JPH11269513A - Charging of charging material into center part of blast furnace - Google Patents

Charging of charging material into center part of blast furnace

Info

Publication number
JPH11269513A
JPH11269513A JP1270999A JP1270999A JPH11269513A JP H11269513 A JPH11269513 A JP H11269513A JP 1270999 A JP1270999 A JP 1270999A JP 1270999 A JP1270999 A JP 1270999A JP H11269513 A JPH11269513 A JP H11269513A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
coke
charged
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1270999A
Other languages
Japanese (ja)
Other versions
JP3787240B2 (en
Inventor
Morimasa Ichida
守政 一田
Hiroshi Oda
博史 織田
Yoshio Okuno
嘉雄 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP01270999A priority Critical patent/JP3787240B2/en
Publication of JPH11269513A publication Critical patent/JPH11269513A/en
Application granted granted Critical
Publication of JP3787240B2 publication Critical patent/JP3787240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging method of charging materials into the center part of a blast furnace, in which a stable fused zone is formed by optimizing the distribution of the charged materials in the blast furnace corresponding to change of the condition in the furnace according to variation of the quality and the throughput of pig iron produced in the blast furnace and the suitable fused zone for executing the smooth blast furnace operation can be formed. SOLUTION: At the time of charging the charging materials into the bell-less blast furnace, finally charged coke C is charged and piled in the intermediate part in the radial direction of the opening part of the blast furnace through a swing chute. Successively, iron are O is charged between the outside of the charged and piled coke and the furnace wall of the blast furnace through the swing chute so as to satisfy a relative O/C value specified in the furnace peripheral part, or after charging the coke into the lower part in a furnace top hopper just above the blast furnace, successively the iron one is charged onto the upper part thereof. After storing the coke and the iron ore in the furnace to hopper in layers, a shut-off value is opened, and after charging and piling a large part of the stored coke in the lower part into the intermediate part in the radial direction of the opening part of the blast furnace through the swing chute, the swing chute is shifted to a space between the outside of the charged and piled coke and the furnace wall of the blast furnace and the stored iron ore in the upper part is charged so as to satisfy the relative O/C value specified in the furnace peripheral part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉により生産さ
れる銑鉄の品質ならびに生産量の変動に伴う炉内状況の
変化に対して、高炉装入物の炉内分布の適正化を図り安
定な融着帯を形成し、円滑な高炉操業を行うための融着
帯形状を形成するのに適した高炉中心部への装入物装入
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of optimizing the distribution of a blast furnace charge in a furnace in response to a change in the furnace conditions due to a change in the quality and the production amount of pig iron produced by the blast furnace. The present invention relates to a method for charging a charge to a central portion of a blast furnace, which is suitable for forming a cohesive zone and forming a cohesive zone shape for smooth blast furnace operation.

【0002】[0002]

【従来の技術】高炉における主な制御手段は装入物分布
制御と送風制御の二つがある。送風制御によりレースウ
ェイ条件(レースウェイ形状、レースウェイ内温度分
布、レースウェイ内ガス組成分布ほか)が決まるが、装
入物分布制御は、高炉内の反応伝熱を左右するガス流分
布、融着帯の形状を決める唯一の手段であるため、最も
よく用いられかつ最も重要な制御手段である。
2. Description of the Related Art There are two main control means in a blast furnace: charge distribution control and blowing control. The raceway conditions (raceway shape, raceway temperature distribution, raceway gas composition distribution, etc.) are determined by the ventilation control, but the charge distribution control is based on the gas flow distribution, melting, which affects the reaction heat transfer in the blast furnace. It is the most commonly used and most important control because it is the only means of determining the shape of the garment.

【0003】一般に高炉は高炉炉頂部より鉄鉱石、焼結
鉱、ペレット(以下、単に鉄鉱石と称す)と、コークス
を交互に装入し、炉下部の送風羽口(以下、単に羽口と
称す)より熱風を吹き込んで操業を行っている。高炉に
おいては、羽口先端部分でコークスと熱風との反応によ
り生じたCOガスを含む高温の炉内ガスで、前記鉄鉱石
を炉内降下中に加熱−還元(間接還元)−溶融する。さ
らに、鉄鉱石の溶融物を滴下中に滴下帯部に存在するコ
ークスで還元(直接還元)しつつ湯溜り部に集められ、
適時、出銑口より炉外に排出する。この鉄鉱石は溶融滴
下する直前に軟化融着状態(以下、単に融着帯と称す
る)となり、コークスを挟んで炉内に存在している。
In general, a blast furnace is charged with iron ore, sintered ore, pellets (hereinafter simply referred to as iron ore) and coke alternately from the top of the blast furnace, and a blowing tuyere (hereinafter simply referred to as a tuyere) at the lower part of the furnace. Operation). In the blast furnace, the iron ore is heated, reduced (indirectly reduced) and melted during the descent in the furnace by a high-temperature furnace gas containing CO gas generated by a reaction between coke and hot air at the tuyere tip. Further, the molten iron ore is collected in the pool while being reduced (directly reduced) by coke existing in the dropping zone during the dropping,
When appropriate, discharge from the taphole to the outside of the furnace. This iron ore is in a softened and fused state (hereinafter simply referred to as a cohesive zone) immediately before being dropped by melting, and is present in the furnace with coke interposed therebetween.

【0004】このように、高炉内においては、装入した
鉄鉱石が塊の状態にある塊状帯部、軟化融着した状態に
ある融着帯、溶融滴下状態にある滴下帯部が存在してお
り、前記炉内ガスは羽口先端部よりこの滴下帯部、融着
帯、塊状帯部を順次通って炉外に流出している。この三
者の通気抵抗は融着帯が最も大きく、次いで塊状帯部で
あり、滴下帯部が最も小さくなっている。したがって、
融着帯の形状によって塊状帯部と滴下帯部の形状も異な
り、炉内の通気性およびガス利用率が異なったものとな
る。
[0004] As described above, in the blast furnace, there are a lump zone in which the charged iron ore is in a lump state, a fusion zone in a softened and fused state, and a dripping zone in a molten and dripped state. The in-furnace gas flows out of the furnace from the tip of the tuyere through the dripping zone, the cohesive zone, and the massive zone sequentially. The airflow resistance of the three members is the largest in the cohesive zone, followed by the massive band, and the smallest in the dripping band. Therefore,
Depending on the shape of the cohesive zone, the shape of the lump zone and the shape of the dripping zone also differ, resulting in different gas permeability and gas permeability inside the furnace.

【0005】例えば、融着帯の頂部が高くなるいわゆる
中心流型融着帯(逆V型)においては、塊状帯部が狭く
なる反面、滴下帯部が広くなるので通気性は良好となる
と同時に、炉内ガスが炉心部を常時流れてガス流が安定
化するためにガス利用率も高位のレベルに維持できる。
また、融着帯頂部が低くなる、いわゆるフラット型融着
帯においては、塊状帯部が広くなる反面、滴下帯部が狭
くなるので通気性は悪くなると同時に、炉内ガスが偏流
する可能性があり、ガス利用率が低下する場合もある。
この通気性およびガス利用率は生産性および燃料比に深
い関係を有するものであり、高炉操業中に該融着帯の位
置および形状を検知し、これによって融着帯を最適制御
すれば、通気性およびガス利用率を調節することがで
き、生産性の増大、燃料比の節減を図ることができる。
For example, in a so-called central flow type fusion zone (inverted V type) in which the top portion of the fusion zone is high, the lump zone is narrower, while the drip zone is wider, so that the air permeability is improved. Since the gas in the furnace always flows through the core and the gas flow is stabilized, the gas utilization can be maintained at a high level.
In addition, in the so-called flat type cohesive zone in which the top of the cohesive zone is low, the lump zone is widened, but the dripping zone is narrow, so that the air permeability is deteriorated and the possibility that the gas in the furnace is drifted. Yes, the gas utilization may decrease.
The permeability and the gas utilization rate have a deep relationship with the productivity and the fuel ratio. If the position and the shape of the cohesive zone are detected during the operation of the blast furnace and the cohesive zone is optimally controlled by this, the ventilation rate is improved. The efficiency and gas utilization can be adjusted, and the productivity can be increased and the fuel ratio can be reduced.

【0006】このような高炉内での融着帯の制御方法と
しては、幾つかの発明が開示されているが、例えば特公
昭63−61367号公報に提示されている技術によれ
ば、高炉の炉腹部あるいはそれ以下の部分から炉内に1
個または複数個のゾンデを挿通し、該ゾンデから得られ
るガス体および固体温度、ガス組成の実測値から融着帯
の上側および下側の位置を求めるとともに、該融着帯の
位置が高炉操業上最適な位置を占めるように、高炉の半
径方向の鉄鉱石層厚とコークス層厚の比(O/C)の分
布および粒度分布を制御することを特徴としている。
Several inventions have been disclosed as a method for controlling the cohesive zone in such a blast furnace. For example, according to the technique disclosed in Japanese Patent Publication No. 63-61367, a method for controlling a blast furnace is disclosed. 1 into the furnace from the furnace abdomen or below
One or a plurality of sondes are inserted, and the upper and lower positions of the cohesive zone are determined from the measured values of the gas and solid temperatures and gas composition obtained from the sonde. The distribution of the ratio of the iron ore layer thickness to the coke layer thickness (O / C) and the particle size distribution in the radial direction of the blast furnace are controlled so as to occupy the uppermost position.

【0007】すなわち、融着帯の制御として高炉へ装入
する鉄鉱石とコークスのO/Cの分布を制御することに
よって適切な融着帯を得ることができるとされており、
その理由として、鉄鉱石層はコークス層に比べて粒子径
および層の空間率が小さいので、高炉の半径方向のうち
で鉄鉱石層厚が相対的に厚い部分ではガスの通気性は悪
く、そのためその部分を流れるガス流速、ガス流量が低
下する。ガス流量の低下はいろいろな面に影響を及ぼ
し、伝熱に関しては単位断面積を流れるガス顕熱量の低
下、固体物質への伝熱性の悪化をもたらす。反応に関し
ては、鉄鉱石を還元するのに充分なガス量が供給されな
いために還元ガスの濃度が低下し、還元推進力が弱まる
ことから、還元率の相対的低下をもたらす。以上のこと
から、半径方向でO/Cの高い部分は還元率の低下、ガ
ス体および固体温度の低下をもたらす。
That is, it is said that an appropriate cohesive zone can be obtained by controlling the O / C distribution of iron ore and coke charged into the blast furnace as control of the cohesive zone.
The reason is that the iron ore layer has a smaller particle diameter and a smaller voidage of the layer than the coke layer, so gas permeability is poor in the relatively thick part of the iron ore layer in the radial direction of the blast furnace. The gas flow rate and gas flow rate flowing through that portion decrease. The decrease in the gas flow rate affects various aspects, and in terms of heat transfer, the amount of sensible heat flowing through the unit cross-sectional area decreases, and the heat transfer to solid substances deteriorates. Regarding the reaction, the concentration of the reducing gas is reduced because the amount of gas that is sufficient to reduce the iron ore is not supplied, and the reduction driving force is weakened, resulting in a relative reduction in the reduction rate. From the above, the portion where the O / C is high in the radial direction causes a reduction in the reduction rate and a reduction in the temperature of the gas and the solid.

【0008】したがって、例えば中心部で高い融着帯を
実現するためには炉下部の中心部に充分な熱を供給する
ことが必要である。そのためには炉中心部にガスの供給
を増加する操作、すなわち中心部のO/Cを小さくする
ことが必要であり、また周辺部で高い融着帯を実現する
ためには同様な理由から、周辺部のO/Cを小さくする
操作が必要であると記載されている。
Therefore, for example, in order to realize a high cohesive zone at the center, it is necessary to supply sufficient heat to the center of the lower part of the furnace. For that purpose, it is necessary to increase the supply of gas to the central part of the furnace, that is, to reduce the O / C in the central part, and to realize a high cohesive zone in the peripheral part for the same reason. It is described that an operation for reducing the O / C of the peripheral portion is necessary.

【0009】しかし、実際の操業においては、原料装入
装置の特性や装入物の堆積特性等各種の因子が影響し、
均一な分布状態を維持することは困難である。従来法に
おける通常の高炉装入物の装入方法に従えば、例えば図
4に示すように、コークス(C)と鉄鉱石(O)とを順
次層状に装入すると炉中心部においては、鉄鉱石の装入
層の厚みが厚くコークス装入層の厚みが薄くなる傾向を
避けることはできなかった。これは鉄鉱石の安息角がコ
ークスの安息角に比べて小さく、かつ鉄鉱石とコークス
の嵩密度が大きく異なり、勢い炉中心部において鉄鉱石
層が必然的に厚くなるためである。したがって、炉中心
部においては炉下部から供給されるガスの流れが、炉中
心部の鉄鉱石層の厚い部分では通気性が悪くなり、その
結果ガスはガス流れが比較的容易な炉周辺部に向かいそ
の部分を流れることになる。
However, in the actual operation, various factors such as the characteristics of the raw material charging device and the characteristics of the deposition of the charged material influence,
It is difficult to maintain a uniform distribution. According to a conventional method of charging a blast furnace charge in a conventional method, when coke (C) and iron ore (O) are sequentially charged in layers as shown in FIG. The tendency to reduce the thickness of the coke charging layer due to the large thickness of the stone charging layer could not be avoided. This is because the angle of repose of iron ore is smaller than the angle of repose of coke, and the bulk density of iron ore and coke is greatly different, so that the iron ore layer is inevitably thicker in the center of the vibrating furnace. Therefore, the flow of gas supplied from the lower part of the furnace in the center of the furnace has a poor permeability in the thick part of the iron ore layer in the center of the furnace, and as a result, the gas flows to the periphery of the furnace where gas flow is relatively easy. It will flow across that part.

【0010】このような装入物の分布状態に対して高炉
操業を安定的に維持していくためには、炉内ガス流を単
に均等に分散させるだけではなく、ガス流の一部を一定
の領域、特に炉心部に集中させ、炉内ガス圧の上昇に対
する安全弁的機能を果たさせるというのが最近の一般的
な傾向になっている。高炉における通常の装入方式であ
ると、鉄鉱石もコークスも炉壁側から流入落下される
が、前述のように鉄鉱石の安息角はコークスのそれに比
べて小さいから炉心側に流動し易く、鉄鉱石層とコーク
ス層の厚み比(O/C)は炉心部において高くなる。特
にペレット化された鉄鉱石を使う高炉では、該ペレット
状鉱石の安息角が一層小さいため、該鉄鉱石の炉中心部
への流れは顕著であって、炉中心部のO/Cがさらに高
くなる傾向は避けられない。
In order to stably maintain the operation of the blast furnace with respect to such a distribution state of the charge, not only the gas flow in the furnace is simply dispersed uniformly, but also a part of the gas flow is kept constant. In recent years, it has become a general tendency that the pressure is concentrated in the area of the furnace, particularly in the core, so as to function as a safety valve against an increase in the gas pressure in the furnace. With the normal charging method in a blast furnace, both iron ore and coke flow in and fall from the furnace wall side, but as described above, the angle of repose of iron ore is smaller than that of coke, so it easily flows to the core side, The thickness ratio (O / C) of the iron ore layer and the coke layer increases in the core. Particularly, in a blast furnace using pelletized iron ore, since the angle of repose of the pelletized ore is smaller, the flow of the iron ore to the furnace center is remarkable, and the O / C in the furnace center is higher. The tendency to become inevitable.

【0011】このような状態にある現況での装入物の炉
内O/C分布においては、ガス上昇流は所望とするガス
流にはなっておらず、炉中心部のO/Cを低下するよう
な処置が要望されている。このような装入物の分布状態
に対して高炉中心部のみにコークスを特別の手段によっ
て装入し、炉中心部にチムニー状のコークス堆積状態を
積極的に保持せしめようとする技術が例えば特公平6−
37649号に開示されている。該公報に記載された技
術を高炉操業に適用すれば、炉中心部にコークスのチム
ニーを容易に作ることができるはずであるが、後述する
ように高炉の実操業においては一旦作られたチムニー状
のコークス層では通気性が過大となり、下方向からの上
昇ガス流が強すぎてチムニー状に堆積しようとするコー
クスを吹き上げ、図5に模式的に示すように炉中心部の
コークスが周辺部に飛散し、実際には目的とするコーク
ス中心部装入の効果は意外に少ない状態にあるものと思
慮される。
In the O / C distribution of the charged material in the furnace in such a state, the gas rising flow is not the desired gas flow, and the O / C at the center of the furnace is reduced. There is a demand for such measures. For example, a technique for charging coke only to the central part of the blast furnace by a special means in order to maintain the chimney-like coke deposition state in the central part of the furnace in response to such a distribution state of the charged material is known, for example. Fairness 6
No. 37649. If the technology described in the publication is applied to blast furnace operation, it should be possible to easily produce a coke chimney in the center of the furnace. In the coke layer, the air permeability becomes excessive, and the rising gas flow from the downward direction is too strong to blow up the coke that is going to be deposited in a chimney shape, and as shown schematically in FIG. It is thought that the effect of the spattering and actually charging the target coke center is surprisingly small.

【0012】[0012]

【発明が解決しようとする課題】前記したように、融着
帯の適切な形状については知られており、例えば図3に
示すように、融着帯を中心部が高い逆V型にすること
が、現状の高炉操業を行う上で理想的な形状とされてい
る。この形状を得るためには上記したように、炉中心部
のO/Cを小さくする必要があり、これは言い換えると
炉中心部のコークス量ができるだけ多くなるような装入
物の装入方法が好ましいと言うことである。
As described above, it is known that the shape of the cohesive zone is appropriate. For example, as shown in FIG. However, the shape is ideal for the current blast furnace operation. As described above, in order to obtain this shape, it is necessary to reduce the O / C at the center of the furnace. In other words, there is a method of charging the charge such that the coke amount at the center of the furnace is as large as possible. It is preferable.

【0013】しかして、炉中心部へのコークス堆積が図
られたとしても、このような状況下では、種々の要因に
よって時においては、中心部のガス流が過大となること
があり、このよう状態となった場合には、炉周辺部(特
に炉壁部)に分散されるべきガス流に不足をきたすこと
がある。このような状態になると炉壁部へ付着物が生成
し、棚落ち,スリップ等の発生が起り、炉況を悪化させ
る。また、稀には羽口を曲損するようなことも起こり、
余儀なく臨時休風を行わなければならない事態となり、
生産性を著しく低下させる。
However, even if coke is deposited at the center of the furnace, under such circumstances, the gas flow in the center may sometimes become excessive due to various factors. In such a case, the gas flow to be dispersed around the furnace (particularly, the furnace wall) may be insufficient. In such a state, deposits are generated on the furnace wall, causing a drop in the shelf, slipping, and the like, thereby deteriorating the furnace condition. Also, in rare cases, the tuyere may be damaged,
It became a situation that forced a temporary suspension of wind,
Significantly reduces productivity.

【0014】何れにせよ従前の高炉においては、必ずし
も所望とするO/Cの分布比が保たれているとは限ら
ず、炉中心部のガス流に過不足を来すことがあった。実
際の高炉における装入物(鉄鉱石、コークス等)の装入
分布状態、すなわち適切なO/Cを保つための高炉半径
方向での分布状態を得るためには、それに適した装入設
備が必要となる。しかし、ベルレス高炉においては、上
記の調整を実施しようと思えば、旋回シュートの傾動角
を広範囲に移動する必要があり、そのため、高出銑比の
操業条件下では、装入物を炉内に装入するのに時間が長
くかかり過ぎるという問題が生じ、所望のO/C分布を
炉半径方向で作り込めない状況に直面することも起こっ
ていた。
In any case, in the conventional blast furnace, the desired O / C distribution ratio is not always maintained, and the gas flow in the center of the furnace sometimes becomes excessive or insufficient. In order to obtain the distribution of the charged materials (iron ore, coke, etc.) in the actual blast furnace, that is, the distribution in the radial direction of the blast furnace to maintain an appropriate O / C, appropriate charging equipment is used. Required. However, in the bellless blast furnace, if the above adjustment is to be performed, it is necessary to move the tilt angle of the turning chute over a wide range, and therefore, under operating conditions with a high tapping ratio, the charge is placed in the furnace. There has been a problem that charging takes too long, and a situation has been encountered in which a desired O / C distribution cannot be created in the furnace radial direction.

【0015】また前述のように、炉中心部へのコークス
装入は炉中心部を上昇するガス流の影響を受けるので、
その対応策も考慮したうえで適切な装入方法を採用しな
ければ、目的とする効果が得られない惧れがあり、これ
らのことを総括したうえで、従前の装入設備によって簡
便容易に上記した如きO/Cの炉半径方向での分布状態
を得ることができる装入技術についての開発が強く要望
されていた。
As described above, charging coke into the center of the furnace is affected by the gas flow rising in the center of the furnace.
If appropriate charging methods are not adopted in consideration of the countermeasures, the intended effects may not be obtained.After summarizing these matters, the conventional charging equipment can be used simply and easily. There has been a strong demand for the development of a charging technique capable of obtaining the distribution of O / C in the furnace radial direction as described above.

【0016】[0016]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記手段にある。 (1) ベルレス高炉における装入物の高炉内装入に際
し、旋回シュートを介し最終装入コークスを高炉の炉口
半径方向の炉中間部に装入堆積せしめ、次いで、該旋回
シュートにより鉄鉱石を装入堆積せしめたコークスの外
側と高炉炉壁間に、炉周部の特定した相対O/C値を満
たすように装入することを特徴とする高炉中心部への装
入物装入方法。 (2) ベルレス高炉における装入物の高炉内装入に際
し、高炉直上の炉頂ホッパー内へ下部にコークスを投入
後、次いでその上部に鉄鉱石を投入し、該炉頂ホッパー
内でコークスと鉄鉱石を層状に貯留後、遮断弁を開放し
旋回シュートを介して下部貯留コークスの大半を高炉の
炉口半径方向の炉中間部に装入堆積せしめた後、該旋回
シュートを装入堆積せしめたコークスの外側と高炉炉壁
間に移行し、上部貯留鉄鉱石を炉周部の特定した相対O
/C値を満たすように装入することを特徴とする高炉中
心部への装入物装入方法。
The gist of the present invention lies in the following means. (1) When charging the charge in the bellless blast furnace into the blast furnace, the final charging coke is charged and deposited in the middle part of the blast furnace in the radial direction of the blast furnace through a swirling chute, and then the iron ore is charged by the swirling chute. A method for charging a charged material into the center of a blast furnace, characterized by charging between the outside of the deposited coke and the wall of the blast furnace so as to satisfy the specified relative O / C value of the furnace periphery. (2) When charging the charge in the bellless blast furnace into the blast furnace interior, coke is charged into the lower part of the furnace hopper immediately above the blast furnace, and then iron ore is charged into the upper part thereof, and coke and iron ore are charged in the furnace hopper. Is stored in a layer, the shut-off valve is opened, most of the lower stored coke is charged and deposited at the furnace middle part in the furnace port radial direction of the blast furnace via the swirling chute, and then the coke is charged and deposited at the swirling chute. Between the outside of the furnace and the blast furnace wall, and the upper stored iron ore is
A method for charging a charge into the center of a blast furnace, wherein the charge is performed so as to satisfy the / C value.

【0017】(3) 前記(1)または(2)におい
て、最終コークスを装入する炉中間部は、高炉炉口半径
方向で、炉中心から炉壁までの間で炉口半径に対して
0.2〜0.8の範囲とした高炉中心部への装入物装入
方法。 (4) 前記(1)または(2)において、最終コーク
を装入する炉中間部は、高炉炉口半径方向で、炉中心か
ら炉壁までの間で炉口半径に対して0.2〜0.6の範
囲とした高炉中心部への装入物装入方法。 (5) 前記最終コークス装入後の鉄鉱石の装入は、コ
ークス堆積部外側部から高炉炉壁側へ向け順次装入する
(1)ないし(4)のいずれかに記載の高炉中心部への
装入物装入方法。
(3) In the above (1) or (2), the middle part of the furnace into which the final coke is charged is located at a distance from the furnace center to the furnace wall in the radial direction of the blast furnace furnace, which is 0 to the furnace hole radius. 2. A method of charging the charge into the center of the blast furnace in the range of 2 to 0.8. (4) In the above (1) or (2), the middle part of the furnace in which the final coke is charged is 0.2 to 0.2 mm from the furnace center radius to the furnace wall between the furnace center and the furnace wall in the blast furnace furnace direction. The method of charging the charge into the center of the blast furnace with the range of 0.6. (5) The iron ore after the final coke charging is charged sequentially from the outer portion of the coke depositing portion toward the blast furnace wall side to the blast furnace center according to any one of (1) to (4). How to charge the charge.

【0018】(6) 前記炉中間部へ装入する最終コー
クスは、その粒径を大にして高炉内へ装入する(1)な
いし(5)のいずれかに記載の高炉中心部への装入物装
入方法。 (7) 前記炉中間部に装入する最終コークスは、その
反応性を低反応性に変更して高炉内へ装入する(1)な
いし(6)のいずれかに記載の高炉中心部への装入物装
入方法。 (8) 前記炉中間部へ装入するコークスは、高炉炉頂
部の炉内半径方向のガス利用率の値によって、コークス
装入割合(1/n)を調整制御する(1)ないし(7)
のいずれかに記載の高炉中心部への装入物装入方法。
(6) The final coke to be charged into the middle part of the furnace is charged into the blast furnace having a large particle diameter and charged into the blast furnace according to any one of (1) to (5). Packing method. (7) The final coke charged into the middle part of the furnace is charged into the blast furnace with its reactivity changed to low reactivity and charged into the blast furnace according to any one of (1) to (6). How to load the charge. (8) The coke charging ratio (1 / n) of the coke charged into the furnace middle part is adjusted and controlled according to the value of the gas utilization rate in the furnace radial direction at the top of the blast furnace (1) to (7).
A method for charging a charge into the center of a blast furnace according to any one of the above.

【0019】(9) 前記(8)において、ガス利用率
(ηCO)の値が炉中心部において20%を超えた場合
には、高炉中間部へ装入するコークス装入割合(1/
n)を増加する高炉中心部への装入物装入方法。 (10) 前記(8)において、ガス利用率(ηCO)
の値が炉中心部において20%以下を満足し、かつ、炉
中間部でのηCOの値が60%以上になった場合には、
高炉中間部へ装入するコークス装入割合(1/n)を減
ずる高炉中心部への装入物装入方法。
(9) In the above (8), when the value of the gas utilization rate (ηCO) exceeds 20% in the central portion of the furnace, the coke charging ratio (1/1) to be charged into the intermediate portion of the blast furnace.
n) a method of charging the charge into the center of the blast furnace, which increases n). (10) In the above (8), the gas utilization rate (ηCO)
Is less than 20% at the center of the furnace and the value of ηCO at the middle of the furnace is 60% or more,
A method for charging the charged material into the center of the blast furnace, which reduces the charging ratio (1 / n) of coke charged into the middle portion of the blast furnace.

【0020】(11) 前記ガス利用率(ηCO)の値
が(9)または(10)に定め値を逸脱した状態が、少
なくとも8時間経過した場合には、高炉中間部へ装入す
るコークス装入割合(1/n)の増減を行う高炉中心部
への装入物装入方法。 (12) 前記鉄鉱石の装入において、炉周部の相対O
/C値を0.4〜1.0とした(1)または(2)記載
の高炉中心部への装入物装入方法。 (13) 前記(12)において、炉壁部でのガス利用
率を目安とし、炉周部の相対O/C値の範囲内でその値
を上・下させる高炉中心部への装入物装入方法。
(11) When the value of the gas utilization rate (ηCO) deviates from the value defined in (9) or (10) for at least 8 hours, the coke charging device to be charged into the intermediate portion of the blast furnace. A method of charging the charge into the center of the blast furnace in which the charging ratio (1 / n) is increased or decreased. (12) In the charging of the iron ore, the relative O
(1) or (2), wherein the / C value is 0.4 to 1.0. (13) In the above (12), using the gas utilization rate at the furnace wall as a guide, charging the material into the center of the blast furnace to raise or lower the relative O / C value within the range of the relative O / C value at the furnace periphery. How to enter.

【0021】[0021]

【発明の実施の形態】本発明方法は上記手段によって構
成されるが、要は炉芯部コークスの通気性が高炉操業効
率に重大な影響を与えると言う見解を基にして、こうし
た事実を操業効率の向上に役立たせるべく、検討を行っ
た結果発明されたものであって、炉芯部コークスの通気
性が良好である場合は、高炉上昇ガスが中心流を形成す
ると共に融着帯の形状は逆V型で安定した操業を行うこ
とができる点に着目したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is constituted by the above-mentioned means. In summary, based on the view that the permeability of the core coke has a significant effect on the efficiency of blast furnace operation, such a fact is realized. In order to help improve the efficiency, it was invented as a result of investigation and when the permeability of the furnace core coke is good, the blast furnace ascending gas forms a central flow and the shape of the cohesive zone Focuses on the fact that a stable operation can be performed with the inverted V type.

【0022】また、高炉内へ装入されるコークスのう
ち、炉頂周辺側へ装入されるコークスは高炉内を降下し
つつ羽口から吹き込まれる熱風によって殆んどが燃焼・
消失し、炉頂中心部の一定領域内へ装入されるコークス
のみが高炉の中心を降下して炉芯部コークス層へ取り込
まれる。すなわち、炉芯部コークス層は炉頂中心部の特
定領域内へ装入されるコークスによって実質的に占めら
れるので、炉中心部へ装入されるコークスを適切に調整
することによって、炉芯部コークスの通気性を良好に保
ち、かつ、炉周辺部へも適当量分散させることができる
との知見を得た。
Further, of the coke charged into the blast furnace, most of the coke charged near the furnace top is burned by hot air blown from the tuyeres while descending in the blast furnace.
Only the coke that has disappeared and is charged into a certain area at the center of the furnace top descends through the center of the blast furnace and is taken into the coke layer of the furnace core. That is, since the core coke layer is substantially occupied by coke charged into a specific region in the center of the furnace top, by appropriately adjusting the coke charged into the center of the furnace, the core core It has been found that the air permeability of the coke can be kept good and that an appropriate amount of the coke can be dispersed around the furnace.

【0023】そこで本発明においては、高炉での炉芯部
コークス層の通気性を向上させる必要性がある場合に
は、具体的手段としてコークスの一部をできるだけ高炉
の炉中心部方向にに流れ込ませるたに適した方法を用
い、また、逆に高炉での炉芯部コークス層の通気性を適
当に保ち、炉周辺部のガス流も適宜保持せしめる必要性
がある場合はそれに適した装入物の装入方法を用い、高
炉操業における炉全体のガス流分布を適宜調整し、炉況
を安定に維持しようとするものである。
Therefore, in the present invention, when it is necessary to improve the permeability of the core coke layer in the blast furnace, as a specific means, a part of the coke is poured as much as possible toward the center of the furnace of the blast furnace. If it is necessary to maintain the air permeability of the core coke layer in the blast furnace and maintain the gas flow around the furnace appropriately, use the appropriate charging method. The purpose of the present invention is to appropriately adjust the gas flow distribution of the entire furnace in the blast furnace operation by using the material charging method, and to maintain a stable furnace state.

【0024】本発明者らが高炉における装入物の装入状
態を考察したところでは、前述したように高炉中心部に
装入されるコークスはその比重が軽く、かつ嵩密度が小
さいため炉下部からの上昇ガス流によって吹き上げられ
飛散するので、その間隙部に比重の重い鉄鉱石が流れ込
み(鉄鉱石は安息角が小さいので容易)、炉中心部に所
望とするコークスの堆積層を得るには、多くの困難性を
伴うことが明らかになった。
The inventors of the present invention have examined the state of charging of the charge in the blast furnace. As described above, the coke charged in the center of the blast furnace has a low specific gravity and a low bulk density, and thus has a low bulk density. In order to obtain a desired coke deposition layer in the center of the furnace, iron ore with a high specific gravity flows into the gap due to being blown up and scattered by the ascending gas flow from the furnace (iron ore has a small angle of repose). It turned out to be a lot of difficulty.

【0025】このような状態にあることを考慮したうえ
で、本発明者らは高炉内融着帯の制御において、高炉装
入物中の高炉半径方向でのO/Cを適切な分布状態に調
整するために、特別の装入装置を要せず従来の装入物装
入装置(旋回シュート)を用いて行うべく鋭意研究・検
討を重ねた結果、ベルレス高炉においては、炉内へ装入
したコークスに次いで装入する鉄鉱石をいかに調整する
かによって、上記問題点の解決を容易に図ることができ
るとの結論に到達した。
Taking into account such a state, the present inventors set the O / C in the blast furnace radial direction in the blast furnace charge in an appropriate distribution state in controlling the cohesive zone in the blast furnace. As a result of intensive research and examination to adjust using a conventional charging equipment (swirl chute) without any special charging equipment, the bellless blast furnace was charged into the furnace. It was concluded that the above problems could be easily solved by adjusting the iron ore charged after the coke.

【0026】さらに、最終コークス装入位置の適正化に
ついて種々の実験を行い、多くの試行錯誤を重ねた結
果、炉中心部を避け、炉中心から炉壁までの間で炉中心
部の上昇ガス流の影響を受けない位置である炉中間部
に、最終コークスを装入して堰状のコークスの堆積層を
一旦作り、そのコークス堆積層(堰)の外側と炉壁間へ
鉄鉱石を装入することによって、一旦堆積せしめたコー
クスを鉄鉱石の炉心方向への流れ込みを利用し、該堆積
コークスを炉中心部へ押し込み、炉中心部にコークスを
主体とした通気性の良好なチムニー状の装入物層を形成
せしめることができるとの見通しを得たものである。
Further, various experiments were carried out to optimize the charging position of the final coke, and as a result of repeated trial and error, the ascending gas at the furnace center was avoided from the furnace center to the furnace wall from the furnace center. The final coke is charged into the middle part of the furnace, which is not affected by the flow, to form a weir-like coke deposit once, and iron ore is placed outside the coke deposit (weir) and between the furnace walls. By using the inflow of coke once deposited into the core of the furnace using the flow of iron ore in the direction of the core of the iron ore, the coke is pushed into the center of the furnace, and a chimney-like material with good air permeability mainly composed of coke enters the center of the furnace. It has been expected that a charge layer can be formed.

【0027】以下、本発明を図面に基づいて詳細に説明
する。図1および2は高炉炉頂より装入された装入物を
模式的に示したもので、図1において、先に装入したコ
ークス層の上部に、例えば1ホッパー(1ダンプ)に貯
留された最終コークス(C)を高炉中心部からずらし、
炉中間部に装入して堰状に堆積せしめる(この場合、コ
ークスの堆積層は通常装入する層厚より厚目に堆積した
方がより効果的である)。しかる後、鉄鉱石(O)を先
に装入した炉中間部に存在する最終コークス(C)堆積
部の外側へ装入を行う。かくの如き装入を行うことによ
り、一旦堆積されていたコークス(C)は鉄鉱石(O)
の炉中心部方向への流れ込みにより、炉中間部より炉中
心方向へ押し込まれ、図2に示したようなコークスを主
体とする装入物の分布状態が得られる。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIGS. 1 and 2 schematically show the charged material charged from the blast furnace furnace top. In FIG. 1, the charged material is stored in the upper part of the previously charged coke layer, for example, in one hopper (one dump). The final coke (C) is shifted from the center of the blast furnace,
It is charged in the middle part of the furnace and deposited in a weir shape (in this case, it is more effective to deposit the coke in a thicker layer than the normally charged layer). Thereafter, the iron ore (O) is charged outside the final coke (C) depositing portion existing in the furnace intermediate portion charged earlier. By carrying out such charging, the coke (C) once deposited becomes iron ore (O).
Is pushed toward the furnace center from the middle part of the furnace by the flow toward the furnace center, and the distribution state of the charge mainly composed of coke as shown in FIG. 2 is obtained.

【0028】すなわち、炉中心部には装入コークス層の
流動化コークス(前記したように炉中心部に存在するコ
ークスは、絶えず炉中心を上昇するガス流によって舞い
上がり、上昇・降下を繰り返すので流動化された状態と
なっている)と炉中間部堆積コークスとの混合したコー
クスが堆積された状態となり、その外周部に一部炉中間
部装入コークスが残存し、その上部に鉄鉱石が積層され
た状態となる。このような装入物層を確保できるので、
炉中心部に所望のコークスを主体とするチムニーが形成
され、目的とする融着帯を容易に得ることができる。
That is, the fluidized coke of the charged coke layer is placed in the furnace center (as described above, the coke existing in the furnace center continuously rises and rises and falls due to the gas flow rising up the furnace center. Mixed with the coke deposited in the middle part of the furnace, and the coke is deposited. The coke charged in the middle part of the furnace remains on the outer periphery, and iron ore is stacked on top of it. It will be in the state that was done. Since such a charge layer can be secured,
A chimney mainly composed of desired coke is formed at the center of the furnace, and a desired cohesive zone can be easily obtained.

【0029】なお、本発明においては本発明者らが先に
発明し、特願平9−341970号にて既に出願してい
る「高炉への装入物装入方法」を本発明に適用すること
も本発明の主旨から言って当然可能である。すなわち該
発明の要旨は、「ベルレス高炉における装入物の高炉内
装入に際し、高炉直上の炉頂ホッパー内へ下部にコーク
スを投入後、次いでその上部に鉄鉱石を投入し、該炉頂
ホッパー内でコークスと鉄鉱石を層状に貯留後、遮断弁
を開放し旋回シュートを介して装入物を高炉内へ装入す
ることを特徴とする高炉への装入物装入方法」にあるの
で、図6に示すように、炉頂ホッパーに貯留された下部
コークスを高炉の炉口半径方向において炉中間部に装入
堆積後、残りの鉄鉱石を主体とする貯留物を旋回シュー
トを操作し、堆積コークス層の外側へ移行して装入を続
行することにより、鉄鉱石による炉中間部へ堆積された
コークスを炉中心部への押し込みを行うことができるの
で、前記同様の目的を達成することができる。
In the present invention, the "method of charging a blast furnace with a charge", which was first invented by the present inventors and already filed in Japanese Patent Application No. 9-341970, is applied to the present invention. This is naturally possible from the gist of the present invention. That is, the gist of the invention is that, when charging a charge in a bellless blast furnace into a blast furnace, after charging coke into a furnace top hopper immediately above the blast furnace, and then charging iron ore into the upper part thereof, After storing coke and iron ore in layers, the shutoff valve is opened, and the charge is charged into the blast furnace via a swirling chute. As shown in FIG. 6, after charging and depositing the lower coke stored in the furnace top hopper in the middle part of the furnace in the furnace port radial direction of the blast furnace, operating the revolving chute on the remaining iron ore-based stored material, By moving to the outside of the sedimentary coke layer and continuing the charging, the coke accumulated in the furnace middle part by the iron ore can be pushed into the furnace center part, so that the same object as described above can be achieved. Can be.

【0030】本発明ではこれに加えて初期に装入する鉄
鉱石を炉壁側においては、その量を通常の装入量より減
少せしめて装入を行う。通常の高炉におけるコークスと
鉄鉱石の装入については、全装入量中での鉄鉱石(O)
とコークス(C)の比(O/C)を高炉操業状況に応じ
て予め決めておき、その比に合わせてコークスと鉄鉱石
が交互に層状に堆積するように、順次コークスと鉄鉱石
の装入を行っている。この堆積層を作り込むための上記
装入物の装入操作方法としては、高炉での装入設備上で
の特性、高炉操業状況の変動などにより種々の形態が採
用される。通常の装入ではコークス(C)と鉄鉱石
(O)の装入を以て1チャージと称しているが、その装
入の仕方は、例えば、(C↓O↓),(C↓C↓O↓O
↓),(C↓C↓C↓O↓O↓)など多くの装入形態が
存在する。
In the present invention, in addition to this, iron ore to be initially charged is charged on the furnace wall side by reducing the amount of iron ore from a normal charging amount. Regarding the charging of coke and iron ore in a normal blast furnace, iron ore (O)
The ratio of coke and coke (C) (O / C) is determined in advance according to the operating conditions of the blast furnace, and the coke and iron ore are sequentially loaded so that coke and iron ore are alternately deposited in layers according to the ratio. Have entered. As a charging operation method of the charging material for forming the deposition layer, various modes are adopted depending on characteristics on charging equipment in the blast furnace, fluctuations in the operating conditions of the blast furnace, and the like. In normal charging, charging of coke (C) and iron ore (O) is referred to as one charge, but the charging method is, for example, (C ↓ O ↓), (C ↓ C ↓ O ↓) O
↓), (C ↓ C ↓ C ↓ O ↓ O ↓) There are many charging forms.

【0031】このような装入形態において、本発明で称
している高炉の炉口半径方向の炉中間部に装入堆積する
最終装入コークスとは図1にも示したように、本発明の
目的から明らかなように鉄鉱石(O)が装入される直前
のコークス(C)を指すことは、言うまでもないことで
ある。従って、1チャージ内で2回以上のコークスが装
入される場合は、最後に装入されるコークスがこれに該
当するが、コークスの装入が1回のみで済まされるよう
な場合には、予め炉中間部に装入するコークスを確保で
きる装入パターンを設定しておく必要がある。なお、前
述のように(O/C)比は高炉全体での装入量から決め
られるので、(O/C)分布を配慮して最終コークス量
を定めるべきである。
In such a charging mode, the final charging coke charged and deposited in the middle portion of the blast furnace in the furnace opening radial direction referred to in the present invention is, as shown in FIG. Needless to say, it indicates the coke (C) immediately before the iron ore (O) is charged as apparent from the purpose. Therefore, when coke is charged more than once in one charge, the coke charged last corresponds to this, but when coke is charged only once, It is necessary to set in advance a charging pattern capable of securing coke to be charged into the furnace middle part. As described above, since the (O / C) ratio is determined from the charging amount in the entire blast furnace, the final coke amount should be determined in consideration of the (O / C) distribution.

【0032】本発明において炉中間部の範囲を高炉の半
径方向で0.2〜0.8に限定したが、これは0.2未
満では炉中心部のガス上昇流の影響を受けコークスが飛
散する惧れが大きいためである。また、0.8を超えた
場合は鉄鉱石による炉中心方向へのコークスの押し込み
力が不足するからである。さらにまた、0.2〜0.6
に限定したのは、下限の0.2については上記と同様の
理由によるものであるが、上限が0.6を超えるとコー
クスの堆積層(堰)が相対的に低くなり、次いで装入さ
れる鉄鉱石がコークスの堰を乗り越えて炉中心部へ流れ
込み、本発明の効果を減殺する惧れがあるためである。
これらのことを考慮すれば最も好ましいのは0.3超〜
0.5程度の範囲となる。
In the present invention, the range of the middle part of the furnace is limited to 0.2 to 0.8 in the radial direction of the blast furnace, but if it is less than 0.2, coke is scattered due to the effect of the gas rising flow in the center of the furnace. This is because there is a high possibility that they will do so. On the other hand, if it exceeds 0.8, the pushing force of coke toward the furnace center by the iron ore is insufficient. Furthermore, 0.2-0.6
The lower limit of 0.2 is based on the same reason as described above, but when the upper limit exceeds 0.6, the coke deposition layer (weir) becomes relatively low, and then it is charged. This is because iron ore may flow over the coke weir and flow into the center of the furnace, thereby reducing the effects of the present invention.
Considering these, the most preferable is more than 0.3 to
The range is about 0.5.

【0033】また、炉中間部へ装入堆積せしめる最終コ
ークスは、高炉炉周全域に亙って均一に装入するのが好
ましい。しかし、旋回シュートによる装入においては、
ホッパーから流出する際に装入物の粒度のバラツキ、貯
留量の変動等により、ときによっては装入量に偏りが発
生することがある。この様な事態が起こると装入量の大
小にもよるが、コークスを装入すべき炉周の長さが長い
ときには、炉周方向において全長を満たさないことも起
こり得る。この様な状態が発生しても、装入堆積された
最終コークスは、堆積部分においてはその効果を発現す
るので、不充分とは云えそれなりの目的は達し得る。
It is preferable that the final coke charged and deposited in the middle part of the furnace is uniformly charged over the entire circumference of the blast furnace. However, in charging by turning chute,
When flowing out of the hopper, the charged amount may be uneven depending on the variation of the particle size of the charged material, the fluctuation of the stored amount, and the like. When such a situation occurs, depending on the amount of charging, if the length of the furnace circumference where coke is to be charged is long, the entire length in the furnace circumferential direction may not be satisfied. Even if such a situation occurs, the final coke charged and deposited exerts its effect in the deposited portion, and its purpose can be achieved although it is insufficient.

【0034】さらに、炉中間部へ装入した最終コークス
装入後の鉄鉱石の装入に当たっては、最終コークスの堆
積層(堰)の外側と高炉炉壁間であればどこから装入を
始めてもよいが、旋回シュートの連続可動を考慮した場
合は、最終コークスの堆積層(堰)の外側近傍から開始
し、初期の鉄鉱石で堆積コークスを炉中心部へ押し込
み、順次炉壁側へ装入を続行する装入形態を採ることが
考えられる。また、前記とは逆に高炉炉壁側から鉄鉱石
の装入を開始し、順次炉中心方向へ装入を進めコークス
の堆積層近傍で装入を終了するような装入形態を採用し
てもよい。
Further, when charging the iron ore after charging the final coke into the furnace intermediate part, charging may be started from anywhere between the outer side of the final coke deposition layer (weir) and the blast furnace wall. However, considering the continuous movement of the swirling chute, start near the outside of the sedimentary layer (weir) of the final coke, push the sedimentary coke into the furnace center with the initial iron ore, and charge it sequentially to the furnace wall side It is conceivable to adopt a charging mode in which the operation is continued. In addition, contrary to the above, the charging mode is adopted in which charging of iron ore is started from the blast furnace wall side, charging is sequentially performed in the direction of the furnace center, and charging is completed near the deposition layer of coke. Is also good.

【0035】さらにまた、炉中間部へ装入堆積せしめる
最終コークスは、鉄鉱石との兼ね合いからその粒度を通
常のコークスより大径のものを選択し、最適な粒度を保
持し炉中心部でコークスが相当量残留するよう調整する
必要がある。また、上記コークスはその反応性からみて
高反応性コークスを必要とせず、低反応性コークスであ
っても充分である。
Furthermore, the final coke to be charged and deposited in the middle part of the furnace is selected to have a particle size larger than that of ordinary coke in view of the balance with iron ore. Must be adjusted so that a considerable amount remains. The coke does not require high-reactivity coke in view of its reactivity, and low-reactivity coke is sufficient.

【0036】本発明において炉中間部へ装入堆積せしめ
る最終コークスは、高炉装入毎全てのチャージに対して
行う場合もあるが、数チャージに対して1回の割合で実
施するのみでよい場合も多く、あくまでも高炉操業状況
に合わせて調整するのが好ましい。すなわち、高炉の操
業状況は種々の要因によって変動するため、時によって
は炉中心部のガスの流れが過大となる状態を生じる場合
がある。このような場合にはこの流れを抑制し、炉中心
部以外の箇所にも適当量のガスが流れるように調整して
やらねばならない。従って、炉内でのガス流れが適切に
行われているか否かで判断し、その回数を定める必要が
ある。
In the present invention, the final coke to be charged and deposited in the middle part of the furnace may be performed for every charge every time the blast furnace is charged, but it may be performed only once for several charges. Therefore, it is preferable to make adjustments according to the operating conditions of the blast furnace. That is, since the operating condition of the blast furnace varies depending on various factors, there may be a case where the gas flow in the central portion of the furnace becomes excessive in some cases. In such a case, it is necessary to suppress this flow and adjust the flow so that an appropriate amount of gas flows to a portion other than the center of the furnace. Therefore, it is necessary to determine whether or not the gas flow in the furnace is being performed appropriately, and determine the number of times.

【0037】ここで、炉内でのガス流れ状況を表す指標
としてガス利用率がある。これは普通ηCOが用いら
れ、ηCO=(CO2 /(CO+CO2 ))で示され
る。従来のベルレス高炉におけるηCOの高炉半径方向
での分布状況の例を示すと図7のようになる(高炉中心
部を0とし、高炉炉壁を1として示している)。同図は
通常のベルレス高炉での平均的な値を示したもので、η
COの分布は点線で示されるように炉中心部で30%前
後、高炉半径方向0.5〜0.7(以下中間部と称す)
で50%前後、高炉炉壁部で45%前後の値となってい
る。
Here, there is a gas utilization rate as an index indicating the state of gas flow in the furnace. This is usually ηCO, and is expressed by ηCO = (CO2 / (CO + CO2)). FIG. 7 shows an example of the distribution of ηCO in the radial direction of the blast furnace in a conventional bellless blast furnace (the center of the blast furnace is set to 0, and the wall of the blast furnace is set to 1). The figure shows the average value in a normal bellless blast furnace, and η
The distribution of CO is about 30% at the center of the furnace as shown by the dotted line, and 0.5 to 0.7 in the radial direction of the blast furnace (hereinafter referred to as the middle part).
Of the blast furnace wall around 45%.

【0038】このような状況下で本発明による高炉中心
部への装入物の装入方法を実施したときの炉内ガス流分
布(ηCO)は、実線で示されるように炉中心部で5%
前後、中間部で52%前後、高炉炉壁部で45%前後の
値となっており、炉中心部のηCO値が改善され、炉内
ガス流の分布としてはほぼ理想に近い状態を保持するこ
とができることは明らかである。
Under such circumstances, the gas flow distribution (ηCO) in the furnace when the method of charging the charged material into the center of the blast furnace according to the present invention was carried out was 5% at the center of the furnace as shown by the solid line. %
The values are about 52% in the front and rear, the middle part, and about 45% in the blast furnace wall, and the ηCO value in the central part of the furnace is improved, and the distribution of the gas flow in the furnace is almost almost ideal. Obviously you can.

【0039】しかし、これは飽くまで前記した高炉操業
条件の変動がなく、コークスの装入も理想的に行われた
ときのことであって、実操業においては何等かの要因に
よって図7の実線で示されるようなガス流分布を絶えず
維持できるとは限らず、ガス流分布状態に異常な事態を
生ずることが時には起こる。このような場合に本発明に
おいては、ηCOの炉内分布を尺度としてガス流分布に
異常が発生したとの判断を行い、高炉炉口半径方向にお
いて炉中間部へ装入堆積せしめる最終コークスのコーク
スの装入割合(1/n)を調整制御するものである。
However, this is the case where the above-mentioned blast furnace operating conditions do not fluctuate until the end, and the charging of coke is performed ideally. In the actual operation, the solid line in FIG. It is not always possible to maintain the gas flow distribution as shown, and sometimes it happens that the gas flow distribution is abnormal. In such a case, in the present invention, it is determined that an abnormality has occurred in the gas flow distribution on the basis of the in-furnace distribution of ηCO, and the coke of the final coke to be charged and deposited in the furnace intermediate portion in the blast furnace furnace radial direction. The charging ratio (1 / n) is adjusted and controlled.

【0040】すなわち、前記した炉中間部へ装入堆積せ
しめる最終コークスのコークスの装入割合(1/n)を
増減することによって、ηCO分布の異常を解消せしめ
んとするにある。なお、ここでnはコークスの装入回数
(チャージ数)を表す。具体的には炉中心部のガスの流
れが過大となった場合はnを大きくし、逆に炉中心部の
ガスの流れが過小となった場合はnを小さくする処置を
採る。この外にも炉中心部以外の箇所でηCO分布値に
異常が発生した場合、例えば炉中間部でηCOが60%
以上の値まで上昇するようなガス流分布となったときに
は、それに応じn数を増すような対処を実施し、高炉半
径方向でηCO分布値が適切な値を回復維持するような
調整を行う。
That is, the abnormality of the ηCO distribution is eliminated by increasing or decreasing the charging ratio (1 / n) of the coke of the final coke to be charged and deposited in the middle part of the furnace. Here, n represents the number of times of charging coke (the number of charges). Specifically, when the flow of gas in the central portion of the furnace is excessive, n is increased, and when the flow of gas in the central portion of the furnace is excessively small, n is decreased. In addition to this, if an abnormality occurs in the ηCO distribution value at a place other than the center of the furnace, for example, 60%
When the gas flow distribution increases to the above value, measures are taken to increase the number n accordingly, and adjustment is made so that the ηCO distribution value recovers and maintains an appropriate value in the blast furnace radial direction.

【0041】このn数を調整するには、高炉によっては
ηCO分布値に特有の変動を有する場合があり、一率に
きめることは困難を伴うものであり、高炉の特性に応
じ、さらには高炉操業条件の変動を考慮し、実施すべき
高炉において多くの試行錯誤を繰り返したうえ、経験上
から適切な値を求めて置くことが望ましい。
In order to adjust the n number, depending on the blast furnace, there may be a specific variation in the ηCO distribution value, and it is difficult to determine the ηCO distribution value at a certain rate. It is desirable to take into account the fluctuations in operating conditions, repeat many trials and errors in the blast furnace to be implemented, and obtain an appropriate value from experience.

【0042】一般的には、ガス利用率(ηCO)の値が
炉中心部において20%を超えた場合は、高炉中間部に
装入するコークスの装入割合(1/n)を増加する処置
をとり、また、ガス利用率(ηCO)の値が炉中心部に
おいて20%以下を満足し、かつ、中間部でのηCOの
値が60%以上になるような事態が生じた場合には、高
炉中間部に装入するコークスの装入割合(1/n)を減
らし、図7に実線で示されるようなηCO分布に近付け
る必要がある。
Generally, when the value of the gas utilization rate (ηCO) exceeds 20% in the central part of the furnace, a measure for increasing the charging ratio (1 / n) of coke charged in the middle part of the blast furnace. In the case where the value of the gas utilization rate (ηCO) satisfies 20% or less in the central part of the furnace and the value of ηCO in the middle part becomes 60% or more, It is necessary to reduce the charging ratio (1 / n) of the coke charged in the middle part of the blast furnace, and to approach the ηCO distribution as shown by the solid line in FIG.

【0043】上述のコークスの装入割合(1/n)変更
の操作を行うに当たっては、ガス利用率(ηCO)の値
が上記値を逸脱した状態が、少なくとも8時間経過して
も同様な状態を継続していることが確認された時点で実
施するもので、炉内ガス利用率を測定するためのサンプ
リング誤差、分析誤差等、またはその他の要因の一時的
な変動を考慮し、ηCO値が上記範囲外になったとして
も、直ちにアクションを採ることは好ましくない。逆に
前記時間を経過した後でもなんらのアクションも採らな
いことは、高炉操業に悪影響を及ぼすことに繋がるの
で、これもまた好ましいものではない。
In performing the above-described operation of changing the charging ratio (1 / n) of coke, the state in which the value of the gas utilization rate (ηCO) deviates from the above value remains the same even after at least 8 hours have passed. It is carried out when it is confirmed that the ηCO value is lower than the ηCO value in consideration of the sampling error for measuring the in-furnace gas utilization rate, the analysis error, etc., or the temporary fluctuation of other factors. Even if it falls outside the above range, it is not preferable to take an action immediately. Conversely, not taking any action even after the elapse of the time period described above is not preferable because it would adversely affect the operation of the blast furnace.

【0044】本発明においては炉側壁部(炉周部)周辺
のO/Cを一定範囲に収め、炉内ガス流の炉周部への流
れを確保し、炉内ガス流分布の適正化を図る必要がある
ので、現在稼働中の通常高炉においての実績から、炉壁
から1m以内の炉周部の相対O/C値を特定した。すな
わち、炉周部に装入する装入物のO/Cを全装入物のO
/Cで除した相対的なO/Cを0.4〜1.0の範囲内
とし、望ましくはこの範囲を0.5〜0.8とする。
In the present invention, the O / C around the furnace side wall (furnace periphery) is kept within a certain range, the flow of the gas in the furnace to the furnace periphery is ensured, and the distribution of the gas flow in the furnace is optimized. Therefore, the relative O / C value of the periphery of the furnace within 1 m from the furnace wall was specified based on the results of the currently operating normal blast furnace. That is, the O / C of the charge to be charged around the furnace is changed to the O / C of all charges.
The relative O / C divided by / C is in the range of 0.4 to 1.0, and preferably this range is 0.5 to 0.8.

【0045】すなわち、炉周部のO/C値が1.0を超
えると炉内ガスが炉中心部側に集中し過ぎ、炉周辺部へ
必要とする適切量のガス分散が起こらず、その結果炉壁
へ付着物が生成し、棚落ち、スリップの発生、ひいては
炉の冷え込みを誘発するので好ましくない。一方、炉周
部のO/C値が0.4未満になると、炉内ガスが炉周辺
部へ過剰に分流して炉周辺部の炉熱を上昇せしめ、融着
帯の形状がW型となりその結果、炉壁煉瓦の溶損、羽口
の破損を惹起し、炉況の不安定化させる原因となるので
これまた好ましくない。
That is, when the O / C value in the furnace peripheral portion exceeds 1.0, the gas in the furnace is excessively concentrated at the central portion of the furnace, and a necessary amount of gas dispersion to the peripheral portion of the furnace does not occur. As a result, deposits are formed on the furnace wall, which causes undesired shelving, slippage, and cooling of the furnace. On the other hand, when the O / C value at the furnace periphery is less than 0.4, the gas in the furnace is excessively diverted to the furnace periphery and the furnace heat at the furnace periphery increases, and the shape of the cohesive zone becomes W-shaped. As a result, erosion of the furnace wall brick and breakage of the tuyere are caused, which causes unstable furnace conditions, which is not preferable.

【0046】これら炉周部の相対O/C値が所定の範囲
内に収まっているか否かの判断は、プロフィルメーター
の測定結果によって検知することもできるが、前述した
炉周辺部のガス利用率によっても知ることができる。す
なわち、前記した炉周部(炉壁部)でのηCO値が45
%前・後の値を確保しているときは、炉周部に適量のガ
ス流分布が得られていることが判り、炉周部への鉄鉱石
の装入割合が、適切であることの裏付けともなり、この
値いかんによっては、前記した炉周部の相対O/C値を
本発明の特定した範囲内で上・下させる処置を執り、適
正化を図る必要がある。
The determination as to whether the relative O / C value of the furnace periphery is within a predetermined range can be detected based on the measurement result of the profile meter. You can also know by. That is, the ηCO value at the furnace periphery (furnace wall) is 45%.
When the values before and after% are secured, it is understood that an appropriate amount of gas flow distribution is obtained around the furnace, and that the charging ratio of iron ore into the furnace periphery is appropriate. Depending on this value, depending on this value, it is necessary to take measures to raise and lower the relative O / C value of the furnace peripheral portion within the specified range of the present invention, and to achieve appropriateness.

【0047】[0047]

【実施例】以下、本発明を実際の高炉に適用した実施例
について説明する。操業を行った高炉は内容積3280
3 を有する微粉炭吹き込み実施中の高炉である。表1
に高炉で本発明による装入物の装入パターンと全装入物
でのO/Cを示した。また、本発明の実施による結果は
シャフト上部ゾンデで炉半径方向でのガス利用率を尺度
としてその効果を示した。これらはいずれも7日間同一
装入方法を継続したものであり、表1中の数値はその間
での平均値を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an actual blast furnace will be described below. The operated blast furnace has an inner volume of 3280
This is a blast furnace in which pulverized coal having m 3 is being injected. Table 1
2 shows the charging pattern of the charge according to the present invention in a blast furnace and the O / C of the entire charge. Also, the results of the implementation of the present invention showed the effect of the upper sonde of the shaft on the basis of the gas utilization in the radial direction of the furnace. In each of these cases, the same charging method was continued for 7 days, and the numerical values in Table 1 represent the average values between them.

【0048】[0048]

【表1】 [Table 1]

【0049】実施番号1〜7は装入パターン、につ
いて実施したものであり、実施番号8〜11については
コークスの粒度および低反応性コークスの使用等につい
て実施した。なお、実施番号12については比較のため
に従来例を挙げた。表1から明らかなように、本発明に
よれば良好な融着帯が従来例に比して安定して得られた
結果、高炉操業が安定し、かつ高出銑比を確保すること
ができた。表1から明らかなように、本発明によれば良
好な融着帯が安定して得られ、かつ、炉内ガス流分布が
適切に行われた結果、炉中心部の通気性・通液性が良好
に保たれると同時に、炉周辺部のガス流れも確保され、
高炉操業が安定に維持することができ、高出銑比を得る
ことができた。
Run Nos. 1 to 7 were conducted for charging patterns, and Run Nos. 8 to 11 were performed on the coke particle size and use of low-reactivity coke. As for the execution number 12, a conventional example is given for comparison. As is clear from Table 1, according to the present invention, as a result that a good cohesive zone was obtained more stably than the conventional example, the blast furnace operation was stabilized, and a high tapping ratio could be secured. Was. As is clear from Table 1, according to the present invention, a good cohesive zone was stably obtained, and the gas flow distribution in the furnace was appropriately performed. And gas flow around the furnace is secured,
Blast furnace operation could be maintained stably and a high tapping ratio could be obtained.

【0050】[0050]

【発明の効果】本発明は上記に述べたような装入方法を
採用した結果、高炉操業時における炉半径方向でのガス
流分布を適正かつ確実に形成させることができ、適切な
高炉内融着帯形状を安定して得ることが可能となったた
め、炉芯部と炉周辺部の通気性を常に適正な状態に保つ
ことができる。したがって、炉況に異常をきたすことな
く推移させることができ、高炉操業状況を安定に維持し
つつ高レベルの操業を確保することができる。
According to the present invention, as a result of employing the charging method as described above, the gas flow distribution in the radial direction of the furnace during the operation of the blast furnace can be properly and reliably formed, and the appropriate melting in the blast furnace can be achieved. Since the dressing shape can be obtained stably, the air permeability of the furnace core and the periphery of the furnace can always be kept in an appropriate state. Therefore, it is possible to change the furnace condition without causing an abnormality, and it is possible to secure a high-level operation while maintaining the operation condition of the blast furnace stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による高炉への装入物の装入初期の状態
を示した図。
FIG. 1 is a diagram showing an initial state of charging a charge into a blast furnace according to the present invention.

【図2】本発明の装入方法によって得られた装入物の装
入層の状態を示した図。
FIG. 2 is a view showing a state of a charged layer of a charged material obtained by a charging method of the present invention.

【図3】高炉内での逆V型融着帯の例を示した図。FIG. 3 is a view showing an example of an inverted V-type cohesive zone in a blast furnace.

【図4】通常の高炉装入における鉄鉱石層とコークス層
の形状を示した図。
FIG. 4 is a diagram showing shapes of an iron ore layer and a coke layer in a normal blast furnace charging.

【図5】炉中心部の上昇ガス流が大きい場合の炉中心部
の装入コークスの状態を模式的に示した図。
FIG. 5 is a diagram schematically showing the state of charged coke in the center of the furnace when the rising gas flow in the center of the furnace is large.

【図6】炉頂ホッパーでの装入物の貯留状態を示した
図。
FIG. 6 is a diagram showing a state of storing a charge in a furnace top hopper.

【図7】ベルレス高炉における高炉半径方向でのガス利
用率(ηCO)の分布状態を示した図。
FIG. 7 is a diagram showing a distribution state of a gas utilization rate (ηCO) in a blast furnace radial direction in a bellless blast furnace.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 ベルレス高炉における装入物の高炉内装
入に際し、旋回シュートを介し最終装入コークスを高炉
の炉口半径方向の炉中間部に装入堆積せしめ、次いで、
該旋回シュートにより鉄鉱石を装入堆積せしめたコーク
スの外側と高炉炉壁間に、炉周部の特定した相対O/C
値を満たすように装入することを特徴とする高炉中心部
への装入物装入方法。
When charging a charge in a bellless blast furnace into a blast furnace, a final charge coke is charged and deposited at a furnace intermediate portion of a blast furnace in a furnace port radial direction through a swirling chute.
The specified relative O / C at the periphery of the furnace is located between the outside of the coke in which iron ore is charged and deposited by the swirling chute and the blast furnace wall.
A method for charging a charge into the center of a blast furnace, wherein the charge is performed so as to satisfy the value.
【請求項2】 ベルレス高炉における装入物の高炉内装
入に際し、高炉直上の炉頂ホッパー内へ下部にコークス
を投入後、次いでその上部に鉄鉱石を投入し、該炉頂ホ
ッパー内でコークスと鉄鉱石を層状に貯留後、遮断弁を
開放し旋回シュートを介して下部貯留コークスの大半を
高炉の炉口半径方向の炉中間部に装入堆積せしめた後、
該旋回シュートを装入堆積せしめたコークスの外側と高
炉炉壁間に移行し、上部貯留鉄鉱石を炉周部の特定した
相対O/C値を満たすように装入することを特徴とする
高炉中心部への装入物装入方法。
2. When charging the charge in the bellless blast furnace into the blast furnace interior, coke is charged into a lower part of the furnace top hopper immediately above the blast furnace, and then iron ore is charged into the upper part thereof, and coke is mixed with the coke in the furnace top hopper. After storing the iron ore in layers, open the shut-off valve and charge and deposit most of the lower storage coke into the furnace middle part of the blast furnace through the swirl chute,
The blast furnace is characterized in that the swirling chute is transferred between the outside of the charged coke and the blast furnace wall, and the upper stored iron ore is charged so as to satisfy a specified relative O / C value at the periphery of the furnace. How to load the charge into the center.
【請求項3】 前記請求項1または請求項2において、
最終コークスを装入する炉中間部は、高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.8の範囲としたことを特徴とする高炉中心部への
装入物装入方法。
3. The method according to claim 1, wherein
The middle part of the furnace where the final coke is charged is in the radial direction of the blast furnace furnace port, and is 0.2 mm from the furnace center to the furnace wall with respect to the furnace port radius.
A method for charging a charge into the center of a blast furnace, characterized in that the range is from 0.8 to 0.8.
【請求項4】 前記請求項1または請求項2において、
最終コークスを装入する炉中間部は、高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.6の範囲としたことを特徴とする高炉中心部への
装入物装入方法。
4. The method according to claim 1, wherein
The middle part of the furnace where the final coke is charged is in the radial direction of the blast furnace furnace port, and is 0.2 mm from the furnace center to the furnace wall with respect to the furnace port radius.
A method for charging a charge into the center of a blast furnace, characterized in that the range is from 0.6 to 0.6.
【請求項5】 前記最終コークス装入後の鉄鉱石の装入
は、コークス堆積部外側部から高炉炉壁側へ向け順次装
入することを特徴とする請求項1ないし請求項4のいず
れかに記載の高炉中心部への装入物装入方法。
5. The iron ore charged after the final coke charging is charged sequentially from the outer side of the coke depositing section toward the blast furnace wall side. 2. A method for charging a charge into the center of a blast furnace according to the item 1.
【請求項6】 前記炉中間部へ装入する最終コークス
は、その粒径を大にして高炉内へ装入することを特徴と
する請求項1ないし請求項5のいずれかに記載の高炉中
心部への装入物装入方法。
6. The blast furnace center according to claim 1, wherein the final coke charged into the furnace intermediate portion is charged into a blast furnace with a large particle size. How to load the parts into the department.
【請求項7】 前記炉中間部に装入する最終コークス
は、その反応性を低反応性に変更して高炉内へ装入する
ことを特徴とする請求項1ないし請求項6のいずれかに
記載の高炉中心部への装入物装入方法。
7. The method according to claim 1, wherein the reactivity of the final coke charged into the furnace middle part is changed to a low reactivity and charged into a blast furnace. The method for charging the charge into the center of the blast furnace described in the above.
【請求項8】 前記炉中間部へ装入するコークスは、高
炉炉頂部の炉内半径方向のガス利用率の値によって、コ
ークス装入割合(1/n)を調整制御することを特徴と
する請求項1ないし請求項7のいずれかに記載の高炉中
心部への装入物装入方法。
8. The coke charging ratio (1 / n) of the coke charged into the middle part of the furnace is controlled by adjusting the gas utilization rate in the radial direction in the furnace at the top of the blast furnace. A method for charging a charge into a central part of a blast furnace according to any one of claims 1 to 7.
【請求項9】 前記請求項8において、ガス利用率(η
CO)の値が炉中心部において20%を超えた場合に
は、高炉中間部へ装入するコークス装入割合(1/n)
を増加することを特徴とする高炉中心部への装入物装入
方法。
9. The gas utilization ratio (η) according to claim 8,
When the value of (CO) exceeds 20% in the central part of the furnace, the coke charging ratio (1 / n) charged into the middle part of the blast furnace.
A method for charging a charge into the center of a blast furnace, characterized by increasing the amount of charge.
【請求項10】 前記請求項8において、ガス利用率
(ηCO)の値が炉中心部において20%以下を満足
し、かつ、炉中間部でのηCOの値が60%以上になっ
た場合には、高炉中間部へ装入するコークス装入割合
(1/n)を減ずることを特徴とする高炉中心部への装
入物装入方法。
10. The method according to claim 8, wherein the value of the gas utilization rate (ηCO) satisfies 20% or less in the central part of the furnace and the value of ηCO in the middle part of the furnace becomes 60% or more. Is a method for charging a charged material into a central portion of a blast furnace, wherein a charging ratio (1 / n) of coke charged into an intermediate portion of the blast furnace is reduced.
【請求項11】 前記ガス利用率(ηCO)の値が請求
項9または請求項10に定めた値を逸脱した状態が、少
なくとも8時間経過した場合には、高炉中間部へ装入す
るコークス装入割合(1/n)の増減を行うことを特徴
とする高炉中心部への装入物装入方法。
11. When at least 8 hours have passed after the value of the gas utilization rate (ηCO) has deviated from the value defined in claim 9 or 10, the coke charging device to be charged into the intermediate portion of the blast furnace. A method for charging a charge into the center of a blast furnace, wherein the charge ratio (1 / n) is increased or decreased.
【請求項12】 前記鉄鉱石の装入において、炉周部の
相対O/C値を0.4〜1.0としたことを特徴とする
請求項1または請求項2記載の高炉中心部への装入物装
入方法。
12. The blast furnace center according to claim 1, wherein, in charging the iron ore, a relative O / C value of a furnace periphery is set to 0.4 to 1.0. How to charge the charge.
【請求項13】 前記請求項12において、炉壁部での
ガス利用率を目安とし、炉周部の相対O/C値の範囲内
でその値を上・下させることを特徴とする高炉中心部へ
の装入物装入方法。
13. The blast furnace center according to claim 12, wherein the gas utilization rate at the furnace wall is used as a guide and the value is raised or lowered within the range of the relative O / C value of the furnace periphery. How to load the parts into the department.
JP01270999A 1998-01-23 1999-01-21 How to charge the blast furnace center Expired - Lifetime JP3787240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01270999A JP3787240B2 (en) 1998-01-23 1999-01-21 How to charge the blast furnace center

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2516198 1998-01-23
JP10-25161 1998-10-09
JP01270999A JP3787240B2 (en) 1998-01-23 1999-01-21 How to charge the blast furnace center

Publications (2)

Publication Number Publication Date
JPH11269513A true JPH11269513A (en) 1999-10-05
JP3787240B2 JP3787240B2 (en) 2006-06-21

Family

ID=26348353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01270999A Expired - Lifetime JP3787240B2 (en) 1998-01-23 1999-01-21 How to charge the blast furnace center

Country Status (1)

Country Link
JP (1) JP3787240B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279308A (en) * 2000-03-30 2001-10-10 Nippon Steel Corp Method for operating blast furnace using metallic iron- based raw material
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace
KR20040042539A (en) * 2002-11-14 2004-05-20 주식회사 포스코 A method for controlling heat load of stave in furnace
KR100800541B1 (en) * 2001-07-11 2008-02-04 주식회사 포스코 Blast furnace lower part belly activation operation method of Stave cooling form

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279308A (en) * 2000-03-30 2001-10-10 Nippon Steel Corp Method for operating blast furnace using metallic iron- based raw material
JP4585075B2 (en) * 2000-03-30 2010-11-24 新日本製鐵株式会社 Blast furnace operation method using metallic iron-based raw materials
KR100368268B1 (en) * 2000-12-20 2003-01-24 주식회사 포스코 Method for preventing from big scab formation at the bosh and belly of all stave cooled blast furnace
KR100800541B1 (en) * 2001-07-11 2008-02-04 주식회사 포스코 Blast furnace lower part belly activation operation method of Stave cooling form
KR20040042539A (en) * 2002-11-14 2004-05-20 주식회사 포스코 A method for controlling heat load of stave in furnace

Also Published As

Publication number Publication date
JP3787240B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
EP2851435B1 (en) Method for charging starting material into blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
KR101630279B1 (en) Method for loading raw material into blast furnace
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP4114626B2 (en) Blast furnace operation method
JPH11269513A (en) Charging of charging material into center part of blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JP2002003910A (en) Method for operating blast furnace
JP2000204406A (en) Charging of charging material into center part of blast furnace
JP2000160214A (en) Method for charging material to be charged into center part of blast furnace
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JPH11209806A (en) Method for charging material to be charged into center of blast furnace
JP2000273508A (en) Method for strengthening center gas flow in blast furnace
KR100376480B1 (en) Burden distribution control method in blast furnace by using coke
JP6558519B1 (en) Raw material charging method for blast furnace
JPH11217605A (en) Method for charging charging material into blast furnace
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JP3835041B2 (en) Blast furnace raw material charging method
JP2000273507A (en) Method for strengthening center gas flow in blast furnace
JPH11217604A (en) Method for charging charging material into blast furnace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term