高いエナンチオマー過剰率(以
下、eeと略記する)が得られる光学活性アルコールの
製造方法を提供することを目的とする。
However, the hydrogen-transfer-type asymmetric reduction reaction including the above method is inherently slow in the reaction rate, and even when the molar ratio (S / C) of the substrate to the catalyst (S / C) is 200, it is about room temperature. There is a problem that a reaction time of 20 hours is required. An object of the present invention is to provide a method for producing an optically active alcohol capable of obtaining a high chemical yield and a high enantiomeric excess (hereinafter abbreviated as ee) with a smaller amount of catalyst in the case of industrial production.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、ケトン類をギ酸を水
素供与体とする水素移動型不斉還元反応により還元する
際、アミンに対するギ酸のモル比を共沸組成比から低下
させることにより反応速度が大幅に向上することを見い
出し、本発明を完成するに至った。即ち、本発明の要旨
は、一般式(I)
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, when reducing ketones by a hydrogen transfer type asymmetric reduction reaction using formic acid as a hydrogen donor, amines are reduced. The inventors have found that the reaction rate is significantly improved by reducing the molar ratio of formic acid from the azeotropic composition ratio, and have completed the present invention. That is, the gist of the present invention is the general formula (I)

【0006】[0006]

【化3】 Embedded image

【0007】(式中、R1 及びR2 は、互いに異なり、
置換基を有していてもよい芳香族炭化水素基、飽和若し
くは不飽和の脂肪族炭化水素基、環式脂肪族炭化水素基
又は複素環基を表す。また、R1 及びR2 が結合して環
を形成してもよい)で示されるケトン類を、遷移金属触
媒及び第三級アミン類の存在下、ギ酸を水素供与体とす
る水素移動型不斉還元反応により還元する際、アミンに
対する反応系に存在するギ酸のモル比が2.2以下の範
囲内で反応を行うことを特徴とする一般式(II)
(Wherein R 1 and R 2 are different from each other;
It represents an aromatic hydrocarbon group which may have a substituent, a saturated or unsaturated aliphatic hydrocarbon group, a cycloaliphatic hydrocarbon group or a heterocyclic group. And R 1 and R 2 may be combined to form a ring) in the presence of a transition metal catalyst and a tertiary amine. A general formula (II) characterized in that when the reduction is carried out by a simultaneous reduction reaction, the reaction is carried out in a molar ratio of formic acid to amine in the reaction system of 2.2 or less.

【0008】[0008]

【化4】 Embedded image

【0009】(式中、R1 及びR2 は式(I)と同義で
ある)で示される光学活性アルコールの製造方法にあ
る。また、本発明は反応終了後に得られる反応液よりア
ミンを蒸留により回収し、このアミンを反応にリサイク
ルすることを特徴とする光学活性アルコールの製造方法
にある。
(Wherein R 1 and R 2 have the same meanings as in formula (I)). The present invention also provides a method for producing an optically active alcohol, comprising recovering an amine from a reaction solution obtained after completion of the reaction by distillation and recycling the amine to the reaction.

【0010】[0010]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明で用いられる原料のケトンは式(I)で示
されるものである。式(I)において、R1 及びR
2 は、具体的には、例えば単環又は多環の芳香族炭化水
素基、直鎖又は分岐のアルキル基、アルケニル基、シク
ロアルキル基等の脂肪族炭化水素基、窒素、酸素、硫黄
等の原子を含有する複素環基を表し、これらの基は更に
置換基を有していてもよい。但し、R1 とR2 は同一で
はない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The starting ketone used in the present invention is represented by the formula (I). In the formula (I), R 1 and R
2 is specifically, for example, a monocyclic or polycyclic aromatic hydrocarbon group, a linear or branched alkyl group, an alkenyl group, an aliphatic hydrocarbon group such as a cycloalkyl group, nitrogen, oxygen, sulfur, etc. Represents a heterocyclic group containing an atom, and these groups may further have a substituent. However, R 1 and R 2 are not the same.

【0011】特に本発明方法の適用性が高いケトンは、
式(I)において、R1 及びR2 の何れか一方が、C1
〜C4 のアルキル基であり、他方が、XnAr−基(式
中、Arは芳香族炭化水素基又は複素環基を表し、X
は、水素原子、ハロゲン原子、C1 〜C4 のアルキル
基、C1 〜C4 のアルコキシ基、C1 〜C4 のハロアル
キル基、C1 〜C4 のハロアルコキシ基、C1 〜C4
アルキルチオ基、C2 〜C 6 のアルキニルオキシ基、シ
アノ基、ニトロ基又はアリール基を表し、nは1〜3の
整数を表す。但し、nが2又は3であるとき、Xは同一
でも異なっていても良く、また隣接する二つのXが合体
してArと縮合環を形成してもよい)で示されるケトン
である。
Particularly, ketones having high applicability in the method of the present invention include:
In the formula (I), R1And RTwoOne of the C1
~ CFourThe other is an XnAr- group (formula
In the formula, Ar represents an aromatic hydrocarbon group or a heterocyclic group;
Is a hydrogen atom, a halogen atom, C1~ CFourThe alkyl of
Group, C1~ CFourAn alkoxy group of C1~ CFourNo haloal
Kill group, C1~ CFourHaloalkoxy group, C1~ CFourof
Alkylthio group, CTwo~ C 6Alkynyloxy group,
Represents an ano group, a nitro group or an aryl group, and n is 1 to 3
Represents an integer. However, when n is 2 or 3, X is the same
But may be different, and two adjacent Xs are united
Which may form a condensed ring with Ar)
It is.

【0012】具体的にはArで示される芳香族炭化水素
基としては、フェニル基、ナフチル基が、また、複素環
基としては、ピリジル基、チエニル基、チアゾリル基等
が挙げられる。Xで示されるハロゲン原子としては、塩
素原子、臭素原子、フッ素原子等;C1 〜C4 のアルキ
ル基又はアルコキシ基としては、メチル基、エチル基、
n−プロピル基、i−プロピル基、n−ブチル基、i−
ブチル基、sec−ブチル基、t−ブチル基等のアルキ
ル基及びこれに対応するアルコキシ基等;C1〜C4
ハロアルキル基、ハロアルコキシ基としては、クロロメ
チル基、トリフルオロメチル基、ジフルオロエチル基、
ペンタフルオロエチル基等のハロアルキル基及びこれに
対応するアルコキシ基等;C1 〜C4 のアルキルチオ基
としては、前述のアルキル基に対応するアルキルチオ基
が例示される。また、アルキニルオキシ基としては、プ
ロパルギルオキシ基、ブチニルオキシ基等が例示され
る。
Specifically, the aromatic hydrocarbon group represented by Ar includes a phenyl group and a naphthyl group, and the heterocyclic group includes a pyridyl group, a thienyl group and a thiazolyl group. Examples of the halogen atom represented by X include a chlorine atom, a bromine atom and a fluorine atom; and examples of the C 1 -C 4 alkyl group or alkoxy group include a methyl group, an ethyl group,
n-propyl group, i-propyl group, n-butyl group, i-
Alkyl groups such as butyl group, sec-butyl group, t-butyl group and corresponding alkoxy groups; etc .; C 1 -C 4 haloalkyl groups and haloalkoxy groups include chloromethyl group, trifluoromethyl group, difluoro Ethyl group,
A haloalkyl group such as a pentafluoroethyl group and an alkoxy group corresponding thereto; and the C 1 -C 4 alkylthio group include the alkylthio groups corresponding to the aforementioned alkyl groups. Examples of the alkynyloxy group include a propargyloxy group and a butynyloxy group.

【0013】またXnAr−については、メチレンジオ
キシフェニル基、エチレンジオキシフェニル基等の隣接
する二個のXが合体してArと縮合環を形成する場合も
ある。本発明の原料として最も好ましい具体例として
は、アセトフェノン、m−クロロアセトフェノン、m−
フルオロアセトフェノン、m−トリフルオロメチルアセ
トフェノン、m−トリフルオロメトキシアセトフェノ
ン、フェニルエチルケトン、フェニルイソプロピルケト
ン、フェニル−n−プロピルケトン、フェニル−n−ブ
チルケトン、1−インダノン、α−テトラロン等が例示
される。
As for XnAr-, two adjacent Xs such as a methylenedioxyphenyl group and an ethylenedioxyphenyl group may combine to form a condensed ring with Ar. The most preferred specific examples of the raw material of the present invention include acetophenone, m-chloroacetophenone,
Examples include fluoroacetophenone, m-trifluoromethylacetophenone, m-trifluoromethoxyacetophenone, phenylethylketone, phenylisopropylketone, phenyl-n-propylketone, phenyl-n-butylketone, 1-indanone, α-tetralone, and the like. .

【0014】本発明においては、水素供与体としてギ酸
を用いる。工業的に得られるギ酸としては、種々の含水
量のものが入手可能であるが、本反応においてはなるべ
く水分量の少ないものが望ましく、具体的には99重量
%ギ酸が例示される。原料となるケトンに対するギ酸の
モル比としては1〜100モル倍、好ましくは1〜10
モル倍、更に好ましくは1〜1.2モル倍が例示され
る。
In the present invention, formic acid is used as a hydrogen donor. As formic acid obtained industrially, those having various water contents are available, but in this reaction, those having as small a water content as possible are desirable, and specifically, 99% by weight formic acid is exemplified. The molar ratio of formic acid to ketone as a raw material is 1 to 100 times, preferably 1 to 10 times.
Molar times, more preferably 1 to 1.2 times, are exemplified.

【0015】本反応においてはケトンと等モル量のギ酸
が反応において消費される。ギ酸の仕込方法としては、
等モル量ないし過剰量のギ酸を仕込時に混合させる方法
と、ギ酸を連続的又は間欠的に添加しながら反応を進行
させる方法とがある。ギ酸を添加しながら反応を進行さ
せることが、生産性の向上及び暴走反応の回避の点で有
用である。
In this reaction, an equimolar amount of formic acid is consumed in the reaction. For the preparation method of formic acid,
There are a method in which an equimolar amount or an excess amount of formic acid is mixed at the time of charging, and a method in which the reaction proceeds while continuously or intermittently adding formic acid. It is useful to promote the reaction while adding formic acid in terms of improving productivity and avoiding a runaway reaction.

【0016】本発明においてはアミンを共存させて反応
を行う。アミンとしてはアンモニア、メチルアミン、ベ
ンジルアミン等の第一級アミン、ジメチルアミン、ジエ
チルアミン等の第二級アミン、トリメチルアミン、トリ
エチルアミン、トリn−プロピルアミン、ピリジン等の
第三級アミンが用いられる。これらの中、第三級アミン
が好適であり、トリメチルアミン、トリエチルアミン、
トリn−プロピルアミン等の第三級脂肪族アミンが好ま
しく、特にトリエチルアミンが好ましい。
In the present invention, the reaction is carried out in the presence of an amine. As the amine, primary amines such as ammonia, methylamine and benzylamine, secondary amines such as dimethylamine and diethylamine, and tertiary amines such as trimethylamine, triethylamine, tri-n-propylamine and pyridine are used. Of these, tertiary amines are preferred, and trimethylamine, triethylamine,
Tertiary aliphatic amines such as tri-n-propylamine are preferred, and triethylamine is particularly preferred.

【0017】アミンの量は少なくとも触媒に対して過剰
量が必要で、アミンの最適な仕込量は原料ケトンや使用
アミンにより異なるが、通常は原料ケトンに対するアミ
ンのモル比として0.01〜100、好ましくは0.1
〜2の範囲で行われる。本発明はアミンに対するギ酸の
モル比(以下、「ギ酸/アミン比」とする)を2.2以
下の範囲内で行うことを特徴とする。アミンの存在量に
応じてギ酸の最大仕込量が決定される。好ましいギ酸/
アミン比は1以下である。ギ酸は反応の進行に伴い消費
されるので、ギ酸の仕込量がケトンに対して1以下であ
る場合には、反応の進行に伴いギ酸/アミン比は0にな
り反応が停止する。再びギ酸を添加することにより反応
は再開する。
The amount of the amine must be at least an excess amount with respect to the catalyst, and the optimum amount of the amine to be used varies depending on the starting ketone and the amine to be used. Usually, the molar ratio of the amine to the starting ketone is 0.01 to 100; Preferably 0.1
To 2. The present invention is characterized in that the reaction is carried out within a molar ratio of formic acid to amine (hereinafter referred to as "formic acid / amine ratio") of 2.2 or less. The maximum charge of formic acid is determined according to the amount of amine present. Preferred formic acid /
The amine ratio is 1 or less. Since formic acid is consumed as the reaction proceeds, when the charged amount of formic acid is 1 or less with respect to the ketone, the formic acid / amine ratio becomes 0 as the reaction proceeds, and the reaction stops. The reaction is resumed by adding formic acid again.

【0018】また種々の第三級アミンはギ酸と共沸混合
物を生成することが知られており(有機合成化学協会
誌,34,No.2,67(1976))、本発明にお
いてギ酸とアミンの供給法としてギ酸−アミン共沸混合
物を使用することも可能である。共沸混合物中のアミン
のギ酸に対するモル比は通常2.3から2.5であり、
本発明においてはギ酸−アミン共沸混合物にアミンを添
加することにより、好適なギ酸/アミン比に調製するこ
とが望ましい。
It is also known that various tertiary amines form an azeotrope with formic acid (Journal of the Society of Synthetic Organic Chemistry, 34 , No. 2, 67 (1976)). It is also possible to use a formic acid-amine azeotrope as a supply method for the acid. The molar ratio of amine to formic acid in the azeotrope is usually from 2.3 to 2.5,
In the present invention, it is desirable to adjust the formic acid / amine ratio by adding an amine to the formic acid-amine azeotrope.

【0019】本発明の触媒としては、一般的に知られて
いる水素移動型不斉還元触媒が用いられる。触媒の一般
的な形態としては光学活性な配位子を有する遷移金属化
合物であり、これらの例としては、米国特許第4,05
3,521号明細書、特開昭62−273989号公
報、Tetrahedron Lett.38,No.
2,215(1997)、WO97/20789号公報
等に記載された触媒が例示される。遷移金属としてはル
テニウム、ロジウム、イリジウム、サマリウム等が例示
できるが、好ましくはルテニウムである。
As the catalyst of the present invention, a generally known hydrogen transfer type asymmetric reduction catalyst is used. A common form of the catalyst is a transition metal compound having an optically active ligand, and examples thereof include US Pat.
3,521, JP-A-62-2738989, Tetrahedron Lett. 38 , no.
2,215 (1997), WO97 / 20789 and the like. Examples of the transition metal include ruthenium, rhodium, iridium, and samarium, and ruthenium is preferred.

【0020】配位子としては光学活性ホスフィン誘導
体、光学活性アミン誘導体、光学活性アミノホスフィン
誘導体、光学活性アミノアルコール誘導体、光学活性ア
ミノ酸誘導体等が知られており、これらの中、光学活性
1,2−ジフェニルエチレンジアミン誘導体が優れてい
る。一般的にはルテニウム化合物と光学活性配位子を塩
基の存在下若しくは不存在下に溶媒中で反応させること
により光学活性触媒を調製する。原料となるルテニウム
化合物としては[RuCl2 (cymene)]2
[RuCl2 (mesitylene)]2 、[RuC
2 (benzene)]2 等のルテニウムアレン錯
体、RuCl2 (PPh3 )等のルテニウムホスフィン
錯体等が挙げられる。調製された光学活性触媒はそれを
含む調製粗液の濃縮物として還元反応に供してもよい
が、好ましくは更に再結晶等の精製操作を行い、純粋な
光学活性錯体として反応に用いる。光学活性1,2−ジ
フェニルエチレンジアミン誘導体を配位子として有する
ルテニウム錯体の典型的な例はWO97/20789号
公報に開示されている。典型的に用いられるルテニウム
アレン錯体、光学活性配位子及び光学活性ルテニウム錯
体を表−1、表−2及び表−3に示す。
As ligands, optically active phosphine derivatives, optically active amine derivatives, optically active aminophosphine derivatives, optically active amino alcohol derivatives, optically active amino acid derivatives and the like are known. The diphenylethylenediamine derivative is excellent. Generally, an optically active catalyst is prepared by reacting a ruthenium compound with an optically active ligand in a solvent in the presence or absence of a base. The ruthenium compound used as a raw material is [RuCl 2 (cymene)] 2 ,
[RuCl 2 (Mesitylene)] 2 , [RuC
l 2 (benzene)] 2 and the like, and ruthenium phosphine complex such as RuCl 2 (PPh 3 ). The prepared optically active catalyst may be subjected to a reduction reaction as a concentrate of a prepared crude liquid containing it, but it is preferably further purified by recrystallization or the like and used as a pure optically active complex in the reaction. A typical example of a ruthenium complex having an optically active 1,2-diphenylethylenediamine derivative as a ligand is disclosed in WO97 / 20789. Typical ruthenium arene complexes, optically active ligands and optically active ruthenium complexes are shown in Tables 1, 2 and 3.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】触媒量は基質により異なるが、基質/触媒
モル比(S/C)として100〜100000、通常は
200〜10000で実施される。反応温度は、触媒に
よりその最適温度範囲が異なるため、特に限定されるも
のではないが、好ましくは、−20〜100℃の範囲で
実施する。実用的な反応速度と高いeeを得るためには
10〜60℃の範囲で実施することが更に好ましい。一
般に反応温度を上げると反応時間は短縮され、光学純度
は低下するが、反応の進行に応じて、若しくは最終段階
において温度を上昇させることは光学純度を維持しつつ
化学収率を向上させる方法として有効である。
The amount of the catalyst varies depending on the substrate, but the reaction is carried out at a substrate / catalyst molar ratio (S / C) of 100 to 100,000, usually 200 to 10,000. The reaction temperature is not particularly limited because the optimum temperature range varies depending on the catalyst, but the reaction is preferably carried out in the range of -20 to 100 ° C. In order to obtain a practical reaction rate and a high ee, it is more preferable to carry out the reaction in the range of 10 to 60 ° C. In general, raising the reaction temperature shortens the reaction time and lowers the optical purity, but increasing the temperature as the reaction proceeds or in the final stage is a method for improving the chemical yield while maintaining the optical purity. It is valid.

【0025】本発明において製造される式(II)で示さ
れる光学活性アルコールの具体例としては、光学活性1
−フェニルエタノール、光学活性1−(3−クロロフェ
ニル)エタノール、光学活性1−(3−フルオロフェニ
ル)エタノール、光学活性1−(3−トリフルオロメチ
ルフェニル)エタノール、光学活性1−フェニルイソプ
ロパノール、光学活性1−フェニル−n−プロパノー
ル、光学活性1−フェニル−n−ブタノール、光学活性
1−インダノール、光学活性α−テトラロノール等が例
示される。
Specific examples of the optically active alcohol represented by the formula (II) produced in the present invention include optically active 1
-Phenylethanol, optically active 1- (3-chlorophenyl) ethanol, optically active 1- (3-fluorophenyl) ethanol, optically active 1- (3-trifluoromethylphenyl) ethanol, optically active 1-phenylisopropanol, optically active Examples thereof include 1-phenyl-n-propanol, optically active 1-phenyl-n-butanol, optically active 1-indanol, optically active α-tetralonol, and the like.

【0026】本発明においては反応終了後、アミンは反
応液からの直接蒸留により回収される。回収されたアミ
ンは反応に再利用できる。過剰添加して使用した反応液
中に残留するギ酸はアミンとの共沸混合物として回収で
き、同様に反応に再利用できる。従って、再利用できる
アミンには、アミン自体とギ酸−アミン共沸混合物の両
方が含まれる。必要に応じ触媒と生成物とを分離するこ
ともできる。分離法としては生成物の蒸留や再結晶が一
般的に行われる。
In the present invention, after completion of the reaction, the amine is recovered from the reaction solution by direct distillation. The recovered amine can be reused for the reaction. The formic acid remaining in the reaction solution used after being added in excess can be recovered as an azeotrope with the amine, and can be reused in the reaction. Thus, recyclable amines include both the amines themselves and the formic acid-amine azeotropes. If necessary, the catalyst and the product can be separated. As a separation method, distillation or recrystallization of a product is generally performed.

【0027】反応終了後に水と有機溶媒を加え抽出を行
うことは従来知られており、抽出によっても生成物のア
ルコールと反応試剤を分離することができる。有機溶媒
としては分液操作が行えるものであればよく、ヘキサ
ン、シクロヘキサン等の脂肪族炭化水素溶媒、トルエ
ン、ベンゼン等の芳香族炭化水素溶媒、エチルエーテ
ル、イソプロピルエーテル等のエーテル類、酢酸エチル
等のエステル類、ジクロロメタン、クロロホルム等の含
ハロゲン炭化水素溶媒が例示される。抽出された生成物
は蒸留、カラムクロマトグラフィー、再結晶等の一般的
な精製法により精製される。
It is conventionally known to perform extraction by adding water and an organic solvent after completion of the reaction, and it is also possible to separate the alcohol product and the reaction reagent by extraction. Any organic solvent can be used as long as liquid separation can be performed. Examples thereof include aliphatic hydrocarbon solvents such as hexane and cyclohexane, aromatic hydrocarbon solvents such as toluene and benzene, ethers such as ethyl ether and isopropyl ether, and ethyl acetate. And halogen-containing hydrocarbon solvents such as dichloromethane and chloroform. The extracted product is purified by a general purification method such as distillation, column chromatography, recrystallization and the like.

【0028】[0028]

【実施例】以下、実施例及び比較例を挙げて、更に詳細
に本発明について説明するが、本発明はその要旨を超え
ない限り、以下の実施例に制約されるものではない。な
お、実施例中、eeはエナンチオマー過剰率を示し、S
/Cは触媒に対する基質のモル比を示す。
EXAMPLES The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist. In Examples, ee indicates an enantiomeric excess, and S
/ C indicates the molar ratio of the substrate to the catalyst.

【0029】参考例1 触媒調整方法 [RuCl2 (cymene)]2 (M−2)の合成 塩化ルテニウム水和物10gにエタノール200ml、
α−テルピネン45ml、水22mlを加え、4時間加
熱還流した後、エタノールの大部分を減圧蒸留で除いて
濃縮した。濾過により得られた結晶をエタノールとヘキ
サンの1:1混合液で洗浄し、減圧乾燥したところ、赤
色の[RuCl2 (cymene)]211.5g(収
率92%)を得た。
Reference Example 1 Preparation method of catalyst Synthesis of [RuCl 2 (cymene)] 2 (M-2) 200 g of ethanol was added to 10 g of ruthenium chloride hydrate.
After adding 45 ml of α-terpinene and 22 ml of water and heating under reflux for 4 hours, most of the ethanol was removed by distillation under reduced pressure and concentrated. The crystals obtained by filtration were washed with a 1: 1 mixture of ethanol and hexane and dried under reduced pressure to obtain 11.5 g of red [RuCl 2 (cymene)] 2 (yield 92%).

【0030】(S,S)−p−トルエンスルホニルジフ
ェニルエチレンジアミン(SS−TsDPEN、L−
2)の合成 (S,S)−ジフェニルエチレンジアミン10.6gを
ジクロロメタン100mlに溶解してトリエチルアミン
7mlを加え、p−トルエンスルホニルクロリド9.5
gを水冷しながら少量ずつ添加した。室温で2時間撹拌
した後濾過して不溶物を取り除き、濾液に水50mlを
加えて振り混ぜ有機層を分取した。更に洗浄の操作を繰
り返した後、硫酸マグネシウムを加えて脱水し濃縮し
た。析出した結晶を濾別し、ジクロロメタンとヘキサン
の1:1混合液で洗浄して減圧乾燥したところ、白色の
(S,S)−p−トルエンスルホニルジフェニルエチレ
ンジアミン16.6g(収率90%)を得た。
(S, S) -p-toluenesulfonyldiphenylethylenediamine (SS-TsDPEN, L-
Synthesis of 2) 10.6 g of (S, S) -diphenylethylenediamine was dissolved in 100 ml of dichloromethane, 7 ml of triethylamine was added, and p-toluenesulfonyl chloride 9.5 was added.
g was added little by little while cooling with water. After stirring at room temperature for 2 hours, the mixture was filtered to remove insolubles, 50 ml of water was added to the filtrate, and the mixture was shaken to separate an organic layer. After repeating the washing operation, magnesium sulfate was added to dehydrate and concentrate. The precipitated crystals were separated by filtration, washed with a 1: 1 mixture of dichloromethane and hexane, and dried under reduced pressure to give 16.6 g (yield 90%) of white (S, S) -p-toluenesulfonyldiphenylethylenediamine. Obtained.

【0031】光学活性ルテニウム錯体(SS−TsDP
EN−Ru、C−1)の合成 [RuCl2 (cymene)]2 7.66gと(S
S)−p−トルエンスルホニルジフェニルエチレンジア
ミン9.16gに2−プロパノール150mlとトリエ
チルアミン7mlを加え、窒素下80℃で1時間撹拌し
た。氷冷して析出した結晶を濾過し、2−プロパノール
とヘキサンの1:1混合液で洗浄した。更に水で洗浄し
減圧乾燥してオレンジ色の結晶12.6g(収率79
%)を得た。結晶を除いた後の濾液を濃縮後ジクロロメ
タン30mlを加え、生成した白色の塩を更に濾過によ
り除き、得られた濾液を濃縮して得た褐色固体を水で洗
浄し減圧乾燥したところ、茶褐色の結晶5.3gを得
た。これに2−プロパノール50mlを加えて80℃で
10分窒素下で加熱撹拌し、冷却後析出した結晶を濾過
して2−プロパノールとヘキサンの1:1混合液で洗浄
し減圧乾燥したところ、オレンジ色の結晶1.9g(収
率12%、合計収率91%)を得た。
Optically active ruthenium complex (SS-TsDP)
Synthesis of EN-Ru, C-1) [RuCl 2 (cymene)] 2 7.66 g and (S
S) -P-Toluenesulfonyldiphenylethylenediamine (9.16 g) was added with 2-propanol (150 ml) and triethylamine (7 ml), and the mixture was stirred at 80 ° C for 1 hour under nitrogen. After cooling with ice, the precipitated crystals were filtered and washed with a 1: 1 mixture of 2-propanol and hexane. Further, it was washed with water and dried under reduced pressure to obtain 12.6 g of orange crystals (yield 79).
%). After concentrating the filtrate after removing the crystals, 30 ml of dichloromethane was added, the generated white salt was further removed by filtration, and the obtained filtrate was concentrated, and the obtained brown solid was washed with water and dried under reduced pressure to give a brownish brown solid. 5.3 g of crystals were obtained. 50 ml of 2-propanol was added thereto, and the mixture was heated and stirred under nitrogen at 80 ° C. for 10 minutes. After cooling, the precipitated crystals were filtered, washed with a 1: 1 mixture of 2-propanol and hexane, and dried under reduced pressure. 1.9 g of colored crystals (yield 12%, total yield 91%) were obtained.

【0032】実施例1 ギ酸135g(2.93mM)とトリエチルアミン11
8g(1.17mM)を混合した溶液を減圧下に蒸留す
ることにより、45mmHgで沸点119℃の留分を共
沸混合物(以下、TEAFと略記する)137gを得
た。NMRにより分析したところ、TEAF中のギ酸と
トリエチルアミンのモル比はほぼ5:2であった。
Example 1 135 g (2.93 mM) of formic acid and triethylamine 11
By distilling the solution mixed with 8 g (1.17 mM) under reduced pressure, 137 g of an azeotropic mixture (hereinafter abbreviated as TEAF) was obtained from a fraction having a boiling point of 119 ° C. at 45 mmHg. NMR analysis revealed that the molar ratio of formic acid to triethylamine in TEAF was approximately 5: 2.

【0033】[RuCl2 (cymene)]2 12.
4mg(0.02mM)とp−トルエンスルホニルジフ
ェニルエチレンジアミン14.7mg(0.008m
M)に、水素化カルシウムを加えて脱水蒸留した2−プ
ロパノール2mlとトリエチルアミン11.2μl
(0.08mM)を加え、80℃で1時間、窒素下で加
熱撹拌した(以下、触媒液と称する)。
[RuCl 2 (cymene)] 2 12
4 mg (0.02 mM) and p-toluenesulfonyldiphenylethylenediamine 14.7 mg (0.008 m
M), 2 ml of 2-propanol dehydrated and distilled with calcium hydride and 11.2 μl of triethylamine
(0.08 mM), and the mixture was heated and stirred at 80 ° C. for 1 hour under nitrogen (hereinafter, referred to as a catalyst solution).

【0034】触媒液0.3ml(0.006mM)を容
積10mlのフラスコに加え、室温で減圧して溶媒を除
去し赤色固体を得た。ここにTEAF1.0mlとトリ
エチルアミン0.5mlを加えた(ギ酸/トリエチルア
ミン=1.43)。更にm−トリフルオロメチルアセト
フェノン0.564g(3.0mM、S/C500)を
加えて室温で25時間撹拌し、反応液をHPLCで分析
したところ、化学収率97.8%、ee92.2%で目
的のS−1−(3−トリフルオロメチルフェニル)エタ
ノールが得られた。
[0034] 0.3 ml (0.006 mM) of the catalyst solution was added to a flask having a volume of 10 ml, and the solvent was removed at room temperature under reduced pressure to obtain a red solid. To this, 1.0 ml of TEAF and 0.5 ml of triethylamine were added (formic acid / triethylamine = 1.43). Further, 0.564 g (3.0 mM, S / C500) of m-trifluoromethylacetophenone was added, and the mixture was stirred at room temperature for 25 hours. The reaction solution was analyzed by HPLC, and it was found that the chemical yield was 97.8% and ee 92.2%. Thus, the desired S-1- (3-trifluoromethylphenyl) ethanol was obtained.

【0035】実施例2〜5及び比較例1 ギ酸とトリエチルアミンの比を以下の様に変えた他は実
施例1と同様に室温で25時間の反応を行ったところ、
表−4に示すような化学収率及びeeで目的の光学活性
アルコールが得られた。
Examples 2 to 5 and Comparative Example 1 A reaction was carried out at room temperature for 25 hours in the same manner as in Example 1 except that the ratio of formic acid to triethylamine was changed as follows.
The desired optically active alcohol was obtained with the chemical yield and ee shown in Table-4.

【0036】[0036]

【表4】 Et3 N:トリエチルアミン[Table 4] Et 3 N: triethylamine

【0037】実施例6 容積300mlの四つ口フラスコにTEAF109g、
トリエチルアミン24.6g(ギ酸1.26mol、ト
リエチルアミン合計0.75mol、HCO2H/Et
3 N=1.69)、m−トリフルオロメチルアセトフェ
ノン105g(558mM)を加えた。SS−TsDP
EN−Ru494g(0.777mM)をDMF3ml
に溶かし、反応液に加えたところ、直ちに発泡が始まっ
た。温度を30℃に保ち、光学活性ガスクロマトグラフ
ィーで追跡しながら反応を行い、25時間で転化率99
%に達した。反応終了後、イソプロピルエーテル74
g、1規定塩酸66gを加え撹拌した後静置した。下水
層を分液し、油層を更に25重量%食塩水79gで洗浄
した。油層に無水硫酸マグネシウム13gを加え脱水し
た後、濾過により塩を除いた。濾液を濃縮し、更に減圧
蒸留を行い、17mmHg、100〜102℃で目的の
S−1−(3−トリフルオロメチルフェニル)エタノー
ルを化学収率95%、ee93%で得た。
EXAMPLE 6 109 g of TEAF was placed in a four-necked flask having a volume of 300 ml.
24.6 g of triethylamine (1.26 mol of formic acid, total of 0.75 mol of triethylamine, HCO 2 H / Et
3 N = 1.69), was added m- trifluoromethyl acetophenone 105g of (558mM). SS-TsDP
494 g (0.777 mM) of EN-Ru was added to 3 ml of DMF.
And immediately added to the reaction mixture, foaming started immediately. The reaction was carried out while keeping the temperature at 30 ° C. and following the reaction by optically active gas chromatography, and the conversion was 99 in 25 hours.
% Has been reached. After completion of the reaction, isopropyl ether 74
g, 1N hydrochloric acid (66 g) was added, and the mixture was stirred and allowed to stand. The lower aqueous layer was separated, and the oil layer was further washed with 79 g of 25% by weight saline. 13 g of anhydrous magnesium sulfate was added to the oil layer for dehydration, and then salts were removed by filtration. The filtrate was concentrated and distilled under reduced pressure to obtain the desired S-1- (3-trifluoromethylphenyl) ethanol at 17 mmHg and 100 to 102 ° C with a chemical yield of 95% and an ee of 93%.

【0038】実施例7 TEAF2ml、トリエチルアミン2ml(ギ酸/トリ
エチルアミン0.98)、m−トリフルオロメチルアセ
トフェノン(以下、MTFAと略記する)3.77g
(20mM、ギ酸/MTFA=1.16)を混合し、こ
こにSS−TsDPEN−Ruの1モル濃度DMF溶液
0.1ml(S/C2000)を加え、50℃で5時間
撹拌した。反応液を光学活性ガスクロマトグラフィーで
分析したところ、化学収率96.2%、ee91.2%
で目的のS−1−(3−トリフルオロメチルフェニル)
エタノール(以下S−BAと略記する)が得られた。
Example 7 2 ml of TEAF, 2 ml of triethylamine (formic acid / triethylamine 0.98), 3.77 g of m-trifluoromethylacetophenone (hereinafter abbreviated as MTFA)
(20 mM, formic acid / MTFA = 1.16), 0.1 ml of a 1 M solution of SS-TsDPEN-Ru in DMF (S / C2000) was added, and the mixture was stirred at 50 ° C. for 5 hours. When the reaction solution was analyzed by optically active gas chromatography, the chemical yield was 96.2% and ee was 91.2%.
And the desired S-1- (3-trifluoromethylphenyl)
Ethanol (hereinafter abbreviated as S-BA) was obtained.

【0039】実施例8〜13 ギ酸とトリエチルアミンの比を以下の様に変えた他は実
施例7と同様に50℃で5時間の反応を行ったところ、
表−5に示すような化学収率及びeeでS−BAが得ら
れた。
Examples 8 to 13 The reaction was carried out at 50 ° C. for 5 hours in the same manner as in Example 7 except that the ratio of formic acid to triethylamine was changed as follows.
S-BA was obtained with a chemical yield and ee as shown in Table-5.

【0040】[0040]

【表5】 [Table 5]

【0041】実施例14 20mL二つ口フラスコにRu触媒SS−TsDPEN
−Ruを0.891g(1.40mmol)秤り取り、
窒素下でDMF7.0mLを加えて触媒溶液を調製し
た。1L三つ口フラスコにトリエチルアミン282.3
g(2.79mol)を入れ、窒素流通下でギ酸(99
%)133.9g(2.88mol)を冷却しながら少
量づつ加えた。室温に戻してMTFA500.0g
(2.66mol)と触媒溶液6.65ml(1.33
mmol)を加え、バス温50℃で窒素流通下24時間
撹拌したところ、化学収率99.6%、ee90.7%
でS−BAを得た。この反応溶液を減圧下で蒸留し、沸
点37〜40℃/30〜147mmHgでトリエチルア
ミン250gを回収し(回収率95%)、沸点94℃/
11mmHgでS−BA477g(回収率97%)をe
e89.8%で得た。
Example 14 Ru catalyst SS-TsDPEN was placed in a 20 mL two-necked flask.
0.891 g (1.40 mmol) of Ru was weighed out,
A catalyst solution was prepared by adding 7.0 mL of DMF under nitrogen. 282.3 Triethylamine in a 1 L three-necked flask
g (2.79 mol), and formic acid (99
%) 133.9 g (2.88 mol) were added in small portions while cooling. Return to room temperature and MTFA 500.0g
(2.66 mol) and 6.65 ml (1.33) of the catalyst solution.
mmol), and the mixture was stirred at a bath temperature of 50 ° C. for 24 hours under a stream of nitrogen.
To obtain S-BA. The reaction solution was distilled under reduced pressure, and 250 g of triethylamine was recovered at a boiling point of 37 to 40 ° C./30 to 147 mmHg (recovery rate 95%).
477 g of S-BA (recovery rate 97%) at 11 mmHg
e obtained at 89.8%.

【0042】実施例15 実施例14にて回収したトリエチルアミン3.19g
(31.5mM)、ギ酸1.64g(35.5mM)、
MTFA5.64g(30mM)を混合し、SS−Ts
DPEN−Ru0.1モル濃度DMF溶液0.1ml
(S/C3000)を加えて50℃で24時間撹拌した
ところ、S−BAを化学収率99.9%、ee92.4
%で得た。
Example 15 3.19 g of triethylamine recovered in Example 14
(31.5 mM), formic acid 1.64 g (35.5 mM),
5.64 g (30 mM) of MTFA was mixed, and SS-Ts
DPEN-Ru 0.1M DMF solution 0.1ml
(S / C3000) was added and the mixture was stirred at 50 ° C. for 24 hours.
%.

【0043】実施例16 10ml三つ口フラスコにSS−TsDPEN−Ru
1.7mg(2.67μM)、MTFA1.0g(5.
4mM)、トリエチルアミン0.19ml(1.3m
M)を混合した。反応液を50℃で撹拌しながら、ギ酸
0.05ml(1.3mM)を加えた。反応をガスクロ
マトグラフィーで追跡しながら、1時間おきに同量のギ
酸を四回追加し、合成0.25mlのギ酸を4時間で追
加した。5時間後、S−BAが化学収率98.3%、e
e89.5%で得られた。なお、この実施例におけるギ
酸投入量及び系内のギ酸/アミン比の推移を表−6に示
す。
Example 16 SS-TsDPEN-Ru was placed in a 10 ml three-necked flask.
1.7 mg (2.67 μM), MTFA 1.0 g (5.
4 mM), 0.19 ml of triethylamine (1.3 m
M). While the reaction solution was stirred at 50 ° C., 0.05 ml of formic acid (1.3 mM) was added. While following the reaction by gas chromatography, the same amount of formic acid was added four times every one hour, and 0.25 ml of synthesized formic acid was added in four hours. After 5 hours, S-BA has a chemical yield of 98.3%, e
e obtained at 89.5%. Table 6 shows changes in the formic acid input amount and the formic acid / amine ratio in the system in this example.

【0044】[0044]

【表6】 [Table 6]

【0045】[0045]

【発明の効果】本発明によれば、光学活性アルコールを
より少ない触媒量で高い化学収率で且つ高いeeで製造
することができ、その工業的製造において有利である。
According to the present invention, an optically active alcohol can be produced with a smaller amount of a catalyst in a high chemical yield and a high ee, which is advantageous in industrial production thereof.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 C07M 7:00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300 C07M 7:00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I) 【化1】 (式中、R1 及びR2 は、互いに異なり、置換基を有し
ていてもよい芳香族炭化水素基、飽和若しくは不飽和の
脂肪族炭化水素基、環式脂肪族炭化水素基又は複素環基
を表す。また、R1 及びR2 が結合して環を形成しても
よい)で示されるケトン類を、遷移金属触媒及び第三級
アミン類の存在下、ギ酸を水素供与体とする水素移動型
不斉還元反応により還元する際、アミンに対する反応系
に存在するギ酸のモル比が2.2以下の範囲内で反応を
行うことを特徴とする一般式(II) 【化2】 (式中、R1 及びR2 は式(I)と同義である)で示さ
れる光学活性アルコールの製造方法。
1. A compound of the general formula (I) (Wherein, R 1 and R 2 are different from each other and may have an aromatic hydrocarbon group, a saturated or unsaturated aliphatic hydrocarbon group, a cycloaliphatic hydrocarbon group, or a heterocyclic group. And R 1 and R 2 may combine to form a ring), and formic acid is used as a hydrogen donor in the presence of a transition metal catalyst and a tertiary amine. In the reduction by the hydrogen transfer type asymmetric reduction reaction, the reaction is carried out within a range of a molar ratio of formic acid to amine in the reaction system of 2.2 or less, wherein the reaction is carried out in a general formula (II). (Wherein R 1 and R 2 have the same meanings as in formula (I)).
【請求項2】 一般式(I)において、R1 及びR2
何れか一方が、炭素数1ないし4のアルキル基であり、
他方が、XnAr−基(式中、Arは芳香族炭化水素基
又は複素環基を表し、Xは、水素原子、ハロゲン原子、
炭素数1ないし4のアルキル基、炭素数1ないし4のハ
ロアルキル基、炭素数1ないし4のアルコキシ基、炭素
数1ないし4のハロアルコキシ基、炭素数1ないし4の
アルキルチオ基、炭素数2ないし6のアルキニルオキシ
基、シアノ基、ニトロ基又はアリール基を表し、nは、
1ないし3の整数を表す。但し、nが2又は3であると
き、Xは同一でも異なっていてもよく、また隣接する二
つのXが合体してArと縮合環を形成してもよい)であ
ることを特徴とする請求項1に記載の光学活性アルコー
ルの製造方法。
2. In the general formula (I), one of R 1 and R 2 is an alkyl group having 1 to 4 carbon atoms,
The other is an XnAr- group (wherein, Ar represents an aromatic hydrocarbon group or a heterocyclic group, X represents a hydrogen atom, a halogen atom,
An alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a haloalkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, 6 represents an alkynyloxy group, a cyano group, a nitro group or an aryl group, and n is
Represents an integer of 1 to 3. However, when n is 2 or 3, X may be the same or different, and two adjacent Xs may be combined to form a condensed ring with Ar). Item 4. The method for producing an optically active alcohol according to Item 1.
【請求項3】 反応終了後に得られる反応液よりアミン
を回収し、このアミンを反応系にリサイクルすることを
特徴とする請求項1又は2に記載の光学活性アルコール
の製造方法。
3. The method for producing an optically active alcohol according to claim 1, wherein an amine is recovered from a reaction solution obtained after the completion of the reaction, and the amine is recycled to a reaction system.
JP10303951A 1998-03-16 1998-10-26 Production of optically active alcohol Pending JPH11322649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10303951A JPH11322649A (en) 1998-03-16 1998-10-26 Production of optically active alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6499498 1998-03-16
JP10-64994 1998-03-16
JP10303951A JPH11322649A (en) 1998-03-16 1998-10-26 Production of optically active alcohol

Publications (1)

Publication Number Publication Date
JPH11322649A true JPH11322649A (en) 1999-11-24

Family

ID=26406141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10303951A Pending JPH11322649A (en) 1998-03-16 1998-10-26 Production of optically active alcohol

Country Status (1)

Country Link
JP (1) JPH11322649A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080429A (en) * 2000-06-21 2002-03-19 Daikin Ind Ltd Method for producing optically active fluorine- containing beta-hydroxyester, method for producing optically active fluorine-containing alcohol, and method for producing optically active fluorine-containing 2- hydroxyalkanamide, and method for producing optically active fluorine-containing lactic acid or its derivative
JP2002179628A (en) * 2000-12-08 2002-06-26 Daiichi Fine Chemical Co Ltd Method for producing optically active diamine derivative
US6686505B2 (en) 2001-10-31 2004-02-03 Kanto Kaguku Kabushiki Kaisha Process for producing optically active amino alcohols and intermediates therefore
JP2005520818A (en) * 2002-02-21 2005-07-14 ノバルティス アクチエンゲゼルシャフト Method for producing HMG-COA reductase-inhibiting mevalonic acid derivative
WO2005092825A1 (en) 2004-03-29 2005-10-06 Nagoya Industrial Science Research Institute Process for production of optically active alcohols
EP2060559A1 (en) 2007-11-19 2009-05-20 Cadila Pharmaceuticals Limited Process for the preparation of enantiomerically pure 3-hydroxy-3-arylpropylamines and their optical stereoisomers
US7601667B2 (en) 2005-06-20 2009-10-13 Kanto Kagaku Kabushiki Kaisha Sulfonate catalyst and method of producing alcohol compound using the same
US7687630B2 (en) 2006-09-29 2010-03-30 Kanto Kagaku Kabushiki Kaisha Method for producing optically active quinuclidinols having one or more substituted groups at the 2-position
US8658815B2 (en) 2009-04-02 2014-02-25 Takasago International Corporation Method for producing ruthenium complex
CN112898129A (en) * 2021-03-24 2021-06-04 亳州学院 Application of nitrogen heterocyclic mercaptan cuprous compound in carbonyl compound photocatalytic reaction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080429A (en) * 2000-06-21 2002-03-19 Daikin Ind Ltd Method for producing optically active fluorine- containing beta-hydroxyester, method for producing optically active fluorine-containing alcohol, and method for producing optically active fluorine-containing 2- hydroxyalkanamide, and method for producing optically active fluorine-containing lactic acid or its derivative
JP4674393B2 (en) * 2000-06-21 2011-04-20 ダイキン工業株式会社 Process for producing optically active fluorine-containing β-hydroxy ester
JP2002179628A (en) * 2000-12-08 2002-06-26 Daiichi Fine Chemical Co Ltd Method for producing optically active diamine derivative
US6686505B2 (en) 2001-10-31 2004-02-03 Kanto Kaguku Kabushiki Kaisha Process for producing optically active amino alcohols and intermediates therefore
JP2005520818A (en) * 2002-02-21 2005-07-14 ノバルティス アクチエンゲゼルシャフト Method for producing HMG-COA reductase-inhibiting mevalonic acid derivative
WO2005092825A1 (en) 2004-03-29 2005-10-06 Nagoya Industrial Science Research Institute Process for production of optically active alcohols
US7601667B2 (en) 2005-06-20 2009-10-13 Kanto Kagaku Kabushiki Kaisha Sulfonate catalyst and method of producing alcohol compound using the same
US7687630B2 (en) 2006-09-29 2010-03-30 Kanto Kagaku Kabushiki Kaisha Method for producing optically active quinuclidinols having one or more substituted groups at the 2-position
EP2060559A1 (en) 2007-11-19 2009-05-20 Cadila Pharmaceuticals Limited Process for the preparation of enantiomerically pure 3-hydroxy-3-arylpropylamines and their optical stereoisomers
US8658815B2 (en) 2009-04-02 2014-02-25 Takasago International Corporation Method for producing ruthenium complex
CN112898129A (en) * 2021-03-24 2021-06-04 亳州学院 Application of nitrogen heterocyclic mercaptan cuprous compound in carbonyl compound photocatalytic reaction

Similar Documents

Publication Publication Date Title
JPH11322649A (en) Production of optically active alcohol
WO2005121117A1 (en) Processes for production of optically active compounds
JP2001270865A (en) Method for producing ethanesulfonylpiperidine derivative
JP4422808B2 (en) Trans- (R, R) -actinol
US8212085B2 (en) Method for purifying optically active 1-(2-trifluoromethylphenyl)ethanol
JP2000327659A (en) Preparation of optically active pyridylalcohol
JP3911302B2 (en) Process for producing optically active 2-methylpiperazine
EP1489066B1 (en) Process for production of optically active carboxylic acid
CN111018734B (en) Synthesis method of cinacalcet hydrochloride intermediate
Ikemoto et al. Unusual asymmetric oxidation of sulfide; the diastereoselective oxidation of prochiral sulfide-chiral acid salt with hydrogen peroxide without metal
JP2002508345A (en) Asymmetric hydrogenation
JP2003012646A (en) Method for distillation of 2-(4-pyridyl)ethanethiol
CN109836373B (en) Environment-friendly preparation method of vitamin B6 and tail gas recycling method
JP3118061B2 (en) Production method of optically active hydroxylamine
US6921832B2 (en) Optically active fluorine-containing compounds and processes for their production
JP3694923B2 (en) Process for producing optically active 1- (2,4-dichlorophenyl) ethylamine
JP2000344694A (en) Production of optically active 3-pentyn-2-ol
JP3207954B2 (en) Method for producing 2-acetylpyrazine
JPH0710822A (en) Separation of optical isomer of amino acid ester
CN112266356A (en) Asymmetric synthesis method of (S) -chloroquine phosphate
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
JP2762107B2 (en) Method for producing 1-substituted-3-hydroxypyrrolidine
US8344161B2 (en) Process for the preparation of pyrollidine-3-carboxylic acids
JP2000256284A (en) Production of imine and enamine
JPS6317869A (en) Production of 2-lower alkyl-4-amino-5-formylpyrimidine