JPH11209806A - Method for charging material to be charged into center of blast furnace - Google Patents

Method for charging material to be charged into center of blast furnace

Info

Publication number
JPH11209806A
JPH11209806A JP2516298A JP2516298A JPH11209806A JP H11209806 A JPH11209806 A JP H11209806A JP 2516298 A JP2516298 A JP 2516298A JP 2516298 A JP2516298 A JP 2516298A JP H11209806 A JPH11209806 A JP H11209806A
Authority
JP
Japan
Prior art keywords
furnace
charged
blast furnace
coke
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2516298A
Other languages
Japanese (ja)
Other versions
JP3787231B2 (en
Inventor
Morimasa Ichida
守政 一田
Hiroshi Oda
博史 織田
Yoshio Okuno
嘉雄 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP02516298A priority Critical patent/JP3787231B2/en
Publication of JPH11209806A publication Critical patent/JPH11209806A/en
Application granted granted Critical
Publication of JP3787231B2 publication Critical patent/JP3787231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a charging method of a material to be charged into a blast furnace in order to execute the smooth blast furnace operation by forming stable fusion zone even in the case of changing the condition in the furnace accompanied with the variation of the quality and the producing quantity of a pig iron produced from the blast furnace. SOLUTION: At the time of charging the material to be charged into the bell-less blast furnace, coke is charged and piled from the furnace wall side to the intermediate portion through a swinging chute or after charging iron ore into the lower part in a furnace top hopper just above the blast furnace, successively, the coke is charged on the upper part thereof. Then, after storing the iron ore and the coke in the furnace top hopper layer by layer, the charge of the iron ore is started from the furnace wall side and the coke is charged and piled to the intermediate portion in the blast furnace while shifting the swinging chute into the center direction of the blast furnace in order. Successively, the iron ore is charged in order onto the upper part of the charged material piling layer from the furnace wall side to the position which does not exceed the lower part charged material piling layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉により生産さ
れる銑鉄の品質ならびに生産量の変動に伴う炉内状況の
変化に対しても安定な融着帯を形成し、円滑な高炉操業
を行うための融着帯形状を形成するのに適した高炉中心
部への装入物装入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a cohesive zone that is stable against changes in the furnace conditions due to variations in the quality and production of pig iron produced by a blast furnace, and performs a smooth blast furnace operation. For charging a charge to the center of a blast furnace, which is suitable for forming a cohesive zone shape.

【0002】[0002]

【従来の技術】高炉における主な制御手段は装入物分布
制御と送風制御の二つがある。送風制御によりレースウ
ェイ条件(レースウェイ形状、レースウェイ内温度分
布、レースウェイ内ガス組成分布ほか)が決まるが、装
入物分布制御は、高炉内の反応伝熱を左右するガス流分
布、融着帯の形状を決める唯一の手段であるため、最も
よく用いられかつ最も重要な制御手段である。
2. Description of the Related Art There are two main control means in a blast furnace: charge distribution control and blowing control. The raceway conditions (raceway shape, raceway temperature distribution, raceway gas composition distribution, etc.) are determined by the ventilation control, but the charge distribution control is based on the gas flow distribution, melting, which affects the reaction heat transfer in the blast furnace. It is the most commonly used and most important control because it is the only means of determining the shape of the garment.

【0003】一般に高炉は高炉炉頂部より鉄鉱石、焼結
鉱、ペレット(以下、単に鉄鉱石と称す)と、コークス
を交互に装入し、炉下部の送風羽口(以下、単に羽口と
称す)より熱風を吹き込んで操業を行っている。高炉に
おいては、羽口先端部分でコークスと熱風との反応によ
り生じたCOガスを含む高温の炉内ガスで、前記鉄鉱石
を炉内降下中に加熱−還元(間接還元)−溶融する。さ
らに、鉄鉱石の溶融物を滴下中に滴下帯部に存在するコ
ークスで還元(直接還元)しつつ湯溜り部に集め、適
時、出銑口より炉外に排出する。この鉄鉱石は溶融滴下
する直前に軟化融着状態(以下、単に融着帯と称する)
となり、コークスを挟んで炉内に存在している。
In general, a blast furnace is charged with iron ore, sintered ore, pellets (hereinafter simply referred to as iron ore) and coke alternately from the top of the blast furnace, and a blowing tuyere (hereinafter simply referred to as a tuyere) at the lower part of the furnace. Operation). In the blast furnace, the iron ore is heated, reduced (indirectly reduced) and melted during the descent in the furnace by a high-temperature furnace gas containing CO gas generated by a reaction between coke and hot air at the tuyere tip. Further, the molten iron ore is collected in the basin while being reduced (directly reduced) by coke existing in the dropping zone during the dropping, and is discharged from the taphole to the outside of the furnace at an appropriate time. This iron ore is in a softened and fused state immediately before being dropped and melted (hereinafter simply referred to as a cohesive zone).
And exists in the furnace with coke in between.

【0004】このように、高炉内においては、装入した
鉄鉱石が塊の状態にある塊状帯部、軟化融着した状態に
ある融着帯、溶融滴下状態にある滴下帯部が存在してお
り、前記炉内ガスは羽口先端部よりこの滴下帯部、融着
帯、塊状帯部を順次通って炉外に流出している。この三
者の通気抵抗は融着帯が最も大きく、次いで塊状帯部で
あり、滴下帯部が最も小さくなっている。したがって、
融着帯の形状によって塊状帯部と滴下帯部の形状も異な
り、炉内の通気性およびガス利用率が異なったものとな
る。
[0004] As described above, in the blast furnace, there are a lump zone in which the charged iron ore is in a lump state, a fusion zone in a softened and fused state, and a dripping zone in a molten and dripped state. The in-furnace gas flows out of the furnace from the tip of the tuyere through the dripping zone, the cohesive zone, and the massive zone sequentially. The airflow resistance of the three members is the largest in the cohesive zone, followed by the massive band, and the smallest in the dripping band. Therefore,
Depending on the shape of the cohesive zone, the shape of the lump zone and the shape of the dripping zone also differ, resulting in different gas permeability and gas permeability inside the furnace.

【0005】例えば、融着帯の頂部が高くなるいわゆる
中心流型融着帯においては、塊状帯部が狭くなる反面、
滴下帯部が広くなるので通気性は良好となると同時に、
炉内ガスが炉心部を常時流れてガス流が安定化するため
にガス利用率も高位のレベルに維持できる。また、融着
帯頂部が低くなる、いわゆるフラット型融着帯において
は、塊状帯部が広くなる反面、滴下帯部が狭くなるので
通気性は悪くなると同時に、炉内ガスが偏流する可能性
があり、ガス利用率が低下する場合もある。この通気性
およびガス利用率は生産性および燃料比に深い関係を有
するものであり、高炉操業中に該融着帯の位置および形
状を検知し、これによって融着帯を最適制御すれば、通
気性およびガス利用率を調節することができ、生産性の
増大、燃料比の節減を図ることができる。
For example, in a so-called central flow type fusion zone in which the top of the fusion zone is high, the lump belt is narrow,
As the drip band part becomes wider, the air permeability becomes good,
Since the gas inside the furnace always flows through the core and the gas flow is stabilized, the gas utilization can be maintained at a high level. In addition, in the so-called flat type cohesive zone in which the top of the cohesive zone is low, the lump zone is widened, but the dripping zone is narrow, so that the air permeability is deteriorated and the possibility that the gas in the furnace is drifted. Yes, the gas utilization may decrease. The permeability and the gas utilization rate have a deep relationship with the productivity and the fuel ratio. If the position and the shape of the cohesive zone are detected during the operation of the blast furnace and the cohesive zone is optimally controlled by this, the ventilation rate is improved. The efficiency and gas utilization can be adjusted, and the productivity can be increased and the fuel ratio can be reduced.

【0006】このような高炉内での融着帯の制御方法と
しては、幾つかの発明が開示されているが、例えば特公
昭63−61367号公報に提示されている技術によれ
ば、高炉の炉腹部あるいはそれ以下の部分から炉内に1
個または複数個のゾンデを挿通し、該ゾンデから得られ
るガス体および固体温度、ガス組成の実測値から融着帯
の上側および下側の位置を求めるとともに、該融着帯の
位置が高炉操業上最適な位置を占めるように、高炉の半
径方向の鉄鉱石層厚とコークス層厚の比(O/C)の分
布および粒度分布を制御することを特徴としている。
Several inventions have been disclosed as a method for controlling the cohesive zone in such a blast furnace. For example, according to the technique disclosed in Japanese Patent Publication No. 63-61367, a method for controlling a blast furnace is disclosed. 1 into the furnace from the furnace abdomen or below
One or a plurality of sondes are inserted, and the upper and lower positions of the cohesive zone are determined from the measured values of the gas and solid temperatures and gas composition obtained from the sonde. The distribution of the ratio of the iron ore layer thickness to the coke layer thickness (O / C) and the particle size distribution in the radial direction of the blast furnace are controlled so as to occupy the uppermost position.

【0007】すなわち、融着帯の制御として高炉へ装入
する鉄鉱石とコークスのO/Cの分布を制御することに
よって適切な融着帯を得ることができるとされており、
その理由として、鉄鉱石層はコークス層に比べて粒子径
および層の空間率が小さいので、高炉の半径方向のうち
で鉄鉱石層厚が相対的に厚い部分ではガスの通気性は悪
く、そのためその部分を流れるガス流速、ガス流量が低
下する。ガス流量の低下はいろいろな面に影響を及ぼ
し、伝熱に関しては単位断面積を流れるガス顕熱量の低
下、固体物質への伝熱性の悪化をもたらす。反応に関し
ては、鉄鉱石を還元するのに充分なガス量が供給されな
いために還元ガスの濃度が低下し、還元推進力が弱まる
ことから、還元率の相対的低下をもたらす。以上のこと
から、半径方向でO/Cの高い部分は還元率の低下、ガ
ス体および固体温度の低下をもたらす。
That is, it is said that an appropriate cohesive zone can be obtained by controlling the O / C distribution of iron ore and coke charged into the blast furnace as control of the cohesive zone.
The reason is that the iron ore layer has a smaller particle diameter and a smaller voidage of the layer than the coke layer, so gas permeability is poor in the relatively thick part of the iron ore layer in the radial direction of the blast furnace. The gas flow rate and gas flow rate flowing through that portion decrease. The decrease in the gas flow rate affects various aspects, and in terms of heat transfer, the amount of sensible heat flowing through the unit cross-sectional area decreases, and the heat transfer to solid substances deteriorates. Regarding the reaction, the concentration of the reducing gas is reduced because the amount of gas that is sufficient to reduce the iron ore is not supplied, and the reduction driving force is weakened, resulting in a relative reduction in the reduction rate. From the above, the portion where the O / C is high in the radial direction causes a reduction in the reduction rate and a reduction in the temperature of the gas and the solid.

【0008】したがって、例えば中心部で高い融着帯を
実現するためには炉下部の中心部に充分な熱を供給する
ことが必要である。そのためには炉中心部にガスの供給
を増加する操作、すなわち中心部のO/Cを小さくする
ことが必要であり、また周辺部で高い融着帯を実現する
ためには同様な理由から、周辺部のO/Cを小さくする
操作が必要であると述べられている。
Therefore, for example, in order to realize a high cohesive zone at the center, it is necessary to supply sufficient heat to the center of the lower part of the furnace. For that purpose, it is necessary to increase the supply of gas to the central part of the furnace, that is, to reduce the O / C in the central part, and to realize a high cohesive zone in the peripheral part for the same reason. It is stated that an operation for reducing the O / C of the peripheral portion is necessary.

【0009】しかし、従来法における通常の高炉装入物
の装入方法に従えば、例えば図4に示すように、コーク
ス(C)と鉄鉱石(O)とを順次層状に装入すると炉中
心部においては、鉄鉱石の装入層の厚みが厚くコークス
装入層の厚みが薄くなる傾向を避けることはできない。
これは鉄鉱石の安息角がコークスの安息角に比べて小さ
く、かつ鉄鉱石とコークスの嵩密度が大きく異なり、均
一に装入されたコークスを鉄鉱石装入時に鉄鉱石が削り
込み、勢い炉中心部において鉄鉱石層が必然的に厚くな
る現象を生じるためである。したがって、炉中心におい
ては炉下部から供給されるガスの流れが、炉中心部の鉄
鉱石層の厚い部分では通気性が悪くなり、その結果ガス
はガス流れが比較的容易な炉周辺部に向かいその部分を
流れることになる。
However, according to the conventional method of charging a blast furnace charge in a conventional method, as shown in FIG. 4, for example, when coke (C) and iron ore (O) are charged sequentially in layers, the furnace center is charged. In the part, the tendency that the thickness of the charged bed of iron ore is large and the thickness of the charged bed of coke is small cannot be avoided.
This is because the iron ore has a smaller angle of repose than the coke, and the bulk density of the iron ore and the coke is significantly different. This is because the iron ore layer inevitably becomes thicker at the center. Therefore, at the center of the furnace, the gas flow supplied from the lower part of the furnace has poor air permeability in the thick part of the iron ore layer at the center of the furnace, and as a result, the gas flows toward the periphery of the furnace where the gas flow is relatively easy. It will flow through that part.

【0010】このような装入物の分布状態に対して高炉
中心部のみにコークスを特別の手段によって装入し、炉
中心部にチムニー状のコークス堆積状態を積極的に保持
せしめようとする技術が例えば特公平6−37649号
に開示されている。該公報に記載された技術を高炉操業
に適用すれば、炉中心部にコークスのチムニーを容易に
作ることができるはずであるが、後述するように高炉の
実操業においては一旦作られたチムニー状のコークス層
では通気性が過大となり、下方向からの上昇ガス流が強
すぎてチムニー状に堆積しようとするコークスを吹き上
げ、図5に模式的に示すようにコークスが周辺部に飛散
し、実際には目的とするコークス中心部装入の効果は意
外に少ない状態にあるものと判断される。
[0010] A technique for charging coke only to the central portion of the blast furnace by special means in order to maintain the chimney-like coke deposited state in the central portion of the furnace with respect to such a distribution state of the charged material. Is disclosed, for example, in Japanese Patent Publication No. 6-37649. If the technology described in the publication is applied to blast furnace operation, it should be possible to easily produce a coke chimney in the center of the furnace. In the coke layer, the air permeability becomes excessive, and the rising gas flow from the downward direction is too strong to blow up the coke that is going to be deposited in a chimney shape, and the coke is scattered around as shown schematically in FIG. Therefore, it is determined that the effect of charging the target coke center is surprisingly small.

【0011】[0011]

【発明が解決しようとする課題】前記したように、融着
帯の適切な形状については知られており、例えば図3に
示すように、融着帯を中心部が高い逆V型にすること
が、現状の高炉操業を行う上で理想的な形状とされてい
る。この形状を得るためには上記したように、炉中心部
のO/Cを小さくする必要があり、これは言い換えると
炉中心部のコークス量ができるだけ多くなるような装入
物の装入方法が好ましいと言うことである。
As described above, it is known that the shape of the cohesive zone is appropriate. For example, as shown in FIG. However, the shape is ideal for the current blast furnace operation. As described above, in order to obtain this shape, it is necessary to reduce the O / C at the center of the furnace. In other words, there is a method of charging the charge such that the coke amount at the center of the furnace is as large as possible. It is preferable.

【0012】実際の高炉における装入物(鉄鉱石、コー
クス等)の装入分布状態、すなわち適切なO/Cを保つ
ための高炉半径方向での分布状態を得るためには、それ
に適した装入設備が必要となる。しかし、ベルレス高炉
においては、上記の調整を実施しようと思えば、旋回シ
ュートの傾動角を広範囲に動かす必要があり、そのた
め、高出銑比の操業条件下では、装入物を炉内に装入す
るのに時間が長くかかり過ぎるという問題が生じ、所望
のO/C分布を炉半径方向で作り込めない状況が起こる
こともあった。
In order to obtain the distribution state of the charged materials (iron ore, coke, etc.) in the actual blast furnace, that is, the distribution state in the radial direction of the blast furnace in order to maintain an appropriate O / C, appropriate charging is performed. Equipment is required. However, in the case of the bellless blast furnace, the tilting angle of the swivel chute must be moved over a wide range in order to carry out the above adjustment, so that the charge is loaded into the furnace under the operating conditions with a high tapping ratio. There is a problem that it takes too long to enter, and a situation may occur in which a desired O / C distribution cannot be created in the furnace radial direction.

【0013】また前述のように、炉中心部へのコークス
装入は炉中心部を上昇するガス流の影響を受けるので、
その対応策も考慮したうえで適切な装入方法を採用しな
ければ、目的とする効果が得られない惧れがあり、これ
らのことを総括したうえで、従前の装入設備によって簡
便容易に上記した如きO/Cの炉半径方向での分布状態
を得ることができる装入技術についての開発が強く要望
されていた。
As described above, the charging of coke into the center of the furnace is affected by the gas flow rising in the center of the furnace.
If appropriate charging methods are not adopted in consideration of the countermeasures, the intended effects may not be obtained.After summarizing these matters, the conventional charging equipment can be used simply and easily. There has been a strong demand for the development of a charging technique capable of obtaining the distribution of O / C in the furnace radial direction as described above.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記手段にある。 (1)ベルレス高炉における装入物の高炉内装入に際
し、旋回シュートを介しコークスを高炉炉壁側から中間
部位まで装入堆積せしめ、次いで、装入堆積コークスの
上部に鉄鉱石を炉壁側からコークス堆積部を越えない位
置まで順次装入する高炉中心部への装入物装入方法。 (2)ベルレス高炉における装入物の高炉内装入に際
し、高炉直上の炉頂ホッパー内の下部に鉄鉱石を投入
後、次いでその上部にコークスを投入し、該炉頂ホッパ
ー内で鉄鉱石とコークスを層状に貯留後、遮断弁を開放
し旋回シュートを介して高炉壁側から鉄鉱石の装入を開
始し、旋回シュートを順次高炉中心方向へ移動させなが
ら高炉中間部位でコークスの装入を完了させ、次いで該
装入物堆積層の上部に鉄鉱石を炉壁側から下部装入物堆
積層を越えない位置まで順次装入する高炉中心部への装
入物装入方法。
The gist of the present invention lies in the following means. (1) When charging the charged material in the bellless blast furnace into the blast furnace, coke is charged and deposited from the blast furnace wall side to the intermediate portion through a swirling chute, and then iron ore is placed on the upper part of the charged coke from the furnace wall side. A method of charging the charged material into the center of the blast furnace, where the charged material is sequentially charged to a position that does not exceed the coke deposition portion. (2) When charging the charge in the bellless blast furnace into the blast furnace, iron ore is charged into the lower part of the furnace top hopper immediately above the blast furnace, and then coke is charged into the upper part, and iron ore and coke are charged in the furnace hopper. After storing the gas in a layer, the shut-off valve is opened and charging of iron ore is started from the blast furnace wall side via the swirling chute, and charging of coke is completed at the middle part of the blast furnace while moving the swirling chute sequentially toward the center of the blast furnace. Then, iron ore is sequentially charged from the furnace wall side to a position not exceeding the lower charge deposit layer on the upper portion of the charge deposit layer.

【0015】(3)前記(1)または(2)において、
コークスの装入停止する中間部位を高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.4の範囲とした高炉中心部への装入物装入方法。 (4)高炉中間部側に装入するコークスは、その粒径を
変更して炉内へ装入する(1)ないし(3)のいずれか
に記載の高炉中心部への装入物装入方法。 (5)高炉中間部側に装入するコークスは、その反応性
を低反応性に変更して高炉内へ装入する(1)ないし
(4)のいずれかに記載の高炉中心部への装入物装入方
法。
(3) In the above (1) or (2),
The intermediate part where the charging of coke is stopped is located in the radial direction of the blast furnace mouth, and 0.2 mm from the furnace center to the furnace wall with respect to the furnace mouth radius.
A method for charging the charge into the center of the blast furnace having a range of ~ 0.4. (4) The coke charged into the middle part of the blast furnace is charged into the furnace with the particle size changed, and charged into the center of the blast furnace according to any one of (1) to (3). Method. (5) The coke charged into the middle part of the blast furnace is charged into the blast furnace with the reactivity changed to low reactivity and charged into the blast furnace according to any one of (1) to (4). Packing method.

【0016】[0016]

【発明の実施の形態】本発明者らが高炉における装入物
の装入状態を考察したところでは、前述したように高炉
中心部に装入されるコークスはその比重が軽く、かつ嵩
密度が小さいため炉下部からの上昇ガス流によって吹き
上げられ飛散するので、その間隙部に比重の重い鉄鉱石
が流れ込み(鉄鉱石は安息角が小さいので容易)、炉中
心部に所望とするコークスの堆積層を得るには多くの困
難性が伴うことが判明した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have studied the state of charging of a charge in a blast furnace. As described above, the coke charged in the center of the blast furnace has a low specific gravity and a low bulk density. Because of its small size, it is blown up and scattered by the ascending gas flow from the bottom of the furnace, and iron ore with a high specific gravity flows into the gap (iron ore has a small angle of repose, so it is easy) and the desired coke deposition layer Has been found to involve many difficulties.

【0017】そこで本発明者らは高炉内融着帯の制御に
おいて、高炉装入物中の高炉半径方向でのO/Cを適切
な分布状態に調整するために、特別の装入装置を要せず
従来の装入物装入装置を用いて行うべく鋭意研究・検討
を重ねた結果、ベルレス高炉においては、炉内への装入
物中コークスの装入位置を適切な範囲に調整することに
よって、上記問題点の解決を容易に図ることができると
の知見を得ることができた。
Therefore, the present inventors require a special charging device for controlling the cohesive zone in the blast furnace in order to adjust the O / C in the blast furnace radial direction in the blast furnace charge to an appropriate distribution state. As a result of intensive studies and studies to perform using the conventional charging equipment without using the conventional charging equipment, in the bellless blast furnace, the charging position of coke in the charging equipment into the furnace should be adjusted to an appropriate range. Thereby, the knowledge that the above-mentioned problem can be easily solved was obtained.

【0018】すなわち、コークス装入位置の適正化につ
いて種々の実験を行い、多くの試行錯誤を重ねた結果、
コークスの装入を炉壁側から行い、炉中間部位の適当な
位置で装入を終えコークスの堆積層を作り、その上部に
鉄鉱石を装入することによって、堆積したコークス層を
鉄鉱石の炉心方向への流れ込みを利用し、該堆積コーク
スを炉中心部へ押し込み、炉中心部にコークスを主体と
したチムニー状のコークス層を形成せしめることができ
るとの見通しを得、本発明を完成するに至った。
That is, as a result of conducting various experiments on the optimization of the coke charging position and repeating many trials and errors,
The coke is charged from the furnace wall side, the charging is completed at an appropriate position in the middle part of the furnace, a coke deposition layer is formed, and iron ore is charged above the coke deposition layer, so that the deposited coke layer is removed from the iron ore. By utilizing the inflow in the core direction, the deposited coke is pushed into the furnace center, and it is expected that a chimney-like coke layer mainly composed of coke can be formed in the furnace center, and the present invention is completed. Reached.

【0019】以下、本発明を図面に基づいて詳細に説明
する。図1および2は本発明装入方法によって装入され
た装入物を模式的に示したもので、図1において、コー
クス(C)を炉壁側から装入し炉中心部に達する前の炉
半径方向で炉口半径に対して0.2〜0.4の範囲の炉
中間部位で装入を停止する。しかる後、装入堆積コーク
ス上に鉄鉱石(O)を炉壁側から順次装入して行き、先
に装入した炉中間部位に存在するコークス(C)の堆積
部位を越えない位置で鉄鉱石(O)の装入を終了する。
かくした装入を行うことにより、堆積されているコーク
ス(C)は鉄鉱石(O)の炉中心部方向への流れ込みに
より、上方より炉中心方向へ押し込まれ、図2に示した
ような装入物の分布状態が得られる。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIGS. 1 and 2 schematically show the charged material charged by the charging method of the present invention. In FIG. 1, before the coke (C) is charged from the furnace wall side and reaches the furnace center part. The charging is stopped at a furnace intermediate portion in the range of 0.2 to 0.4 with respect to the furnace opening radius in the furnace radial direction. Thereafter, the iron ore (O) is sequentially charged from the furnace wall side onto the charged sedimentary coke, and the iron ore (O) is charged at a position that does not exceed the deposition site of the coke (C) existing in the furnace intermediate part previously charged. The charging of the stone (O) ends.
By performing the charging as described above, the deposited coke (C) is pushed into the furnace from above by the iron ore (O) flowing toward the furnace center, and is charged as shown in FIG. The distribution of the inputs is obtained.

【0020】すなわち、炉中心部には装入コークス層の
流動化コークス(前記したように炉中心部に存在するコ
ークスは絶えず炉中心を上昇するガス流によって舞い上
がり、上昇・降下を繰り返すので流動化された状態とな
っている)と鉄鉱石との混合した混合物が堆積された状
態となる。このような装入物層を確保できれば、炉中心
部に所望の通気性の良好なチムニーが炉中心部に形成さ
れるので、目的とする融着帯を容易に得ることができ
る。
That is, fluidized coke of the charged coke layer is placed in the furnace center (as described above, the coke existing in the furnace center constantly rises and rises and falls due to the gas flow rising up the furnace center, so that fluidization occurs. ) And iron ore in a deposited state. If such a charge layer can be ensured, a desired chimney with good air permeability is formed at the furnace center in the furnace center, so that the target cohesive zone can be easily obtained.

【0021】なお、本発明においては本発明者らが先に
発明し、特願平9−341971号にて既に出願してい
る「高炉への装入物装入方法」を本発明に適用すること
も本発明の主旨から当然可能である。すなわち該発明の
要旨は、「ベルレス高炉における装入物の高炉内装入に
際し、高炉直上の炉頂ホッパー内へ下部に鉄鉱石を投入
後、次いでその上部にコークスを投入し、該炉頂ホッパ
ー内で鉄鉱石とコークスを層状に貯留後、遮断弁を開放
し旋回シュートを介して装入物を高炉内へ装入すること
を特徴とする高炉への装入物装入方法」にあるので、図
6に示すように炉頂ホッパーに貯留された下部鉄鉱石を
炉壁側から順次炉中心方向へ装入を継続し、炉中間部位
でコークスの装入を終えることによって前記したと同様
に、次回に装入される鉄鉱石によって中間部位に堆積さ
れたコークスが炉中心部への押し込まれるので、同様の
効果が得られる。この場合、炉頂ホッパーに貯留するコ
ークスを多目にするとより効果が期待できる。
In the present invention, the "method of charging a blast furnace with a charge" which was invented by the present inventors and has already been filed in Japanese Patent Application No. 9-341971 is applied to the present invention. This is naturally possible from the gist of the present invention. That is, the gist of the present invention is that, when charging the charge in a bellless blast furnace into the blast furnace interior, after charging iron ore into the lower part of the furnace top hopper immediately above the blast furnace, and then charging coke into the upper part thereof, After the iron ore and coke are stored in layers, the shut-off valve is opened, and the charge is charged into the blast furnace via the swirling chute. As shown in FIG. 6, the lower iron ore stored in the furnace top hopper is continuously charged from the furnace wall side toward the furnace center in the same manner as described above by terminating the charging of coke at the furnace intermediate portion. The same effect can be obtained because coke deposited at the intermediate portion is pushed into the furnace center by the iron ore charged next time. In this case, more effect can be expected by increasing the coke stored in the furnace top hopper.

【0022】本発明において炉壁から炉中心部へ向けて
装入するコークスの停止位置(炉中間部)の範囲を炉半
径方向で炉口半径に対して0.2〜0.4に限定した
が、これは炉中心部のガス上昇流の影響を受ける範囲を
避けるために設定した値である。また、炉中間部側に装
入するコークスは、鉄鉱石との兼ね合いからその粒度を
選択し、適正な粒度を保持し炉中心部でコークスが適当
量残留するよう調整する必要がある。さらに、上記コー
クスはその反応性からみて高反応性コークスを必要とせ
ず、低反応性コークスで充分である。
In the present invention, the range of the stop position (the middle part of the furnace) of coke charged from the furnace wall toward the furnace center is limited to 0.2 to 0.4 with respect to the furnace opening radius in the furnace radial direction. However, this is a value set in order to avoid the range affected by the gas rising flow in the center of the furnace. Further, it is necessary to select the particle size of the coke charged into the middle part of the furnace in consideration of the iron ore, and to adjust the coke to maintain an appropriate particle size and to leave an appropriate amount of coke at the center of the furnace. Furthermore, the above coke does not require high-reactivity coke in view of its reactivity, and low-reactivity coke is sufficient.

【0023】[0023]

【実施例】以下、本発明を実際の高炉に適用した実施例
について説明する。操業を行った高炉は内容積3280
3 を有する微粉炭吹き込み実施中の高炉である。表1
に高炉で本発明による装入物の装入パターンと全装入物
でのO/Cを示した。また、本発明の実施による結果は
シャフト上部ゾンデ中心部のガス利用率を尺度としてそ
の効果を示した。これらはいずれも7日間同一装入方法
を継続したものであり、表1中の数値はその間での平均
値を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an actual blast furnace will be described below. The operated blast furnace has an inner volume of 3280
This is a blast furnace in which pulverized coal having m 3 is being injected. Table 1
2 shows the charging pattern of the charge according to the present invention in a blast furnace and the O / C of the entire charge. Further, the results of the implementation of the present invention showed the effect by using the gas utilization rate at the center of the sonde at the upper part of the shaft as a scale. In each of these cases, the same charging method was continued for 7 days, and the numerical values in Table 1 represent the average values between them.

【0024】[0024]

【表1】 [Table 1]

【0025】実施番号1〜4は装入パターン、につ
いて実施したものであり、実施番号5〜7についてはコ
ークスの粒度および低反応性コークスの使用等について
実施した。なお、実施番号8については比較のために従
来例を挙げた。表1から明らかなように、本発明によれ
ば良好な融着帯が従来例に比して安定して得られた結
果、高炉操業が安定し、かつ高出銑比を確保することが
できた。
Run Nos. 1 to 4 were conducted on the charging pattern, and Run Nos. 5 to 7 were performed on the coke particle size and the use of low-reactivity coke. As for the execution number 8, a conventional example is given for comparison. As is clear from Table 1, according to the present invention, as a result that a good cohesive zone was obtained more stably than the conventional example, the blast furnace operation was stabilized, and a high tapping ratio could be secured. Was.

【0026】[0026]

【発明の効果】以上説明したように、本発明装入方法を
実施することにより、コークスを炉半径方向でその分布
を適正かつ確実に形成させることができ、適切な高炉内
融着帯形状を安定して得ることが可能となったため、円
周方向に安定した周辺ガス流を形成させることができ
る。
As described above, by carrying out the charging method of the present invention, the distribution of coke in the furnace radial direction can be properly and reliably formed, and the appropriate shape of the cohesive zone in the blast furnace can be obtained. Since it is possible to obtain a stable gas flow, a stable peripheral gas flow can be formed in the circumferential direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による高炉への装入物の装入初期の状態
を示す図
FIG. 1 is a diagram showing an initial state of charging a charge into a blast furnace according to the present invention.

【図2】本発明の装入方法によって得られた装入物の装
入層の状態を示す図
FIG. 2 is a view showing a state of a charged layer of a charged material obtained by a charging method of the present invention.

【図3】高炉内での逆V型融着帯の例を示す図FIG. 3 is a diagram showing an example of an inverted V-type cohesive zone in a blast furnace.

【図4】通常の高炉装入における鉄鉱石層とコークス層
の形状を示す図
FIG. 4 is a diagram showing shapes of an iron ore layer and a coke layer in a normal blast furnace charging.

【図5】炉中心部の上昇ガス流が大きい場合の炉中心部
の装入コークスの状態を模式的に示す図
FIG. 5 is a diagram schematically showing the state of coke charged in the center of the furnace when the rising gas flow in the center of the furnace is large.

【図6】炉頂ホッパーでの装入物の貯留状態を示す図FIG. 6 is a diagram showing a state of storing a charge in a furnace top hopper.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ベルレス高炉における装入物の高炉内装
入に際し、旋回シュートを介しコークスを高炉炉壁側か
ら中間部位まで装入堆積せしめ、次いで、装入堆積コー
クスの上部に鉄鉱石を炉壁側からコークス堆積部を越え
ない位置まで順次装入することを特徴とする高炉中心部
への装入物装入方法。
When charging a charge in a bellless blast furnace into a blast furnace, coke is charged and deposited from a blast furnace wall side to an intermediate portion through a swirling chute. Then, iron ore is placed on an upper portion of the charged deposition coke in the furnace wall. A method for charging a charged material into a central portion of a blast furnace, wherein the charged materials are sequentially charged from a side to a position not exceeding a coke deposition portion.
【請求項2】 ベルレス高炉における装入物の高炉内装
入に際し、高炉直上の炉頂ホッパー内の下部に鉄鉱石を
投入後、次いでその上部にコークスを投入し、該炉頂ホ
ッパー内で鉄鉱石とコークスを層状に貯留後、遮断弁を
開放し旋回シュートを介して高炉壁側から鉄鉱石の装入
を開始し、旋回シュートを順次高炉中心方向へ移動させ
ながら高炉中間部位でコークスの装入を完了させ、次い
で該装入物堆積層の上部に鉄鉱石を炉壁側から下部装入
物堆積層を越えない位置まで順次装入することを特徴と
する高炉中心部への装入物装入方法。
2. When the charge in the bellless blast furnace is charged into the blast furnace, iron ore is charged into the lower part of the furnace top hopper immediately above the blast furnace, and then coke is charged into the upper part thereof, and the iron ore is charged in the furnace hopper. After storing the coke in layers, open the shut-off valve and start charging the iron ore from the blast furnace wall side via the swirling chute, and charge the coke at the middle part of the blast furnace while moving the swirling chute sequentially toward the blast furnace center. And then sequentially charging iron ore from the furnace wall side to a position not exceeding the lower charge deposit layer on the upper portion of the charge deposit layer. How to enter.
【請求項3】 前記請求項1または請求項2において、
コークスの装入停止する中間部位を高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.4の範囲としたことを特徴とする高炉中心部への
装入物装入方法。
3. The method according to claim 1, wherein
The intermediate part where the charging of coke is stopped is located in the radial direction of the blast furnace mouth, and 0.2 mm from the furnace center to the furnace wall with respect to the furnace mouth radius.
A method for charging a charge into the center of a blast furnace, characterized in that the range is from 0.4 to 0.4.
【請求項4】 高炉中間部側に装入するコークスは、そ
の粒径を変更して炉内へ装入することを特徴とする請求
項1ないし請求項3のいずれかに記載の高炉中心部への
装入物装入方法。
4. The central part of a blast furnace according to claim 1, wherein the coke charged into the intermediate part of the blast furnace is charged into the furnace with its particle size changed. How to charge the charge to the.
【請求項5】 高炉中間部側に装入するコークスは、そ
の反応性を低反応性に変更して高炉内へ装入することを
特徴とする請求項1ないし請求項4のいずれかに記載の
高炉中心部への装入物装入方法。
5. The coke charged into the intermediate portion of the blast furnace is charged into the blast furnace with its reactivity changed to low reactivity. For charging the charge into the center of the blast furnace.
JP02516298A 1998-01-23 1998-01-23 How to charge the blast furnace center Expired - Lifetime JP3787231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02516298A JP3787231B2 (en) 1998-01-23 1998-01-23 How to charge the blast furnace center

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02516298A JP3787231B2 (en) 1998-01-23 1998-01-23 How to charge the blast furnace center

Publications (2)

Publication Number Publication Date
JPH11209806A true JPH11209806A (en) 1999-08-03
JP3787231B2 JP3787231B2 (en) 2006-06-21

Family

ID=12158330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02516298A Expired - Lifetime JP3787231B2 (en) 1998-01-23 1998-01-23 How to charge the blast furnace center

Country Status (1)

Country Link
JP (1) JP3787231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942534A (en) * 2010-09-02 2011-01-12 武汉钢铁(集团)公司 Proportioning method adopted during blow-in for large and medium maintenance of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942534A (en) * 2010-09-02 2011-01-12 武汉钢铁(集团)公司 Proportioning method adopted during blow-in for large and medium maintenance of blast furnace

Also Published As

Publication number Publication date
JP3787231B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP5574064B2 (en) Raw material charging method to blast furnace
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP3573780B2 (en) Raw material charging method for bellless blast furnace
JP2005290511A (en) Method for operating blast furnace
JPH11209806A (en) Method for charging material to be charged into center of blast furnace
JP2002003910A (en) Method for operating blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP3787239B2 (en) Charging method into the center of the blast furnace
JP3787236B2 (en) How to charge the blast furnace center
JPH11217605A (en) Method for charging charging material into blast furnace
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JPH11217604A (en) Method for charging charging material into blast furnace
JPH07179916A (en) Bell-less type furnace top charging device for vertical furnace
JP7348467B2 (en) Blast furnace operating method and pig iron manufacturing method
JPH03193806A (en) Method for charging raw material in blast furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JP3978105B2 (en) Raw material charging method for blast furnace
JP2004204322A (en) Method for charging raw material for blast furnace
KR101242695B1 (en) Raw material charging method for bell-less blast furnace
JP2000273508A (en) Method for strengthening center gas flow in blast furnace
KR100418978B1 (en) Layer injection method for preventing complex layer to radial direction in blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

EXPY Cancellation because of completion of term