JPH11274012A - Electrical double layer capacitor and manufacture thereof - Google Patents

Electrical double layer capacitor and manufacture thereof

Info

Publication number
JPH11274012A
JPH11274012A JP10079715A JP7971598A JPH11274012A JP H11274012 A JPH11274012 A JP H11274012A JP 10079715 A JP10079715 A JP 10079715A JP 7971598 A JP7971598 A JP 7971598A JP H11274012 A JPH11274012 A JP H11274012A
Authority
JP
Japan
Prior art keywords
electrode body
spacer
electric double
separator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10079715A
Other languages
Japanese (ja)
Inventor
Manabu Kazuhara
学 数原
Kazuya Hiratsuka
和也 平塚
Katsuharu Ikeda
克治 池田
Takeshi Kawasato
健 河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10079715A priority Critical patent/JPH11274012A/en
Publication of JPH11274012A publication Critical patent/JPH11274012A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To ensure a high output density and high energy density by having spacers interposed between a separator and positive and a negative electrodes, and placing electrode layers of the positive and negative electrodes at pores which the spaces have. SOLUTION: Electrodes having porous electrodes layers mainly containing a carbonaceous powder formed on one side of a metal collector are to be positive and negative electrodes, spacers are disposed between the positive and negative electrodes and separator, pore parts are provided at the spacer and shaped to absorb the deformation due to the volume increase of the electrode layer, i.e., the shape of the pore parts is selected, so that the electrode layer is impregnated with an electrolyte solution to swell with increase in the volume, and the increase of the volume is absorbed by the pore parts of the spacer, thereby making the electrode layer impregnated with the electrolyte solution easily deformable. Thus, the electrode layers of the positive and negative electrodes are made to exist at the pore parts of the spacers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気二重層キャパシ
タ、特にパワー用途に適する電気二重層キャパシタ及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor suitable for power use and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電気二重層キャパシタは、分極性電極と
電解液との界面に形成される電気二重層に電荷を蓄積す
ることを原理としており、電池より大電流による急速充
放電ができるためエネルギ分野への応用が近年活発に検
討され、例えば特開平8−45793には大容量かつ高
出力の電気二重層キャパシタが提案されている。具体的
用途しては、電気自動車又はハイブリッド自動車への応
用が注目されている。
2. Description of the Related Art An electric double layer capacitor is based on the principle that electric charges are accumulated in an electric double layer formed at an interface between a polarizable electrode and an electrolytic solution. Application to the field has been actively studied in recent years. For example, Japanese Patent Application Laid-Open No. H8-45793 proposes a large-capacity and high-output electric double layer capacitor. As a specific application, application to an electric vehicle or a hybrid vehicle has attracted attention.

【0003】電気二重層キャパシタの電解液としては有
機系電解液と水系電解液があるが、作動電圧が高く、充
電状態のエネルギ密度を大きくできることから、有機系
電解液を用いた電気二重層キャパシタが注目されてい
る。有機系電解液を用いる場合、電気二重層キャパシタ
の単位体積あたりの容量(以下、容量密度という)を向
上させるため、活性炭等の炭素材料が使用される。ま
た、電気二重層キャパシタセルの内部に水分が存在する
と水分の電気分解により性能が劣化するため、通常、電
極は減圧下で加熱処理して充分に脱水される。
[0003] Electrolyte for an electric double layer capacitor includes an organic electrolyte and an aqueous electrolyte. However, since the operating voltage is high and the energy density in the charged state can be increased, the electric double layer capacitor using the organic electrolyte is used. Is attracting attention. When an organic electrolytic solution is used, a carbon material such as activated carbon is used to improve the capacity per unit volume of the electric double layer capacitor (hereinafter, referred to as capacity density). In addition, when water is present inside the electric double layer capacitor cell, the performance is deteriorated due to the electrolysis of the water. Therefore, usually, the electrode is subjected to a heat treatment under reduced pressure to be sufficiently dehydrated.

【0004】電極の作製方法としては、例えばカルボキ
シメチルセルロース等のバインダを溶媒に溶解させた溶
液に炭素微粉末を分散させてスラリとなし、これを集電
体に塗布し乾燥して集電体上に電極層を形成する方法が
ある。しかし、この方法では電極と集電体との接合強度
が弱く、またバインダの耐熱性が充分ではないため電極
内の水分等の不純分を充分に除去できるほど高温で電極
を熱処理できない。さらにこの方法では、例えば60μ
m以上の厚膜を得る場合は均一にスラリの溶媒を乾燥除
去することが困難であり、高強度、低抵抗、高密度、高
容量の電極層を集電体上に生産性よく形成することが難
しい。
As a method of manufacturing an electrode, for example, a fine carbon powder is dispersed in a solution in which a binder such as carboxymethyl cellulose is dissolved in a solvent to form a slurry, which is coated on a current collector and dried to form a slurry on the current collector. There is a method of forming an electrode layer. However, in this method, the bonding strength between the electrode and the current collector is weak, and the heat resistance of the binder is not sufficient. Therefore, the electrode cannot be heat-treated at such a high temperature that impurities such as moisture in the electrode can be sufficiently removed. Further, in this method, for example, 60 μm
When a thick film with a thickness of m or more is obtained, it is difficult to uniformly dry and remove the solvent of the slurry, and a high-strength, low-resistance, high-density, high-capacity electrode layer is formed on the current collector with good productivity. Is difficult.

【0005】また、活性炭等の炭素質材料とポリテトラ
フルオロエチレン(以下、PTFEという)等のバイン
ダと液状潤滑剤からなる混練物を予備成形した後、延伸
又は圧延してシート状に成形された電極を得る方法が提
案されている(特開昭63−107011、特開平2−
235320)。この方法によればPTFEが繊維化し
ているためイオン伝導を阻害しにくく、また炭素材料は
高密度に充填される。電極と集電体との接合も、導電性
接着層を介して接合することにより、接合強度が強くか
つ電気的な接触抵抗が小さくできる。また、PTFEは
熱的にも電気化学的にも安定なため、高信頼性かつ高容
量かつ低抵抗の電気二重層キャパシタを構成できる。
[0005] A kneaded product comprising a carbonaceous material such as activated carbon, a binder such as polytetrafluoroethylene (hereinafter referred to as PTFE) and a liquid lubricant is preformed, and then stretched or rolled to form a sheet. A method for obtaining an electrode has been proposed (JP-A-63-107011, JP-A-2-107).
235320). According to this method, since PTFE is fibrous, ion conduction is hardly hindered, and the carbon material is filled at a high density. By joining the electrode and the current collector via the conductive adhesive layer, the joining strength is high and the electrical contact resistance can be reduced. In addition, since PTFE is thermally and electrochemically stable, an electric double layer capacitor having high reliability, high capacity, and low resistance can be formed.

【0006】上記電極シートは、バックアップ電源用途
のコイン型のキャパシタに厚さを500μm程度の電極
として使用されており、さらに電解液の含浸性を改良す
るために電極シート表面に溝を設けたり、針刺し孔を設
けることが提案されている(特公平3−68527)。
The above-mentioned electrode sheet is used as an electrode having a thickness of about 500 μm in a coin-type capacitor for use as a backup power supply. Further, in order to improve the impregnation property of the electrolyte, grooves are provided on the surface of the electrode sheet. It has been proposed to provide a needle puncture hole (Japanese Patent Publication No. 3-68527).

【0007】しかし、大電流で充放電する必要のある用
途の場合はさらに電極抵抗を低減する必要が生じ、その
ためには電極の厚さを薄くすることが有効である。とこ
ろが上記電極は、PTFEが混練されることによりラン
ダムに繊維化し、また繊維化部分と非繊維化部分が生じ
るため、電極を例えば200μm以下の厚さのシートに
成形しようとすると表面が凹凸になりやすく、穴が空き
やすい問題がある。したがって、電気二重層キャパシタ
の容量密度を大きくできず、また内部抵抗も充分には低
減できない。
However, in applications where charging and discharging with a large current is required, it is necessary to further reduce the electrode resistance. For this purpose, it is effective to reduce the thickness of the electrode. However, since the above-mentioned electrode is randomly fiberized by kneading PTFE, and a fibrous portion and a non-fibrous portion are generated, when the electrode is formed into a sheet having a thickness of, for example, 200 μm or less, the surface becomes uneven. There is a problem that is easy to make holes. Therefore, the capacity density of the electric double layer capacitor cannot be increased, and the internal resistance cannot be sufficiently reduced.

【0008】上記問題点に対し、本発明者らは炭素質材
料とPTFEと加工助剤からなる混合物をスクリュー押
し出し成形した後、圧延して高強度かつ高密度の多孔質
電極シートを得る方法を提案している(特願平10−1
9758)。この方法によれば、工業的に連続的に生産
性が高く高密度かつ高強度の電極シートが得られる。と
ころが、例えば0.7g/cm3 程度の高密度かつ15
0μm程度の厚さを有する電極シートを金属集電体に接
合して電極体を形成した場合、該電極体を薄膜セパレー
タを介して巻回又は複数交互に積層した後電解液を含浸
させ、密閉容器に収容して大容量タイプのキャパシタセ
ルとすると、2枚の電極体をセパレータを介して対向さ
せて電解液を含浸させたモデルセルから推定される容量
や抵抗に比べ、容量が充分に発現しなかったり抵抗が高
い等の性能不良が生じる問題があった。
In order to solve the above problems, the present inventors have developed a method for obtaining a high-strength and high-density porous electrode sheet by screw-extruding a mixture comprising a carbonaceous material, PTFE, and a processing aid, and then rolling the mixture. Proposal (Japanese Patent Application No. Hei 10-1)
9758). According to this method, an electrode sheet having high productivity, high density and high strength is continuously obtained industrially. However, for example, high density of about 0.7 g / cm 3 and 15
When an electrode sheet having a thickness of about 0 μm is joined to a metal current collector to form an electrode body, the electrode body is wound or alternately laminated via a thin film separator, and then impregnated with an electrolytic solution and sealed. When a large-capacity capacitor cell is housed in a container, the capacity is sufficiently expressed compared to the capacity and resistance estimated from a model cell impregnated with electrolyte with two electrodes facing each other via a separator. There was a problem that performance failures such as failure to perform or high resistance occurred.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明は、上記
のような電極が本質的に有する容量と抵抗を大型キャパ
シタ製品において充分に発現しうる構造を提案し、高出
力密度かつ高エネルギ密度であり、かつ充放電サイクル
耐久性に優れるパワー用途用の大容量電気二重層キャパ
シタを提供することを目的とする。
Accordingly, the present invention proposes a structure capable of sufficiently exhibiting the capacitance and resistance inherent in the above-described electrode in a large-sized capacitor product, and having a high output density and a high energy density. It is an object of the present invention to provide a large-capacity electric double-layer capacitor for power use, which has excellent charge / discharge cycle durability.

【0010】[0010]

【課題を解決するための手段】本発明は、炭素質粉末を
主体とする多孔質の電極層を金属集電体の少なくとも片
面に形成してなる電極体を正極体及び負極体とし、該正
極体と該負極体とをセパレータを介して巻回して又はセ
パレータを介して複数交互に積層して素子を形成し、該
素子に非水系電解液を含浸させ密閉容器に収容してなる
電気二重層キャパシタにおいて、セパレータと正極体及
び/又は負極体との間にスペーサが配置されており、該
スペーサが有する空孔部には正極体の電極層及び/又は
負極体の電極層が存在することを特徴とする電気二重層
キャパシタ及びその製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode body and a negative electrode body each having an electrode body formed by forming a porous electrode layer mainly composed of carbonaceous powder on at least one surface of a metal current collector. An electric double layer formed by winding a body and the negative electrode body through a separator or alternately laminating a plurality of the bodies through a separator to form an element, impregnating the element with a non-aqueous electrolyte, and storing the element in a closed container. In the capacitor, a spacer is disposed between the separator and the positive electrode body and / or the negative electrode body, and it is determined that an electrode layer of the positive electrode body and / or an electrode layer of the negative electrode body exists in a hole portion of the spacer. An electric double layer capacitor and a method of manufacturing the same are provided.

【0011】本明細書において、電極層を金属集電体の
片面又は両面に形成して金属集電体と一体化したものを
電極体という。そして、この電極体を正極側に用いる場
合は正極体、負極側に用いる場合は負極体という。
In the present specification, a structure in which an electrode layer is formed on one or both surfaces of a metal current collector and integrated with the metal current collector is referred to as an electrode body. When this electrode body is used on the positive electrode side, it is called a positive electrode body, and when it is used on the negative electrode side, it is called a negative electrode body.

【0012】本発明において、金属集電体に形成される
電極層の厚さは80μm以上であることが好ましい。8
0μm未満であると電気二重層キャパシタ素子の単位体
積あたりの炭素質粉末の含有量が低下するため、容量密
度が小さくなる。一方、2000μmを超えると電極層
の抵抗が高くなり、高出力充放電においては損失が増大
するため高出力時のエネルギ密度が低下するので好まし
くない。
In the present invention, the thickness of the electrode layer formed on the metal current collector is preferably at least 80 μm. 8
If the thickness is less than 0 μm, the content of the carbonaceous powder per unit volume of the electric double layer capacitor element decreases, so that the capacity density decreases. On the other hand, if the thickness exceeds 2000 μm, the resistance of the electrode layer increases, and the loss increases during high-output charging / discharging.

【0013】特に大電流で充放電する用途では電極面積
を大きくして厚さが80〜200μm程度の比較的薄い
電極層を形成し、容量密度は多少犠牲にしても電気二重
層キャパシタの内部抵抗を小さくすることが好ましい。
また、低電流で長時間充放電する用途の場合は内部抵抗
が多少高くても支障がないので、電極層の厚さを200
〜2000μmとして容量密度を高くした構造とするの
がよい。上記のように電極層の厚さは電気二重層キャパ
シタの用途により異なるが、特に好ましくは100〜1
500μmである。
In particular, in applications where charging and discharging are performed with a large current, the electrode area is increased to form a relatively thin electrode layer having a thickness of about 80 to 200 μm. Is preferably reduced.
Further, in the case of charging and discharging for a long time at a low current, there is no problem even if the internal resistance is slightly high.
It is preferable to adopt a structure in which the capacity density is increased to 2000 μm. As described above, the thickness of the electrode layer varies depending on the application of the electric double layer capacitor, but is particularly preferably 100 to 1.
It is 500 μm.

【0014】本発明において、電極層は、金属集電体に
接合しているため接合面方向への膨潤は抑止されている
ので、電解液を吸収して膨潤することによる体積増加は
厚さ方向の増加として現れる。この膨潤による厚さの増
加率は、電極の形成方法、電極の物性に影響される。本
発明者らの検討によれば、電極形成段階でプレスにより
高密度化した電極では特に電解液含浸時の厚さの増加率
が大きい傾向がある。
In the present invention, since the electrode layer is bonded to the metal current collector, swelling in the direction of the bonding surface is suppressed, so that the volume increase due to absorption and swelling of the electrolyte is reduced in the thickness direction. Appears as an increase in The rate of increase in thickness due to this swelling is affected by the method of forming the electrode and the physical properties of the electrode. According to the study of the present inventors, an electrode which has been densified by pressing at the electrode forming stage tends to have a large rate of increase in thickness particularly when the electrode is impregnated with an electrolytic solution.

【0015】本発明では、電気二重層キャパシタの製造
時に、電極層が電解液を含浸して膨潤することにより増
加する体積を吸収できる空間を、電極層とセパレータと
の間に設けるようにスペーサを配置して素子を形成し、
次いで該素子に電解液を含浸させる。
According to the present invention, at the time of manufacturing an electric double layer capacitor, a spacer is provided between the electrode layer and the separator so as to provide a space capable of absorbing an increased volume due to the electrode layer being impregnated with the electrolyte and swelling. To form an element,
Next, the element is impregnated with an electrolytic solution.

【0016】例えば、1〜5cm角程度の大きさの一対
の電極体をセパレータを介して対向させて軽い応力で押
さえたような小型の電気二重層キャパシタセル(以下、
モデルセルという)の場合、電解液を含浸させたときに
上記のようなスペーサによる空間がなくても電極層の体
積は電極を押さえる応力の方向に自由に増加できる。と
ころが、電極体を複数積層したり巻回して素子を形成す
ると、上記のようなスペーサによる空間が存在しない場
合、セパレータや他の電極体の存在により電極層が厚さ
方向に体積増加できる空間がない。したがって、電解液
が電極層内部まで充分に含浸しないので、電極層内部で
発現するはずの容量が発現せず、また電極層内部の抵抗
が大きくなるため、電極層全体としてモデルセルから予
測される性能より容量が小さく抵抗が大きくなる。
For example, a small electric double layer capacitor cell (hereinafter, referred to as a cell) in which a pair of electrode bodies each having a size of about 1 to 5 cm square are opposed to each other via a separator and pressed with light stress.
In the case of a model cell), the volume of the electrode layer can be freely increased in the direction of the stress for holding down the electrode even when there is no space by the spacer as described above when the electrolyte is impregnated. However, when an element is formed by laminating or winding a plurality of electrode bodies, if there is no space due to the spacer as described above, a space where the volume of the electrode layer can be increased in the thickness direction due to the presence of the separator and other electrode bodies. Absent. Therefore, since the electrolytic solution does not sufficiently impregnate the inside of the electrode layer, the capacity that should be developed inside the electrode layer does not appear, and the resistance inside the electrode layer increases, so that the entire electrode layer is predicted from the model cell. The capacity is smaller than the performance and the resistance is larger.

【0017】本発明において、素子に電解液を含浸させ
る前にスペーサにより形成される空間体積(V1 )と、
該スペーサとセパレータとを介して対向する2つの電極
層の電解液吸収により増加する体積(V2 )との関係
は、V1 /V2 が1/4〜3/2であることが好まし
い。V1 /V2 が1/4未満では、電極層への電解液の
含浸が不充分になり、電気二重層キャパシタの容量が低
下したり、抵抗が上昇しやすい。一方、V1 /V2 が3
/2超では、不必要に電極層とセパレータとの間隔が広
がり、素子の体積が大きくなって容量密度が低下したり
素子の中で電極の位置がずれることがある。V1 /V2
は好ましくは1/2〜4/3である。
In the present invention, a space volume (V 1 ) formed by the spacer before the element is impregnated with the electrolytic solution;
Regarding the relationship between the volume (V 2 ) that increases due to the absorption of the electrolyte between the two electrode layers facing each other via the spacer and the separator, V 1 / V 2 is preferably 1 / to 3/2. When V 1 / V 2 is less than /, the impregnation of the electrode layer with the electrolytic solution becomes insufficient, and the capacity of the electric double layer capacitor tends to decrease and the resistance tends to increase. On the other hand, V 1 / V 2 is 3
If the ratio exceeds / 2, the gap between the electrode layer and the separator is unnecessarily widened, and the volume of the device becomes large, so that the capacity density may decrease or the position of the electrode may be shifted in the device. V 1 / V 2
Is preferably 1/2 to 4/3.

【0018】本発明におけるスペーサの厚さは、電極層
の電解液含浸時の厚さ増加量をもとに選定されるもので
あり、V1 とV2 が上記の関係を満たすように選定する
ことが好ましい。
The thickness of the spacer in the present invention is selected based on the amount of increase in the thickness of the electrode layer when the electrolyte is impregnated with the electrolyte, and is selected so that V 1 and V 2 satisfy the above relationship. Is preferred.

【0019】本発明におけるスペーサは、空孔部を有す
るものであり、その空孔部は電極層の体積増加による変
形を吸収できる形状である必要がある。すなわち、電極
層が電解液を含浸させることにより膨潤して体積増加し
た増加分がスペーサの空孔部に吸収されるので、電解液
含浸後の電極層が変形しやすいように、スペーサの空孔
部の形状が選定される。電解液を電極層に含浸させる
と、スペーサの空孔部に電極層が存在するようになる。
スペーサは、例えば格子状に繊維を張りめぐらせた網状
体や簾等の形状のように連続したものでもよいし、突起
等からなり複数配置して空孔部に相当する空間を形成す
る非連続的なものでもよい。
The spacer according to the present invention has a hole, and the hole must have a shape capable of absorbing deformation due to an increase in the volume of the electrode layer. That is, since the increase in the volume of the electrode layer swelling due to the impregnation with the electrolyte and increasing in volume is absorbed by the pores of the spacer, the pores of the spacer are easily deformed after the impregnation with the electrolyte. The shape of the part is selected. When the electrode layer is impregnated with the electrolytic solution, the electrode layer becomes present in the holes of the spacer.
The spacer may be a continuous one such as a net-like body or a screen made of fibers stretched in a lattice, or a non-continuous spacer formed of a plurality of protrusions or the like to form a space corresponding to a hole. May be a typical thing.

【0020】スペーサの空孔部は、幅が1mm以上であ
ることが好ましい。1mm未満であると、スペーサによ
り電極表面とセパレータとの間に空間が形成されていて
も、電極層が膨潤しながらその空間に侵入することはで
きない。したがって、電極層が充分に膨潤できなかった
り、又はセパレータに過大な膨潤圧力がかかってセパレ
ータが高密度化し、セパレータの電解液保液性が悪くな
りセパレータの抵抗が上昇することがある。スペーサの
空孔部の幅は2mm以上であると電極層が膨潤しながら
容易に上記空間のほぼ全体に侵入できるのでさらに好ま
しい。
It is preferable that the hole of the spacer has a width of 1 mm or more. If it is less than 1 mm, even if a space is formed between the electrode surface and the separator by the spacer, the electrode layer cannot swell and enter the space. Therefore, the electrode layer may not swell sufficiently, or an excessive swelling pressure may be applied to the separator, thereby increasing the density of the separator, deteriorating the electrolyte-retaining property of the separator and increasing the resistance of the separator. It is more preferable that the width of the hole portion of the spacer is 2 mm or more because the electrode layer can easily penetrate substantially the entire space while swelling.

【0021】また、スペーサの空孔部の幅は、電極表面
とセパレータとの間に充分な空間を形成しやすいように
7cm以下とすることが好ましい。なお、ここで空孔部
の幅とは、スペーサと電極とセパレータにより形成され
る一つの空間において、スペーサの厚さ方向と垂直な面
における最短の距離を指すものとし、例えば網状体なら
網目の寸法を指す。また、スペーサが突起からなる場合
は、空孔部の幅とは並行する2本の突起の最短距離を指
すものとする。
The width of the hole of the spacer is preferably 7 cm or less so that a sufficient space is easily formed between the electrode surface and the separator. Here, the width of the void portion refers to the shortest distance in a plane perpendicular to the thickness direction of the spacer in one space formed by the spacer, the electrode, and the separator. Refers to dimensions. In the case where the spacer is composed of a projection, the width of the hole portion indicates the shortest distance between two projections parallel to each other.

【0022】特にスペーサの形状としては、網目の寸法
が1mm〜2cmである網状体であることが好ましい。
ここで、網目の寸法とは、格子状に張りめぐらされた4
本の繊維でつくられる四角形状の空孔の一辺の長さをい
う。このような形状のスペーサは、電気二重層キャパシ
タ素子を作製するときに取り扱いやすく、また、電極層
が膨潤したときにその増加体積を吸収しやすい。
In particular, the shape of the spacer is preferably a mesh having a mesh size of 1 mm to 2 cm.
Here, the mesh size is defined as 4 meshed and stretched.
It refers to the length of one side of a rectangular hole made of the fibers of the book. The spacer having such a shape is easy to handle when producing an electric double layer capacitor element, and easily absorbs the increased volume when the electrode layer swells.

【0023】スペーサを構成する材料の太さ(例えばス
ペーサが網状体からなる場合は網線の太さ、突起からな
る場合は突起の幅)は、電流遮蔽を考慮すると0.1〜
2mm程度が好ましい。スペーサを構成する材料の断面
形状は、角、円、楕円等いずれも使用できる。電極体と
セパレータの間に配置されるスペーサは、全体が一体化
されている必要はないが全体が一体化されている方が電
気二重層キャパシタ素子を組み立てるときに効率がよ
い。
The thickness of the material constituting the spacer (for example, the thickness of a mesh line when the spacer is formed of a mesh, and the width of the projection when formed of a projection) is 0.1 to
About 2 mm is preferable. The cross-sectional shape of the material forming the spacer may be any of a square, a circle, an ellipse, and the like. The spacer disposed between the electrode body and the separator does not need to be integrated as a whole, but it is more efficient to assemble the electric double layer capacitor element if the whole is integrated.

【0024】スペーサの材質としては、電気化学的に安
定であり、少なくとも電解液の含浸が終了するまでは電
解液に溶解しないものが好ましい。具体的には、多孔質
電極層と同一素材、セパレータと同一素材、又はポリエ
ステル樹脂、ポリイミド樹脂、ポリフェニレンスルフィ
ド樹脂、含フッ素樹脂等が挙げられる。
The material of the spacer is preferably one which is electrochemically stable and does not dissolve in the electrolytic solution at least until the impregnation with the electrolytic solution is completed. Specifically, the same material as the porous electrode layer, the same material as the separator, or a polyester resin, a polyimide resin, a polyphenylene sulfide resin, a fluorine-containing resin, or the like is used.

【0025】スペーサとして突起を使用する場合、例え
ば幅0.1〜2mm、長さ10mm以上の線状突起を1
〜2cmの間隔で形成したり、径0.1〜2mmの円柱
状突起を1〜2cmの間隔で形成したものが例示され
る。
When a projection is used as a spacer, for example, a linear projection having a width of 0.1 to 2 mm and a length of 10 mm or more is used.
Examples are those formed at intervals of up to 2 cm, or formed with columnar projections having a diameter of 0.1 to 2 mm at intervals of 1 to 2 cm.

【0026】また、本発明では連続した多孔構造を有す
る、気孔率70%以上の多孔体からなるスペーサを使用
してもよい。ただし、ここで多孔体には綿状のものも含
む。多孔体からなるスペーサの場合は、スペーサの内部
に空間部を有しているので電極体が電解液を吸収して膨
潤するときに該空間部を押しつぶすようにスペーサを圧
縮し、スペーサは高密度化して厚さが減少する。
In the present invention, a spacer having a continuous porous structure and made of a porous material having a porosity of 70% or more may be used. However, the porous body includes a cotton-like body. In the case of a spacer made of a porous material, since the spacer has a space inside the spacer, the spacer is compressed so as to crush the space when the electrode body absorbs the electrolyte and swells, and the spacer has a high density. And reduce the thickness.

【0027】したがって、この場合のスペーサは、電極
体とセパレータとスペーサを積層又は重ねて巻回すると
きの圧縮応力では高密度化しにくく、電極層に電解液を
含浸させたときに例えば3kg/cm3 以上の電極層が
膨潤する圧力(以下、膨潤圧という)により厚さが減少
する材料が好ましい。そして、電解液によるイオン伝導
性を阻害しないように気孔率が85%以上であると好ま
しく、膨潤圧が10kg/cm3 以上に達する場合には
セパレータがかなり圧縮されて高密度化するので、気孔
率は90%以上であるとさらに好ましい。そして、この
場合もスペーサの材質は、電気化学的に安定であり、少
なくとも電解液の含浸が終了するまでは電解液に溶解し
ないものが好ましい。
Therefore, the spacer in this case is hardly densified by a compressive stress when the electrode body, the separator and the spacer are laminated or stacked and wound, and when the electrode layer is impregnated with the electrolyte, for example, 3 kg / cm 3 A material whose thickness is reduced by a pressure at which three or more electrode layers swell (hereinafter referred to as a swelling pressure) is preferable. The porosity is preferably 85% or more so as not to impair the ionic conductivity of the electrolytic solution. When the swelling pressure reaches 10 kg / cm 3 or more, the separator is considerably compressed and the density is increased. More preferably, the ratio is 90% or more. Also in this case, the material of the spacer is preferably electrochemically stable and does not dissolve in the electrolytic solution at least until the impregnation with the electrolytic solution is completed.

【0028】本発明において、スペーサはセパレータ又
は電極体とあらかじめ一体化されていると、電極体とセ
パレータの積層又は巻回が容易となるので好ましい。す
なわち、網状又は簾状の連続的なスペーサの場合はあら
かじめセパレータと重ねておくと使用しやすい。非連続
的な突起からなるスペーサの場合はあらかじめ電極体又
はセパレータ上に形成しておくことが好ましく、例えば
テープで突起を形成したり、電極体又はセパレータの表
面を線状溝を有するロールなどでプレスし、電極層又は
セパレータの一部にスペーサの役割をさせてもよい。
In the present invention, it is preferable that the spacer is integrated with the separator or the electrode body in advance, because lamination or winding of the electrode body and the separator becomes easy. In other words, in the case of a continuous spacer in the form of a net or a cord, it is easy to use it by overlapping it with the separator in advance. In the case of a spacer composed of discontinuous projections, it is preferable to form them in advance on the electrode body or the separator, for example, to form projections with tape, or to roll the surface of the electrode body or the separator with a linear groove. Pressing may be performed so that a part of the electrode layer or the separator functions as a spacer.

【0029】本発明における電極層に含まれる炭素質粉
末は比表面積が700〜2500m2 /gであることが
好ましく、活性炭粉末を主成分とするのが好ましい。炭
素質粉末の比表面積が700m2 /g未満であると電気
二重層キャパシタの静電容量が低下し、2500m2
gを超えると電極密度を高めるのが難しくなる結果、容
量密度が低下する。特に好ましくは1000〜1800
2 /gである。また、活性炭粉末以外に、カーボンブ
ラック、ポリアセン等の大比表面積の材料も好ましく使
用できる。特に、高比表面積の活性炭粉末と、導電材と
して高導電性のカーボンブラックを混合して使用するこ
とが好ましい。この場合、カーボンブラックは電極層中
に5〜20重量%含まれることが好ましい。
The carbonaceous powder contained in the electrode layer in the present invention preferably has a specific surface area of 700 to 2500 m 2 / g, and preferably contains activated carbon powder as a main component. The capacitance of the electric double layer capacitor a specific surface area of the carbonaceous powder is less than 700 meters 2 / g is reduced, 2500 m 2 /
If it exceeds g, it becomes difficult to increase the electrode density, and as a result, the capacity density decreases. Particularly preferably 1000 to 1800
m 2 / g. In addition to the activated carbon powder, a material having a large specific surface area such as carbon black and polyacene can be preferably used. In particular, it is preferable to use a mixture of activated carbon powder having a high specific surface area and highly conductive carbon black as a conductive material. In this case, it is preferable that carbon black is contained in the electrode layer in an amount of 5 to 20% by weight.

【0030】本発明において、電極層の密度は0.55
〜0.85g/cm3 であることが好ましい。密度が
0.55g/cm3 未満であると電極の静電容量を大き
くできない。0.85g/cm3 を超えると電極層への
電解液の含浸性が乏しくなったり、抵抗が上昇しやす
い。特に好ましくは、0.60〜0.75g/cm3
ある。
In the present invention, the density of the electrode layer is 0.55
Preferably, it is 〜0.85 g / cm 3 . If the density is less than 0.55 g / cm 3 , the capacitance of the electrode cannot be increased. If it exceeds 0.85 g / cm 3 , the impregnation of the electrolyte into the electrode layer becomes poor, and the resistance tends to increase. Particularly preferably, it is 0.60 to 0.75 g / cm 3 .

【0031】本発明において、電極層には結合材が含ま
れることが好ましい。結合材は含フッ素樹脂からなるこ
とが好ましく、電極層中の結合材の割合は5〜20重量
%であることが好ましい。結合材が5重量%以上含まれ
ることによって実用性のある電極シート強度が得られ
る。しかし、あまり多く含まれると電極層の抵抗が大き
くなるので20重量%以下とするのが好ましい。より好
ましくは7〜15重量%である。
In the present invention, the electrode layer preferably contains a binder. The binder is preferably made of a fluorine-containing resin, and the proportion of the binder in the electrode layer is preferably 5 to 20% by weight. When the binder is contained in an amount of 5% by weight or more, practical electrode sheet strength can be obtained. However, if the content is too large, the resistance of the electrode layer becomes large. Therefore, the content is preferably set to 20% by weight or less. More preferably, it is 7 to 15% by weight.

【0032】上記含フッ素樹脂としては特にPTFEが
好ましい。PTFEは、繊維化することにより連続微細
多孔質層を形成し、炭素質粉末が該多孔質層に担持され
て低抵抗かつ高強度の電極層が形成される。ここでいう
PTFEは、テトラフルオロエチレンの単独重合体だけ
でなく、テトラフルオロエチレンに対して他の単量体を
0.5モル%以下加えて共重合させて得られる共重合体
も含むものとする。他の単量体に基づく重合単位が0.
5モル%以下であれば、PTFEに溶融流動性が付与さ
れず、テトラフルオロエチレン単独重合体同様に繊維化
して高強度かつ低抵抗の電極シートを作製できる。
As the fluororesin, PTFE is particularly preferred. PTFE forms a continuous microporous layer by fiberization, and the carbonaceous powder is carried on the porous layer to form a low-resistance and high-strength electrode layer. The PTFE referred to here includes not only a homopolymer of tetrafluoroethylene but also a copolymer obtained by adding 0.5 mol% or less of another monomer to tetrafluoroethylene and copolymerizing the same. The amount of polymerized units based on other monomers is 0.1.
When the content is 5 mol% or less, the melt fluidity is not imparted to the PTFE, and the PTFE is formed into a fiber like a homopolymer of tetrafluoroethylene, so that an electrode sheet having high strength and low resistance can be produced.

【0033】上記他の単量体としては、ヘキサフルオロ
プロピレン、クロロトリフルオロエチレン、パーフルオ
ロ(アルキルビニルエーテル)、トリフルオロエチレ
ン、(パーフルオロアルキル)エチレン等が例示され
る。
Examples of the other monomer include hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), trifluoroethylene, and (perfluoroalkyl) ethylene.

【0034】本発明における電極層は、炭素質粉末とP
TFEと有機溶剤等の加工助剤からなる混合物をスクリ
ュー押し出し成形した後、ロール圧延してシート状に成
形することにより得られる電極シートからなることが好
ましい。特にロール圧延する方向をスクリュー押し出し
の方向と同じ方向に行うと、PTFEが縦横に繊維化し
て3次元的網目構造が形成されるので好ましい。上記方
法により得られた電極シートは、PTFEが充分に繊維
化していて強度が高いので、例えば厚さ150μm程度
の高密度の電極シートでも工業的に連続的に高速度で製
造できる。また、得られたシートを連続的に金属集電体
に接合することもできる。
In the present invention, the electrode layer comprises carbonaceous powder and P
It is preferable to use an electrode sheet obtained by screw extrusion molding a mixture of TFE and a processing aid such as an organic solvent and then rolling it into a sheet. In particular, it is preferable to perform the roll rolling in the same direction as the screw extrusion, since the PTFE fiberizes vertically and horizontally to form a three-dimensional network structure. Since the electrode sheet obtained by the above method is sufficiently fibrous with PTFE and has high strength, even a high-density electrode sheet having a thickness of, for example, about 150 μm can be industrially continuously manufactured at a high speed. Further, the obtained sheet can be continuously joined to a metal current collector.

【0035】本発明における電極層は、含フッ素樹脂が
繊維化して3次元的網目構造を形成し、炭素質粉末は該
網目構造に担持され相互に結合していることが好まし
い。含フッ素樹脂からなる繊維は、含フッ素樹脂と炭素
質粉末を加工助剤とともに混練したり押し出し成形する
等の外部応力がかけられたときに生成する。該繊維は、
含フッ素樹脂からなる結節を結んで3次元的に広がって
いる。
In the electrode layer according to the present invention, it is preferable that the fluororesin is fiberized to form a three-dimensional network structure, and that the carbonaceous powder is supported by the network structure and bonded to each other. Fibers made of a fluorine-containing resin are generated when external stress is applied, such as kneading or extruding a fluorine-containing resin and carbonaceous powder together with a processing aid. The fibers are
It is spread three-dimensionally by connecting nodes made of fluorine-containing resin.

【0036】上記繊維の径、2つの結節を結ぶ繊維の長
さ、密度等は成形条件に依存するが、本発明では走査型
電子顕微鏡(以下、SEMという)で1万倍の倍率で観
察したときに、実質的に径0.1μm以下かつ長さ2μ
m以上の繊維からなることが好ましい。さらには径0.
01〜0.05μmかつ長さ3〜20μmである繊維が
繊維全体の体積の50%以上、特には80%以上である
ことが好ましい。また、繊維の密度は、繊維の伸びる方
向に直角方向の幅10μmあたりに、2〜20本である
ことが好ましい。
The diameter of the fiber, the length of the fiber connecting the two nodules, the density, and the like depend on the molding conditions. In the present invention, the fiber was observed with a scanning electron microscope (SEM) at a magnification of 10,000 times. Sometimes a diameter of 0.1 μm or less and a length of 2 μm
m or more fibers. Furthermore, the diameter is 0.
The fiber having a length of from 0.01 to 0.05 μm and a length of from 3 to 20 μm preferably accounts for 50% or more, particularly preferably 80% or more of the volume of the entire fiber. The density of the fibers is preferably 2 to 20 per 10 μm width in a direction perpendicular to the direction in which the fibers extend.

【0037】繊維の密度は高い方が、含フッ素樹脂から
なる多孔質層の強度は向上するが、電気二重層キャパシ
タの容量が充分に高くなるように該多孔質層中に炭素質
粉末を含ませてなる電極層の場合は、高密度化する成形
は困難になりやすい。同様に充分量の炭素質粉末を含ま
せる場合、繊維の径が0.1μm超又は長さが2μm未
満の繊維は生成しにくい。また、径が細すぎたり長さが
長すぎる繊維が大半を占めると、強度が弱くなるおそれ
がある。
The higher the fiber density, the higher the strength of the porous layer made of the fluorine-containing resin. However, the porous layer contains carbonaceous powder so that the capacity of the electric double layer capacitor becomes sufficiently high. In the case of an electrode layer that is not formed, molding to increase the density tends to be difficult. Similarly, when a sufficient amount of carbonaceous powder is contained, fibers having a diameter of more than 0.1 μm or a length of less than 2 μm are less likely to be produced. In addition, if the diameter is too small or the fiber is too long, the strength may be reduced.

【0038】上記の電極層を電気的に接続するための金
属集電体は、導電性に優れかつ電気化学的に耐久性のあ
る材料であればよく、アルミニウム、チタン、タンタル
等のバルブ金属、ステンレス鋼等が使用できるが、なか
でもアルミニウム及びステンレスが好ましい。特にアル
ミニウムは比重が軽く、導電性に優れかつ電気化学的に
安定であるので好ましい。
The metal current collector for electrically connecting the above-mentioned electrode layers may be a material having excellent conductivity and being electrochemically durable, such as a valve metal such as aluminum, titanium and tantalum. Stainless steel and the like can be used, and among them, aluminum and stainless steel are preferable. Particularly, aluminum is preferable because of its low specific gravity, excellent conductivity, and electrochemical stability.

【0039】金属集電体の形状は、箔状のものが価格が
安価であり好ましいが、電極層との接合性を高める必要
のある場合は、網状、パンチングメタル、エキスパンド
メタル等も好ましく使用できる。また集電体箔にエッチ
ング等の処理を施し、表面を粗面化してから使用しても
よい。
As the shape of the metal current collector, a foil shape is preferable because it is inexpensive, but if it is necessary to improve the bonding property with the electrode layer, a net shape, a punching metal, an expanded metal, etc. can be preferably used. . Further, the collector foil may be subjected to a treatment such as etching to roughen the surface before use.

【0040】本発明において、金属集電体の厚さは10
〜80μmであることが好ましい。10μm未満である
と集電体の強度が弱いため電極体の強度が弱く、電気二
重層キャパシタ製造時の歩留まりが低下したり、電気二
重層キャパシタ使用時に外部振動等の応力による不良が
起こりやすい。金属集電体の厚さが80μmを超えると
電気二重層キャパシタ素子の単位体積あたりの金属集電
体含有量が増え、炭素質粉末の含有量が相対的に低下す
るので容量密度が低下し、出力密度が低下したりエネル
ギ密度が低下する。金属集電体の厚さはより好ましくは
20〜60μmである。
In the present invention, the thickness of the metal current collector is 10
It is preferably from 80 to 80 μm. When the thickness is less than 10 μm, the strength of the current collector is weak, so that the strength of the electrode body is weak, the yield in manufacturing the electric double layer capacitor is reduced, and failure due to stress such as external vibration is likely to occur when the electric double layer capacitor is used. When the thickness of the metal current collector exceeds 80 μm, the content of the metal current collector per unit volume of the electric double layer capacitor element increases, and the content of the carbonaceous powder relatively decreases, so that the capacity density decreases, The output density or the energy density decreases. The thickness of the metal current collector is more preferably 20 to 60 μm.

【0041】本発明において、セパレータの厚さは20
〜170μmであることが好ましい。20μm未満で
は、セパレータの強度が低下し、キャパシタ製造時の歩
留まりが低下したり、セパレータにピンホールが存在し
やすくなるため電極間でミクロ的にショートが起こりや
すくなり、漏れ電流が増大して電圧保持性が低下する。
セパレータの厚さが170μmを超では、電圧保持性は
比較的確保しやすいが、電気二重層キャパシタ素子の単
位体積あたりのセパレータ含有量が増え、炭素質粉末の
含有量が相対的に低下するので容量密度が低下し、出力
密度が低下したりエネルギ密度が低下する。したがっ
て、キャパシタの用途に対する出力密度とエネルギ密度
への要求に加えて、用途に応じた電圧保持性への要求に
応じてさらにセパレータの材質と厚さを選ぶことが好ま
しい。特に好ましくは30〜80μmが採用される。
In the present invention, the thickness of the separator is 20
It is preferably from 170 to 170 μm. When the thickness is less than 20 μm, the strength of the separator is reduced, the yield in manufacturing the capacitor is reduced, and pinholes are apt to be present in the separator, so that microscopic short-circuit is easily generated between the electrodes, the leakage current is increased, and the voltage is increased. Retention is reduced.
When the thickness of the separator exceeds 170 μm, the voltage holding property is relatively easily secured, but the separator content per unit volume of the electric double layer capacitor element increases, and the content of the carbonaceous powder relatively decreases. The capacity density decreases, the output density decreases, and the energy density decreases. Therefore, it is preferable that the material and thickness of the separator be further selected according to the demand for the voltage holding property according to the use in addition to the demand for the output density and the energy density for the use of the capacitor. Particularly preferably, 30 to 80 μm is employed.

【0042】例えば、本発明の電気二重層キャパシタを
太陽電池との組み合わせ電源として使用するように毎日
充放電する場合は、セパレータは20〜80μmのシー
トであることが好ましく、その材質としてはセルロース
又は多孔質ポリプロピレン等の合成樹脂からなることが
好ましい。なかでもセルロース製シートは強度が高く安
価であり好ましい。特にレーヨン紙が低抵抗かつ高強度
であるので好ましい。また、20〜40μmのシートを
2枚以上重ねて例えば40〜80μmのセパレータとし
て用いると、効果的に漏れ電流を低減できるので好まし
い。
For example, when the electric double layer capacitor of the present invention is charged and discharged daily so as to be used as a combined power source with a solar cell, the separator is preferably a sheet of 20 to 80 μm, and the material is cellulose or It is preferable to be made of a synthetic resin such as porous polypropylene. Above all, a sheet made of cellulose is preferable because it has high strength and is inexpensive. Particularly, rayon paper is preferable because of its low resistance and high strength. Further, it is preferable to use two or more sheets of 20 to 40 μm as a separator, for example, of 40 to 80 μm in order to effectively reduce leakage current.

【0043】また、数日ないし1ヶ月以上の長期間のエ
ネルギ貯蔵を要求される用途では、特に電圧保持性が高
い必要があるため、セパレータは60〜170μmの厚
さのシートであることが好ましく、ガラス繊維、セルロ
ース又は多孔質ポリプロピレンからなることが好まし
い。なかでもガラス繊維マットは耐熱性、耐酸化性、耐
溶剤性に優れるため、特に電圧保持性を高くかつ大電流
充放電サイクル耐久性を高くできるので好ましい。
In applications requiring long-term energy storage of several days to one month or more, the separator is preferably a sheet having a thickness of 60 to 170 μm, since a particularly high voltage holding property is required. , Glass fiber, cellulose or porous polypropylene. Among them, glass fiber mats are preferable because they have excellent heat resistance, oxidation resistance, and solvent resistance, and in particular, can have high voltage retention and high current charge / discharge cycle durability.

【0044】セパレータとして使用されるガラス繊維マ
ットは、最大繊維径10μm以下の繊維からなると強度
が高くなり好ましい。しかし、それでもガラス繊維マッ
トは強度が充分ではなく、例えば140μm未満の薄膜
には成形し難いので、耐熱性を有し電気化学的に安定な
ポリフッ化ビニリデン等の含フッ素樹脂をガラス繊維の
結合材として0.2〜5重量%含ませてもよい。また、
毎日充放電する場合と同様に、厚さ20〜80μmのシ
ートを2枚以上重ねて例えば60〜170μmのセパレ
ータとして用いると効果的に漏れ電流を低減できるので
好ましい。
The glass fiber mat used as the separator is preferably made of fibers having a maximum fiber diameter of 10 μm or less, because the strength becomes high. However, the glass fiber mat still has insufficient strength, and is difficult to be formed into a thin film having a thickness of, for example, less than 140 μm. Therefore, a fluororesin such as polyvinylidene fluoride, which has heat resistance and is electrochemically stable, is used as a binder for the glass fiber. May be contained as 0.2 to 5% by weight. Also,
As in the case of daily charge and discharge, two or more sheets having a thickness of 20 to 80 μm are preferably stacked and used as a separator having a thickness of 60 to 170 μm, for example, because the leakage current can be effectively reduced.

【0045】本発明において、連続微細多孔質層からな
る電極シートは導電性接着剤を介して金属箔集電体に接
合することが好ましい。導電性接着剤としては、カーボ
ンブラック又は微粒黒鉛からなる導電材と熱硬化性樹脂
バインダとからなる接着剤が接合力が高く、熱安定性も
高いので好ましい。熱硬化性樹脂バインダとしてはポリ
アミドイミド樹脂が特に耐熱性と接合力が優れているの
で好ましい。
In the present invention, it is preferable that the electrode sheet composed of the continuous fine porous layer is bonded to the metal foil current collector via a conductive adhesive. As the conductive adhesive, an adhesive composed of a conductive material made of carbon black or fine graphite and a thermosetting resin binder is preferable because of its high bonding strength and high thermal stability. As the thermosetting resin binder, a polyamide imide resin is preferable because it has particularly excellent heat resistance and bonding strength.

【0046】上記導電性接着剤を用いて得られる電極体
は、過酷な条件下でも電気化学的にも熱的にも変質、剥
離、膨潤等の変化を起こしにくいので、電気二重層キャ
パシタの長期電圧印加耐久性、充放電サイクル信頼性、
及び耐冷熱サイクル信頼性に優れる。
The electrode body obtained by using the above-mentioned conductive adhesive hardly undergoes deterioration, peeling, swelling and the like under severe conditions electrochemically and thermally. Voltage application durability, charge / discharge cycle reliability,
Excellent in heat and heat cycle reliability.

【0047】本発明では、セパレータの空隙率は50〜
95%であることが好ましい。空隙率が50%未満であ
ると電解液の吸液性、保液性が不充分となり、セパレー
タの抵抗が大きくなる。空隙率が95%を超えるとセパ
レータの機械的強度が不足し、電気二重層キャパシタセ
ル製造時に破損したり、内部ショートが起こりやすくな
る。特にパワー用途に対しては、セパレータの空隙率は
60〜90%が好ましい。
In the present invention, the porosity of the separator is 50 to 50%.
Preferably it is 95%. If the porosity is less than 50%, the liquid absorbing property and liquid retaining property of the electrolytic solution become insufficient, and the resistance of the separator increases. If the porosity exceeds 95%, the mechanical strength of the separator is insufficient, and the separator is liable to be damaged during the production of the electric double layer capacitor cell or to be easily short-circuited internally. Particularly for power applications, the porosity of the separator is preferably from 60 to 90%.

【0048】本発明は、炭素質粉末を主体とする連続微
細多孔質層を金属集電体の少なくとも片面に形成してな
る電極体を正極体及び負極体とし、該正極体の多孔質層
と該負極体の多孔質層とをセパレータを介して対向させ
て積層又は巻回せしめた素子を形成し、該素子に非水系
電解液を含浸させ密閉容器に収容してなる電気二重層キ
ャパシタにおいて、セパレータと正極体又は負極体との
少なくとも一方の間に前記多孔質層の電解液吸収による
電極層厚み増加体積吸収用空隙が設けられた乾燥素子に
電解液を含浸することを特徴とする大容量電気二重層キ
ャパシタの製造方法を提供する。
According to the present invention, a positive electrode and a negative electrode are formed by forming a continuous fine porous layer mainly composed of carbonaceous powder on at least one surface of a metal current collector. An electric double-layer capacitor formed by laminating or winding the porous layer of the negative electrode body with the porous layer facing each other with a separator interposed therebetween, and impregnating the element with a non-aqueous electrolytic solution and housing in a closed container, A large-capacity electrolyte impregnated in a dry element in which a gap for volume absorption is provided between the separator and at least one of the positive electrode body and the negative electrode body by absorbing the electrolyte in the porous layer. Provided is a method for manufacturing an electric double layer capacitor.

【0049】本発明の電気二重層キャパシタに使用され
る非水系電解液は特に限定されず、公知の有機溶媒にイ
オン解離性の塩類を含む電解液を使用できる。なかでも
1234+ 、R1234+ (ただ
し、R1 、R2 、R3 、R4 は炭素数1〜6のアルキル
基で、それぞれ同じでも異なっていてもよい)で表され
る第4級オニウムカチオンと、BF4 -、PF6 -、ClO
4 -、CF3 SO3 -等のアニオンとからなる塩を有機溶媒
に溶解させた電解液を使用するのが好ましい。
The non-aqueous electrolyte used for the electric double layer capacitor of the present invention is not particularly limited, and any known organic solvent containing an ion dissociable salt can be used. Among them, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 R 4 P + (where R 1 , R 2 , R 3 and R 4 are alkyl groups having 1 to 6 carbon atoms, and Quaternary onium cation represented by BF 4 , PF 6 , ClO
4 -, CF 3 SO 3 - is preferable to use such electrolyte anion and a salt comprising dissolving in an organic solvent.

【0050】上記有機溶媒としては、プロピレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート等のカーボネート類、γ
−ブチロラクトン等のラクトン類、スルホラン等を単独
又は2種以上の混合溶媒として好ましく使用できる。パ
ワー用途においては、電気伝導度が高く、イオン濃度を
高くできるように、主溶媒をプロピレンカーボネートと
し、1.0〜2.0mol/Lの(C253 (CH
3 )NPF6 又は1.0〜2.0mol/Lの(C2
53 (CH3 )NBF4 を溶解した溶液が特に好まし
い。
Examples of the organic solvent include carbonates such as propylene carbonate, butylene carbonate, diethyl carbonate, and ethyl methyl carbonate;
-Lactones such as butyrolactone, sulfolane and the like can be preferably used alone or as a mixed solvent of two or more. In power applications, propylene carbonate is used as the main solvent and 1.0 to 2.0 mol / L of (C 2 H 5 ) 3 (CH 2 ) to increase the electric conductivity and the ion concentration.
3 ) NPF 6 or 1.0 to 2.0 mol / L of (C 2 H)
5 ) A solution in which 3 (CH 3 ) NBF 4 is dissolved is particularly preferred.

【0051】本発明の電気二重層キャパシタの構造は特
に限定されないが、容量を大きくできるように、集電体
の両面に電極層を形成した一対の帯状電極体を間にセパ
レータを介して巻回し、電解液を含浸させて有底円筒型
容器に収容し密閉してなる円筒型、及び集電体の両面に
電極層を形成した矩形の電極体を正極体及び負極体と
し、セパレータを介して複数交互に積層し電解液を含浸
させて有底角型容器に収容し、密閉してなる積層型が特
に好ましい。本発明は静電容量10F以上のパワー用途
の電気二重層キャパシタに有効であり、特に100F以
上の大容量電気二重層キャパシタに効果がある。
The structure of the electric double layer capacitor of the present invention is not particularly limited. However, in order to increase the capacity, a pair of strip-shaped electrode bodies each having an electrode layer formed on both sides of a current collector are wound with a separator interposed therebetween. A cylindrical electrode body impregnated with an electrolytic solution and housed in a closed-end cylindrical container and hermetically sealed, and a rectangular electrode body in which electrode layers are formed on both surfaces of a current collector as a positive electrode body and a negative electrode body, with a separator interposed therebetween. A laminated type in which a plurality of layers are alternately laminated, impregnated with an electrolytic solution, housed in a bottomed rectangular container, and hermetically sealed is particularly preferable. INDUSTRIAL APPLICABILITY The present invention is effective for electric double layer capacitors having a capacitance of 10F or more for power applications, and is particularly effective for large capacity electric double layer capacitors of 100F or more.

【0052】[0052]

【実施例】[例1(実施例)]比表面積1500m2
g、平均粒径10μmの高純度活性炭粉末80重量%、
カーボンブラック10重量%、PTFE(この例1では
テトラフルオロエチレン単独重合体を指す)粉末10重
量%からなる混合物に、プロピレングリコールを加え混
合した。この混合物を一軸押出機にて、スクリュー押し
出しを行った後ロール圧延し、熱風乾燥してプロピレン
グリコールを除去して厚さ130μm、密度0.65g
/cm3 の帯状の電極シートを作製した。この電極シー
トの表面をSEMで1万倍で観察したところ、PTFE
繊維が占める体積の80%以上のPTFE繊維が長さ5
〜15μmかつ繊維径0.03〜0.05μmであり、
幅10μmあたりに約10本の繊維が存在した。
EXAMPLES Example 1 (Example) Specific surface area of 1500 m 2 /
g, high-purity activated carbon powder 80% by weight having an average particle size of 10 μm,
Propylene glycol was added to and mixed with a mixture consisting of 10% by weight of carbon black and 10% by weight of PTFE (in this example, tetrafluoroethylene homopolymer) powder. This mixture was extruded with a single screw extruder, and then roll-rolled, dried with hot air to remove propylene glycol, and had a thickness of 130 μm and a density of 0.65 g.
/ Cm 3 was prepared. When the surface of this electrode sheet was observed with a SEM at 10,000 times, PTFE was observed.
PTFE fiber of 80% or more of the volume occupied by the fiber has a length of 5
1515 μm and a fiber diameter of 0.03-0.05 μm,
There were about 10 fibers per 10 μm width.

【0053】上記電極シートを切断して幅を10cmに
調節したものを2枚用意し、表面を粗面化した幅11c
m、厚さ40μmのアルミニウム箔の両面に、幅1cm
の電極層を設けていない帯状部分を設けながら導電性接
着剤を用いて接合し、240℃で30分熱硬化させて電
極体を得た。上記導電性接着剤はバインダとしてポリイ
ミド樹脂を含んでおり、得られた電極体は厚さが320
μmであり、また帯状であるため巻回して電極体の巻回
物を作製した。
Two pieces of the above electrode sheet were cut to adjust the width to 10 cm, and two pieces each having a roughened surface 11c were prepared.
m, 1cm width on both sides of 40μm thick aluminum foil
The electrode was bonded using a conductive adhesive while providing a belt-shaped portion where no electrode layer was provided, and thermally cured at 240 ° C. for 30 minutes to obtain an electrode body. The conductive adhesive contains a polyimide resin as a binder, and the obtained electrode body has a thickness of 320.
Since it is μm and a belt-like shape, it was wound to produce a wound electrode body.

【0054】セパレータには厚さ35μm、水分4.3
重量%、目付量13g/m2 で、幅115mm、空隙率
75%のレーヨン紙を用い、該レーヨン紙の巻回物を使
用した。また、スペーサとしては厚さ50μm、幅1
0.5cmのポリエステルネットの巻回物を使用した。
電極体の巻回物2本とセパレータの巻回物2本とスペー
サの巻回物2本を用い、露点−50℃の乾燥空気中でセ
パレータ/スペーサ/電極体/セパレータ/スペーサ/
電極体の順に積層し、アルミニウムリード端子をアルミ
ニウム箔の電極層を設けていない部分に電気的に接合し
つつ、連続的に巻回して素子を作製した。なお、上記ポ
リエステルネットは網目の寸法が1cmの網状体であ
り、網線の太さは1mmで開口率は95%以上であっ
た。また、電極体とセパレータとスペーサを巻回する直
前に150℃に加熱されたステンレスロールを2個配置
し、2本のセパレータはそれぞれステンレスロールに接
触させた後巻回した。
The separator had a thickness of 35 μm and a water content of 4.3.
A rayon paper having a weight percentage of 13 g / m 2 , a width of 115 mm and a porosity of 75% was used, and a roll of the rayon paper was used. The spacer has a thickness of 50 μm and a width of 1 μm.
A roll of 0.5 cm polyester net was used.
Using two windings of the electrode body, two windings of the separator, and two windings of the spacer, the separator / spacer / electrode body / separator / spacer /
The elements were laminated in this order, and continuously wound while electrically connecting an aluminum lead terminal to a part of the aluminum foil where the electrode layer was not provided, to produce an element. The polyester net was a net having a mesh size of 1 cm, the thickness of the mesh wire was 1 mm, and the aperture ratio was 95% or more. Immediately before winding the electrode body, the separator and the spacer, two stainless steel rolls heated to 150 ° C. were arranged, and each of the two separators was wound after being brought into contact with the stainless steel roll.

【0055】その後、上記素子を170℃で16時間真
空乾燥して不純物を除去した。素子の引き出しリードを
ネジ端子つき絶縁封口上蓋円盤の内部端子部に接合し、
次いで、1.5mol/lの(C253 (CH3
NBF4 のプロピレンカーボネート溶液を電解液として
30分真空含浸させ、有底円筒型アルミニウムケースに
収納し、上縁部をカール封口して径51cm、高さ13
0cmの円筒型電気二重層キャパシタを作製した。
Thereafter, the device was vacuum-dried at 170 ° C. for 16 hours to remove impurities. Join the lead wire of the element to the internal terminal of the insulating sealing upper lid disk with screw terminals,
Then, 1.5 mol / l of (C 2 H 5 ) 3 (CH 3 )
A propylene carbonate solution of NBF 4 was vacuum impregnated with the electrolyte as an electrolyte for 30 minutes, housed in a cylindrical aluminum case with a bottom, sealed with a curled upper edge, a diameter of 51 cm, and a height of 13 cm.
A 0 cm cylindrical electric double layer capacitor was produced.

【0056】上記電気二重層キャパシタに2.5Vにて
エージング処理を行った後、25℃における初期の放電
容量及び内部抵抗を測定した。容量は、50Aで30分
2.5Vにて充電した後、1.0Vまで50Aで定電流
放電し、放電カーブの勾配より求めた。内部抵抗は、上
記放電カーブを放電開始時まで外挿したときの、放電開
始電圧の2.5Vからの電圧降下分の電圧より求めた。
初期容量は1750F、初期内部抵抗は1.8mΩであ
った。また、25℃で2.5Vで100時間充電した後
の漏れ電流は4.6mAであった。
After the electric double layer capacitor was aged at 2.5 V, the initial discharge capacity and internal resistance at 25 ° C. were measured. The capacity was determined by charging at 50 A for 30 minutes at 2.5 V, then discharging at a constant current of 50 A to 1.0 V, and calculating from the slope of the discharge curve. The internal resistance was determined from a voltage corresponding to a voltage drop from 2.5 V of the discharge start voltage when the above discharge curve was extrapolated until the start of discharge.
The initial capacity was 1750F and the initial internal resistance was 1.8 mΩ. The leakage current after charging at 25 ° C. and 2.5 V for 100 hours was 4.6 mA.

【0057】また、上記電極体を4cm角に切り出し上
記電解液を真空含浸させたところ、乾燥時の電極体の厚
さが320μmであったのに対し、電解液含浸後の電極
体の厚さは372μmであり、電極体の両面に形成され
た2つの電極層により52μm厚さが増加していた。
When the electrode body was cut into 4 cm squares and impregnated with the electrolyte solution under vacuum, the thickness of the electrode body after drying was 320 μm, whereas the thickness of the electrode body after impregnation with the electrolyte solution was 320 μm. Was 372 μm, and the thickness was increased by 52 μm due to the two electrode layers formed on both surfaces of the electrode body.

【0058】[例2(比較例)]電極体とセパレータの
間にポリエステルネットを挿入しなかった他は例1と同
様にして円筒型電気二重層キャパシタを作製し、初期性
能を測定した。容量は1260F、内部抵抗は5.8m
Ω、漏れ電流は121mAであった。
Example 2 (Comparative Example) A cylindrical electric double layer capacitor was produced in the same manner as in Example 1 except that no polyester net was inserted between the electrode body and the separator, and the initial performance was measured. Capacity is 1260F, internal resistance is 5.8m
Ω and the leakage current was 121 mA.

【0059】[例3(実施例)]密度を0.62g/c
3 とした他は例1と同様にして電極シートを作製し、
厚さ40μmのアルミニウム箔の両面にポリアミドイミ
ド樹脂をバインダとする導電性接着剤を介して接合し
た。このシートから有効電極面積6cm×13cm、か
つ矩形のリード部を有する電極体を46枚得て、そのう
ちの23枚を正極体、残りを負極体とした。
Example 3 (Example) A density of 0.62 g / c
An electrode sheet was prepared in the same manner as in Example 1 except that m 3 was used.
Both surfaces of an aluminum foil having a thickness of 40 μm were joined via a conductive adhesive using a polyamideimide resin as a binder. From this sheet, 46 electrode bodies having an effective electrode area of 6 cm × 13 cm and having a rectangular lead were obtained, 23 of which were used as a positive electrode body and the rest were used as a negative electrode body.

【0060】セパレータとしては厚さ45μm、空隙率
72%のレーヨン紙を幅6.5cm×長さ13.5cm
の大きさにカットして使用し、厚さ52μm、幅5m
m、長さ10mmのポリイミド樹脂製テープをスペーサ
として片面の6箇所に張り付けてセパレータとスペーサ
を一体化して用いた。上記スペーサは、その長さ方向が
セパレータの長さ方向と同じ方向になるようにして、4
つを四角形のセパレータの4つの角部に配置し、残りの
2つは長さ方向に並ぶ2つのスペーサのほぼ真ん中に位
置するように張り付けた。
As a separator, rayon paper having a thickness of 45 μm and a porosity of 72% is 6.5 cm wide × 13.5 cm long.
Cut to size and use, thickness 52μm, width 5m
A polyimide resin tape having a length of 10 mm and a length of 10 mm was attached as a spacer to six places on one surface, and the separator and the spacer were used integrally. The spacer is arranged so that its length direction is the same as the length direction of the separator.
One was placed at the four corners of a rectangular separator, and the other two were attached so as to be located almost in the middle of two spacers arranged in the longitudinal direction.

【0061】上記正極体と上記負極体とを上記セパレー
タとスペーサとの一体化物を介して交互に積層し、積層
物の両端を厚さ0.5mmで6cm×13cmのアルミ
ニウム板で押さえた後周囲をテープで巻いて素子を形成
した。この素子を7cm×15cm×2.4cmの有底
角型アルミニウムケースに収容し、正極端子と負極端子
を備えたアルミニウム上蓋を用いてレーザー溶接封口
し、注液口を開いた状態で170℃で16時間真空乾燥
して不純物を除去した。次いで、1.5mol/lの
(C253 (CH3 )NPF6 のプロピレンカーボ
ネート溶液を電解液として素子に真空含浸させ、注液口
に安全弁を配置して、角型電気二重層キャパシタを得
た。
The positive electrode body and the negative electrode body are alternately laminated via the integrated body of the separator and the spacer. After the both ends of the laminated body are pressed with a 0.5 mm thick aluminum plate of 6 cm × 13 cm, the periphery of the laminated body is pressed. Was wound with a tape to form an element. This element was housed in a 7 cm x 15 cm x 2.4 cm bottomed square aluminum case, sealed by laser welding using an aluminum top lid equipped with a positive electrode terminal and a negative electrode terminal, and opened at 170 ° C with the liquid injection port open. The impurities were removed by vacuum drying for 16 hours. Next, a 1.5 mol / l (C 2 H 5 ) 3 (CH 3 ) NPF 6 propylene carbonate solution was impregnated into the device as an electrolyte by vacuum impregnation, and a safety valve was disposed at the injection port to form a square electric double layer. A capacitor was obtained.

【0062】この電気二重層キャパシタを用い、例1と
同様にして初期性能を測定した。容量は1780F、内
部抵抗は1.7mΩであった。また、上記電極体を4c
m角に切り出し電解液を真空含浸させたところ、乾燥時
の電極体の厚さが320μmであったのに対し、電解液
含浸後の電極体の厚さは370μmであり、電極体の両
面に形成された2つの電極層により50μm厚さが増加
していた。
Using this electric double layer capacitor, initial performance was measured in the same manner as in Example 1. The capacity was 1780 F and the internal resistance was 1.7 mΩ. In addition, the electrode body is 4c
When cut into m-square and vacuum impregnated with electrolyte, the thickness of the electrode body after drying was 320 μm, while the thickness of the electrode body after electrolyte impregnation was 370 μm. The thickness of 50 μm was increased by the two electrode layers formed.

【0063】[例4(比較例)]ポリアミドイミド樹脂
からなるテープを使用しなかった他は例3と同様にして
角型電気二重層キャパシタを作製し、初期性能を測定し
た。容量は1350F、内部抵抗は3.7mΩであっ
た。
Example 4 (Comparative Example) A rectangular electric double layer capacitor was produced in the same manner as in Example 3 except that a tape made of a polyamideimide resin was not used, and the initial performance was measured. The capacity was 1350 F and the internal resistance was 3.7 mΩ.

【0064】[0064]

【発明の効果】本発明の電気二重層キャパシタは、電極
が本質的に有する容量と抵抗を充分に発現しうる構造を
有する大容量キャパシタであり、高出力密度かつ高エネ
ルギ密度であり、かつ充放電サイクル耐久性に優れる。
The electric double-layer capacitor of the present invention is a large-capacity capacitor having a structure capable of sufficiently exhibiting the capacitance and resistance inherent in the electrode, and has a high output density, a high energy density, and a sufficient capacity. Excellent discharge cycle durability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河里 健 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ken Kawari 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】炭素質粉末を主体とする多孔質の電極層を
金属集電体の少なくとも片面に形成してなる電極体を正
極体及び負極体とし、該正極体と該負極体とをセパレー
タを介して巻回して又はセパレータを介して複数交互に
積層して素子を形成し、該素子に非水系電解液を含浸さ
せ密閉容器に収容してなる電気二重層キャパシタにおい
て、セパレータと正極体及び/又は負極体との間にスペ
ーサが配置されており、該スペーサが有する空孔部には
正極体の電極層及び/又は負極体の電極層が存在するこ
とを特徴とする電気二重層キャパシタ。
An electrode body formed by forming a porous electrode layer mainly composed of carbonaceous powder on at least one surface of a metal current collector is used as a positive electrode body and a negative electrode body, and the positive electrode body and the negative electrode body are separated by a separator. To form an element by winding a plurality of layers or alternately laminated through a separator, in an electric double layer capacitor which is impregnated with a non-aqueous electrolyte solution and housed in a closed container, the separator and the positive electrode body, An electric double-layer capacitor, wherein a spacer is disposed between the negative electrode body and the positive electrode body electrode layer and / or the negative electrode body electrode layer is present in a hole portion of the spacer.
【請求項2】スペーサの空孔部は、幅が1mm以上であ
る請求項1記載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the hole of the spacer has a width of 1 mm or more.
【請求項3】前記電極層は、厚さが80μm以上であ
り、密度が0.55〜0.85g/cm3 である請求項
1又は2記載の電気二重層キャパシタ。
3. The electric double layer capacitor according to claim 1, wherein the electrode layer has a thickness of 80 μm or more and a density of 0.55 to 0.85 g / cm 3 .
【請求項4】金属集電体がアルミニウム又はステンレス
からなり、炭素質粉末の比表面積が700〜2500m
2 /gであり、前記電極層には結合材として含フッ素樹
脂が5〜20重量%含まれる請求項1、2又は3記載の
電気二重層キャパシタ。
4. The metal current collector is made of aluminum or stainless steel, and the carbonaceous powder has a specific surface area of 700 to 2500 m.
2 / g, and claim 1, wherein the electric double layer capacitor to the electrode layer fluororesin is contained 5 to 20 wt% as a binder.
【請求項5】前記電極層は、実質的に径0.1μm以下
かつ長さ2μm以上の前記含フッ素樹脂からなる繊維が
形成する網目構造に炭素質粉末が担持されてなる請求項
4記載の電気二重層キャパシタ。
5. The electrode layer according to claim 4, wherein the carbonaceous powder is carried in a network structure formed by fibers of the fluororesin having a diameter of substantially 0.1 μm or less and a length of 2 μm or more. Electric double layer capacitor.
【請求項6】炭素質粉末を主体とする多孔質電極層を金
属集電体の少なくとも片面に形成してなる電極体を正極
体及び負極体とし、該正極体と該負極体とをセパレータ
を介して巻回して又はセパレータを介して複数交互に積
層して素子を形成し、該素子に非水系電解液を含浸させ
て密閉容器に収容する電気二重層キャパシタの製造方法
において、セパレータと正極体及び/又は負極体との間
にスペーサを配置し、該スペーサが有する空孔部により
空間を保持しながら素子を形成した後、該素子に電解液
を含浸させることを特徴とする電気二重層キャパシタの
製造方法。
6. A positive electrode body and a negative electrode body, wherein an electrode body formed by forming a porous electrode layer mainly composed of carbonaceous powder on at least one surface of a metal current collector is used as a positive electrode body and a negative electrode body. A method for producing an electric double layer capacitor in which an element is formed by winding a plurality of layers or alternately laminating a plurality of layers through a separator, and impregnating the element with a non-aqueous electrolyte and storing the element in a closed container, And / or placing a spacer between the anode and the negative electrode body, forming an element while holding a space by a hole portion of the spacer, and then impregnating the element with an electrolytic solution. Manufacturing method.
【請求項7】前記スペーサは、網目の寸法が1mm〜2
cmである網状体である請求項6記載の電気二重層キャ
パシタの製造方法。
7. The spacer has a mesh size of 1 mm to 2 mm.
The method for producing an electric double layer capacitor according to claim 6, wherein the reticulated body has a mesh size of 7 cm.
【請求項8】前記スペーサは、気孔率70%以上の多孔
体からなる請求項6記載の電気二重層キャパシタの製造
方法。
8. The method for manufacturing an electric double layer capacitor according to claim 6, wherein said spacer is made of a porous material having a porosity of 70% or more.
JP10079715A 1998-03-26 1998-03-26 Electrical double layer capacitor and manufacture thereof Pending JPH11274012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10079715A JPH11274012A (en) 1998-03-26 1998-03-26 Electrical double layer capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10079715A JPH11274012A (en) 1998-03-26 1998-03-26 Electrical double layer capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11274012A true JPH11274012A (en) 1999-10-08

Family

ID=13697913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10079715A Pending JPH11274012A (en) 1998-03-26 1998-03-26 Electrical double layer capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11274012A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902566B2 (en) 2010-05-31 2014-12-02 Sumitomo Electric Industries, Ltd. Capacitor, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8902566B2 (en) 2010-05-31 2014-12-02 Sumitomo Electric Industries, Ltd. Capacitor, and method for producing the same

Similar Documents

Publication Publication Date Title
US6728095B2 (en) Electric double layer capacitor
US7236348B2 (en) Functional sheet having reinforcing material
US6379402B1 (en) Method for manufacturing large-capacity electric double-layer capacitor
US10818441B2 (en) Electrode graphite film and electrode divider ring for an energy storage device
US6638385B2 (en) Process for producing an electrode assembly for an electronic double layer capacitor
JP2004186273A (en) Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JP2016538715A (en) Ultracapacitor with improved aging performance
JP4593493B2 (en) Electric double layer capacitor
JP4694737B2 (en) Method for manufacturing electrode body for electric double layer capacitor
KR101331966B1 (en) Electrochemical capacitor
JPH11317332A (en) Electric double-layer capacitor
KR20060119818A (en) Method for producing electrochemical capacitor electrode
EP0938109A2 (en) Electric double layer capacitor
KR20130093805A (en) Electrode, method for preparing the same, and super capacitor using the same
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JPH11274012A (en) Electrical double layer capacitor and manufacture thereof
KR20080072112A (en) Electrode assembly of improved power property and secondary battery comprising the same
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2004186275A (en) Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
JP4026226B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor having the electrode
US7489497B2 (en) Electrochemical device
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor
JP3800390B2 (en) Electric double layer capacitor
JP3951390B2 (en) Electric double layer capacitor, electrode body for the capacitor, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828