JP2004134175A - Electrode for battery and battery using the same - Google Patents

Electrode for battery and battery using the same Download PDF

Info

Publication number
JP2004134175A
JP2004134175A JP2002296228A JP2002296228A JP2004134175A JP 2004134175 A JP2004134175 A JP 2004134175A JP 2002296228 A JP2002296228 A JP 2002296228A JP 2002296228 A JP2002296228 A JP 2002296228A JP 2004134175 A JP2004134175 A JP 2004134175A
Authority
JP
Japan
Prior art keywords
electrode
spacer
battery
mixture layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002296228A
Other languages
Japanese (ja)
Inventor
Teruaki Yamamoto
山本 輝明
Satoshige Nanai
七井 識成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002296228A priority Critical patent/JP2004134175A/en
Publication of JP2004134175A publication Critical patent/JP2004134175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a battery with a high capacity and a long life by uniforming a reaction in the electrode, and a battery using the electrode. <P>SOLUTION: The battery with the high capacity and the long life can be obtained by uniforming the reaction in the electrode 4, by processing a mixture 1 with a spacer 2 for keeping its thickness constant contained therein into a current collector 3, when the electrode 4 is pressured, and by using the electrode 4 for the battery. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は電池の電極に関し、より詳細には合剤層に関し、ならびにそれを用いた電池に関するものである。
【0002】
【従来の技術】
携帯電話、ノート型パーソナルコンピュータ、カメラ一体型ビデオレコーダなどといった電子機器の性能向上とともに消費電力が増大し、より一層の機器の小型化や携帯化が要望されている。これに加えて、これらの電子機器の大電流及びより長時間の駆動も要望されている。これら電子機器に対する要望を満たすため、より小型で高出力かつ高容量の電池が要望されている。このため最近では、スパイラル構造の電極群の採用により、正・負両電極の対向面積を拡大し、大電流を取り出せる構造での高容量化が進められている。
【0003】
従来の電池用電極は、正・負両電極の対向面積を拡大し、大電流を取り出せる構造での高容量化を行うために、スズやシリコンといった、リチウムを吸蔵および放出する金属及びその合金を活物質として用いたものがあり、負極に空孔を設けて活物質の体積変化の吸収と電解液の保持を図るものがある(例えば特許文献1参照。)。
【0004】
【特許文献1】
特開平11−242954号公報
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、電極が空孔を有し体積変化を吸収できるということは、力を加えると電極が変形しやすく、電池を作製するとき、折り曲げ部などにかかる力で電極が潰され、電解液を十分に保持することは困難であるという課題を有していた。
【0006】
さらに、放電時にも今度は折り曲げ部分から放電しきれない分周囲から深く放電することになり、周囲への負荷が大きくなる。このような反応の不均一が電池のサイクル劣化の進行を促進していたという課題を有していた。
【0007】
本発明は、前記従来の課題を解決するためのもので、電極の反応を均一化し、高容量で長寿命の電池用電極とそれを用いた電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するため、本発明の電池用電極は、少なくとも活物質と導電剤と結着剤とを含む合剤層と、集電体とを備え、前記合剤層はスペーサを含む。
【0009】
さらに、本発明の電池用電極は、合剤層中に占めるスペーサの体積当たりの含有率は、前記スペーサの割合をXとすると、0<X≦20である。
【0010】
さらに、本発明の電池用電極はスペーサ粒子の大きさは活物質が電子伝達体を吸蔵していない状態において、合剤層の厚みの0.8〜1.2倍である。
【0011】
また、本発明の電池用電極を用いた電池は、正極と負極と非水電解液とを有し、少なくとも前記正極または負極は、スペーサを含む。
【0012】
【発明の実施の形態】
以下本発明の実施の形態について、図面を参照しながら説明する。
【0013】
(実施の形態1)
図1は本発明の実施の形態1における電池用電極の横断面図である。図1は、集電体3をはさんで、その両側に合剤層1が形成されている。なお、同図では、正極、負極をあえて指定していない。活物質(図示せず)と導電剤(図示せず)と結着剤(図示せず)とスペーサ2とを含む合剤1が、集電体3の両側に形成される電池用電極4である。この電極は例えばセパレータ(図示せず)を挟んでもう一方の電極(図示せず)と対向することになる。
【0014】
合剤層1中のスペーサ2量はその添加量の増加に応じて容量が低下するので、合剤層1におけるスペーサ2量は体積率でスペーサ2の体積率をXとすると、0<X≦20の範囲であることが望ましい。それ以上の体積率になると、導電性を確保できない材料もある。
【0015】
さらにスペーサ2の配置は、合剤層中で適度に分散していることが製造の観点から望ましい。また、折り曲げ部のみの電極潰れなどが問題となる場合は、スペーサ2は折り曲げ部には頻度を上げて、あるいは折り曲げ部のみにスペーサ2を配置させてもよい。
【0016】
スペーサ2の大きさは、電極の厚みに対して小さすぎると力が加わったときに電極の潰れを抑制できず、また大きすぎると無駄な空間が生じて電極容量が低下してしまうため、平均の大きさは活物質が収縮した状態での合剤層1の厚みの0.8倍から1.2倍の範囲内にあることが望ましく、0.95倍から1.05倍がより好ましい。スペーサ2が合剤層1の厚みの0.8倍以下になると、合剤層1が所定の厚さを維持できない。スペーサ2が合剤層1の厚みの1.2倍以上になると、セパレータ(図示せず)と合剤層1と集電体3からなる電極との間に隙間ができ、容量が低下する。
【0017】
かかる構成によれは、本発明の電極は、スペーサ2の添加により、圧力が加えられたとき、合剤層中にその厚さを一定に保持することができる。その結果、電極の潰れを起こさない電極となる。さらに、本発明実施の形態の電極は電解液不足の問題を解消し、反応を電極全体で均一にすることでサイクル特性の向上を期待できる。
【0018】
合剤層1にスペーサ2を添加することより以下に述べる効果がある。
【0019】
スペーサ2を添加することにより、プレス圧延で電池用電極4の厚み調整を行うときスペーサの大きさ以下には同電極4がつぶれない。これは空孔を有する同電極4において、空孔率の微調整が必要な空孔率の高い電極では非常に有効である。
【0020】
さらに、充放電時の体積変化が大きい活物質を用いた場合、活物質膨張時は同電極4に大きな力がかかるようにして合剤層中の空孔に体積膨張を吸収させることができる。よって合剤層中に設ける空孔体積は電解液保持及び膨張体積吸収分のみでよく、空孔利用率を上げることで電極の容量を増加させることが可能となる。
【0021】
ここで空孔率について、説明する。空孔率とは電極体積中に占める隙間の割合のことであり、電解液保持や活物質の体積変化を吸収するのに役立つが、空孔率が高くなるとその分体積容量が減少する。
【0022】
さらに、スペーサ2添加分の容量低下を補って、電池のさらなる高容量化並びに高性能化を実現するために、スペーサ2が導電性、容量、電解液保持機能のいずれか一つ以上を有することが望ましい。
【0023】
スペーサ2が導電性を有する場合、導電補助剤として機能することにより放電特性などの向上が期待される。また、スペーサ2が容量を有する場合、スペーサ2が置き換わった活物質の容量減少を補填することができる。また、スペーサ2が電解液保持機能を有する場合、スペーサ2以外の合剤層の多孔度を下げても、電極としての電解液保持量を維持することができ、電極容量の増加が見込める。
【0024】
なお、材料の選定、複合化などにより、上記導電性、容量、電解液保持の1つ以上の機能を持たせることも有効である。
【0025】
電池は組立時または動作時に内部の群に力がかかる構造になっていることが望ましい。活物質の体積変化を電極内の空孔に吸収させ、電極の体積変化を抑制するには電極に力がかかるようにすることが必要だからである。かかる力としては具体的には電極群の緊縛力や、ケースから受ける力、初期の充放電時にケース外部から加えられる圧迫、などが挙げられる。
【0026】
本発明に用いられるスペーサ2の材料としては、電池合剤層内部で化学的に安定な材料が使用可能であり、例えばジルコニアなどのセラミックス、ガラス、ジビニルベンゼン系あるいはポリメチルメタクリレート系等の硬質プラスチックを用いることができる。また、導電性、容量、電解液保持の1つ以上の機能を持たせるには、ニッケルや銅などの金属、黒鉛及びこれらの多孔体、複合体などを用いることが好ましい。
【0027】
本発明のスペーサ2の形状は、直方体、繊維状、球状、鱗片状などを用いることができる。さらに、合剤層1の厚み制御の均一性及び製造方法の観点から粒子形状に異方性のない球状が好ましい。
【0028】
本発明の電極の活物質としては、一般的に電池に用いられるものであれば何でもよいが、特にリチウムイオン二次電池においては高容量化の観点からリチウムイオンを可逆的に吸蔵放出できるものが好ましい。
【0029】
より具体的には、正極材料としては、一般式LiMO(0.1≦x≦1.1)で表される化合物を主成分とするリチウム複合酸化物が好ましい。Mとしては、コバルト、ニッケル、マンガンなどが好ましい。また、Mは単独元素でなくコバルトとニッケルなど複数種の元素でも可能である。また、鉄系酸化物、バナジウム系酸化物などのリチウムを可逆的に吸蔵放出する金属酸化物も使用可能であるし、二硫化チタン、二硫化モリブデンなどの金属硫化物も使用できる。
【0030】
また、負極材料としても同様に、一般的に電池に用いられるものであれば何でもよいが、特にリチウムイオン二次電池においてはリチウムイオンを可逆的に吸蔵放出する物質が好ましい。
【0031】
具体的に例示すれば、二酸化スズ、金属スズ、金属アルミニウム、シリコン酸化物、炭化ケイ素、ケイ素化ニッケル、ケイ素化銅、ケイ素化鉄、ケイ素化コバルト、ケイ素化マンガン、ケイ素化チタン、ケイ素化マグネシウム、黒鉛、難黒鉛化性炭素、低温焼成易黒鉛化炭素などが挙げられる。また、これらを混合するのも可能である。
【0032】
本発明の電極を用いた電池としては、正極/電解質層/負極を単に積層するのも、捲回するのも複数段積層するのも可能である。
【0033】
以下に実施例によりさらに詳しく説明する。また、本発明はこれらに限定されるものではない。
【0034】
【実施例】
(実施例1)
本発明の電極を用いた電池として、試験用扁平形電池(試験セル)の作製方法を図2の扁平形電池の断面図とともに説明する。
【0035】
まず、正極11の作製方法について説明する。正極活物質(図示せず)であるLiCoOは、LiCOとCoC0とを所定のモル比で混合し、950℃で加熱することによって合成した。さらに、これを100メッシュ以下の大きさに分級したものを用いた。正極活物質100gに対して、導電剤としてアセチレンブラックを10g、結着剤としてポリ4フッ化エチレンの水性分散液8g(樹脂成分)および純水を加え、充分に混合し、正極合剤ペースト(図示せず)を得た。このペーストをアルミニウムの芯材に塗布し、乾燥し、圧延して正極11を得た。
【0036】
次に、負極13の作製方法について説明する。負極合剤ペースト(図示せず)は、負極活物質として平均粒径1μmのチタンスズ合金(TiSn)を用いて、導電剤としてのアセチレンブラック(以降ABと表記)粉末と、結着剤としてのカルボキシメチルセルロース(以降CMCと表記)及びスチレンブタジエンゴム(以降SBRと表記)とを混合し、水を加えて得た。負極用スラリー内の(活物質)/AB/CMC/SBRの重量比は、100/12/4/8とした。得られた負極スラリーにスペーサ2として直径50μmのジルコニアを添加したものを、厚さ15μmの銅箔の両面に塗布した後、常圧60℃で15分間予備乾燥し、空孔率調整の圧延後、さらに180℃で10時間真空乾燥して負極13を得た。
【0037】
具体的にはスペーサ2の体積比率が電極体積中の約5%を占めるように、平均粒径50μmのジルコニア粉を活物質100に対して重量21を混合した負極負極ペーストを厚さ15μmの銅箔の両面に厚さそれぞれ約80μm塗布した後、常圧60℃で15分間予備乾燥し、圧延によりジルコニアスペーサ以外の負極合剤の空孔率が50%になるように調整した。さらに180℃で10時間真空乾燥して空孔率50%の負極を得た。
【0038】
次に、超音波溶接で、先に得られた正極11にアルミニウムからなる正極リード12を取り付けた。同様に先に得られた負極13に銅の負極リード14を取り付けた。そして、正極、負極、および両電極より幅が広く、帯状の多孔性ポリプロピレン製セパレータ15を積層した。このとき両電極の間に前出のセパレータ15を介在させた。次いで、得られた積層物(図示せず)を扁平状に捲回して電極群(図示せず)とした。
【0039】
電極群は、その上下にそれぞれポリプロピレン製の絶縁板(図示せず)を配して電池ケース17に挿入した。そして、電池ケース17の上部に枠体16を形成した後、所定の非水電解液(1.0モル/LのLiPFを含むエチレンカーボネート+ジエチルカーボネート(1:3体積比混合溶媒)、図示せず)を注入し、正極端子を有する封口板18で密閉して扁平形電池とした。
【0040】
試験セルの評価は20℃で以下のように実施した。まず、試験セルの定電流充電を、充電電流0.2C(1Cは1時間率電流)で電池電圧が4.2Vになるまで行い、次いで定電圧充電を4.2V、電流値が0.01Cになるまで行った。その後、試験セルの放電を、0.2Cの電流で電池電圧が2.5Vになるまで行った。この充放電サイクルを100回繰り返した。
【0041】
(実施例2)
負極にスペーサ2として平均粒径35〜65μmのジルコニア粉を添加した。他の作製方法は実施例1と同様である。なお、(表2)では、加したジルコニア粉の粒径を、スペーサ径という表現で示した。
【0042】
(実施例3)
負極にスペーサ2として導電補助剤を兼ねてニッケルを添加した。その他は実施例1と同様である。
【0043】
具体的にはスペーサ2の体積比率が電極体積中の約5%を占めるように、平均粒径50μmのニッケル粉を負極活物質100に対して重量32を混合した負極負極ペーストを塗布乾燥し、圧延によりニッケルスペーサ以外の負極合剤の空孔率が50%になるように調製した。
【0044】
(実施例4)
負極にスペーサ2として容量増加及び導電性を有するものとして黒鉛を添加した。その他は実施例1と同様である。具体的にはスペーサ2の体積比率が電極体積中の約5%を占めるように、平均粒径50μmの球状黒鉛を活物質100に対して重量7.8を混合した負極負極ペーストを塗布乾燥し、圧延により黒鉛スペーサ以外の負極合剤の空孔率が50%になるように調製した。
【0045】
(実施例5)
負極にスペーサ2として、多孔体スペーサである内部に空孔を有するポリエチレンを添加した。その他は実施例1と同様である。
【0046】
具体的にはスペーサ2の体積比率が電極体積中の約5%を占めるように、平均粒径50μmのポリエチレン粒子(空孔率30%)を活物質100に対して重量2.3を混合した負極負極ペーストを塗布乾燥し、圧延によりポリエチレンスペーサ以外の負極合剤の空孔率が50%になるように調製した。
【0047】
(比較例1)
比較例1として、スペーサ−添加しない負極を作製した。スペーサ−を添加しないことを除いては、上記実施例と同じ作製方法である。
【0048】
結果を(表1)、(表2)、(表3)及び図3、4に示す。
【0049】
【表1】

Figure 2004134175
【0050】
まず、(表1)と図3をもとに実施例1と比較例1を説明する。図3中の、シンボル●は実施例1を、×は比較例1を示す。実施例1では、比較例1に比べ添加したセラミックスペーサの体積分初期容量は低下したが、放電効率及びサイクル劣化率が改善している。これは、スペーサ2の導入により折り曲げ部分などの電極潰れを抑制した結果、電極反応が均一化されたためである。
【0051】
OCVを調べることにより電極の充電深度を見積もることができる。図4に電極各部位の厚みと充放電後のOCVを示す。
【0052】
まず電極の各部位について3mm幅で切り出し、合剤層の厚みと電解液中でセパレータを介してLiと対向させたときの電位(開放電圧OCV)を測定した。
【0053】
記号は丸印が合剤層厚み、菱形と三角形はそれぞれ放電後、充電後のLiに対するOCVを示し、塗り潰し●◆黒三角が実施例1、白抜き○◇△が比較例1である。
【0054】
縦軸は右が合剤層厚みを示し、図中の●○が対応する。組立前の合剤層厚みは50μmである。
【0055】
縦軸左は充放電後30分後負極のLiに対するOCVを示し、図中の◆◇(放電後)と黒三角△(充電後)が対応する。負極のLiに対するOCVは充電深度が深いほど0Vに近づき、逆に放電深度が深いほど大きくなる。本試験条件において充電終了時の負極のLiに対するOCVは0.05Vに設計しているが、抵抗成分による電圧降下などの影響で、充電後のOCVはそれよりも大きくなる。また、同様に放電終了時の負極のLiに対する電位は1.0Vに設計しているが、放電後のOCVはそれよりも小さくなる。
【0056】
比較例1では平坦部に比べ折り曲げ部の合剤層が潰れて厚みが小さくなっている。また折曲部のOCVは平坦部に比べて、充電後は大きく、放電後は小さくなっており、その傾向は群の内周側になるほど顕著となっている。これは内周側の折り曲げ曲率が大きく、より大きな力がかかって合剤層が潰れて電解液が不足し、充放電に十分寄与できていないことを示している。
【0057】
しかし、実施例1に示すようにスペーサ2を添加することにより合剤層の潰れが抑制され、各部位の合剤層厚み及び充放電後のOCVが均一になっていることがわかる。これはスペーサ2添加により合剤層の潰れを抑制し、電解液不足を解消した結果、電極の充放電反応が均一化されたためである。
【0058】
【表2】
Figure 2004134175
【0059】
実施例2では、比較例1に比べ、添加したスペーサ2の大きさが合剤層厚さの0.8〜1.2倍、特に0.95〜1.05倍の範囲内で、放電効率及びサイクル劣化率が改善している。これはスペーサ2の大きさが合剤層厚さの0.8倍以下になるとスペーサ2として機能せずに電極潰れが起きてしまい、また1.2倍を超えると電極表面の凹凸が大きくなりスペーサ2周囲の電極の反応が阻害され、いずれも電極の不均一反応によるサイクル劣化率増大が引き起こされるためである。
【0060】
【表3】
Figure 2004134175
【0061】
実施例3では、比較例1に比べ添加したニッケルスペーサの体積分初期容量は低下したが、サイクル特性及び特に放電効率が大きく向上した。スペーサ2として伝導度の高いニッケルを用いたため電極潰れを抑制しつつ、電極の電子伝導度が高くなった結果である。
【0062】
実施例4では、比較例1に比べ添加した黒鉛スペーサの体積分初期容量は低下したが黒鉛が容量をもつため容量低下は緩和され、放電効率及びサイクル劣化率が改善している。スペーサ2として伝導度も高い黒鉛を用いたため電極潰れを抑制しつつ、電極伝導が向上したためである。なお、実施例2にサイクル劣化率が及ばないのは、球状黒鉛自身が充放電時に約10%の体積変化を繰り返し行うため、黒鉛スペーサ周囲の合剤がもろくなり電極の電子伝導が低下したためである。
【0063】
実施例5では、比較例1に比べ添加した多孔体スペーサの体積分初期容量は低下したが、放電効率及びサイクル劣化率が改善している。スペーサ2内の空孔に電解液を保持できるため、電極潰れを抑制しつつ、電極内に含まれる電解液量が増加した。
【0064】
【発明の効果】
本発明は、合剤層中にその厚さを制御するスペーサを含ませることにより、合剤層の厚さが一定以下に潰れないようにして電極内の反応を均一化することにより、高容量で長寿命の電池用電極を得ることを可能にする。
【図面の簡単な説明】
【図1】本発明の実施の形態1における電池用電極の構成を示す図
【図2】本発明の実施例で使用した扁平型電池の断面図
【図3】本発明の電池容量のサイクル特性を示す図
【図4】本発明の実施例における充電後及び放電後の電極の状態を示す図
【符号の説明】
1 合剤層
2 スペーサ
3 集電体
4 電池用電極
11 正極
12 正極リード
13 負極
14 負極リード
15 セパレータ
16 枠体
17 電池ケース
18 封口板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery electrode, and more particularly, to a mixture layer and a battery using the same.
[0002]
[Prior art]
With the improvement in performance of electronic devices such as mobile phones, notebook personal computers, and video recorders with built-in cameras, power consumption has increased, and further miniaturization and portability of devices have been demanded. In addition, there is a demand for a large current and a longer driving time of these electronic devices. In order to satisfy the demands for these electronic devices, there is a demand for a smaller, higher-output, and higher-capacity battery. For this reason, recently, by adopting an electrode group having a spiral structure, the facing area of both the positive and negative electrodes has been increased, and the capacity has been increased in a structure capable of extracting a large current.
[0003]
Conventional battery electrodes use a metal and its alloys that occlude and release lithium, such as tin and silicon, in order to increase the area of the positive and negative electrodes facing each other and to increase the capacity with a structure that can take out large currents. There is a material used as an active material, in which a hole is provided in a negative electrode to absorb a change in volume of the active material and retain an electrolytic solution (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-11-242954
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the fact that the electrode has pores and can absorb a change in volume means that the electrode is easily deformed when a force is applied, and the electrode is crushed by a force applied to a bent portion when manufacturing a battery. However, there is a problem that it is difficult to sufficiently hold the electrolytic solution.
[0006]
Further, at the time of discharge, the discharge is deeper from the surroundings as much as the discharge from the bent portion is not completed, and the load on the surroundings is increased. There was a problem that such non-uniform reaction promoted the progress of cycle deterioration of the battery.
[0007]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a high-capacity, long-life battery electrode and a battery using the same, in which the reactions of the electrodes are made uniform.
[0008]
[Means for Solving the Problems]
In order to solve the conventional problems, the battery electrode of the present invention includes a mixture layer including at least an active material, a conductive agent, and a binder, and a current collector, and the mixture layer includes a spacer. .
[0009]
Further, in the battery electrode of the present invention, the content per unit volume of the spacer in the mixture layer is 0 <X ≦ 20, where X is the ratio of the spacer.
[0010]
Furthermore, in the battery electrode of the present invention, the size of the spacer particles is 0.8 to 1.2 times the thickness of the mixture layer when the active material does not occlude the electron carrier.
[0011]
A battery using the battery electrode of the present invention has a positive electrode, a negative electrode, and a non-aqueous electrolyte, and at least the positive electrode or the negative electrode includes a spacer.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
(Embodiment 1)
FIG. 1 is a cross-sectional view of a battery electrode according to Embodiment 1 of the present invention. FIG. 1 shows a mixture layer 1 formed on both sides of a current collector 3. In the figure, the positive electrode and the negative electrode are not specified. A mixture 1 including an active material (not shown), a conductive agent (not shown), a binder (not shown), and a spacer 2 is provided on a battery electrode 4 formed on both sides of a current collector 3. is there. This electrode faces the other electrode (not shown) with a separator (not shown) interposed therebetween, for example.
[0014]
Since the capacity of the spacer 2 in the mixture layer 1 decreases as the amount of the spacer 2 increases, the volume of the spacer 2 in the mixture layer 1 is expressed as 0 <X ≦ It is desirable to be in the range of 20. If the volume ratio is higher than that, there are some materials that cannot secure conductivity.
[0015]
Further, it is desirable that the spacers 2 are appropriately dispersed in the mixture layer from the viewpoint of manufacturing. Further, in the case where the collapse of the electrode only at the bent portion becomes a problem, the spacer 2 may be disposed more frequently at the bent portion, or the spacer 2 may be arranged only at the bent portion.
[0016]
If the size of the spacer 2 is too small with respect to the thickness of the electrode, the collapse of the electrode cannot be suppressed when a force is applied, and if the size is too large, useless space is generated and the electrode capacity is reduced. Is desirably in the range of 0.8 to 1.2 times the thickness of the mixture layer 1 in a state where the active material is contracted, and more preferably 0.95 to 1.05 times. When the thickness of the spacer 2 is 0.8 times or less the thickness of the mixture layer 1, the mixture layer 1 cannot maintain a predetermined thickness. When the thickness of the spacer 2 is 1.2 times or more the thickness of the mixture layer 1, a gap is formed between the separator (not shown) and the electrode composed of the mixture layer 1 and the current collector 3, and the capacity is reduced.
[0017]
According to such a configuration, the electrode of the present invention can keep its thickness constant in the mixture layer when pressure is applied by the addition of the spacer 2. As a result, the electrode does not collapse. Furthermore, the electrode of the embodiment of the present invention can solve the problem of electrolyte shortage, and can improve cycle characteristics by making the reaction uniform throughout the electrode.
[0018]
The effect described below is obtained by adding the spacer 2 to the mixture layer 1.
[0019]
By adding the spacer 2, when the thickness of the battery electrode 4 is adjusted by press rolling, the electrode 4 does not collapse below the size of the spacer. This is very effective for an electrode having high porosity that requires fine adjustment of the porosity in the same electrode 4 having vacancies.
[0020]
Furthermore, when an active material having a large volume change during charge and discharge is used, a large force is applied to the electrode 4 when the active material expands, so that the pores in the mixture layer can absorb the volume expansion. Therefore, the volume of the pores provided in the mixture layer may be only the amount of the electrolyte solution retained and the volume absorbed by the expansion, and the capacity of the electrode can be increased by increasing the pore utilization rate.
[0021]
Here, the porosity will be described. The porosity is a ratio of a gap occupied in an electrode volume, and is useful for holding an electrolytic solution and absorbing a change in volume of an active material. However, as the porosity increases, the volume capacity decreases.
[0022]
Furthermore, in order to compensate for the decrease in capacity due to the addition of the spacer 2 and to achieve higher capacity and higher performance of the battery, the spacer 2 has at least one of conductivity, capacity, and electrolyte retention function. Is desirable.
[0023]
In the case where the spacer 2 has conductivity, improvement in discharge characteristics and the like is expected by functioning as a conductive auxiliary agent. When the spacer 2 has a capacity, the decrease in capacity of the active material replaced with the spacer 2 can be compensated. In addition, when the spacer 2 has an electrolyte holding function, even if the porosity of the mixture layer other than the spacer 2 is reduced, the amount of electrolyte held as an electrode can be maintained, and an increase in electrode capacity can be expected.
[0024]
It is also effective to provide one or more functions of the above-described conductivity, capacity, and electrolyte retention by selecting a material, compounding, or the like.
[0025]
It is desirable that the battery has a structure in which a force is applied to an internal group during assembly or operation. This is because it is necessary to apply a force to the electrode in order to absorb the volume change of the active material into the pores in the electrode and suppress the volume change of the electrode. Specific examples of such a force include a binding force of the electrode group, a force received from the case, and a compression applied from the outside of the case during initial charge and discharge.
[0026]
As a material of the spacer 2 used in the present invention, a material that is chemically stable inside the battery mixture layer can be used. For example, ceramics such as zirconia, glass, hard plastics such as divinylbenzene or polymethylmethacrylate are used. Can be used. Further, in order to have one or more functions of conductivity, capacity, and electrolyte retention, it is preferable to use a metal such as nickel or copper, graphite, a porous body or a composite thereof, or the like.
[0027]
As the shape of the spacer 2 of the present invention, a rectangular parallelepiped, fibrous shape, spherical shape, scale shape, or the like can be used. Further, a spherical shape having no anisotropy in particle shape is preferable from the viewpoint of uniformity of thickness control of the mixture layer 1 and the production method.
[0028]
As the active material of the electrode of the present invention, any material may be used as long as it is generally used for a battery. Particularly, in a lithium ion secondary battery, a material capable of reversibly inserting and extracting lithium ions from the viewpoint of increasing the capacity is used. preferable.
[0029]
More specifically, as the positive electrode material, a lithium composite oxide containing a compound represented by the general formula Li x MO 2 (0.1 ≦ x ≦ 1.1) as a main component is preferable. M is preferably cobalt, nickel, manganese or the like. M is not limited to a single element, but may be a plurality of elements such as cobalt and nickel. Further, metal oxides such as iron-based oxides and vanadium-based oxides that reversibly store and release lithium can be used, and metal sulfides such as titanium disulfide and molybdenum disulfide can also be used.
[0030]
Similarly, as the negative electrode material, any material can be used as long as it is generally used for batteries. In particular, in a lithium ion secondary battery, a material that reversibly stores and releases lithium ions is preferable.
[0031]
Specific examples include tin dioxide, metallic tin, metallic aluminum, silicon oxide, silicon carbide, nickel silicide, copper silicide, iron silicide, cobalt silicide, manganese silicide, titanium silicide, and magnesium silicide. , Graphite, non-graphitizable carbon, and low-temperature calcinable graphitizable carbon. It is also possible to mix them.
[0032]
As a battery using the electrode of the present invention, it is possible to simply laminate the positive electrode / electrolyte layer / negative electrode, or to wind or laminate a plurality of layers.
[0033]
Hereinafter, the present invention will be described in more detail with reference to examples. Further, the present invention is not limited to these.
[0034]
【Example】
(Example 1)
A method for manufacturing a test flat battery (test cell) as a battery using the electrode of the present invention will be described with reference to the cross-sectional view of the flat battery in FIG.
[0035]
First, a method for manufacturing the positive electrode 11 will be described. LiCoO 2 which is a positive electrode active material (not shown), and Li 2 CO 3 and CoC0 3 were mixed at a predetermined molar ratio, it was synthesized by heating at 950 ° C.. Further, this was classified into a size of 100 mesh or less. To 100 g of the positive electrode active material, 10 g of acetylene black as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene (resin component) and pure water as a binder were added, mixed well, and mixed with a positive electrode mixture paste ( (Not shown). The paste was applied to an aluminum core, dried, and rolled to obtain a positive electrode 11.
[0036]
Next, a method for manufacturing the negative electrode 13 will be described. A negative electrode mixture paste (not shown) is made of a titanium-tin alloy (Ti 2 Sn) having an average particle diameter of 1 μm as a negative electrode active material, acetylene black (hereinafter referred to as AB) powder as a conductive agent, and a binder as a binder. Of carboxymethylcellulose (hereinafter referred to as CMC) and styrene-butadiene rubber (hereinafter referred to as SBR) were obtained by adding water. The weight ratio of (active material) / AB / CMC / SBR in the slurry for the negative electrode was 100/12/4/8. A slurry obtained by adding zirconia having a diameter of 50 μm as a spacer 2 to the obtained negative electrode slurry was applied to both sides of a copper foil having a thickness of 15 μm, and was then preliminarily dried at normal pressure at 60 ° C. for 15 minutes. And vacuum drying at 180 ° C. for 10 hours to obtain a negative electrode 13.
[0037]
Specifically, a negative electrode paste obtained by mixing 21 parts by weight of active material 100 with zirconia powder having an average particle diameter of 50 μm is coated with a 15 μm thick copper so that the volume ratio of the spacer 2 occupies about 5% of the electrode volume. After applying a thickness of about 80 μm to both sides of the foil, the foil was pre-dried at normal pressure at 60 ° C. for 15 minutes, and adjusted by rolling so that the porosity of the negative electrode mixture other than the zirconia spacer became 50%. Further, vacuum drying was performed at 180 ° C. for 10 hours to obtain a negative electrode having a porosity of 50%.
[0038]
Next, a positive electrode lead 12 made of aluminum was attached to the previously obtained positive electrode 11 by ultrasonic welding. Similarly, a copper negative electrode lead 14 was attached to the negative electrode 13 obtained earlier. Then, a belt-shaped porous polypropylene separator 15 having a width wider than that of the positive electrode, the negative electrode, and both electrodes was laminated. At this time, the separator 15 described above was interposed between the two electrodes. Next, the obtained laminate (not shown) was flatly wound to form an electrode group (not shown).
[0039]
The electrode group was inserted into the battery case 17 with an insulating plate (not shown) made of polypropylene disposed on the upper and lower sides, respectively. Then, after the frame 16 is formed on the upper part of the battery case 17, a predetermined non-aqueous electrolyte (ethylene carbonate containing 1.0 mol / L LiPF 6 + diethyl carbonate (1: 3 volume ratio mixed solvent), FIG. (Not shown), and sealed with a sealing plate 18 having a positive electrode terminal to obtain a flat battery.
[0040]
The evaluation of the test cell was performed at 20 ° C. as follows. First, the test cell is charged at a constant current at a charging current of 0.2 C (1 C is a one-hour rate current) until the battery voltage becomes 4.2 V. Then, the constant voltage charging is performed at 4.2 V and the current value is 0.01 C. I went until it became. Thereafter, the test cell was discharged at a current of 0.2 C until the battery voltage reached 2.5 V. This charge / discharge cycle was repeated 100 times.
[0041]
(Example 2)
Zirconia powder having an average particle size of 35 to 65 μm was added as a spacer 2 to the negative electrode. Other manufacturing methods are the same as in the first embodiment. In Table 2, the particle size of the added zirconia powder is represented by the expression “spacer diameter”.
[0042]
(Example 3)
Nickel was added to the negative electrode as a spacer 2 as a conductive auxiliary. Others are the same as the first embodiment.
[0043]
Specifically, a negative electrode paste containing nickel powder having an average particle size of 50 μm and a weight of 32 mixed with the negative electrode active material 100 is applied and dried so that the volume ratio of the spacer 2 occupies about 5% of the electrode volume, It was prepared by rolling so that the porosity of the negative electrode mixture other than the nickel spacer became 50%.
[0044]
(Example 4)
Graphite was added to the negative electrode as a spacer 2 having a capacity increase and conductivity. Others are the same as the first embodiment. Specifically, a negative electrode paste obtained by mixing spherical graphite having an average particle size of 50 μm with a weight of 7.8 with respect to the active material 100 is applied and dried so that the volume ratio of the spacer 2 occupies about 5% of the electrode volume. The porosity of the negative electrode mixture other than the graphite spacer was adjusted to 50% by rolling.
[0045]
(Example 5)
Polyethylene having pores inside, which is a porous spacer, was added as the spacer 2 to the negative electrode. Others are the same as the first embodiment.
[0046]
Specifically, polyethylene particles having an average particle diameter of 50 μm (porosity: 30%) were mixed at a weight of 2.3 with respect to the active material 100 so that the volume ratio of the spacer 2 occupied about 5% of the electrode volume. The negative electrode paste was applied and dried, and prepared by rolling so that the porosity of the negative electrode mixture other than the polyethylene spacer became 50%.
[0047]
(Comparative Example 1)
As Comparative Example 1, a negative electrode without a spacer was prepared. The manufacturing method is the same as that of the above embodiment except that no spacer is added.
[0048]
The results are shown in (Table 1), (Table 2), (Table 3) and FIGS.
[0049]
[Table 1]
Figure 2004134175
[0050]
First, Example 1 and Comparative Example 1 will be described based on (Table 1) and FIG. In FIG. 3, the symbol ● indicates Example 1 and the symbol X indicates Comparative Example 1. In Example 1, the volume initial capacity of the added ceramic spacer was lower than that of Comparative Example 1, but the discharge efficiency and the cycle deterioration rate were improved. This is because the introduction of the spacer 2 suppressed the collapse of the electrode at the bent portion and the like, resulting in a uniform electrode reaction.
[0051]
The depth of charge of the electrode can be estimated by examining the OCV. FIG. 4 shows the thickness of each part of the electrode and the OCV after charging and discharging.
[0052]
First, each part of the electrode was cut out at a width of 3 mm, and the thickness of the mixture layer and the potential (open-circuit voltage OCV) when the electrode was opposed to Li in the electrolyte via a separator were measured.
[0053]
In the symbols, circles indicate the thickness of the mixture layer, diamonds and triangles indicate the OCV for Li after discharging and charging, respectively, and solid black solid triangles indicate Example 1 and white solid circles indicate Comparative Example 1.
[0054]
The right side of the vertical axis indicates the thickness of the mixture layer, and ○ in the figure corresponds. The thickness of the mixture layer before assembly is 50 μm.
[0055]
The left side of the vertical axis shows the OCV with respect to Li of the negative electrode 30 minutes after charging / discharging, and ◆ ◇ (after discharging) and black triangle △ (after charging) in the figure correspond to each other. The OCV of the negative electrode with respect to Li approaches 0 V as the depth of charge becomes deeper, and increases as the depth of discharge becomes deeper. Under the present test conditions, the OCV for Li of the negative electrode at the end of charging is designed to be 0.05 V, but the OCV after charging is larger than that due to the influence of voltage drop due to the resistance component. Similarly, the potential of the negative electrode with respect to Li at the end of discharge is designed to be 1.0 V, but the OCV after discharge is smaller than that.
[0056]
In Comparative Example 1, the mixture layer in the bent portion was crushed and the thickness was smaller than in the flat portion. In addition, the OCV of the bent portion is larger after charging and smaller after discharging than the flat portion, and the tendency becomes more prominent toward the inner circumference side of the group. This indicates that the bending curvature on the inner peripheral side is large, the mixture layer is crushed by a larger force, and the electrolyte solution is insufficient, so that it cannot sufficiently contribute to charge and discharge.
[0057]
However, as shown in Example 1, the addition of the spacer 2 suppresses the crushing of the mixture layer, and shows that the thickness of the mixture layer at each portion and the OCV after charging and discharging are uniform. This is because the addition of the spacer 2 suppresses the collapse of the mixture layer and eliminates the shortage of the electrolyte, resulting in a uniform charge / discharge reaction of the electrode.
[0058]
[Table 2]
Figure 2004134175
[0059]
In Example 2, the discharge efficiency was smaller than that of Comparative Example 1 when the size of the added spacer 2 was 0.8 to 1.2 times, particularly 0.95 to 1.05 times the thickness of the mixture layer. And the cycle deterioration rate is improved. This is because if the size of the spacer 2 is 0.8 times or less the thickness of the mixture layer, the electrode 2 will not function as the spacer 2 and the electrode will be crushed, and if it exceeds 1.2 times, the unevenness of the electrode surface will increase. This is because the reaction of the electrodes around the spacer 2 is hindered, and any of these causes an increase in the cycle deterioration rate due to the non-uniform reaction of the electrodes.
[0060]
[Table 3]
Figure 2004134175
[0061]
In Example 3, although the volume initial capacity of the nickel spacer added was reduced as compared with Comparative Example 1, the cycle characteristics and especially the discharge efficiency were greatly improved. The result is that the electron conductivity of the electrode is increased while suppressing collapse of the electrode because nickel having high conductivity is used as the spacer 2.
[0062]
In Example 4, the volume initial capacity of the graphite spacer added was reduced as compared with Comparative Example 1, but since the graphite had a capacity, the capacity reduction was alleviated, and the discharge efficiency and the cycle deterioration rate were improved. This is because graphite having high conductivity was used as the spacer 2 and electrode conduction was improved while suppressing electrode collapse. The reason why the cycle deterioration rate did not reach that of Example 2 was that the mixture around the graphite spacer became brittle and the electron conductivity of the electrode was reduced because the spherical graphite itself repeatedly changed volume by about 10% during charge and discharge. is there.
[0063]
In Example 5, the volume initial capacity of the porous spacer added was lower than that of Comparative Example 1, but the discharge efficiency and the cycle deterioration rate were improved. Since the electrolyte solution can be held in the holes in the spacer 2, the amount of the electrolyte solution contained in the electrode increased while suppressing the collapse of the electrode.
[0064]
【The invention's effect】
The present invention includes a spacer for controlling the thickness of the mixture layer, so that the thickness of the mixture layer is not crushed below a certain level, thereby making the reaction in the electrode uniform and thereby increasing the capacity. Thus, it is possible to obtain a long-life battery electrode.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a battery electrode according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a flat battery used in an example of the present invention. FIG. 3 is a cycle characteristic of a battery capacity of the present invention. FIG. 4 is a diagram showing the state of electrodes after charging and after discharging in an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Mixture layer 2 Spacer 3 Current collector 4 Battery electrode 11 Positive electrode 12 Positive electrode lead 13 Negative electrode 14 Negative electrode lead 15 Separator 16 Frame 17 Battery case 18 Sealing plate

Claims (4)

少なくとも活物質と導電剤と結着剤とを含む合剤層と、集電体とを備え、前記合剤層はスペーサを含むことを特徴とする電池用電極。A battery electrode comprising: a mixture layer containing at least an active material, a conductive agent, and a binder; and a current collector, wherein the mixture layer includes a spacer. 合剤層中に占めるスペーサの体積当たりの含有率は、前記スペーサの割合をXとすると、0<X≦20であることを特徴とする請求項1記載の電池用電極。2. The battery electrode according to claim 1, wherein the content of the spacer per volume in the mixture layer is 0 <X ≦ 20, where X is the ratio of the spacer. 3. スペーサ粒子の大きさは活物質が電子伝達体を吸蔵していない状態において、合剤層の厚みの0.8〜1.2倍であることを特徴とする請求項1または2記載の電池用電極。3. The battery according to claim 1, wherein the size of the spacer particles is 0.8 to 1.2 times the thickness of the mixture layer when the active material does not occlude the electron mediator. electrode. 正極と負極と非水電解液とを有し、少なくとも前記正極または負極は、スペーサを含むことを特徴とする請求項1〜3いずれかに記載の電池用電極を用いた電池。The battery according to any one of claims 1 to 3, comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte, wherein at least the positive electrode or the negative electrode includes a spacer.
JP2002296228A 2002-10-09 2002-10-09 Electrode for battery and battery using the same Pending JP2004134175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296228A JP2004134175A (en) 2002-10-09 2002-10-09 Electrode for battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296228A JP2004134175A (en) 2002-10-09 2002-10-09 Electrode for battery and battery using the same

Publications (1)

Publication Number Publication Date
JP2004134175A true JP2004134175A (en) 2004-04-30

Family

ID=32286264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296228A Pending JP2004134175A (en) 2002-10-09 2002-10-09 Electrode for battery and battery using the same

Country Status (1)

Country Link
JP (1) JP2004134175A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059583A (en) * 2010-09-10 2012-03-22 Hitachi Vehicle Energy Ltd Electrode for secondary battery and method of manufacturing electrode
JP2012186135A (en) * 2011-02-18 2012-09-27 Fujitsu Ltd Secondary battery, and method for manufacturing the same
JP2015109270A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Electrode, secondary battery, and manufacturing method for the same
WO2021015194A1 (en) * 2019-07-24 2021-01-28 株式会社Gsユアサ Power storage element
US11349125B2 (en) 2016-10-06 2022-05-31 Nec Corporation Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
US11682766B2 (en) 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059583A (en) * 2010-09-10 2012-03-22 Hitachi Vehicle Energy Ltd Electrode for secondary battery and method of manufacturing electrode
JP2012186135A (en) * 2011-02-18 2012-09-27 Fujitsu Ltd Secondary battery, and method for manufacturing the same
JP2015109270A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Electrode, secondary battery, and manufacturing method for the same
US11349125B2 (en) 2016-10-06 2022-05-31 Nec Corporation Spacer included electrodes structure and its application for high energy density and fast chargeable lithium ion batteries
US11682766B2 (en) 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
WO2021015194A1 (en) * 2019-07-24 2021-01-28 株式会社Gsユアサ Power storage element
EP3975286A4 (en) * 2019-07-24 2023-06-28 GS Yuasa International Ltd. Power storage element

Similar Documents

Publication Publication Date Title
JP6196329B2 (en) Secondary battery with improved cathode active material, electrode and lithium ion mobility and battery capacity
JP2006222072A (en) Nonaqueous electrolyte secondary battery
JP2009181710A (en) Alkaline storage battery
JP4925690B2 (en) Nonaqueous electrolyte secondary battery
JPH11283629A (en) Organic electrolyte battery
JP2020161364A (en) All-solid-state lithium secondary battery and manufacturing method thereof
US5601950A (en) Non-aqueous electrolyte secondary cell
US20040043291A1 (en) Cathode containing muticomponent binder mixture and lithium-sulfur battery using the same
JP5101068B2 (en) Negative electrode material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP4698291B2 (en) Alkaline storage battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2004134175A (en) Electrode for battery and battery using the same
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2002117834A (en) Positive electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2008300178A (en) Nonaqueous secondary battery
JP2004006258A (en) Negative electrode plate for nickel-hydrogen storage batteries, its manufacturing method, and nickel-hydrogen storage battery using it
JP2005267966A (en) Nonaqueous electrolyte secondary battery
JP2006269302A (en) Annealed lithium-cobalt complex oxide, manufacturing method of same, anode active substance using same, and lithium secondary battery
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery
JP2000012024A (en) Manufacture of positive electrode for nonaqueous secondary battery
JP2003007339A (en) Battery and manufacturing method of battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH07130359A (en) Nonaqueous electrolyte secondary battery
JP4067524B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
WO2023191910A1 (en) Hierachical structure of transition metal cyanide coordination compounds