JPH11307121A - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JPH11307121A
JPH11307121A JP10111795A JP11179598A JPH11307121A JP H11307121 A JPH11307121 A JP H11307121A JP 10111795 A JP10111795 A JP 10111795A JP 11179598 A JP11179598 A JP 11179598A JP H11307121 A JPH11307121 A JP H11307121A
Authority
JP
Japan
Prior art keywords
electrolyte
cyclic
lithium
molten salt
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111795A
Other languages
Japanese (ja)
Inventor
Asao Kominato
あさを 小湊
Shigeki Yasukawa
栄起 安川
Shoichiro Mori
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10111795A priority Critical patent/JPH11307121A/en
Publication of JPH11307121A publication Critical patent/JPH11307121A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To impart flame resistance, and to provide excellent lithium cycle efficiency and cycle characteristic by constituting an electrolyte by blending lithium salt and a cyclic organic compound of a specific rate with normal temperature type molten salt composed of a cation of specific quaternary imidazolium or quaternary pyridinium and an anion joined to this. SOLUTION: A quaternary imidazolium cation is expressed by formula I, quaternary pyridinium cation is expressed by formula II, and a cyclic organic compound such as cyclic ester, cyclic ether or a sulfur containing cyclic compound is blended by 1 to 130 volume % with normal temperature type molten salt. This molten salt is noninflammable since it has no vapor pressure at a temperature of a wide range, and the cyclic organic compound reduces viscosity of an electrolyte to increase mobility of a lithium ion as well as to form an ion transmissive protective coating film on an interface by reacting with lithium metal and an alloy of a negative electrode active material. In formulas I and II, R1 and R3 , R6 independently represent an alkyl group having the carbon number 1 to 6 or 1 to 10, and R2 , R4 , R5 independently represent hydrogen or an alkyl group having the carbon number 1 to 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
電解液に関する。更に詳しくは、難燃性で、リチウムサ
イクル効率及びサイクル特性に優れたリチウム二次電池
用電解液に関する。
The present invention relates to an electrolyte for a lithium secondary battery. More particularly, the present invention relates to an electrolyte for a lithium secondary battery which is flame-retardant and has excellent lithium cycle efficiency and cycle characteristics.

【0002】[0002]

【従来の技術】近年、有機溶媒電解液を用いたリチウム
電池が高エネルギー密度の電源として広く用いられてい
る。有機溶媒電解液は、高誘電率溶媒としてエチレンカ
ーボネート、プロピレンカーボネート、γ−ブチロラク
トン等、低粘性溶媒として炭酸ジメチル、炭酸エチルメ
チル、炭酸ジエチル、1,2−ジメトキシエタン等を混
合した溶媒に、リチウム塩を混合したものが用いられて
いる。しかしこの様な有機溶媒は引火性の高い可燃性溶
媒であり、電池内部の圧力上昇又は電池の機械的破壊に
より電解液が漏洩した場合、引火燃焼する危険性があ
る。
2. Description of the Related Art In recent years, lithium batteries using an organic solvent electrolyte have been widely used as a power source having a high energy density. Organic solvent electrolyte, ethylene carbonate, propylene carbonate, γ-butyrolactone and the like as a high dielectric constant solvent, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, 1,2-dimethoxyethane and the like as a low viscosity solvent mixed lithium, A mixture of salts is used. However, such an organic solvent is a highly flammable flammable solvent, and there is a danger of flammable combustion if the electrolyte leaks due to an increase in the pressure inside the battery or mechanical breakdown of the battery.

【0003】一方、常温型溶融塩はイオン性液体であっ
て、広い温度範囲で蒸気圧を有しないことより引火性の
ないことが知られている(J.Electoroche
m.Soc.,144,3881(1997))。ま
た、この常温型溶融塩をリチウム二次電池用電解液とし
て使用した研究も報告されている(特開平−34936
5号公報、米国特許第5,552,238)が、リチウ
ム効率の低さや、溶融塩とリチウム金属との反応性等の
問題により、そのサイクル特性が性能的に十分なものは
未だ得られていない。
On the other hand, it is known that a room temperature molten salt is an ionic liquid and has no vapor pressure over a wide temperature range and thus is not flammable (J. Electrocheche).
m. Soc. , 144, 3881 (1997)). In addition, studies using this room temperature molten salt as an electrolyte for a lithium secondary battery have been reported (JP-A-34936).
No. 5,552,238), it has not yet been obtained that the cycle characteristics are sufficient in terms of performance due to problems such as low lithium efficiency and reactivity between molten salt and lithium metal. Absent.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、リチ
ウム二次電池に最適な電解液として、難燃性を有し、リ
チウムサイクル効率及びサイクル特性に優れ、安全性、
信頼性が向上したリチウム二次電池用電解液を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide, as an electrolyte suitable for a lithium secondary battery, flame retardancy, excellent lithium cycle efficiency and cycle characteristics, safety,
An object of the present invention is to provide an electrolyte for a lithium secondary battery having improved reliability.

【0005】[0005]

【課題を解決するための手段】本発明者等は検討を重
ね、常温型溶融塩に特定の有機溶媒を配合することによ
り、難燃性で、且つ、リチウムサイクル効率、サイクル
特性の良好な電解液が得られることを知り本発明を達成
した。即ち、本発明の要旨は、下記一般式(1)
Means for Solving the Problems The inventors of the present invention have studied repeatedly, and by blending a specific organic solvent into a room temperature molten salt, it is possible to obtain a flame-retardant, lithium cycle efficient, and good cycle characteristic electrolytic solution. Knowing that a liquid can be obtained, the present invention has been achieved. That is, the gist of the present invention is represented by the following general formula (1)

【0006】[0006]

【化3】 Embedded image

【0007】(式中、R1 及びR3 は、それぞれ独立し
て、炭素数1〜6のアルキル基を表し、R2 は水素原子
または炭素数1〜6のアルキル基を表す。)で示される
4級イミダゾリウムカチオン又は下記一般式(2)
(Wherein, R 1 and R 3 each independently represent an alkyl group having 1 to 6 carbon atoms, and R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms). Quaternary imidazolium cation or the following general formula (2)

【0008】[0008]

【化4】 Embedded image

【0009】(式中、R6 は炭素数1〜10のアルキル
基を表し、R4 及びR5 は、それぞれ独立して、水素原
子または炭素数1〜6のアルキル基を表す。)で示され
る4級ピリジニウムカチオン及びこれらカチオンと結合
して常温型溶融塩を形成する能力を有するアニオンから
なる常温型溶融塩にリチウム塩及び該常温型溶融塩に対
し1〜130容量%の環状有機化合物を配合してなるこ
とを特徴とするリチウム二次電池用電解液に存する。
(Wherein R 6 represents an alkyl group having 1 to 10 carbon atoms, and R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms). A lithium salt and 1 to 130% by volume of a cyclic organic compound with respect to the room temperature molten salt are added to a room temperature molten salt comprising a quaternary pyridinium cation and an anion having an ability to form a room temperature molten salt by binding to these cations. An electrolyte for a lithium secondary battery characterized by being blended.

【0010】[0010]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明の電解液に使用される常温型溶融塩のカチオン成分
は前記一般式(1)又は(2)で示される。一般式
(1)又は(2)におけるR1 ,R2 ,R3 ,R 4 及び
5 がアルキル基の場合、具体的には、メチル、エチル
基、i−プロピル基、t−ブチル基、n−ヘキシル基等
の炭素数1〜6の直鎖又は分岐のアルキル基が挙げられ
る。R6 も同様に炭素数1〜10の直鎖又は分岐のアル
キル基を表す。R1 〜R3 又はR4 〜R6 は同じアルキ
ル基であっても或いは異なったアルキル基であってもよ
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Book
Cation component of room temperature molten salt used in electrolyte of the invention
Is represented by the general formula (1) or (2). General formula
R in (1) or (2)1, RTwo, RThree, R Fouras well as
RFiveIs an alkyl group, specifically, methyl, ethyl
Group, i-propyl group, t-butyl group, n-hexyl group, etc.
A linear or branched alkyl group having 1 to 6 carbon atoms
You. R6Is also a linear or branched alkyl having 1 to 10 carbon atoms.
Represents a kill group. R1~ RThreeOr RFour~ R6Is the same archi
Or a different alkyl group.
No.

【0011】一般式(1)で示される4級イミダゾリウ
ムカチオンとして好ましくはR1 ,R2 ,R3 の合計炭
素数が2〜8のものであり、具体的には例えば、1,3
−ジメチルイミダゾリウム、1−エチル−3−メチルイ
ミダゾリウム、1−n−ブチル−3−メチルイミダゾリ
ウム、1,2,3−トリメチルイミダゾリウム、1,2
−ジメチル−3−エチルイミダゾリウム、1−ブチル−
2,3−ジメチルイミダゾリウム等が挙げられる。また
一般式(2)で示される4級ピリジニウムカチオンとし
ては、好ましくはR4 ,R5 ,R6 の合計炭素数が2〜
10のものであり、具体的には例えば、N−エチルピリ
ジニウム、N−n−ブチルピリジニウム、N−s−ブチ
ルピリジニウム、N−n−プロピルピリジニウム、1−
エチル−2−メチルピリジニウム、1−n−ヘキシル−
2−メチルピリジニウム、1−n−ブチル−4−メチル
ピリジニウム、1−n−ブチル−2,4−ジメチルピリ
ジニウム等が挙げられる。これらカチオンと結合して常
温型溶融塩を形成する能力を有するアニオンとしては、
具体的には、例えば、BF4 - ,PF6 - ,AlCl4
- ,(CF3 SO2 2 - ,(CF3 SO2 3 -
等が挙げられる。
The quaternary imidazolium cation represented by the general formula (1) preferably has a total number of carbon atoms of R 1 , R 2 and R 3 of 2 to 8, and specifically, for example, 1,3
-Dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-n-butyl-3-methylimidazolium, 1,2,3-trimethylimidazolium, 1,2
-Dimethyl-3-ethylimidazolium, 1-butyl-
2,3-dimethylimidazolium and the like. The quaternary pyridinium cation represented by the general formula (2) preferably has a total carbon number of R 4 , R 5 and R 6 of 2 to 2.
10, specifically, for example, N-ethylpyridinium, Nn-butylpyridinium, Ns-butylpyridinium, Nn-propylpyridinium, 1-
Ethyl-2-methylpyridinium, 1-n-hexyl-
2-methylpyridinium, 1-n-butyl-4-methylpyridinium, 1-n-butyl-2,4-dimethylpyridinium and the like can be mentioned. Examples of the anion having the ability to form a room-temperature molten salt by binding to these cations include:
Specifically, for example, BF 4 , PF 6 , AlCl 4
-, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -
And the like.

【0012】上記溶融塩に配合して用いられる環状有機
化合物としては、環状エステル類、含硫黄環状化合物
類、環状エーテル類である。具体的には環状エステル類
としては、プロピレンカーボネート、エチレンカーボネ
ート、ブチレンカーボネート等のアルキレンカーボネー
ト類やγ−ブチロラクトン、δ−バレロラクトン等のラ
クトン類が挙げられる。含硫黄環状化合物としては、プ
ロパンスルトン、スルホラン、エチレンサルファイト、
チオフェノール等が挙げられる。
The cyclic organic compounds used in the molten salt include cyclic esters, sulfur-containing cyclic compounds, and cyclic ethers. Specifically, examples of the cyclic esters include alkylene carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, and lactones such as γ-butyrolactone and δ-valerolactone. As the sulfur-containing cyclic compound, propane sultone, sulfolane, ethylene sulfite,
Thiophenol and the like.

【0013】環状エーテル類としてはフラン、2−メチ
ルテトラヒドロフラン、3−メチルテトラヒドロフラ
ン、2,5−ジメチルテトラヒドロフラン、テトラヒド
ロピラン、2−メチルテトラヒドロピラン、3−メチル
テトラヒドロピラン、フラン、2−メチルフラン、3−
メチルフラン、ピラン、2−メチルピラン、3−メチル
ピラン、1,3−ジオキソラン、4−メチル−1,3−
ジオキソラン、1,3−ジオキサン、1,4−ジオキサ
ン等の5〜6員環のエーテル類が挙げられる。
The cyclic ethers include furan, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, furan, 2-methylfuran, −
Methylfuran, pyran, 2-methylpyran, 3-methylpyran, 1,3-dioxolan, 4-methyl-1,3-
5- to 6-membered ring ethers such as dioxolan, 1,3-dioxane and 1,4-dioxane are exemplified.

【0014】これら環状有機化合物は、常温型溶融塩に
対して、1〜130容量%の範囲で配合され、好ましく
は2〜100容量%、特にリチウムサイクル効率と難燃
性のバランスの点で好ましいのは3〜40容量%であ
る。配合量が少ないと、良好なリチウムサイクル効率、
サイクル特性を得ることが難しく、また、配合量が多す
ぎると引火性を帯びる可能性があり、十分な安全性が得
られない。
These cyclic organic compounds are blended in an amount of from 1 to 130% by volume, preferably from 2 to 100% by volume, particularly from the viewpoint of a balance between lithium cycle efficiency and flame retardancy. Is 3 to 40% by volume. If the compounding amount is small, good lithium cycle efficiency,
It is difficult to obtain cycle characteristics, and if the amount is too large, flammability may be obtained, and sufficient safety cannot be obtained.

【0015】本発明の電解液に使用されるリチウム塩と
しては、LiAlCl4 ,LiPF 6 ,LiBF4 ,L
iClO4 ,LiAsF6 ,LiSbF6 ,LiCF3
SO 3 ,LiN(CF3 SO2 2 ,LiN(CF3
2 SO2 2 ,LiN(CF3 SO2 )(CF3 (C
2 3 SO2 ),LiN(CF3 (CF2 3
2 2 ,LiC(CF3 SO2 3 ,LiC(CF3
CF2 SO2 3 、などが例示される。電解液中のリチ
ウム塩濃度は0.1〜5mol/dm3 の濃度範囲で用
いることができるが、好ましくは0.2〜4mol/d
3 の濃度範囲である。
The lithium salt used in the electrolytic solution of the present invention
And LiAlClFour, LiPF 6, LiBFFour, L
iCLOFour, LiAsF6, LiSbF6, LiCFThree
SO Three, LiN (CFThreeSOTwo)Two, LiN (CFThreeC
FTwoSOTwo)Two, LiN (CFThreeSOTwo) (CFThree(C
FTwo)ThreeSOTwo), LiN (CFThree(CFTwo)ThreeS
O Two)Two, LiC (CFThreeSOTwo)Three, LiC (CFThree
CFTwoSOTwo)Three, Etc. are exemplified. Lithium in electrolyte
Um salt concentration is 0.1-5mol / dmThreeFor use in the concentration range
But preferably 0.2 to 4 mol / d
mThreeIs the concentration range.

【0016】本発明の電解液を製造する方法は特に限定
されるものではなく、常温型溶融塩、リチウム塩、環状
有機化合物を任意の順序で混合すればよい。本発明の電
解液は、常温型溶融塩と環状有機化合物を組み合わせる
ことにより難燃性を維持するとともに、電解液の粘性を
下げ、リチウムカチオンの移動度を上げると同時に、負
極活物質として、リチウム金属あるいはリチウム合金等
を用いた場合、リチウム金属と該環状有機化合物が反応
し、界面にリチウムイオン透過性の保護被膜を形成する
効果により、リチウムサイクル効率を上げ、サイクル特
性を向上させることができるものと考えられる。
The method for producing the electrolytic solution of the present invention is not particularly limited, and the room-temperature molten salt, the lithium salt, and the cyclic organic compound may be mixed in any order. The electrolytic solution of the present invention maintains flame retardancy by combining a room temperature molten salt and a cyclic organic compound, lowers the viscosity of the electrolytic solution, increases the mobility of lithium cations, and simultaneously uses lithium as a negative electrode active material. When a metal or a lithium alloy is used, lithium metal reacts with the cyclic organic compound to form a lithium ion-permeable protective film at the interface, thereby increasing lithium cycle efficiency and improving cycle characteristics. It is considered something.

【0017】[0017]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はその要旨を超えない限り、以下の実
施例に制約されるものではない。なお、電解液の性能は
以下の方法で評価した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. The performance of the electrolyte was evaluated by the following method.

【0018】(電解液の自己消火性評価)幅15mm、
長さ300mm、厚さ0.19mmの短冊状のガラス繊
維濾紙を、電解液の入ったビーカーに10分以上浸し
た。ビーカーの縁でガラス繊維濾紙から過剰の電解液を
除き、ガラス繊維濾紙の一端をクリップで摘み垂直に吊
した。この下端よりライター類などの小ガス炎で約3秒
間着火し、火源を取り除いた状態で自己消火性の有無及
び消火するまでの時間を測定した。
(Evaluation of self-extinguishing property of electrolyte) Width 15 mm,
A strip of glass fiber filter paper having a length of 300 mm and a thickness of 0.19 mm was immersed in a beaker containing an electrolyte for 10 minutes or more. Excess electrolyte was removed from the glass fiber filter paper at the edge of the beaker, and one end of the glass fiber filter paper was clipped and suspended vertically. The lower end was ignited with a small gas flame such as a lighter for about 3 seconds, and the self-extinguishing property was determined with the fire source removed, and the time required to extinguish the fire was measured.

【0019】(リチウムサイクル効率の測定)リチウム
サイクル効率の測定は乾燥空気雰囲気下、作用極にニッ
ケル板またはアルミ板(有効電極面積:0.64c
2 )、対極にリチウム金属板(有効電極面積:0.6
4cm2 )を用いたコインセル内に電解液を設置して、
充放電装置(北斗電工製HJ−101SM6)を用い、
定電流密度(電流密度:0.2mA/cm2 )、電析電
気量(0.12C/cm2 )条件下で行った。サイクル
効率は以下の式により算出した。
(Measurement of Lithium Cycle Efficiency) Lithium cycle efficiency was measured in a dry air atmosphere by using a nickel plate or an aluminum plate on the working electrode (effective electrode area: 0.64 c
m 2 ), a lithium metal plate on the counter electrode (effective electrode area: 0.6)
4cm 2 ) Install the electrolyte in the coin cell using
Using a charging and discharging device (HJ-101SM6 manufactured by Hokuto Denko),
The test was performed under the conditions of a constant current density (current density: 0.2 mA / cm 2 ) and an amount of deposited electricity (0.12 C / cm 2 ). The cycle efficiency was calculated by the following equation.

【0020】[0020]

【数1】 (Equation 1)

【0021】(充放電容量の測定)実施例及び比較例の
電解液を使用してコイン型のリチウム二次電池(直径2
0mm、厚さ1.6mm)を作成し、充放電容量を測定
した。作成したコイン型電池は、図1にその断面図を示
す様に、正極端子を兼ねたステンレス製ケース1、負極
端子を兼ねたステンレス製封口板2とがガスケット3で
絶縁シールされている。正極4は正極活物質としてのリ
チウムコバルト複合酸化物(LiCoO2 )に、導電剤
としてのアセチレンブラックと、結着剤としてのフッ素
樹脂とを、重量比90:5:5の比率で混合し、これを
溶剤(N−メチルピロリドン)に分散させてスラリーと
した後、正極集電体としてのアルミニウム箔に塗布し、
乾燥した後、直径12.5mmの正極を作製した。負極
5は直径16mm、厚さ1.0mmのリチウム金属箔を
用い、電解液に浸されたセパレーター6とから構成され
ている。電池の理論容量は4.2Vから2.5Vまでの
電圧範囲で142Ah/kgである。
(Measurement of Charge / Discharge Capacity) A coin-type lithium secondary battery (diameter of 2) was prepared by using the electrolyte solutions of Examples and Comparative Examples.
0 mm, thickness 1.6 mm) and the charge / discharge capacity was measured. As shown in the cross-sectional view of FIG. 1, the prepared coin-type battery has a stainless steel case 1 also serving as a positive electrode terminal and a stainless steel sealing plate 2 also serving as a negative electrode terminal, which are insulated and sealed by a gasket 3. The positive electrode 4 is obtained by mixing lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 90: 5: 5, This was dispersed in a solvent (N-methylpyrrolidone) to form a slurry, and then applied to an aluminum foil as a positive electrode current collector,
After drying, a positive electrode having a diameter of 12.5 mm was produced. The negative electrode 5 is composed of a lithium metal foil having a diameter of 16 mm and a thickness of 1.0 mm, and a separator 6 immersed in an electrolytic solution. The theoretical capacity of the battery is 142 Ah / kg in the voltage range from 4.2V to 2.5V.

【0022】実施例1〜11 常温型溶融塩である1−エチル−3−メチルイミダゾリ
ウムテトラフルオロボレート(以下、EMIBF4 と略
記する)75容量部に、表−1に示す環状有機化合物2
5容量を添加、混合し、これに、LiBF4 を濃度が1
mol/dm3となる様に溶解して電解液を調製し、リ
チウムサイクル効率を測定した。結果を表−1に示し
た。
[0022] are examples 1-11 at moderate temperature molten salt 1-ethyl-3-methylimidazolium tetrafluoroborate (hereinafter, abbreviated as EMIBF 4) in 75 parts by volume, cyclic organic compound 2 shown in Table 1
Five volumes were added and mixed, and LiBF 4 was added thereto at a concentration of 1%.
The solution was dissolved to give mol / dm 3 to prepare an electrolytic solution, and the lithium cycle efficiency was measured. The results are shown in Table 1.

【0023】実施例12 常温型溶融塩として、N−n−ブチルピリジニウムテト
ラフルオロボレート(以下、BPBF4 と略記する)7
5容量部を用い、25容量部のγ−ブチロラクトン及び
濃度1mol/dm3 となる量のLiBF4 を添加、溶
解して電解液を調製し、リチウムサイクル効率の測定を
行った。結果を表−1に示した。
[0023] As Example 12 moderate temperature molten salt, N-n-butyl-pyridinium tetrafluoroborate (hereinafter, abbreviated as BPBF 4) 7
Using 5 parts by volume, 25 parts by volume of γ-butyrolactone and LiBF 4 in an amount to give a concentration of 1 mol / dm 3 were added and dissolved to prepare an electrolytic solution, and the lithium cycle efficiency was measured. The results are shown in Table 1.

【0024】実施例13 常温型溶融塩として、1−エチル−3−メチルイミダゾ
リウムテトラクロロアルミニウム(EMIAlCl4
略記する)75容量部を用い、25容量部のγ−ブチロ
ラクトン及び濃度0.4mol/dm3 のLiAlCl
4 を溶解した電解液を調製し、リチウムサイクル効率の
測定を行った。結果を表−1に示した。
Example 13 Using 75 parts by volume of 1-ethyl-3-methylimidazolium tetrachloroaluminum (abbreviated as EMIAlCl 4 ) as a room temperature molten salt, 25 parts by volume of γ-butyrolactone and a concentration of 0.4 mol / mol dm 3 LiAlCl
An electrolyte solution in which 4 was dissolved was prepared, and lithium cycle efficiency was measured. The results are shown in Table 1.

【0025】比較例1 環状有機化合物を使用しなかった他は実施例1と同様の
電解液を調製し、リチウムサイクル効率の測定を行っ
た。結果を表−1に示した。
Comparative Example 1 An electrolyte was prepared in the same manner as in Example 1 except that no cyclic organic compound was used, and the lithium cycle efficiency was measured. The results are shown in Table 1.

【0026】比較例2 環状有機化合物を使用しなかった他は実施例12と同様
の電解液を調製し、リチウムサイクル効率の測定を行っ
た。結果を表−1に示した。
Comparative Example 2 An electrolyte was prepared in the same manner as in Example 12 except that the cyclic organic compound was not used, and the lithium cycle efficiency was measured. The results are shown in Table 1.

【0027】比較例3 環状有機化合物を使用しなかった他は実施例13と同様
の電解液を調製し、リチウムサイクル効率の測定を行っ
た。結果を表−1に示した。
Comparative Example 3 An electrolyte was prepared in the same manner as in Example 13 except that no cyclic organic compound was used, and the lithium cycle efficiency was measured. The results are shown in Table 1.

【0028】実施例14 常温型溶融塩として、EMIBF4 95容量部と5容量
部のγ−ブチロラクトンを添加し、濃度2.8mol/
dm3 のLiBF4 を溶解した電解液についてコイン型
セルによる充放電容量の測定を行った。結果を表−1及
び図2に示した。
Example 14 EMIBF 4 ( 95 parts by volume) and 5 parts by volume of γ-butyrolactone were added as a room-temperature molten salt to give a concentration of 2.8 mol / mol.
The charge / discharge capacity of the electrolytic solution in which dm 3 of LiBF 4 was dissolved was measured using a coin cell. The results are shown in Table 1 and FIG.

【0029】比較例4 環状有機化合物を使用しなかった他は実施例14と同様
の電解液を調製し、コイン型セルによる充放電容量の測
定を行った。結果を表−1及び図2に示した。
Comparative Example 4 An electrolyte was prepared in the same manner as in Example 14 except that the cyclic organic compound was not used, and the charge / discharge capacity was measured using a coin cell. The results are shown in Table 1 and FIG.

【0030】実施例15 常温型溶融塩として、EMIBF4 を用い、25容量部
のプロピレンカーボネートを添加し、濃度2.8mol
/dm3 のLiBF4 を溶解した電解液について自己消
火性評価を行った。結果を表−2に示した。
Example 15 EMIBF 4 was used as a room-temperature molten salt, 25 parts by volume of propylene carbonate was added, and the concentration was 2.8 mol.
The self-extinguishing property of the electrolytic solution in which / BF 3 / dm 3 of LiBF 4 was dissolved was evaluated. The results are shown in Table-2.

【0031】実施例16 環状有機化合物としてγ−ブチロラクトンを用いた他は
実施例15と同様の電解液を調製し、自己消火性評価を
行った。結果を表−2に示した。
Example 16 An electrolyte solution was prepared in the same manner as in Example 15 except that γ-butyrolactone was used as the cyclic organic compound, and the self-extinguishing property was evaluated. The results are shown in Table-2.

【0032】実施例17 環状有機化合物にエチレンサルファイトを用いた他は実
施例15と同様の電解液を調製し、自己消火性評価を行
った。結果を表−2に示した。
Example 17 The same electrolytic solution as in Example 15 was prepared except that ethylene sulfite was used as the cyclic organic compound, and the self-extinguishing property was evaluated. The results are shown in Table-2.

【0033】実施例18 常温型溶融塩として、EMIBF4 75容量部を用い、
25容量部のエチレンカーボネートを添加し、濃度1m
ol/dm3 のLiPF6 を溶解した電解液について自
己消火性評価を行った。結果を表−2に示した。
Example 18 As a room temperature molten salt, EMIBF 4 ( 75 parts by volume) was used.
Add 25 parts by volume of ethylene carbonate to a concentration of 1 m
The self-extinguishing property of the electrolytic solution in which ol / dm 3 of LiPF 6 was dissolved was evaluated. The results are shown in Table-2.

【0034】実施例19 EMIBF4 50容量部、エチレンサルファイト50容
量部を用いた他は実施例17と同様の電解液を調製し、
自己消火性評価を行った。結果を表−2に示した。
Example 19 An electrolyte was prepared in the same manner as in Example 17 except that 50 parts by volume of EMIBF 4 and 50 parts by volume of ethylene sulfite were used.
Self-extinguishing properties were evaluated. The results are shown in Table-2.

【0035】実施例20 常温型溶融塩として、BPBF4 を用いた他は実施例1
7と同様の電解液を調製し、自己消火性評価を行った。
結果を表−2に示した。
Example 20 Example 1 was repeated except that BPBF 4 was used as a room temperature molten salt.
The same electrolytic solution as in Example 7 was prepared, and the self-extinguishing property was evaluated.
The results are shown in Table-2.

【0036】比較例5 有機溶媒電解液の例としてプロピレンカーボネートに、
濃度1mol/dm3のLiBF4 を溶解した電解液に
ついて自己消火性評価を行った。結果を表−2に示し
た。
Comparative Example 5 As an example of the organic solvent electrolyte, propylene carbonate was used.
The self-extinguishing property was evaluated for an electrolytic solution in which LiBF 4 having a concentration of 1 mol / dm 3 was dissolved. The results are shown in Table-2.

【0037】比較例6 EBIBF4 40容量部、エチレンサルファイト60容
量部を用いた他は実施例17と同様の電解液を調製し、
自己消火性評価を行った。結果を表−2に示した。
Comparative Example 6 An electrolyte was prepared in the same manner as in Example 17 except that 40 parts by volume of EBIBF 4 and 60 parts by volume of ethylene sulfite were used.
Self-extinguishing properties were evaluated. The results are shown in Table-2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】本発明のリチウム二次電池用電解液は、
リチウムサイクル効率、サイクル特性等の電池特性に優
れると共に、難燃性を有し、安全性、信頼性が高いな
ど、本発明は優れた特有の効果を奏する。
The electrolytic solution for a lithium secondary battery of the present invention comprises:
The present invention has excellent specific effects such as excellent battery characteristics such as lithium cycle efficiency and cycle characteristics, flame retardancy, high safety and high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で製造したコイン型セルの断面図FIG. 1 is a cross-sectional view of a coin cell manufactured in an example.

【図2】実施例14及び比較例4の電解液を用いたコイ
ン型セル電池のサイクル特性を示す図
FIG. 2 is a diagram showing cycle characteristics of coin cell batteries using the electrolytes of Example 14 and Comparative Example 4.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1) 【化1】 (式中、R1 及びR3 は、それぞれ独立して、炭素数1
〜6のアルキル基を表し、R2 は水素原子または炭素数
1〜6のアルキル基を表す。)で示される4級イミダゾ
リウムカチオン又は下記一般式(2) 【化2】 (式中、R6 は炭素数1〜10のアルキル基を表し、R
4 及びR5 は、それぞれ独立して、水素原子または炭素
数1〜6のアルキル基を表す。)で示される4級ピリジ
ニウムカチオン及びこれらカチオンと結合して常温型溶
融塩を形成する能力を有するアニオンからなる常温型溶
融塩に、リチウム塩及び該常温型溶融塩に対し1〜13
0容量%の環状有機化合物を配合してなることを特徴と
するリチウム二次電池用電解液。
[Claim 1] The following general formula (1) (Wherein, R 1 and R 3 each independently represent a carbon atom of 1
And R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Or a quaternary imidazolium cation represented by the following general formula (2): (Wherein, R 6 represents an alkyl group having 1 to 10 carbon atoms;
4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. ) And an anion having the ability to combine with these cations to form a room temperature molten salt, a room temperature molten salt comprising 1 to 13 parts with respect to the lithium salt and the room temperature molten salt.
An electrolyte for a lithium secondary battery, comprising 0% by volume of a cyclic organic compound.
【請求項2】 常温型溶融塩を形成する能力を有するア
ニオンが、BF4 -,PF6 - ,AlCl4 - ,(CF
3 SO2 2 - 及び(CF3 SO2 3 - から選ば
れることを特徴とする請求項1記載のリチウム二次電池
用電解液。
2. An agent having an ability to form a room temperature molten salt.
Neon is BFFour -, PF6 -, AlClFour -, (CF
ThreeSOTwo)TwoN-And (CFThreeSOTwo)ThreeC -Choose from
The lithium secondary battery according to claim 1, wherein
Electrolyte.
【請求項3】 環状有機化合物が、環状エステル、含硫
黄環状化合物及び環状エーテルから選ばれる少なくとも
1種であることを特徴とする請求項1又は2記載のリチ
ウム二次電池用電解液。
3. The electrolyte for a lithium secondary battery according to claim 1, wherein the cyclic organic compound is at least one selected from a cyclic ester, a sulfur-containing cyclic compound, and a cyclic ether.
【請求項4】 環状エステルが、プロピレンカーボネー
ト、エチレンカーボネート及びγ−ブチロラクトンから
選ばれる少なくとも1種であることを特徴とする請求項
3記載のリチウム二次電池用電解液。
4. The electrolyte according to claim 3, wherein the cyclic ester is at least one selected from propylene carbonate, ethylene carbonate and γ-butyrolactone.
【請求項5】 含硫黄環状化合物が、プロパンスルト
ン、スルホラン、エチレンサルファイト及びチオフェノ
ールから選ばれる少なくとも1種であることを特徴とす
る請求項3記載のリチウム二次電池用電解液。
5. The electrolyte for a lithium secondary battery according to claim 3, wherein the sulfur-containing cyclic compound is at least one selected from propane sultone, sulfolane, ethylene sulfite, and thiophenol.
【請求項6】 環状エーテルが、テトラヒドロフラン、
テトラヒドロピラン、ジオキソラン及びジオキサンから
選ばれる少なくとも1種であることを特徴とする請求項
3記載のリチウム二次電池用電解液。
6. The cyclic ether is tetrahydrofuran,
The electrolyte for a lithium secondary battery according to claim 3, wherein the electrolyte is at least one selected from tetrahydropyran, dioxolane, and dioxane.
JP10111795A 1998-04-22 1998-04-22 Electrolyte for lithium secondary battery Pending JPH11307121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111795A JPH11307121A (en) 1998-04-22 1998-04-22 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111795A JPH11307121A (en) 1998-04-22 1998-04-22 Electrolyte for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH11307121A true JPH11307121A (en) 1999-11-05

Family

ID=14570354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111795A Pending JPH11307121A (en) 1998-04-22 1998-04-22 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH11307121A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093363A2 (en) * 2000-05-26 2001-12-06 Covalent Associates, Inc. Non-flammable electrolytes
JP2002008720A (en) * 2000-04-18 2002-01-11 Sony Corp Nonaqueous electrolyte battery
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
WO2004021500A1 (en) * 2002-08-28 2004-03-11 Nisshinbo Industries, Inc. Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery
KR100441514B1 (en) * 2001-10-15 2004-07-23 삼성에스디아이 주식회사 An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
KR100463181B1 (en) * 2002-07-12 2004-12-23 삼성에스디아이 주식회사 An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
US6841299B2 (en) * 2000-12-22 2005-01-11 Fuji Photo Film Co., Ltd. Electrolyte composition with a molten salt and crosslinked polymer
WO2005104288A1 (en) * 2004-04-20 2005-11-03 Degussa Ag Electrolyte composition in addition to the use thereof as an electrolyte material for electrochemical energy storage systems
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP2007035357A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007109591A (en) * 2005-10-17 2007-04-26 Nippon Synthetic Chem Ind Co Ltd:The Lithium secondary battery
JP2007134282A (en) * 2005-11-14 2007-05-31 Gs Yuasa Corporation:Kk Non-aqueous electrolyte battery
US7347954B2 (en) 2002-09-20 2008-03-25 Nisshinbo Industries, Inc. Composition for polyelectrolytes, polyelectrolytes, electrical double layer capacitors and nonaqueous electrolyte secondary cells
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP2009170431A (en) * 2009-04-28 2009-07-30 Gs Yuasa Corporation Nonaqueous electrolyte battery
JP2010524188A (en) * 2007-04-11 2010-07-15 エルジー・ケム・リミテッド Secondary battery using ternary eutectic mixture and manufacturing method thereof
WO2012173694A1 (en) 2011-06-17 2012-12-20 Fluidic, Inc. Ionic liquid containing sulfonate ions
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
CN104638299A (en) * 2015-02-15 2015-05-20 山东大学 Secondary battery electrolyte solution having overcharging prevention function
US9214659B2 (en) 2004-04-20 2015-12-15 Evonik Degussa Gmbh Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids
US9287597B2 (en) 2012-11-14 2016-03-15 Fluidic, Inc. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions
CN111342127A (en) * 2018-12-18 2020-06-26 丰田自动车株式会社 Electrolyte for lithium secondary battery and lithium secondary battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008720A (en) * 2000-04-18 2002-01-11 Sony Corp Nonaqueous electrolyte battery
JP4529274B2 (en) * 2000-04-18 2010-08-25 ソニー株式会社 Non-aqueous electrolyte battery
WO2001093363A3 (en) * 2000-05-26 2003-01-09 Covalent Associates Inc Non-flammable electrolytes
WO2001093363A2 (en) * 2000-05-26 2001-12-06 Covalent Associates, Inc. Non-flammable electrolytes
US6841299B2 (en) * 2000-12-22 2005-01-11 Fuji Photo Film Co., Ltd. Electrolyte composition with a molten salt and crosslinked polymer
EP2135859A3 (en) * 2001-03-26 2011-03-23 Nisshinbo Industries, Inc. Liquid electrolytes comprising ionic liquids, and their use in electrical storage devices
US7471502B2 (en) 2001-03-26 2008-12-30 Nisshinbo Industries, Inc. Ionic liquids, electrolyte salts for electrical storage devices, liquid electrolytes for electrical storage devices, electrical double-layer capacitors, and secondary batteries
KR100861916B1 (en) * 2001-03-26 2008-10-09 닛신보세키 가부시키 가이샤 Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
KR100823972B1 (en) * 2001-03-26 2008-04-22 닛신보세키 가부시키 가이샤 Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
US7297289B2 (en) 2001-03-26 2007-11-20 Nisshinbo Industries, Inc. Ionic liquids, electrolyte salts for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
KR100441514B1 (en) * 2001-10-15 2004-07-23 삼성에스디아이 주식회사 An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
US7241535B2 (en) * 2001-10-15 2007-07-10 Samsung Sdi Co., Ltd. Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
KR100463181B1 (en) * 2002-07-12 2004-12-23 삼성에스디아이 주식회사 An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
WO2004021500A1 (en) * 2002-08-28 2004-03-11 Nisshinbo Industries, Inc. Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery
CN100407493C (en) * 2002-08-28 2008-07-30 日清纺织株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery
US7347954B2 (en) 2002-09-20 2008-03-25 Nisshinbo Industries, Inc. Composition for polyelectrolytes, polyelectrolytes, electrical double layer capacitors and nonaqueous electrolyte secondary cells
US7960061B2 (en) 2004-04-20 2011-06-14 Degussa Ag Electrolyte composition in addition to the use thereof as an electrolyte material for electrochemical energy storage systems
US9214659B2 (en) 2004-04-20 2015-12-15 Evonik Degussa Gmbh Use of a ceramic separator in lithium ion batteries, comprising an electrolyte containing ionic fluids
WO2005104288A1 (en) * 2004-04-20 2005-11-03 Degussa Ag Electrolyte composition in addition to the use thereof as an electrolyte material for electrochemical energy storage systems
JP2006004813A (en) * 2004-06-18 2006-01-05 Nec Corp Non-aqueous electrolytic solution for secondary battery, and secondary battery using it
JP4544408B2 (en) * 2004-06-18 2010-09-15 日本電気株式会社 Secondary battery electrolyte and secondary battery using the same
JP2007035357A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP2007109591A (en) * 2005-10-17 2007-04-26 Nippon Synthetic Chem Ind Co Ltd:The Lithium secondary battery
JP2007134282A (en) * 2005-11-14 2007-05-31 Gs Yuasa Corporation:Kk Non-aqueous electrolyte battery
US8546023B2 (en) 2007-04-11 2013-10-01 Lg Chem, Ltd. Secondary battery comprising ternary eutectic mixtures and preparation method thereof
JP2010524188A (en) * 2007-04-11 2010-07-15 エルジー・ケム・リミテッド Secondary battery using ternary eutectic mixture and manufacturing method thereof
JP2009140641A (en) * 2007-12-04 2009-06-25 Nec Tokin Corp Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
JP2009170431A (en) * 2009-04-28 2009-07-30 Gs Yuasa Corporation Nonaqueous electrolyte battery
WO2012173694A1 (en) 2011-06-17 2012-12-20 Fluidic, Inc. Ionic liquid containing sulfonate ions
CN104205470A (en) * 2012-03-08 2014-12-10 富士胶片株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
WO2013133384A1 (en) * 2012-03-08 2013-09-12 富士フイルム株式会社 Electrolytic solution for nonaqueous secondary battery, and secondary battery
US9905886B2 (en) 2012-03-08 2018-02-27 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and secondary battery
US9287597B2 (en) 2012-11-14 2016-03-15 Fluidic, Inc. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions
CN104638299A (en) * 2015-02-15 2015-05-20 山东大学 Secondary battery electrolyte solution having overcharging prevention function
CN111342127A (en) * 2018-12-18 2020-06-26 丰田自动车株式会社 Electrolyte for lithium secondary battery and lithium secondary battery

Similar Documents

Publication Publication Date Title
JPH11307121A (en) Electrolyte for lithium secondary battery
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
JP5379688B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
KR101710246B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP5738011B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP5134770B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery including the same
EP2840642B1 (en) Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP2008300126A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2008053212A (en) Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it
JP2007200605A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it
JPH10189039A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2010050021A (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same
JP5738010B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
US7695862B2 (en) Additive for non-aqueous electrolyte solution of secondary battery and non-aqueous electrolyte secondary battery
KR102337069B1 (en) Electrolytes, electrochemical devices, secondary batteries and modules
JP2001102088A (en) Non-aqueous electrolyte cell
JP2008300125A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JP2002280060A (en) Nonaqueous electrolytic solution and lithium secondary battery using it
JPH10189038A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP2001028272A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH10189040A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees