JPH11269684A - Electrochemical reaction apparatus - Google Patents

Electrochemical reaction apparatus

Info

Publication number
JPH11269684A
JPH11269684A JP10071996A JP7199698A JPH11269684A JP H11269684 A JPH11269684 A JP H11269684A JP 10071996 A JP10071996 A JP 10071996A JP 7199698 A JP7199698 A JP 7199698A JP H11269684 A JPH11269684 A JP H11269684A
Authority
JP
Japan
Prior art keywords
reaction
oxygen
solid electrolyte
oxygen concentration
reactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10071996A
Other languages
Japanese (ja)
Other versions
JP3581011B2 (en
Inventor
Tetsuyuki Konishi
哲之 小西
Toshihiko Yamanishi
敏彦 山西
Tomoyoshi Maruyama
智義 丸山
Yoshinori Kawamura
繕範 河村
Yasunori Iwai
保則 岩井
Masataka Nishi
正孝 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP07199698A priority Critical patent/JP3581011B2/en
Publication of JPH11269684A publication Critical patent/JPH11269684A/en
Application granted granted Critical
Publication of JP3581011B2 publication Critical patent/JP3581011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to simultaneously obtain the products of both of an oxidation reaction and reduction reaction and to execute these reactions with lessened electric power consumption and high efficiency by placing an anode and cathode with which an electrolytic reaction takes place within the same chamber of an electrochemical apparatus utilizing a solid electrolyte of a type allowing the passage of raw material and reaction material of a product therein. SOLUTION: An electrolytic membrane 6 having the anode 4 and cathode 5 with which the electrolytic reaction takes place on both sides of a solid electrolyte electrolytic cell of a type in which the reaction material passes is installed in a single vessel chamber. The flow contg. the reaction material passes through the cathode and the anode successively and a reactant is subjected to an oxidation treatment an reduction treatment, by which the products of these plural reactions are simultaneously obtd. In this process, the charge carrier obtd. by the one reaction is utilized for the other reaction, by which both reactions are smoothly progressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原料及び製品の反
応物質を内部に流通する形式の固体電解質を利用した電
気化学反応装置に関するものである。即ち、本発明は、
電解反応の起こる陽極、陰極を同一室内に置くことによ
って酸化反応、還元反応の両方の生成物を同時に得るこ
とを目的とするものであって、この反応を少ない電力消
費で、又高い効率で行うことを目的としてなしたもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical reaction apparatus using a solid electrolyte in which a reactant of a raw material and a product flows inside. That is, the present invention
The purpose is to obtain both the oxidation reaction and the reduction reaction at the same time by placing the anode and the cathode where the electrolytic reaction occurs in the same room, and perform this reaction with low power consumption and high efficiency. It was done for the purpose.

【0002】[0002]

【従来の技術】電解質膜が固定される固体電解質電解法
においては、電解質が反応物質と分離されているため、
原料物質を流体として電解槽に供給し、電極で酸化又は
還元した後、製品として電解槽出口より流出させる流通
式の電解槽を構成することができる。
2. Description of the Related Art In a solid electrolyte electrolysis method in which an electrolyte membrane is fixed, since an electrolyte is separated from a reactant,
It is possible to configure a flow-type electrolytic cell in which the raw material is supplied as a fluid to the electrolytic cell, oxidized or reduced by the electrode, and then discharged as a product from the electrolytic cell outlet.

【0003】従来法による反応物質流通式の電解槽の例
を図1に示す。原料は、入口1より供給され、電極4で
反応した後、出口2より製品と未反応の原料の混合流体
として流出する。反応に必要な電力は電解質膜6の両側
に取り付けられた電極4及び5間に供給される。この場
合、利用できる反応は電解質の性質によって酸化反応又
は還元反応の一方である。
FIG. 1 shows an example of a conventional reactant flow type electrolytic cell. The raw material is supplied from the inlet 1, reacted at the electrode 4, and then flows out of the outlet 2 as a mixed fluid of the product and the unreacted raw material. The power required for the reaction is supplied between the electrodes 4 and 5 attached to both sides of the electrolyte membrane 6. In this case, the available reaction is either an oxidation reaction or a reduction reaction depending on the nature of the electrolyte.

【0004】例えば、図1の電気化学反応装置は、酸素
イオン導電性の固体電解質膜6を使用しており、反応物
質である水蒸気を還元して副生成物の酸素を電解質膜の
反対側の反応副生成物出口5から取り出す還元化反応器
として作用する。この電気化学反応装置は、全く逆に使
用して水素の酸化反応を行ってエネルギーを取り出す燃
料電池として使用することもでき、この場合、酸化反応
器として使用される。いずれにしても酸化と還元を同時
に利用することはない。
For example, the electrochemical reactor shown in FIG. 1 uses a solid electrolyte membrane 6 having oxygen ion conductivity, and reduces water vapor as a reactant to reduce by-product oxygen on the opposite side of the electrolyte membrane. It functions as a reduction reactor withdrawn from the reaction by-product outlet 5. This electrochemical reaction apparatus can be used as a fuel cell that performs an oxidation reaction of hydrogen to extract energy by using the reverse thereof, and in this case, it is used as an oxidation reactor. In any case, oxidation and reduction are not used simultaneously.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、電気
化学反応においては酸化と還元が常に同時に生起するこ
とに着目し、これらを一つの反応装置内において反応物
質流路を工夫することによって達成し、更にはそれらの
反応において消費する電力を低減し、又反応効率を向上
せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to focus on the fact that oxidation and reduction always occur simultaneously in an electrochemical reaction, and to devise these by devising a reactant flow path in one reactor. It is intended to reduce the electric power consumed in these reactions and to improve the reaction efficiency.

【0006】[0006]

【課題を解決するための手段】本発明者は、この目的達
成のために鋭意研究の結果、反応物質を流通する形式の
固体電解質電解槽において、電解反応の行われる陽極及
び陰極を両側に備えた電解質膜を単一の容器室内に設置
し、反応物質を含む流れを陰極及び陽極に相次いで流通
し、反応物を酸化及び還元処理してこれらの複数の反応
の生成物を同時に得ることを着想したものである。この
過程において、一方の反応によって得られた電荷担体
は、他方の反応に利用することにより、両反応を円滑に
進行せしめんとするものである。
Means for Solving the Problems The inventor of the present invention has conducted intensive studies to achieve this object. As a result, in a solid electrolyte electrolytic cell in which a reactant is circulated, an anode and a cathode on which electrolytic reaction is performed are provided on both sides. The electrolyte membrane is placed in a single container chamber, and a stream containing the reactants is successively passed through the cathode and the anode, and the reactants are oxidized and reduced to obtain the products of these multiple reactions simultaneously. It is an idea. In this process, the charge carriers obtained by one reaction are used for the other reaction, so that both reactions proceed smoothly.

【0007】[0007]

【発明の実施の形態】(本発明の一実施形態)本発明に
よる電気化学反応装置を用いたメタンの酸化と水蒸気の
還元の一例を図2に基づいて説明する。メタン及び水蒸
気を原料とし、製品として水素ガスを得る反応について
説明する。メタンから水素を得るためには、メタンの酸
化と、それによって生成した水蒸気の還元反応が必要で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (One Embodiment of the Present Invention) An example of the oxidation of methane and the reduction of steam using the electrochemical reactor according to the present invention will be described with reference to FIG. A reaction for obtaining hydrogen gas as a product using methane and steam as raw materials will be described. In order to obtain hydrogen from methane, it is necessary to oxidize methane and reduce the resulting water vapor.

【0008】メタン及び水蒸気からなる原料ガスは入口
1より供給され、陽極室6を流動ししつ陽極4で酸化さ
れた後、陰極室7を流通しつつ陰極5で還元されて出口
2より水素及び二酸化炭素からなる製品流体として流出
する。この反応に必要な電力は電解質膜3の両側に取り
付けられた電極4及び5に供給される。陰極5における
還元反応の結果として電解質膜3内に発生する酸素イオ
ンは、陰極から陽極へ電界にしたがって移動し、陽極に
おいて酸化反応に使用される。以上の反応の結果とし
て、原料ガスとしてメタンと水蒸気を供給し、本発明に
の電気化学反応装置による反応で目的とする水素ガスと
二酸化炭素を得る。
A raw material gas comprising methane and water vapor is supplied from an inlet 1, flows through an anode chamber 6, is oxidized by an anode 4, is reduced by a cathode 5 while flowing through a cathode chamber 7, and is hydrogenated from an outlet 2. And carbon dioxide as a product fluid. The power required for this reaction is supplied to electrodes 4 and 5 attached to both sides of the electrolyte membrane 3. Oxygen ions generated in the electrolyte membrane 3 as a result of the reduction reaction at the cathode 5 move from the cathode to the anode according to the electric field, and are used for the oxidation reaction at the anode. As a result of the above reaction, methane and water vapor are supplied as raw material gases, and the desired hydrogen gas and carbon dioxide are obtained by the reaction using the electrochemical reaction device of the present invention.

【0009】この一連の電気化学反応において、水の還
元(H2O→H2┼1/2O2)では電力を必要とする
が、一方、発生した酸素イオンはメタンの酸化において
は自発的に反応が進む方向であることから、結果として
本発明の装置による反応では、エネルギーの消費は理論
的に殆ど要しない。実際には電極の化学活性などにより
反応に要するエネルギーは一概には予測することができ
ないが、電気化学的反応の特徴として自発的に進行しな
い反応に対しては、電力を供給することによって反応の
進行を制御することができる。かくして本発明の装置に
おいては、必要とされるエネルギーを電気的に供給する
ことによってメタンの分解を完全に行うことが可能であ
る。
In this series of electrochemical reactions, reduction of water (H 2 O → H 2 ┼1 / 2O 2 ) requires electric power, while generated oxygen ions are spontaneously generated in methane oxidation. As a result, in the reaction by the apparatus of the present invention, little energy is theoretically required because the reaction proceeds. In practice, the energy required for the reaction cannot be predicted unconditionally due to the chemical activity of the electrode, but for reactions that do not proceed spontaneously as a characteristic of the electrochemical reaction, power is supplied by supplying power. You can control the progress. Thus, in the apparatus of the present invention, it is possible to completely decompose methane by supplying the required energy electrically.

【0010】(本発明の他の実施形態)本発明による電
気化学反応装置の他の例として、前記のような酸化還元
を同時に行う反応装置では、酸化剤と還元剤として作用
する原料中の化合物が理想的には適当な比率でなければ
反応を完了することができない。例えば、前記のメタン
と水蒸気の反応系では、CH4┼2H2O→4H2┼CO2
の反応となるため、原料ガス組成がメタン:水蒸気=
1:2で丁度酸素の過不足なく反応が完了し、それによ
りメタンが多い場合には酸素が不足してメタンを完全に
酸化できず、一方、水(水蒸気)が多い条件では水(水
蒸気)の分解により生ずる酸素が蓄積して反応を継続す
ることができなくなる。
(Another embodiment of the present invention) As another example of the electrochemical reaction device according to the present invention, in a reaction device that simultaneously performs oxidation and reduction as described above, a compound in a raw material acting as an oxidizing agent and a reducing agent is used. Ideally, the reaction cannot be completed unless the ratio is appropriate. For example, in the reaction system of methane and steam, CH 4 ┼2H 2 O → 4H 2 ┼CO 2
Reaction, the source gas composition is methane: water vapor =
The reaction was completed at just 1: 2 without excess or deficiency of oxygen. When the amount of methane was large, oxygen was insufficient and methane could not be oxidized completely. Oxygen generated by the decomposition of hydrogen accumulates and the reaction cannot be continued.

【0011】この問題を解決するため、図3に示される
ように、本発明による電気化学反応装置内においては、
酸素の供給量を制御するために新たに酸素イオン透過性
の固体電解質管8を設置し、電解質管の一方の9側部に
反応物質を通じ、その他方の10側部に既知の酸素濃度
のガスを通じ、酸素透過によって酸素を供給又は除去す
ることによって酸素濃度を制御することを発想した。
To solve this problem, as shown in FIG. 3, in the electrochemical reactor according to the present invention,
An oxygen ion-permeable solid electrolyte tube 8 is newly installed in order to control the supply amount of oxygen. A reactant is passed through one of the 9 sides of the electrolyte tube, and a gas having a known oxygen concentration is passed through the other 10 sides. The idea was to control the oxygen concentration by supplying or removing oxygen through oxygen permeation.

【0012】この酸素濃度制御の原理を図3に示す。陽
極4での酸化によって、もしもメタンが完全に酸化され
て二酸化炭素と水にしようとする場合、容器内の9側部
の地点では常に少量の酸素が存在する状態が望ましい酸
素濃度である。ここで、酸素イオン導電性の固体電解質
管8の内側に低濃度の酸素を含むガスを流通すると、酸
素はこの管を透過して電解質膜の両側で酸素濃度が同一
になるため、このメタンの完全燃焼のための酸素を供給
することができる。わずかな余剰の酸素は、ガス流によ
って陰極に運ばれ、そこから陽極に透過してメタンを燃
焼する。
FIG. 3 shows the principle of this oxygen concentration control. If oxidization at the anode 4 completely oxidizes the methane to carbon dioxide and water, it is desirable that a small amount of oxygen always be present at the nine sides in the vessel. Here, when a gas containing a low concentration of oxygen flows through the inside of the solid electrolyte tube 8 of oxygen ion conductivity, oxygen passes through the tube and the oxygen concentration becomes the same on both sides of the electrolyte membrane. Oxygen can be supplied for complete combustion. A small excess of oxygen is carried by the gas stream to the cathode, from where it permeates to the anode to burn methane.

【0013】一方、原料ガスに水蒸気が過剰である場合
は、メタンは完全燃焼するものの陰極における水の還元
によって発生した酸素が反応装置内の9側部に次第に蓄
積し、これを取り除かない場合は、最終的に容器内を酸
素で充満して水(水蒸気)の還元を不可能とする結果と
なる。ここで固体電解質管8では、9側部における酸素
濃度が10側部における酸素濃度より高い場合、酸素は
逆に9側部より10側部に透過し、結果として反応装置
内より取り除かれる。
On the other hand, when the raw material gas contains excess water vapor, methane completely burns, but oxygen generated by the reduction of water at the cathode gradually accumulates on the 9 side of the reactor, and if this is not removed, As a result, the inside of the container is finally filled with oxygen, and the reduction of water (steam) becomes impossible. Here, in the solid electrolyte tube 8, when the oxygen concentration at the 9 side is higher than the oxygen concentration at the 10 side, the oxygen permeates conversely from the 9 side to the 10 side, and is consequently removed from the reactor.

【0014】即ち、固体電解質管8は、9側部における
酸素濃度を、10側部の濃度より低いときには10側部
のガスより酸素を9側部に透過させ、又9側部の酸素濃
度が高い時には10側部に透過することにより常に一定
とする作用を持つ。この作用により、入口1から供給さ
れる原料ガスの成分が酸化される成分(メタン)と還元
される成分(水又は水蒸気)のいずれ側に偏っていて
も、常に酸化、還元の両反応が完全に行われるように制
御することができる。又、成分の変動に対しても自動的
に対応して酸素の供給又は除去を行い、常にこの反応を
完全に行うことができる。
That is, the solid electrolyte tube 8 allows the oxygen concentration at the 9 side to pass through the gas from the 10 side to the 9 side when the concentration is lower than the concentration at the 10 side, and the oxygen concentration at the 9 side to decrease. When it is high, it has the effect of being always constant by transmitting to the 10 sides. By this action, even if the component of the raw material gas supplied from the inlet 1 is biased toward either the component to be oxidized (methane) or the component to be reduced (water or steam), both oxidation and reduction reactions are always complete. Can be controlled to be performed. In addition, oxygen can be supplied or removed automatically in response to component fluctuations, and this reaction can always be carried out completely.

【0015】(酸素濃度制御の他の形態)前記の酸素濃
度の制御は、受動的且つ自発的な原理によっているもの
であるが、更に、この固体電解質管8に2ケ所乃至3ケ
所の電極を設け、電気化学的な方法によって酸素の移動
を能動的に制御することができる。
(Other Forms of Oxygen Concentration Control) The control of the oxygen concentration is based on a passive and spontaneous principle. Further, two to three electrodes are provided on the solid electrolyte tube 8. Provided, the transfer of oxygen can be actively controlled by electrochemical methods.

【0016】図4に、電極11、12、13の設置によ
る酸素濃度の制御機構の例を図示する。参照電極13
は、装置内の9側部の反応物質流体と常に接触する位置
におかれるが、電力が供給されず、反応に関与しない。
参照電極13と対極12との間には、参照電極上での原
料ガスの酸化比率に応じた酸素濃度による酸素濃淡電位
と、対極上での酸素含有ガスの酸化比率に応じた酸素濃
度による酸素濃淡電位との差が起電力として現れ、これ
は高い入力抵抗を有する起電力計によって検出すること
ができる。この起電力は、開路電圧と呼ばれ、もし原料
ガスのメタンの燃焼が不完全であった場合には、起電力
として燃料電池起電力相当の1V前後の値が検出され
る。一方、原料ガスが完全に燃焼していた場合、9側部
においてわずかに残留する酸素のため起電力は数10m
Vになる。
FIG. 4 shows an example of a mechanism for controlling the oxygen concentration by providing the electrodes 11, 12, and 13. Reference electrode 13
Is placed in constant contact with the reactant fluid on the nine sides of the apparatus, but is not powered and does not participate in the reaction.
Between the reference electrode 13 and the counter electrode 12, an oxygen concentration potential based on the oxygen concentration corresponding to the oxidation ratio of the source gas on the reference electrode, and an oxygen concentration based on the oxygen concentration corresponding to the oxidation ratio of the oxygen-containing gas on the counter electrode. The difference from the shading potential appears as an electromotive force, which can be detected by an electrometer having a high input resistance. This electromotive force is called an open circuit voltage. If combustion of methane as the raw material gas is incomplete, a value of about 1 V corresponding to a fuel cell electromotive force is detected as the electromotive force. On the other hand, when the raw material gas was completely burned, the electromotive force was several tens of meters due to the slight residual oxygen on the nine sides.
V.

【0017】このように、本発明にかかる参照電極の第
一の効用は反応率の監視ができることである。即ち、流
通式の電気化学反応装置において、槽内に設置した参照
電極13によって、酸化反応が完全に行われるか否かが
検出される。
As described above, the first advantage of the reference electrode according to the present invention is that the reaction rate can be monitored. That is, in the flow-type electrochemical reaction device, whether or not the oxidation reaction is completely performed is detected by the reference electrode 13 installed in the tank.

【0018】次に、適当な制御電源を用いて、この参照
電極における起電力を数10mVで一定とすべく、電極
11と対極12の間に適正な電解電圧を印加することが
できる。このために電極4と5との間には、電極13と
12との間に原料ガスの不完全燃焼を示す電圧が検出さ
れた場合は、それを打ち消すように印加される。
Next, using an appropriate control power supply, an appropriate electrolytic voltage can be applied between the electrode 11 and the counter electrode 12 so as to keep the electromotive force at the reference electrode constant at several tens of mV. For this reason, when a voltage indicating incomplete combustion of the source gas is detected between the electrodes 13 and 12, a voltage is applied between the electrodes 4 and 5 so as to cancel the voltage.

【0019】逆に9側部の酸素濃度が10側部よりも高
くなった場合は、酸素が過剰であるので、酸素を除去す
べく電極11に負、電極12に正の電圧をかけ、9側部
の酸素を除去する。かくして、自動的な帰還制御によっ
て、9側部の酸素濃度は常に10側部と同程度に能動的
に維持され、入口1に供給される原料ガスの組成に関わ
らず丁度完全なメタンの燃焼が行われる。
Conversely, when the oxygen concentration at the 9 side becomes higher than the 10 side, oxygen is excessive, so that a negative voltage is applied to the electrode 11 and a positive voltage is applied to the electrode 12 to remove oxygen. Remove the side oxygen. Thus, by the automatic feedback control, the oxygen concentration at the 9 side is always maintained as active as the 10 side, and the complete methane combustion can be achieved regardless of the composition of the raw material gas supplied to the inlet 1. Done.

【0020】[0020]

【実施例】図5に、図4に示す本発明における構造の電
気化学反応装置についての実際の運転結果をしめす。電
解質膜として高温で作動する安定化ジルコニウムセラミ
ックスを使用し、電極として白金を使用し、反応物質と
して水蒸気とメタンとを供給して水素と二酸化炭素とを
得る電解反応を行った。
FIG. 5 shows an actual operation result of the electrochemical reaction apparatus having the structure of the present invention shown in FIG. A stabilized zirconium ceramics operating at a high temperature was used as an electrolyte membrane, platinum was used as an electrode, and steam and methane were supplied as reactants to perform an electrolytic reaction to obtain hydrogen and carbon dioxide.

【0021】1%のメタンと2%の水蒸気とからなる反
応物質が流量300cc/secで入口1から電気化学
反応装置に供給され、反応物質の水蒸気及びメタンは酸
素濃度制御用固体電解質管8であるセラミックス管の外
側を流通して酸化され、その内側で還元されて二酸化炭
素及び水素として出口2から得られた。酸素濃度制御は
同じ装置に設置した酸素濃度制御用固体電解質管8であ
るジルコニアセラミックスセルで行われた。本条件にお
いて電位差を次第に増加したところ反応の進行が観測さ
れ、1.8Vで、水素化合物(H2O)からの水素回収
率99.9%が得られた。
A reactant composed of 1% methane and 2% water vapor is supplied at a flow rate of 300 cc / sec from the inlet 1 to the electrochemical reactor. It was oxidized by flowing outside a certain ceramic tube, and reduced inside, and was obtained from the outlet 2 as carbon dioxide and hydrogen. The oxygen concentration was controlled by a zirconia ceramics cell which is a solid electrolyte tube 8 for oxygen concentration control installed in the same apparatus. Under these conditions, the potential difference was gradually increased, and the progress of the reaction was observed. At 1.8 V, a hydrogen recovery rate of 99.9% from the hydrogen compound (H 2 O) was obtained.

【0022】[0022]

【発明の効果】電気化学反応では酸化と還元が常に同時
に生起するので、本発明においては、これらの酸化と還
元とを一つの反応装置で反応物質流路を改良工夫するこ
とにより行うことで、装置の簡素化、多機能化を達成
し、さらに消費電力を低減し、また反応効率を向上する
ことができる。
According to the present invention, oxidation and reduction always occur simultaneously in an electrochemical reaction. Therefore, in the present invention, these oxidation and reduction are carried out by improving the flow path of the reactant in one reaction apparatus. It is possible to achieve simplification and multifunctionalization of the device, further reduce power consumption, and improve reaction efficiency.

【0023】さらには、本発明においては、酸素濃度制
御用固体電解質管を用いることにより、反応物質の組成
変化に対応して常に高い反応効率を達成できる。この酸
素濃度制御については、酸素濃度制御用固体電解質管に
設置する電極を工夫することにより、受動的あるいは能
動的な制御により、さらに性能を高めることができる。
Further, in the present invention, by using the solid electrolyte tube for controlling the oxygen concentration, a high reaction efficiency can always be achieved in response to a change in the composition of the reactant. Regarding the oxygen concentration control, the performance can be further enhanced by passive or active control by devising an electrode installed in the solid electrolyte tube for oxygen concentration control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来方法による、水(水蒸気)の電解を行う反
応物質流通式の電気化学反応装置を示す図である。
FIG. 1 is a diagram showing a reactant flow type electrochemical reactor for electrolyzing water (steam) according to a conventional method.

【図2】本発明による、メタンの酸化と水(水蒸気)の
還元を行う反応物質流通式の電気化学反応装置を示す図
である。
FIG. 2 is a diagram showing a reactant flow type electrochemical reactor for oxidizing methane and reducing water (steam) according to the present invention.

【図3】本発明による反応物質流通式の電気化学反応装
置において、酸素収支を制御するための機構をを示す図
である。
FIG. 3 is a view showing a mechanism for controlling an oxygen balance in a reactant flow type electrochemical reactor according to the present invention.

【図4】本発明による反応物質流通式の電気化学反応装
置における他の能動的な酸素収支制御として可能な帰還
制御を示す図である。
FIG. 4 is a diagram showing feedback control that is possible as another active oxygen balance control in the reactant flow type electrochemical reactor according to the present invention.

【図5】本発明による電気化学反応装置を使用してメタ
ンと水蒸気から水素を発生させた結果を示す図である。
FIG. 5 is a diagram showing a result of generating hydrogen from methane and water vapor using the electrochemical reaction device according to the present invention.

【符号の説明】[Explanation of symbols]

図1(1:原料入口、2:製品出口、3:反応物室、
4:作用電極、5:反応副生成物出口、6:固体電解
質) 図2(1:原料入口、2:製品出口、3:固体電解質、
4:作用電極、5:対極、6:作用電極側反応物室) 図3(1:原料入口、2:製品出口、3:固体電解質、
4:作用電極、5:対極、6:作用電極側反応物室、
7:対極側反応物室、8:酸素濃度制御用固体電解質セ
ル、9:酸素濃度測定領域、10:酸素標準ガス) 図4(1:原料入口、2:製品出口、3:固体電解質、
4:作用電極、5:対極、6:作用電極側反応物室、
7:対極側反応物室、8:酸素濃度制御用固体電解質セ
ル、9:酸素濃度測定領域、10:酸素標準ガス、1
1:酸素制御用極) 図5(1:原料入口、2:製品出口、3:固体電解質、
4:作用電極、5:対極、6:作用電極側反応物室、
7:対極側反応物室、8:酸素濃度制御用固体電解質セ
ル、9:酸素濃度測定領域、10:酸素標準ガス、1
1:酸素制御用極、12:酸素制御対極、13:酸素参
照極)
Fig. 1 (1: raw material inlet, 2: product outlet, 3: reactant chamber,
4: working electrode, 5: reaction by-product outlet, 6: solid electrolyte) FIG. 2 (1: raw material inlet, 2: product outlet, 3: solid electrolyte,
4: working electrode, 5: counter electrode, 6: working electrode side reactant chamber) FIG. 3 (1: raw material inlet, 2: product outlet, 3: solid electrolyte,
4: working electrode, 5: counter electrode, 6: reactant chamber on the working electrode side,
7: Counter electrode side reactant chamber, 8: Oxygen concentration control solid electrolyte cell, 9: Oxygen concentration measurement area, 10: Oxygen standard gas) Fig. 4 (1: Raw material inlet, 2: Product outlet, 3: Solid electrolyte,
4: working electrode, 5: counter electrode, 6: reactant chamber on the working electrode side,
7: Counter electrode side reactant chamber, 8: Oxygen concentration control solid electrolyte cell, 9: Oxygen concentration measurement area, 10: Oxygen standard gas, 1
1: electrode for oxygen control) FIG. 5 (1: raw material inlet, 2: product outlet, 3: solid electrolyte,
4: working electrode, 5: counter electrode, 6: reactant chamber on the working electrode side,
7: Counter electrode side reactant chamber, 8: Oxygen concentration control solid electrolyte cell, 9: Oxygen concentration measurement area, 10: Oxygen standard gas, 1
1: electrode for oxygen control, 12: oxygen control counter electrode, 13: oxygen reference electrode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 繕範 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 岩井 保則 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 (72)発明者 西 正孝 茨城県那珂郡東海村白方字白根2番地の4 日本原子力研究所東海研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kawanori Nomura 2-4, Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki Pref. Japan Atomic Energy Research Institute Tokai Research Institute (72) Inventor Yasunori Iwai, Tokai-mura, Naka-gun, Ibaraki (2) Inventor Masataka Nishi 2-4, Shirane, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応物質流通式の固体電解質を用いる反
応装置において、反応装置内に、固体電解質膜の片面を
陰極、反対側を陽極とする反応器セルを設置し、反応物
質を含む流れを陰極及び陽極に相次いで流通し、反応物
質を酸化及び還元処理して、これらの複数の反応の生成
物を同時に得るとともに、固体電解質膜中のイオンを酸
化と還元の両方に利用し、一方では消費電力を節減する
ことを特徴とする電気化学反応装置。
In a reactor using a reactant-flowing solid electrolyte, a reactor cell having a cathode on one side of a solid electrolyte membrane and an anode on the opposite side is installed in the reactor to flow a flow containing the reactant. It circulates successively to the cathode and anode, oxidizes and reduces the reactants to obtain the products of these multiple reactions simultaneously, and utilizes the ions in the solid electrolyte membrane for both oxidation and reduction. An electrochemical reaction device characterized by saving power consumption.
【請求項2】 前記反応装置において、酸素イオン透過
性の固体電解質管を設置し、電解質管の一方側に反応物
質、その他方側に既知酸素濃度のガスを通じ、酸素透過
によって両側の酸素濃度が同一になることを利用して酸
素濃度を制御することにより酸化反応を完全に行うこと
を特徴とする請求項1に記載の電気化学反応装置。
2. In the reactor, an oxygen ion-permeable solid electrolyte tube is installed, a reactant is passed through one side of the electrolyte tube, and a gas having a known oxygen concentration is passed through the other side of the electrolyte tube. The electrochemical reaction device according to claim 1, wherein the oxidation reaction is completely performed by controlling the oxygen concentration by utilizing the fact that they are the same.
【請求項3】 前記反応装置において、酸素イオン透過
性の固体電解質管に3個の電極を設置し、酸素濃度を第
3電極によって検知する一方、その濃度を最適値に設定
するように他の2電極を利用して酸素を供給又は除去す
ることからなる制御によって酸化反応を完全に行うこと
を特徴とする電気化学反応装置。
3. In the reactor, three electrodes are provided in an oxygen ion-permeable solid electrolyte tube, and while the oxygen concentration is detected by a third electrode, another oxygen concentration is set to an optimum value. An electrochemical reaction apparatus characterized in that an oxidation reaction is completely performed by control of supplying or removing oxygen using two electrodes.
JP07199698A 1998-03-20 1998-03-20 Electrochemical reactor Expired - Fee Related JP3581011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07199698A JP3581011B2 (en) 1998-03-20 1998-03-20 Electrochemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07199698A JP3581011B2 (en) 1998-03-20 1998-03-20 Electrochemical reactor

Publications (2)

Publication Number Publication Date
JPH11269684A true JPH11269684A (en) 1999-10-05
JP3581011B2 JP3581011B2 (en) 2004-10-27

Family

ID=13476607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07199698A Expired - Fee Related JP3581011B2 (en) 1998-03-20 1998-03-20 Electrochemical reactor

Country Status (1)

Country Link
JP (1) JP3581011B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057390A (en) * 2001-08-13 2003-02-26 Mitsui Eng & Shipbuild Co Ltd Control method for concentration of oxygen dissolved in liquid metal
WO2005078160A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Process for producing hydrogen and apparatus therefor
JP2005232525A (en) * 2004-02-18 2005-09-02 National Institute Of Advanced Industrial & Technology Apparatus for electrolyzing high-temperature steam
JP2007031784A (en) * 2005-07-27 2007-02-08 Toshiba Corp Method and apparatus for electrolyzing steam
JP2007051328A (en) * 2005-08-18 2007-03-01 National Institute Of Advanced Industrial & Technology Hydrogen production device
JP2007063619A (en) * 2005-08-31 2007-03-15 Toshiba Corp Steam electrolyzer, and its method
JP2021517608A (en) * 2018-03-22 2021-07-26 積水化学工業株式会社 Carbon dioxide reduction device and method for producing organic compounds

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057390A (en) * 2001-08-13 2003-02-26 Mitsui Eng & Shipbuild Co Ltd Control method for concentration of oxygen dissolved in liquid metal
JP4488658B2 (en) * 2001-08-13 2010-06-23 三井造船株式会社 Method for controlling dissolved oxygen concentration in liquid metal
WO2005078160A1 (en) * 2004-02-18 2005-08-25 Ebara Corporation Process for producing hydrogen and apparatus therefor
JP2005232525A (en) * 2004-02-18 2005-09-02 National Institute Of Advanced Industrial & Technology Apparatus for electrolyzing high-temperature steam
JP4512788B2 (en) * 2004-02-18 2010-07-28 独立行政法人産業技術総合研究所 High temperature steam electrolyzer
JP2007031784A (en) * 2005-07-27 2007-02-08 Toshiba Corp Method and apparatus for electrolyzing steam
JP2007051328A (en) * 2005-08-18 2007-03-01 National Institute Of Advanced Industrial & Technology Hydrogen production device
JP2007063619A (en) * 2005-08-31 2007-03-15 Toshiba Corp Steam electrolyzer, and its method
JP2021517608A (en) * 2018-03-22 2021-07-26 積水化学工業株式会社 Carbon dioxide reduction device and method for producing organic compounds

Also Published As

Publication number Publication date
JP3581011B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP0810682B1 (en) Fuel cells-based generator system and method of the same
US4692390A (en) Method and system for hydrogen thermal-electrochemical conversion
JP6728226B2 (en) Method for co-processing carbon dioxide and hydrogen sulfide
US4818638A (en) System for hydrogen thermal-electrochemical conversion
US7241521B2 (en) Hydrogen/hydrogen peroxide fuel cell
US7201782B2 (en) Gas generation system
JP4761195B2 (en) Hydrogen production equipment
US20070163889A1 (en) Method and apparatus for producing hydrogen
Asano et al. A novel solid oxide fuel cell system using the partial oxidation of methane
JP2018519414A5 (en)
CN114729461B (en) Method and device for electrolysis of water
JPWO2018029994A1 (en) Hydrogen treatment equipment
JP3708924B2 (en) Chemical hydrogen production method using both heat and electricity
JP3581011B2 (en) Electrochemical reactor
US3711333A (en) Fuel cell battery
Young et al. The theoretical aspects of biochemical fuel cells
Heintz et al. Thermodynamics of Vanadium Redox Flow Batteries‐Electrochemical and Calorimetric Investigations
JP4168511B2 (en) Apparatus for reducing carbon monoxide concentration in hydrogen gas containing carbon monoxide and fuel cell power generation system using the same
EP3259795B1 (en) Electrochemical oxidation of carbonaceous deposits in liquid-hydrocarbon fueled solid oxide fuel cells
JP2009263708A (en) Hydrogen separation method in gaseous phase and hydrogen separation apparatus in gaseous phase
JPH04249866A (en) Fuel electrode activation for methanole fuel battery
KR100564062B1 (en) The apparatus for hybrid mediated oxidation of destroying organic wastes
JP3369192B2 (en) Countercurrent electrolytic reactor
JPH09320619A (en) Molten carbonate fuel cell
JP2020119831A (en) Rebalancing system of redox flow secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees