JP2000178615A - Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace - Google Patents

Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace

Info

Publication number
JP2000178615A
JP2000178615A JP11012687A JP1268799A JP2000178615A JP 2000178615 A JP2000178615 A JP 2000178615A JP 11012687 A JP11012687 A JP 11012687A JP 1268799 A JP1268799 A JP 1268799A JP 2000178615 A JP2000178615 A JP 2000178615A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
coke
charged
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11012687A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
守政 一田
Hiroshi Oda
博史 織田
Yoshio Okuno
嘉雄 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11012687A priority Critical patent/JP2000178615A/en
Publication of JP2000178615A publication Critical patent/JP2000178615A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suitably controlling the flow of molten iron and slag on the furnace bottom in a blast furnace for restraining the erosion of refractory wall at the surrounding part on the furnace hearth in the blast furnace operation. SOLUTION: In the operation of the bell-less blast furnace, when the flow of molten iron and slag on the furnace part at the iron tapping time is controller the temp. of the side wall on the furnace hearth is measured and in the case this temp. exceeds an upper regulating value, or the rising speed of the temp. exceeds a limited value, at the time of charging the charging material into the blast furnace, the last coke charged through a swing chute is charged and piled in the intermediate part of the furnace in the radial direction of the furnace opening part in the blast furnace, and successively, iron ore is charged into the interval between the outside of the charged and piled coke and the furnace wall of the blast furnace with the swing chute. As the other way, after charging the coke into the lower part in a furnace top hopper just above the blast furnace, successively, the iron ore is charged on the upper part thereof. Then, after charging a large part of coke stored at the lower part of the furnace top hopper into the intermediate part of the blast furnace, the swing chute is shifted to the outside of the charged and piled coke and the charge of the iron stored at the upper part is started.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉操業において
炉床周辺部耐火壁の侵食を抑制するために、高炉炉底の
溶銑・溶滓流を適正に制御する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for appropriately controlling the flow of hot metal and slag at the bottom of a blast furnace in order to suppress the erosion of the refractory wall around the hearth in blast furnace operation.

【0002】[0002]

【従来の技術】近年の高炉操業においては、高炉の大型
化、高出銑比化、高圧化等が達成されており、それらの
影響を受けて高炉の炉床部における耐火物の侵食状況
は、比較的肉厚の薄い炉床周辺部耐火壁の侵食が速く進
行する様相を呈しており、このような侵食形態が進むと
耐火壁の厚みが薄くなり、時には耐火壁の破損をきたす
こともある。
2. Description of the Related Art In recent blast furnace operations, blast furnaces have been increased in size, increased in tapping ratio, increased in pressure, and the like. However, the erosion of the refractory wall around the hearth, which has a relatively small thickness, appears to progress rapidly, and as such erosion forms progress, the thickness of the refractory wall becomes thinner, and sometimes the refractory wall may be damaged. is there.

【0003】このような炉床周辺部耐火壁の侵食が進行
した場合それに対処するための方策として考えられるの
は、(a)生産量を減産して侵食がそれ以上進行しない
ようにする。(b)TiO2 の装入量を増加して銑鉄中
の「Ti」を増やし、高融点析出物であるTiN、Ti
C等を析出させて高炉内部から耐火壁をコーティングす
る。(c)溶銑の粘度を上げ、炉床周辺部における溶銑
の流動性を低下させて該周辺部の耐火壁の侵食を抑制す
る等の方法がある。
[0003] When the erosion of the refractory wall around the hearth progresses, it can be considered as a measure for coping with the erosion. (A) The production amount is reduced so that the erosion does not progress further. (B) The amount of TiO2 charged is increased to increase the "Ti" in pig iron, and the high melting point precipitates TiN and Ti
C is deposited to coat the refractory wall from inside the blast furnace. (C) There is a method of increasing the viscosity of the hot metal, reducing the fluidity of the hot metal in the peripheral part of the hearth, and suppressing the erosion of the refractory wall in the peripheral part.

【0004】しかしながら上述した各種方法では、下記
に示すような問題があった。すなわち、(a)の方法で
は生産性が低下することは避けられず、また(b)、
(c)の方法では溶銑の粘性が高くなって炉内残銑が増
加し、羽口破損が増加するという欠点を避けることがで
きない。
However, the various methods described above have the following problems. That is, the method (a) inevitably decreases productivity, and (b),
The method (c) cannot avoid the disadvantage that the viscosity of the hot metal increases, the amount of residual iron in the furnace increases, and the tuyere damage increases.

【0005】炉床周辺部耐火壁の侵食抑制については種
々の提案がなされているが、例えば特公平3−7784
4号では「高炉頂部から固体還元剤および鉱石を交互に
装入し、固体還元剤層および鉱石層を積層して高炉操業
する方法であって、高炉炉底周辺部耐火壁の侵食を抑制
するに当たり、固体還元剤総装入量の0.2重量%以上
の量に相当する固体還元剤若しくは通液性の良好な固体
還元剤を、前者は鉱石層の軸心部に、後者は固体還元剤
層の軸心部に装入されていることによって、炉芯固体還
元剤層の更新を制御して炉芯中央部の通液性を向上し、
炉底部に滴下した後出湯口に向かって流れる溶銑、溶滓
の流動形態を、主に炉底中央部を経て出湯口に流れるよ
うに制御することによって、炉底周辺部の耐火壁の侵食
を抑制することを特徴とする高炉操業における炉底周辺
部耐火壁の侵食抑制方法」が開示されている。
[0005] Various proposals have been made for suppressing erosion of the refractory wall around the hearth, for example, Japanese Patent Publication No. 3-7784.
No. 4 describes a method of operating a blast furnace by alternately charging a solid reducing agent and an ore from the top of a blast furnace, stacking a solid reducing agent layer and an ore layer, and suppressing erosion of a fire-resistant wall around a blast furnace bottom. , A solid reducing agent corresponding to an amount of 0.2% by weight or more of the total charged amount of the solid reducing agent or a solid reducing agent having good liquid permeability, the former being at the axial center of the ore layer, and the latter being being at the solid reducing agent. By being inserted into the core portion of the reactor bed, the renewal of the reactor core solid reducing agent layer is controlled to improve the liquid permeability of the central portion of the reactor core,
The erosion of the fireproof wall around the furnace bottom is controlled by controlling the flow form of hot metal and slag that flows toward the spout after dripping on the furnace bottom so that it flows mainly through the center of the furnace bottom to the spout. A method for suppressing erosion of the refractory wall around the hearth in blast furnace operation characterized by suppressing the erosion.

【0006】しかし上記方法による固体還元剤の単なる
軸心部への装入方法では、後述するように適切なる対応
処置を施したことことにはならず、所望とする解決策が
図られるまでには至っていなかった。
However, the simple method of charging the solid reducing agent into the shaft center by the above-described method does not result in taking an appropriate countermeasure as described later. Was not reached.

【0007】一方、高炉操業において装入物の適切なる
分布状態を得るための制御は、高炉内の反応伝熱を左右
するガス流分布、融着帯の形状を決める唯一の手段であ
るため、最もよく用いられかつ最も重要な制御手段であ
る。
On the other hand, control for obtaining an appropriate distribution of the charge in the blast furnace operation is the only means for determining the gas flow distribution and the shape of the cohesive zone, which influence the reaction heat transfer in the blast furnace. It is the most used and most important control means.

【0008】一般に高炉は高炉炉頂部より鉄鉱石、焼結
鉱、ペレット(以下、単に鉄鉱石と称す)と、コークス
を交互に装入し、炉下部の送風羽口(以下、単に羽口と
称す)より熱風を吹き込んで操業を行っている。高炉に
おいては、羽口先端部分でコークスと熱風との反応によ
り生じたCOガスを含む高温の炉内ガスで、前記鉄鉱石
を炉内降下中に加熱−還元(間接還元)−溶融する。さ
らに、鉄鉱石の溶融物を滴下中に滴下帯部に存在するコ
ークスで還元(直接還元)しつつ湯溜り部に集められ、
適時、出銑口より炉外に排出する。この鉄鉱石は溶融滴
下する直前に軟化融着状態(以下、単に融着帯と称す
る)となり、コークスを挟んで炉内に存在している。
In general, a blast furnace is charged with iron ore, sintered ore, pellets (hereinafter, simply referred to as iron ore) and coke alternately from the top of the blast furnace, and a blowing tuyere (hereinafter simply referred to as a tuyere) at the lower part of the furnace. Operation). In the blast furnace, the iron ore is heated, reduced (indirectly reduced) and melted during the descent in the furnace by a high-temperature furnace gas containing CO gas generated by a reaction between coke and hot air at the tuyere tip. Further, the molten iron ore is collected in the pool while being reduced (directly reduced) by coke existing in the dropping zone during the dropping,
When appropriate, discharge from the taphole to the outside of the furnace. This iron ore is in a softened and fused state (hereinafter simply referred to as a cohesive zone) immediately before being dropped by melting, and is present in the furnace with coke interposed therebetween.

【0009】このように、高炉内においては、装入した
鉄鉱石が塊の状態にある塊状帯部、軟化融着した状態に
ある融着帯、溶融滴下状態にある滴下帯部が存在してお
り、前記炉内ガスは羽口先端部よりこの滴下帯部、融着
帯、塊状帯部を順次通って炉外に排出している。この三
者の通気抵抗は融着帯が最も大きく、次いで塊状帯部で
あり、滴下帯部が最も小さくなっている。したがって、
融着帯の形状によって塊状帯部と滴下帯部の形状も異な
り、炉内の通気性およびガス利用率が異なったものとな
る。
As described above, in the blast furnace, there are a massive band in which the charged iron ore is in a lump state, a fusion band in a softened and fused state, and a dripping band in a molten and dripped state. The in-furnace gas is discharged from the tuyere tip to the outside of the furnace through the dripping zone, the fusion zone, and the massive zone in this order. The airflow resistance of the three members is the largest in the cohesive zone, followed by the massive band, and the smallest in the dripping band. Therefore,
Depending on the shape of the cohesive zone, the shape of the lump zone and the shape of the dripping zone also differ, resulting in different gas permeability and gas permeability inside the furnace.

【0010】例えば、融着帯の頂部が高くなるいわゆる
中心流型融着帯(逆V型)においては、塊状帯部が狭く
なる反面、滴下帯部が広くなるので通気性は良好となる
と同時に、炉内ガスが炉心部を常時流れてガス流が安定
化するためにガス利用率も高位のレベルに維持できる。
また、融着帯頂部が低くなる、いわゆるフラット型融着
帯においては、塊状帯部が広くなる反面、滴下帯部が狭
くなるので通気性は悪くなると同時に、炉内ガスが偏流
する可能性があり、ガス利用率が低下する場合もある。
この通気性およびガス利用率は生産性および燃料比に深
い関係を有するものであり、高炉操業中に該融着帯の位
置および形状を検知し、これによって融着帯を最適制御
すれば、通気性およびガス利用率を調節することがで
き、生産性の増大、燃料比の節減を図ることができる。
For example, in a so-called central flow type fusion zone (inverted V type) in which the top of the fusion zone is high, the lump zone is narrow, while the drip zone is wide, so that the air permeability becomes good. Since the gas in the furnace always flows through the core and the gas flow is stabilized, the gas utilization can be maintained at a high level.
In addition, in the so-called flat type cohesive zone in which the top of the cohesive zone is low, the lump zone is widened, but the dripping zone is narrow, so that the air permeability is deteriorated and the possibility that the gas in the furnace is drifted. Yes, the gas utilization may decrease.
The permeability and the gas utilization rate have a deep relationship with the productivity and the fuel ratio. If the position and the shape of the cohesive zone are detected during the operation of the blast furnace and the cohesive zone is optimally controlled by this, the ventilation rate is improved. The efficiency and gas utilization can be adjusted, and the productivity can be increased and the fuel ratio can be reduced.

【0011】このような高炉内での融着帯の制御方法と
しては、幾つかの発明が開示されているが、例えば特公
昭63−61367号公報に提示されている技術によれ
ば、高炉の炉腹部あるいはそれ以下の部分から炉内に1
個または複数個のゾンデを挿通し、該ゾンデから得られ
るガス体および固体温度、ガス組成の実測値から融着帯
の上側および下側の位置を求めるとともに、該融着帯の
位置が高炉操業上最適な位置を占めるように、高炉の半
径方向の鉄鉱石層厚とコークス層厚の比(O/C)の分
布および粒度分布を制御することを特徴としている。
Although several inventions have been disclosed as a method of controlling the cohesive zone in the blast furnace, for example, according to the technology disclosed in Japanese Patent Publication No. 63-61367, 1 into the furnace from the furnace abdomen or below
One or a plurality of sondes are inserted, and the upper and lower positions of the cohesive zone are determined from the measured values of the gas and solid temperatures and gas composition obtained from the sonde. The distribution of the ratio of the iron ore layer thickness to the coke layer thickness (O / C) and the particle size distribution in the radial direction of the blast furnace are controlled so as to occupy the uppermost position.

【0012】すなわち、融着帯の制御として高炉へ装入
する鉄鉱石とコークスのO/Cの分布を制御することに
よって適切な融着帯を得ることができるとされており、
その理由として、鉄鉱石層はコークス層に比べて粒子径
および層の空間率が小さいので、高炉の半径方向のうち
で鉄鉱石層厚が相対的に厚い部分ではガスの通気性は悪
く、そのためその部分を流れるガス流速、ガス流量が低
下する。ガス流量の低下はいろいろな面に影響を及ぼ
し、伝熱に関しては単位断面積を流れるガス顕熱量の低
下、固体物質への伝熱性の悪化をもたらす。反応に関し
ては、鉄鉱石を還元するのに充分なガス量が供給されな
いために還元ガスの濃度が低下し、還元推進力が弱まる
ことから、還元率の相対的低下をもたらす。以上のこと
から、半径方向でO/Cの高い部分は還元率の低下、ガ
ス体および固体温度の低下をもたらす。
That is, it is said that an appropriate cohesive zone can be obtained by controlling the O / C distribution of iron ore and coke charged into the blast furnace as control of the cohesive zone.
The reason is that the iron ore layer has a smaller particle diameter and a smaller voidage of the layer than the coke layer, so gas permeability is poor in the relatively thick part of the iron ore layer in the radial direction of the blast furnace. The gas flow rate and gas flow rate flowing through that portion decrease. The decrease in the gas flow rate affects various aspects, and in terms of heat transfer, the amount of sensible heat flowing through the unit cross-sectional area decreases, and the heat transfer to solid substances deteriorates. Regarding the reaction, the concentration of the reducing gas is reduced because the amount of gas that is sufficient to reduce the iron ore is not supplied, and the reduction driving force is weakened, resulting in a relative reduction in the reduction rate. From the above, the portion where the O / C is high in the radial direction causes a reduction in the reduction rate and a reduction in the temperature of the gas and the solid.

【0013】したがって、例えば中心部で高い融着帯を
実現するためには炉下部の中心部に充分な熱を供給する
ことが必要である。そのためには炉中心部にガスの供給
を増加する操作、すなわち中心部のO/Cを小さくする
ことが必要であり、また周辺部で高い融着帯を実現する
ためには同様な理由から、周辺部のO/Cを小さくする
操作が必要であると述べられている。
Therefore, for example, in order to realize a high cohesive zone at the center, it is necessary to supply sufficient heat to the center of the lower part of the furnace. For that purpose, it is necessary to increase the supply of gas to the central part of the furnace, that is, to reduce the O / C in the central part, and to realize a high cohesive zone in the peripheral part for the same reason. It is stated that an operation for reducing the O / C of the peripheral portion is necessary.

【0014】しかし、従来法における通常の高炉装入物
の装入方法に従えば、例えば図4に示すように、コーク
ス(C)と鉄鉱石(O)とを順次層状に装入すると炉中
心部においては、鉄鉱石の装入層の厚みが厚くコークス
装入層の厚みが薄くなる傾向を避けることはできなかっ
た。これは鉄鉱石の安息角がコークスの安息角に比べて
小さく、かつ鉄鉱石とコークスの嵩密度が大きく異な
り、勢い炉中心部において鉄鉱石層が必然的に厚くなる
現象を生じるためである。したがって、炉中心において
は炉下部から供給されるガスの流れが、炉中心部の鉄鉱
石層の厚い部分では通気性が悪くなり、その結果ガスは
ガス流れが比較的容易な炉周辺部に向かい、その部分を
流れることになる。
However, according to the conventional method of charging the blast furnace charge in the conventional method, as shown in FIG. 4, for example, when coke (C) and iron ore (O) are charged sequentially in layers, the furnace center is charged. In the section, the tendency that the thickness of the charged bed of iron ore was large and the thickness of the bed of coke was thin could not be avoided. This is because the angle of repose of iron ore is smaller than the angle of repose of coke, and the bulk density of iron ore and coke is greatly different, which causes a phenomenon that the iron ore layer becomes inevitably thicker in the center of the vibrating furnace. Therefore, at the center of the furnace, the gas flow supplied from the lower part of the furnace has poor air permeability in the thick part of the iron ore layer at the center of the furnace, and as a result, the gas flows toward the periphery of the furnace where the gas flow is relatively easy. Will flow through that part.

【0015】このような装入物の分布状態に対して高炉
中心部のみにコークスを特別の手段によって装入し、炉
中心部にチムニー状のコークス堆積状態を積極的に保持
せしめようとする技術が例えば特公平6−37649号
に開示されている。該公報に記載された技術を高炉操業
に適用すれば、炉中心部にコークスのチムニーを容易に
作ることができるはずであるが、後述するように高炉の
実操業においては一旦作られたチムニー状のコークス層
では通気性が過大となり、下方向からの上昇ガス流が強
すぎてチムニー状に堆積しようとするコークスを吹き上
げ、図5に模式的に示すように炉中心部のコークスが周
辺部に飛散し、実際には目的とするコークス中心部装入
の効果は意外に少ない状態にあるものと思慮される。
A technique for charging coke only to the central portion of the blast furnace by a special means in order to keep the chimney-like coke deposited state in the central portion of the furnace with respect to such a distribution state of the charged material. Is disclosed, for example, in Japanese Patent Publication No. 6-37649. If the technology described in the publication is applied to blast furnace operation, it should be possible to easily produce a coke chimney in the center of the furnace. In the coke layer, the air permeability becomes excessive, and the rising gas flow from the downward direction is too strong to blow up the coke that is going to be deposited in a chimney shape, and as shown schematically in FIG. It is thought that the effect of the spattering and actually charging the target coke center is surprisingly small.

【0016】[0016]

【発明が解決しようとする課題】前記したように、融着
帯の適切な形状については知られており、例えば図3に
示すように、融着帯を中心部が高い逆V型にすること
が、現状の高炉操業を行う上で理想的な形状とされてい
る。この形状を得るためには上記したように、炉中心部
のO/Cを小さくする必要があり、これは言い換えると
炉中心部のコークス量ができるだけ多くなるような装入
物の装入方法が好ましいと言うことである。
As described above, it is known that the shape of the cohesive zone is appropriate. For example, as shown in FIG. However, the shape is ideal for the current blast furnace operation. As described above, in order to obtain this shape, it is necessary to reduce the O / C at the center of the furnace. In other words, there is a method of charging the charge such that the coke amount at the center of the furnace is as large as possible. It is preferable.

【0017】このような状況下で、実際の高炉における
装入物(鉄鉱石、コークス等)の装入分布状態、すなわ
ち適切なO/Cを保つための高炉半径方向での分布状態
を得るためには、それに適した装入設備が必要となる。
しかし、ベルレス高炉においては、上記の調整を実施し
ようと思えば、旋回シュートの傾動角を広範囲に動かす
必要があり、そのため、高出銑比の操業条件下では、装
入物を炉内に装入するのに時間が長くかかり過ぎるとい
う問題が生じ、所望のO/C分布を炉半径方向で作り込
めない状況に直面することも起こっていた。
Under these circumstances, in order to obtain the distribution state of the charged materials (iron ore, coke, etc.) in the actual blast furnace, that is, the distribution state in the radial direction of the blast furnace to maintain an appropriate O / C. Requires suitable charging equipment.
However, in the case of the bellless blast furnace, the tilting angle of the swivel chute must be moved over a wide range in order to carry out the above adjustment, so that the charge is loaded into the furnace under the operating conditions with a high tapping ratio. There has been a problem that it takes too long to enter, and a situation has been encountered in which a desired O / C distribution cannot be created in the furnace radial direction.

【0018】また前述のように、炉中心部へのコークス
装入は炉中心部を上昇するガス流の影響を受けるので、
その対応策も考慮したうえで適切な装入方法を採用しな
ければ、目的とする効果が得られない惧れがあり、これ
らのことを総括したうえで、従前の装入設備によって簡
便容易に上記した如きO/Cの炉半径方向での分布状態
を得ることができる装入技術についての開発が強く要望
されていた。
As described above, the charging of coke into the furnace center is affected by the gas flow rising in the furnace center.
If appropriate charging methods are not adopted in consideration of the countermeasures, the intended effects may not be obtained.After summarizing these matters, the conventional charging equipment can be used simply and easily. There has been a strong demand for the development of a charging technique capable of obtaining the distribution of O / C in the furnace radial direction as described above.

【0019】このことは前述した高炉炉床周辺部耐火壁
の侵食を防止するためにコークス(固体還元剤)の炉軸
心への装入と軌を一にする考え方と言える。本発明はこ
うした事情に着目してなされたものであって、その目的
とするところは、高炉内において適切なO/C分布を持
った装入物の装入層が得られ、生産性や炉況に何ら悪影
響を与えることなく、炉床周辺部耐火壁の侵食を抑制し
得る方法を提供することにある。
This can be said to be a concept that the coke (solid reducing agent) is charged into the furnace shaft at the same level as the gauge in order to prevent the erosion of the refractory wall around the blast furnace hearth. The present invention has been made in view of such circumstances, and an object of the present invention is to obtain a charged layer of a charged material having an appropriate O / C distribution in a blast furnace, and to improve productivity and a furnace. It is an object of the present invention to provide a method capable of suppressing the erosion of the refractory wall around the hearth without adversely affecting the situation.

【0020】[0020]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨するところは、下記手段にある。 (1) ベルレス高炉の操業において、出湯時における
炉床部の湯流れを制御するに当たって、炉床側壁の温度
を測定し該温度の値が上限規定値を超えるか、または温
度の上昇速度が限定値を超えた場合、高炉における装入
物の高炉内装入に際し、旋回シュートを介し装入する最
終コークスを高炉の炉口半径方向の炉中間部へ装入堆積
せしめ、次いで、該旋回シュートにより鉄鉱石を装入堆
積せしめたコークスの外側と高炉炉壁間に装入する高炉
炉床部の湯流れ制御方法。 (2) ベルレス高炉の操業において、出湯時における
炉床部の湯流れを制御するに当たって、炉床側壁の温度
を測定し該温度の値が上限規定値を超えるか、または温
度の上昇速度が限定値を超えた場合、高炉における装入
物の高炉内装入に際し、高炉直上の炉頂ホッパー内へ下
部にコークスを投入後、次いでその上部に鉄鉱石を投入
し、該炉頂ホッパー内でコークスと鉄鉱石を層状に貯留
後、遮断弁を開放し旋回シュートを介して下部貯留コー
クスの大半を最終コークスとして高炉の炉口半径方向の
炉中間部へ装入堆積せしめた後、該旋回シュートを装入
堆積せしめたコークスの外側へ移行し上部貯留鉄鉱石の
装入を開始する高炉炉床部の湯流れ制御方法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and its gist lies in the following means. (1) In controlling the bellless blast furnace, in controlling the flow of hot water in the hearth at the time of tapping, the temperature of the hearth side wall is measured, and the temperature exceeds the upper limit specified value, or the rate of temperature rise is limited. When the value exceeds the value, the final coke to be charged through the swirling chute is charged and deposited in the middle part of the furnace in the furnace port radial direction when the charge in the blast furnace is charged into the blast furnace, and then the iron ore is charged by the swirling chute. A method for controlling the flow of molten metal in a blast furnace hearth charged between the outside of a coke piled with stones and a blast furnace wall. (2) In the operation of the bellless blast furnace, in controlling the flow of hot water in the hearth at the time of tapping, the temperature of the hearth side wall is measured and the value of the temperature exceeds the upper limit specified value, or the rate of temperature rise is limited. If it exceeds the value, when charging the charge in the blast furnace to the interior of the blast furnace, after charging coke into the lower part of the top hopper immediately above the blast furnace, and then charging iron ore into the upper part, and coke in the furnace hopper. After the iron ore is stored in layers, the shut-off valve is opened and most of the lower stored coke is charged and deposited as a final coke through the swirling chute into the middle part of the blast furnace in the furnace port radial direction, and then the swirling chute is mounted. A method for controlling the flow of molten metal in the blast furnace hearth, which shifts to the outside of the deposited coke and starts charging the upper stored iron ore.

【0021】(3) 前記(1)または(2)におい
て、最終コークスを装入する炉中間部は、高炉炉口半径
方向で、炉中心から炉壁までの間で炉口半径に対して
0.2〜0.8の範囲とした高炉炉床部の湯流れ制御方
法。 (4) 前記(1)または(2)において、最終コーク
スを装入する炉中間部は、高炉炉口半径方向で、炉中心
から炉壁までの間で炉口半径に対して0.2〜0.6の
範囲とした高炉炉床部の湯流れ制御方法。
(3) In the above (1) or (2), the middle part of the furnace into which the final coke is charged is located at a distance from the furnace center to the furnace wall in the radial direction of the blast furnace furnace, which is 0 to the furnace wall radius. A method for controlling the flow of molten metal in the blast furnace hearth in the range of 2 to 0.8. (4) In the above (1) or (2), the middle part of the furnace in which the final coke is charged is 0.2 to 0.2 mm from the furnace center radius to the furnace wall between the furnace center and the furnace wall in the blast furnace furnace direction. A method for controlling the flow of molten metal in the blast furnace hearth in the range of 0.6.

【0022】(5) 前記最終コークス装入後の鉄鉱石
の装入は、コークス堆積部外側部から高炉炉壁側へ向け
順次装入する(1)ないし(4)のいずれかに記載の高
炉炉床部の湯流れ制御方法。 (6) 前記炉中間部へ装入する最終コークスは、その
粒径を大にして高炉内へ装入する(1)ないし(5)の
いずれかに記載の高炉炉床部の湯流れ制御方法。 (7) 前記炉中間部に装入する最終コークスは、その
反応性を低反応性に変更して高炉内へ装入する(1)な
いし(6)のいずれかに記載の高炉炉床部の湯流れ制御
方法。
(5) The blast furnace according to any one of (1) to (4), wherein the iron ore after the final coke is charged is sequentially charged from the outer side of the coke deposition section toward the blast furnace wall. Hot water flow control method for the hearth. (6) The method for controlling the flow of molten metal in the blast furnace hearth section according to any one of (1) to (5), wherein the final coke charged into the intermediate furnace section is charged into the blast furnace with a large particle size. . (7) The blast furnace hearth according to any one of (1) to (6), wherein the reactivity of the final coke charged into the furnace intermediate part is changed to low reactivity and charged into the blast furnace. Hot water flow control method.

【0023】[0023]

【発明の実施の形態】本発明方法は上記手段によって構
成されるが、要は炉床周辺部耐火壁の侵食の主な原因が
溶銑・溶滓の流れに基づくものであって、炉芯部に滴下
された溶銑および溶滓が炉床部の周辺側近傍を流れるこ
とによるものであるという見解の基に、炉芯部の通液性
を向上させるための具体的手段として、コークスの一部
を高炉の炉心部に装入するために最適な方法を採用し、
炉床部の溶銑・溶滓の湯流れを制御しようとするもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is constituted by the above means, but the main cause of the erosion of the refractory wall around the hearth is based on the flow of hot metal and slag. Based on the belief that the molten iron and slag dropped on the furnace flow near the periphery of the hearth, as a specific measure to improve the liquid permeability of the core, The best way to charge the core of the blast furnace,
The purpose is to control the flow of hot metal and slag in the hearth.

【0024】すなわち、ベルレス高炉の高炉操業におい
て、出湯時における炉床部の湯流れを制御するに当たっ
て、炉床側壁の温度を測定し該温度の値が上限規定値を
超えるか、または温度の上昇速度が限定値を超えた場合
に適切な処置を施すもので、高炉における装入物の高炉
内装入に際し、コークスを炉中心から炉壁までの炉中間
部に装入堆積せしめ、次いで鉄鉱石等を炉壁側からコー
クス堆積部まで順次装入することによって堆積したコー
クスを炉心部に押し込み炉芯における通液性を向上さ
せ、溶銑・溶滓の周辺流を抑制し、炉床周辺部耐火壁の
溶銑・溶滓流による侵食を防止するものである。
That is, in the blast furnace operation of a bellless blast furnace, in controlling the flow of molten metal in the hearth at the time of tapping, the temperature of the hearth side wall is measured, and the value of the temperature exceeds the upper limit specified value or the temperature rises. When the speed exceeds the limit value, appropriate measures are taken.When charging the charge in the blast furnace, the coke is charged and deposited in the middle part of the furnace from the furnace center to the furnace wall, and then iron ore, etc. The coke deposited into the core part is pushed into the core part to improve the liquid permeability in the core, suppresses the peripheral flow of hot metal and slag, and the refractory wall around the hearth To prevent erosion by hot metal and slag flow.

【0025】本発明者らが高炉における装入物の装入状
態を考察したところでは、前述したように高炉中心部に
装入されるコークスはその比重が軽く、かつ嵩密度が小
さいため炉下部からの上昇ガス流によって吹き上げられ
飛散するので、その間隙部に比重の重い鉄鉱石が流れ込
み(鉄鉱石は安息角が小さいので容易)、炉中心部に所
望とするコークスの堆積層を得るには多くの困難性が伴
うことが判明した。
The inventors of the present invention have considered the state of charging of the charge in the blast furnace. As described above, the coke charged in the center of the blast furnace has a low specific gravity and a low bulk density, so that the coke is low. In order to obtain a desired coke deposition layer in the center of the furnace, iron ore with a high specific gravity flows into the gap due to being blown up and scattered by the ascending gas flow from the furnace (iron ore has a small angle of repose). It turned out to be accompanied by a lot of difficulties.

【0026】そこで本発明者らは高炉内融着帯の制御に
おいて、高炉装入物中の高炉半径方向でのO/Cを適切
な分布状態に調整するために、特別の装入装置を要せず
従来の装入物装入装置を用いて行うべく鋭意研究・検討
を重ねた結果、ベルレス高炉においては、炉内への装入
物中最終コークスの装入範囲を高炉の炉口半径方向にお
いて適切な位置に調整することによって、上記問題点の
解決を図ることが容易であるとの結論に到達した。
Therefore, the present inventors require a special charging device in the control of the cohesive zone in the blast furnace in order to adjust the O / C in the blast furnace radial direction in the blast furnace charge to an appropriate distribution state. As a result of intensive research and examination to perform using the conventional charging equipment without using the conventional charging equipment, in the bellless blast furnace, the charging range of the final coke during the charging into the furnace was changed in the blast furnace radial direction. It has been concluded that it is easy to solve the above problem by adjusting the position to an appropriate position.

【0027】さらに、最終コークス装入位置の適正化に
ついて種々の実験を行い、多くの試行錯誤を重ねた結
果、炉中心部を避け、炉中心から炉壁までの間で炉中心
部の上昇ガス流の影響を受けない位置である炉中間部
に、最終コークスを装入して堰状のコークスの堆積層を
一旦作り、そのコークス堆積層(堰)の外側と炉壁間へ
鉄鉱石を装入することによって、一旦堆積せしめたコー
クスを鉄鉱石の炉心方向への流れ込みを利用し、該堆積
コークスを炉中心部へ押し込み、炉中心部にコークスを
主体とした通気性の良好なチムニー状の装入物層を形成
せしめることができるとの見通しを得たものである。
Further, various experiments were carried out on the optimization of the final coke charging position, and as a result of repeated trial and error, ascending gas at the furnace center from the furnace center to the furnace wall was avoided from the furnace center. The final coke is charged into the middle part of the furnace, which is not affected by the flow, to form a weir-like coke deposit once, and iron ore is placed outside the coke deposit (weir) and between the furnace walls. By using the inflow of coke once deposited into the core of the furnace using the flow of iron ore in the direction of the core of the iron ore, the coke is pushed into the center of the furnace, and a chimney-like material with good air permeability mainly composed of coke enters the center of the furnace. It has been expected that a charge layer can be formed.

【0028】従来からコークスの炉心装入量が増えるに
従って、高炉炉底中央部の煉瓦(耐火物)温度は上昇す
るが、側壁煉瓦の温度は変化しないという事実が確認さ
れていた。このことは、コークスの炉心装入量を増やす
に従って出湯口に向かう溶銑・溶滓の流れが高炉炉底部
中央部を経る形態に移行するため、その結果として側壁
煉瓦への侵食は防止されるものと思われる。したがっ
て、コークスの炉心へ装入するコークスを適切な量に維
持すれば、炉床部に滴下した後出湯口に向かって流れる
溶銑・溶滓の流動形態を主に炉底中央部を経て出湯口に
流れるように制御でき、よって炉床周辺部を流れる溶銑
・溶滓流を減少することができるので炉床周辺部耐火壁
の侵食を抑制することができるはずである。
Conventionally, it has been confirmed that the brick (refractory) temperature at the center of the blast furnace bottom increases as the core charging amount of coke increases, but the temperature of the side wall brick does not change. This is because the flow of hot metal and slag toward the tap hole shifts to the form passing through the center of the bottom of the blast furnace as the core charging amount of coke increases, and as a result, erosion of the side wall brick is prevented. I think that the. Therefore, if the coke charged into the core of the coke is maintained at an appropriate amount, the flow form of the hot metal and slag flowing toward the tap hole after dripping on the hearth will be changed mainly through the central part of the furnace bottom. Thus, the flow of hot metal and slag flowing around the hearth can be reduced, so that the erosion of the refractory wall around the hearth should be suppressed.

【0029】炉心部に装入されたコークスが高炉下部の
炉芯部に移行し、炉芯コークスの更新は炉心部に装入し
たコークスによって左右されるということに基づくもの
と考えられる。そしてコークスの炉心部への装入を増大
すると炉心部に装入される鉱石量が相対的に少なくな
り、該炉心部でのCO2 の発生量(CO2 は鉄鉱石の還
元反応により生ずる)が少なくなる。したがって、高炉
内のコークスを劣化させるソリューションロス反応(C
+CO2 =2CO)が抑制され、炉芯部を更新していく
コークスは粉率が小さく周辺コークスに比べて大きな粒
径となり、その結果、炉芯部の空隙率が大きくなって炉
芯部の通液性が良好になり、上述したような好ましい溶
銑・溶滓流が得られる。
It is considered that the coke charged in the core moves to the core in the lower part of the blast furnace, and the renewal of the core coke is based on the coke charged in the core. As the charging of coke into the core increases, the amount of ore charged into the core decreases relatively, and the amount of CO2 generated in the core (CO2 is generated by the reduction reaction of iron ore) decreases. Become. Therefore, the solution loss reaction (C
+ CO2 = 2CO) is suppressed, and the coke renewing the furnace core has a low powder ratio and a large particle size as compared with the surrounding coke, and as a result, the void ratio of the furnace core increases, and the flow rate of the furnace core increases. The liquid properties are improved, and the preferable hot metal / slag flow as described above is obtained.

【0030】そこで本発明者らは、炉床周辺部耐火壁の
侵食が起こるであろうことを予測して、その予測結果に
基づいて上記炉中心部にコークスを主体としたチムニー
状のコークス層を形成せしめるものであり、炉中心部へ
のコークス装入に際しては、炉床周辺部耐火壁の侵食の
発生予測を適確に把握したうえで、実施に移行するもの
である。このとき炉床周辺部耐火壁の侵食が発生するで
あろうとの予測は、炉床周辺部耐火壁に埋設されている
温度計によって測定される温度を基準とし、その温度に
基準値を与え炉床側壁の温度の絶対値と該温度の上昇速
度を選択し、その変化状況を以て炉床側壁の侵食の目安
とした。
Therefore, the present inventors have predicted that erosion of the refractory wall at the periphery of the hearth will occur, and based on the prediction result, a chimney-like coke layer mainly composed of coke will be formed at the center of the furnace. When charging coke into the center of the furnace, it is necessary to accurately grasp the prediction of the occurrence of erosion of the refractory wall in the vicinity of the hearth, and then proceed to the implementation. At this time, the prediction that erosion of the refractory wall around the hearth will occur is based on the temperature measured by a thermometer buried in the refractory wall near the hearth, and a reference value is given to the temperature. The absolute value of the temperature of the floor side wall and the rising speed of the temperature were selected, and the change state was used as a measure of the erosion of the hearth side wall.

【0031】ここで、設定される基準温度は高炉によっ
ても異なり、また高炉操業年数によっても異なってくる
ので一概には決められない。従って、現在操業中の高炉
においては、種々の操業要因の差異、または変動を考慮
の上、高炉毎に決定することを基本とした。
Here, the reference temperature to be set differs depending on the blast furnace and also depends on the years of operation of the blast furnace. Therefore, in the blast furnace currently in operation, it is basically determined for each blast furnace in consideration of the difference or fluctuation of various operation factors.

【0032】通常の高炉においては、定常状態の炉床側
壁温度を基準値とし、その温度を絶えず監視しその上昇
温度値が、例えば炉床側壁煉瓦ミニマム残存厚に対する
温度値以上に達した時、または温度の上昇速度が例えば
20℃/8hr(限定値)になった時に炉床側壁温度が
異常な状態となり、炉床側壁の侵食が進行される可能性
があるとの判断をし、所定のアクションを採ることによ
って対処する。この時、温度上昇と判断するに当たって
は、8時間を規定時間として設定しておき、その時間を
経過した後、規定した温度の限界値を超えたことを見極
める必要がある。
In a normal blast furnace, the hearth side wall temperature in a steady state is set as a reference value, and the temperature is constantly monitored, and when the temperature rise value reaches, for example, a temperature value with respect to the hearth side wall brick minimum remaining thickness, Alternatively, when the rate of temperature rise becomes, for example, 20 ° C./8 hr (limited value), it is determined that the hearth side wall temperature is in an abnormal state and erosion of the hearth side wall may proceed, and a predetermined value is determined. Deal by taking action. At this time, in order to judge that the temperature has risen, it is necessary to set eight hours as a specified time, and after the elapse of that time, determine that the specified temperature limit has been exceeded.

【0033】本発明の実施に当たって、装入物の装入方
法の詳細について以下、図面に基づいて説明する。図1
および2は高炉炉頂より装入された装入物を模式的に示
したもので、図1において、先に装入したコークス層の
上部に、例えば1ホッパー(1ダンプ)に貯留された最
終コークス(C)を高炉中心部からずらし、炉中間部に
装入して堰状に堆積せしめる(この場合、コークスの堆
積層は通常装入する層厚より厚目に堆積した方がより効
果的である)。しかる後、鉄鉱石(O)を先に装入した
炉中間部に存在する最終コークス(C)堆積部の外側へ
装入を行う。かくの如き装入を行うことにより、一旦堆
積されていたコークス(C)は鉄鉱石(O)の炉中心部
方向への流れ込みにより、炉中間部より炉中心方向へ押
し込まれ、図2に示したようなコークスを主体とする装
入物の分布状態が得られる。
In carrying out the present invention, details of a method for charging a charged object will be described below with reference to the drawings. FIG.
And 2 schematically show the charge charged from the blast furnace furnace top. In FIG. 1, the final charge stored in the upper part of the previously charged coke layer, for example, in one hopper (one dump) is shown. The coke (C) is shifted from the center of the blast furnace, charged in the middle of the furnace, and deposited in a weir shape (in this case, it is more effective to deposit the coke in a thicker layer than the normally charged layer) Is). Thereafter, the iron ore (O) is charged outside the final coke (C) depositing portion existing in the furnace intermediate portion charged earlier. By performing the charging as described above, the coke (C) once deposited is pushed into the furnace center from the furnace middle by the iron ore (O) flowing toward the furnace center, and as shown in FIG. Such a distribution state of the charge mainly composed of coke is obtained.

【0034】すなわち、炉中心部には装入コークス層の
流動化コークス(前記したように炉中心部に存在するコ
ークスは、絶えず炉中心を上昇するガス流によって舞い
上がり、上昇・降下を繰り返すので流動化された状態と
なっている)と炉中間部堆積コークスとの混合したコー
クスが堆積された状態となり、その外周部に一部炉中間
部装入コークスが残存し、その上部に鉄鉱石が積層され
た状態となる。このような装入物層を確保できるので、
炉中心部に所望のコークスを主体とするチムニーが形成
され、目的とする融着帯を容易に得ることができる。
That is, the fluidized coke of the charged coke layer is placed in the furnace center (as described above, the coke existing in the furnace center continuously rises and rises and falls due to the gas flow rising upward in the furnace center. Mixed with the coke deposited in the middle part of the furnace, and the coke is deposited. The coke charged in the middle part of the furnace remains on the outer periphery, and iron ore is stacked on top of it. It will be in the state that was done. Since such a charge layer can be secured,
A chimney mainly composed of desired coke is formed at the center of the furnace, and a desired cohesive zone can be easily obtained.

【0035】なお、本発明においては本発明者らが先に
発明し、特願平9−341970号にて既に出願してい
る「高炉への装入物装入方法」を本発明に適用すること
も本発明の主旨から言って当然可能である。すなわち該
発明の要旨は、「ベルレス高炉における装入物の高炉内
装入に際し、高炉直上の炉頂ホッパー内へ下部にコーク
スを投入後、次いでその上部に鉄鉱石を投入し、該炉頂
ホッパー内でコークスと鉄鉱石を層状に貯留後、遮断弁
を開放し旋回シュートを介して装入物を高炉内へ装入す
ることを特徴とする高炉への装入物装入方法」にあるの
で、図6に示すように、炉頂ホッパーに貯留された下部
コークスを高炉の炉口半径方向において炉中間部に装入
堆積後、残りの鉄鉱石を主体とする貯留物を旋回シュー
トを操作し、堆積コークス層の外側へ移行して装入を続
行することにより、鉄鉱石による炉中間部へ堆積された
コークスを炉中心部への押し込みを行うことができるの
で、前記同様の目的を達成することができる。
In the present invention, the "method of charging a blast furnace with a charge", which was first invented by the present inventors and already filed in Japanese Patent Application No. 9-341970, is applied to the present invention. This is naturally possible from the gist of the present invention. That is, the gist of the invention is that, when charging a charge in a bellless blast furnace into a blast furnace, after charging coke into a furnace top hopper immediately above the blast furnace, and then charging iron ore into the upper part thereof, After storing coke and iron ore in layers, the shutoff valve is opened, and the charge is charged into the blast furnace via a swirling chute. As shown in FIG. 6, after charging and depositing the lower coke stored in the furnace top hopper in the middle part of the furnace in the furnace port radial direction of the blast furnace, operating the revolving chute on the remaining iron ore-based stored material, By moving to the outside of the sedimentary coke layer and continuing the charging, the coke accumulated in the furnace middle part by the iron ore can be pushed into the furnace center part, so that the same object as described above can be achieved. Can be.

【0036】通常の高炉におけるコークスと鉄鉱石の装
入については、全装入量中での鉄鉱石(O)とコークス
(C)の比(O/C)を高炉操業状況に応じて予め決め
ておき、その比に合わせてコークスと鉄鉱石が交互に層
状に堆積するように、順次コークスと鉄鉱石の装入を行
っている。
Regarding the charging of coke and iron ore in a normal blast furnace, the ratio (O / C) of iron ore (O) and coke (C) in the total charge is determined in advance in accordance with the operating conditions of the blast furnace. In addition, coke and iron ore are charged sequentially so that coke and iron ore are alternately deposited in layers according to the ratio.

【0037】この堆積層を作り込むための上記装入物の
装入操作方法としては、高炉での装入設備上での特性、
高炉操業状況の変動などにより種々の形態が採用され
る。通常の装入ではコークス(C)と鉄鉱石(O)の装
入を以て1チャージと称しているが、その装入の仕方
は、例えば、(C↓O↓),(C↓C↓O↓O↓),
(C↓C↓C↓O↓O↓)など多くの装入形態が存在す
る。
The charging operation method of the above-mentioned charged material for producing the deposited layer includes characteristics on a charging facility in a blast furnace,
Various modes are adopted depending on fluctuations in the operating conditions of the blast furnace and the like. In normal charging, charging of coke (C) and iron ore (O) is referred to as one charge, but the charging method is, for example, (C ↓ O ↓), (C ↓ C ↓ O ↓) O ↓),
There are many charging modes such as (C ↓ C ↓ C ↓ O ↓ O ↓).

【0038】このような装入形態において、本発明で称
している高炉の炉口半径方向の炉中間部に装入堆積する
最終装入コークスとは図1にも示したように、本発明の
目的から明らかなように鉄鉱石(O)が装入される直前
のコークス(C)を指すことは、言うまでもないことで
ある。
In such a charging mode, the final charging coke charged and deposited in the middle portion of the blast furnace in the furnace opening radial direction referred to in the present invention is, as shown in FIG. Needless to say, it indicates the coke (C) immediately before the iron ore (O) is charged as apparent from the purpose.

【0039】従って、1チャージ内で2回以上のコーク
スが装入される場合は、最後に装入されるコークスがこ
れに該当するが、コークスの装入が1回のみで済まされ
るような場合には、予め炉中間部に装入するコークスを
確保できる装入パターンを設定しておく必要がある。な
お、前述のように(O/C)比は高炉全体での装入量か
ら決められるので、(O/C)分布を配慮して最終コー
クス量を定めるべきである。
Accordingly, when coke is charged more than once in one charge, the coke charged last corresponds to this, but when coke is charged only once. It is necessary to set in advance a charging pattern that can secure coke to be charged into the furnace middle part. As described above, since the (O / C) ratio is determined from the charging amount in the entire blast furnace, the final coke amount should be determined in consideration of the (O / C) distribution.

【0040】本発明において炉中間部の範囲を高炉の半
径方向で0.2〜0.8に限定したが、これは0.2未
満では炉中心部のガス上昇流の影響を受けコークスが飛
散する惧れが大きいためである。また、0.8を超えた
場合は鉄鉱石による炉中心方向へのコークスの押し込み
力が不足するからである。さらにまた、0.2〜0.6
に限定したのは、下限の0.2については上記と同様の
理由によるものであるが、上限が0.6を超えるとコー
クスの堆積層(堰)が相対的に低くなり、次いで装入さ
れる鉄鉱石がコークスの堰を乗り越えて炉中心部へ流れ
込み、本発明の効果を減殺する惧れがあるためである。
これらのことを考慮すれば最も好ましいのは0.3超〜
0.5程度の範囲となる。
In the present invention, the range of the middle part of the furnace is limited to 0.2 to 0.8 in the radial direction of the blast furnace, but if it is less than 0.2, the coke is scattered due to the influence of the gas rising flow in the center of the furnace. This is because there is a high possibility that they will do so. On the other hand, if it exceeds 0.8, the pushing force of coke toward the furnace center by the iron ore is insufficient. Furthermore, 0.2-0.6
The lower limit of 0.2 is based on the same reason as described above, but when the upper limit exceeds 0.6, the coke deposition layer (weir) becomes relatively low, and then it is charged. This is because iron ore may flow over the coke weir and flow into the center of the furnace, thereby reducing the effects of the present invention.
Considering these, the most preferable is more than 0.3 to
The range is about 0.5.

【0041】また、炉中間部へ装入堆積せしめる最終コ
ークスは、高炉炉周全域に亙って均一に装入するのが好
ましい。しかし、旋回シュートによる装入においては、
ホッパーから流出する際に装入物の粒度のバラツキ、貯
留量の変動等により、ときによっては装入量に偏りが発
生することがある。この様な事態が起こると装入量の大
小にもよるが、コークスを装入すべき炉周の長さが長い
ときには、炉周方向において全長を満たさないことも起
こり得る。この様な状態が発生しても、装入堆積された
最終コークスは、堆積部分においてはその効果を発現す
るので、不充分とは云えそれなりの目的は達し得る。
It is preferable that the final coke to be charged and deposited in the middle part of the furnace is uniformly charged over the entire circumference of the blast furnace. However, in charging by turning chute,
When flowing out of the hopper, the charged amount may be uneven depending on the variation of the particle size of the charged material, the fluctuation of the stored amount, and the like. When such a situation occurs, depending on the amount of charging, if the length of the furnace circumference where coke is to be charged is long, the entire length in the furnace circumferential direction may not be satisfied. Even if such a situation occurs, the final coke charged and deposited exerts its effect in the deposited portion, and its purpose can be achieved although it is insufficient.

【0042】さらに、炉中間部へ装入した最終コークス
装入後の鉄鉱石の装入に当たっては、最終コークスの堆
積層(堰)の外側と高炉炉壁間であればどこから装入を
始めてもよいが、旋回シュートの連続可動を考慮した場
合は、最終コークスの堆積層(堰)の外側近傍から開始
し、初期の鉄鉱石で堆積コークスを炉中心部へ押し込
み、順次炉壁側へ装入を続行する装入形態を採ることが
考えられる。また、前記とは逆に高炉炉壁側から鉄鉱石
の装入を開始し、順次炉中心方向へ装入を進めコークス
の堆積層近傍で装入を終了するような装入形態を採用し
てもよい。
Further, when charging the iron ore after charging the final coke into the furnace intermediate portion, charging may be started from anywhere between the outside of the final coke deposition layer (weir) and the blast furnace wall. However, considering the continuous movement of the swirling chute, start near the outside of the sedimentary layer (weir) of the final coke, push the sedimentary coke into the furnace center with the initial iron ore, and charge it sequentially to the furnace wall side It is conceivable to adopt a charging mode in which the operation is continued. In addition, contrary to the above, the charging mode is adopted in which charging of iron ore is started from the blast furnace wall side, charging is sequentially performed in the direction of the furnace center, and charging is completed near the deposition layer of coke. Is also good.

【0043】さらにまた、炉中間部へ装入堆積せしめる
最終コークスは、鉄鉱石との兼ね合いからその粒度を通
常のコークスより大径のものを選択し、最適な粒度を保
持し炉中心部でコークスが相当量残留するよう調整する
必要がある。また、上記コークスはその反応性からみて
高反応性コークスを必要とせず、低反応性コークスであ
っても充分である。
Further, the final coke to be charged and deposited in the middle part of the furnace is selected to have a particle size larger than that of ordinary coke in view of the balance with iron ore. Must be adjusted so that a considerable amount remains. The coke does not require high-reactivity coke in view of its reactivity, and low-reactivity coke is sufficient.

【0044】また、前述したようにコークスの炉心部へ
の装入は、鉱石層の形成に際しての鉱石の炉心部への流
れ込みを利用し、炉中間部へ装入堆積せしめる最終コー
クスを炉中心部へ装入するものであり、炉芯部コークス
の更新を制御して炉芯中央部の通液性を向上するという
観点からすれば、炉底側壁温度の上昇度合いに応じてコ
ークスの装入時に前記状態を継続して行うかどうかを判
断し、必ずしも毎チャージでのコークス装入時に上記操
作をおこなわなければならない訳ではなく、あくまでも
高炉操業状況に合わせて調整するのが好ましい。
Further, as described above, the charging of coke into the core portion utilizes the inflow of ore into the core portion at the time of forming an ore layer, and the final coke to be charged and deposited in the middle portion of the furnace is used in the central portion of the furnace. From the viewpoint of controlling the renewal of the furnace core coke and improving the liquid permeability of the central part of the furnace core, when charging the coke according to the degree of increase in the furnace bottom side wall temperature. It is determined whether or not to continue the above-mentioned state, and the above-mentioned operation does not necessarily have to be performed at the time of charging coke at each charge, and it is preferable to adjust the state in accordance with the operating condition of the blast furnace.

【0045】[0045]

【実施例】以下、本発明を実際の高炉に適用した実施例
について説明する。操業を行った高炉は内容積3280
3 を有する微粉炭吹き込み実施中の高炉である。表1
に高炉で本発明による装入物の装入パターンと全装入物
でのO/Cを示した。また、本発明の実施による結果は
シャフト上部ゾンデ中心部のガス利用率を尺度としてそ
の効果を示した。これらはいずれも7日間同一装入方法
を継続したものであり、表1中の数値はその間での平均
値を表している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an actual blast furnace will be described below. The operated blast furnace has an inner volume of 3280
This is a blast furnace in which pulverized coal having m 3 is being injected. Table 1
2 shows the charging pattern of the charge according to the present invention in a blast furnace and the O / C of the entire charge. Further, the results of the implementation of the present invention showed the effect by using the gas utilization rate at the center of the sonde at the upper part of the shaft as a scale. In each of these cases, the same charging method was continued for 7 days, and the numerical values in Table 1 represent the average values between them.

【0046】[0046]

【表1】 [Table 1]

【0047】実施番号1〜7は装入パターン、につ
いて実施したものであり、実施番号8〜11については
コークスの粒度および低反応性コークスの使用等につい
て実施した。なお、実施番号12については比較のため
に従来例を挙げた。表1から明らかなように、本発明に
よれば良好な融着帯が従来例に比して安定して得られた
結果、高炉操業が安定し、かつ、炉床周辺部耐火壁の侵
食を抑制し高出銑比を確保することができた。
Run Nos. 1 to 7 were conducted on the charging pattern, and Run Nos. 8 to 11 were performed on the coke particle size and the use of low-reactivity coke. As for the execution number 12, a conventional example is given for comparison. As is clear from Table 1, according to the present invention, a good cohesive zone was obtained more stably than the conventional example, so that the blast furnace operation was stable and the erosion of the refractory wall around the hearth was suppressed. Suppressed and secured a high tapping ratio.

【0048】[0048]

【発明の効果】以上説明したように、本発明方法を実施
することにより、コークスを炉半径方向でその分布を適
正かつ確実に形成させることができ、適切な高炉内融着
帯形状を安定して得ることが可能となり、適正な高炉中
心ガス流を確保すると共に、炉円周方向にも安定した周
辺ガス流を形成させることができ、高炉操業において炉
床周辺部耐火壁の侵食を防止し、高炉炉床の溶銑・溶滓
流を適正に制御することができる。
As described above, by carrying out the method of the present invention, the distribution of coke in the furnace radial direction can be formed properly and reliably, and the shape of the cohesive zone in the blast furnace can be stabilized. In addition to securing an appropriate blast furnace center gas flow, a stable peripheral gas flow can also be formed in the circumferential direction of the furnace, preventing erosion of the refractory wall around the hearth in blast furnace operation. In addition, the flow of hot metal and slag in the blast furnace hearth can be appropriately controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による高炉への装入物の装入初期の状態
を示す図
FIG. 1 is a diagram showing an initial state of charging a charge into a blast furnace according to the present invention.

【図2】本発明の装入方法によって得られた装入物の装
入層の状態を示す図
FIG. 2 is a view showing a state of a charged layer of a charged material obtained by a charging method of the present invention.

【図3】高炉内での逆V型融着帯の例を示す図FIG. 3 is a diagram showing an example of an inverted V-type cohesive zone in a blast furnace.

【図4】通常の高炉装入における鉄鉱石層とコークス層
の形状を示す図
FIG. 4 is a diagram showing shapes of an iron ore layer and a coke layer in a normal blast furnace charging.

【図5】炉中心部の上昇ガス流が大きい場合の炉中心部
の装入コークスの状態を模式的に示す図
FIG. 5 is a diagram schematically showing the state of coke charged in the center of the furnace when the rising gas flow in the center of the furnace is large.

【図6】炉頂ホッパーでの装入物の貯留状態を示す図FIG. 6 is a diagram showing a state of storing a charge in a furnace top hopper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 嘉雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K012 BC03 BC04 BC06 BC07 BC09 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshio Okuno 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division, Nippon Steel Corporation (reference) 4K012 BC03 BC04 BC06 BC07 BC09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ベルレス高炉の操業において、出湯時に
おける炉床部の湯流れを制御するに当たって、炉床側壁
の温度を測定し該温度の値が上限規定値を超えるか、ま
たは温度の上昇速度が限定値を超えた場合、高炉におけ
る装入物の高炉内装入に際し、旋回シュートを介し装入
する最終コークスを高炉の炉口半径方向の炉中間部へ装
入堆積せしめ、次いで、該旋回シュートにより鉄鉱石を
装入堆積せしめたコークスの外側と高炉炉壁間に装入す
ることを特徴とする高炉炉床部の湯流れ制御方法。
In the operation of a bellless blast furnace, in controlling the flow of molten metal in the hearth at the time of tapping, the temperature of the hearth side wall is measured, and the value of the temperature exceeds the upper limit specified value or the temperature rise rate. Exceeds the limited value, the final coke to be charged through the swirling chute is charged and deposited in the middle part of the furnace in the furnace port radial direction when charging the charge in the blast furnace into the blast furnace, and then the swirling chute is used. A method for controlling the flow of molten metal in a blast furnace hearth, wherein the iron ore is charged and deposited between the outside of the coke and the blast furnace wall.
【請求項2】 ベルレス高炉の操業において、出湯時に
おける炉床部の湯流れを制御するに当たって、炉床側壁
の温度を測定し該温度の値が上限規定値を超えるか、ま
たは温度の上昇速度が限定値を超えた場合、高炉におけ
る装入物の高炉内装入に際し、高炉直上の炉頂ホッパー
内へ下部にコークスを投入後、次いでその上部に鉄鉱石
を投入し、該炉頂ホッパー内でコークスと鉄鉱石を層状
に貯留後、遮断弁を開放し旋回シュートを介して下部貯
留コークスの大半を最終コークスとして高炉の炉口半径
方向の炉中間部へ装入堆積せしめた後、該旋回シュート
を装入堆積せしめたコークスの外側へ移行し上部貯留鉄
鉱石の装入を開始することを特徴とする高炉炉床部の湯
流れ制御方法。
2. In the operation of a bellless blast furnace, in controlling the flow of molten metal in the hearth at the time of tapping, the temperature of the hearth side wall is measured, and the value of the temperature exceeds the upper limit specified value or the temperature rise rate. When exceeds the limit value, when charging the charge in the blast furnace into the blast furnace interior, after charging coke into the lower part of the furnace top hopper immediately above the blast furnace, and then charge iron ore into the upper part, and then in the furnace hopper After storing coke and iron ore in layers, the shut-off valve is opened and most of the lower stored coke is charged and deposited as a final coke in the furnace intermediate part in the furnace port radial direction of the blast furnace via a swirling chute. A method for controlling the flow of molten metal in the blast furnace hearth, wherein the method moves to the outside of the coke charged and deposited and starts charging the upper stored iron ore.
【請求項3】 前記請求項1または請求項2において、
最終コークスを装入する炉中間部は、高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.8の範囲としたことを特徴とする高炉炉床部の湯
流れ制御方法。
3. The method according to claim 1, wherein
The middle part of the furnace where the final coke is charged is in the radial direction of the blast furnace furnace port, and is 0.2 mm from the furnace center to the furnace wall with respect to the furnace port radius.
A method for controlling the flow of molten metal in a blast furnace hearth, wherein the flow rate is set to 0.8.
【請求項4】 前記請求項1または請求項2において、
最終コークスを装入する炉中間部は、高炉炉口半径方向
で、炉中心から炉壁までの間で炉口半径に対して0.2
〜0.6の範囲としたことを特徴とする高炉炉床部の湯
流れ制御方法。
4. The method according to claim 1, wherein
The middle part of the furnace where the final coke is charged is in the radial direction of the blast furnace furnace port, and is 0.2 mm from the furnace center to the furnace wall with respect to the furnace port radius.
A method for controlling the flow of molten metal in a blast furnace hearth, wherein the flow rate is set in the range of 0.6 to 0.6.
【請求項5】 前記最終コークス装入後の鉄鉱石の装入
は、コークス堆積部外側部から高炉炉壁側へ向け順次装
入することを特徴とする請求項1ないし請求項4のいず
れかに記載の高炉炉床部の湯流れ制御方法。
5. The iron ore charged after the final coke charging is charged sequentially from the outer side of the coke depositing section toward the blast furnace wall side. The method for controlling the flow of molten metal in the blast furnace hearth according to the above.
【請求項6】 前記炉中間部へ装入する最終コークス
は、その粒径を大にして高炉内へ装入することを特徴と
する請求項1ないし請求項5のいずれかに記載の高炉炉
床部の湯流れ制御方法。
6. The blast furnace furnace according to claim 1, wherein the final coke charged into the furnace intermediate part is charged into a blast furnace with a large particle size. Hot water flow control method for the floor.
【請求項7】 前記炉中間部に装入する最終コークス
は、その反応性を低反応性に変更して高炉内へ装入する
ことを特徴とする請求項1ないし請求項6のいずれかに
記載の高炉炉床部の湯流れ制御方法。
7. The method according to claim 1, wherein the reactivity of the final coke charged into the furnace middle part is changed to a low reactivity and charged into a blast furnace. A method for controlling a hot water flow in a blast furnace hearth according to the above description.
JP11012687A 1998-01-23 1999-01-21 Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace Withdrawn JP2000178615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11012687A JP2000178615A (en) 1998-01-23 1999-01-21 Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2516198 1998-01-23
JP10-301748 1998-10-09
JP30174898 1998-10-09
JP10-25161 1998-11-11
JP11012687A JP2000178615A (en) 1998-01-23 1999-01-21 Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace

Publications (1)

Publication Number Publication Date
JP2000178615A true JP2000178615A (en) 2000-06-27

Family

ID=27279944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11012687A Withdrawn JP2000178615A (en) 1998-01-23 1999-01-21 Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace

Country Status (1)

Country Link
JP (1) JP2000178615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719581A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Blast furnace tapping method for reducing circulating flow of molten iron in hearth
CN104569487A (en) * 2013-10-23 2015-04-29 江苏省沙钢钢铁研究院有限公司 Device for measuring minimum fluidizing velocity of furnace burdens of blast furnace and application method for device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102719581A (en) * 2011-03-29 2012-10-10 鞍钢股份有限公司 Blast furnace tapping method for reducing circulating flow of molten iron in hearth
CN104569487A (en) * 2013-10-23 2015-04-29 江苏省沙钢钢铁研究院有限公司 Device for measuring minimum fluidizing velocity of furnace burdens of blast furnace and application method for device

Similar Documents

Publication Publication Date Title
JP5696814B2 (en) Raw material charging method for bell-less blast furnace
JP2007051306A (en) Method for charging raw material into blast furnace
JP3787237B2 (en) Method of charging high-pellet iron ore into a blast furnace
JP2000178615A (en) Method for controlling flow of molten iron and slag on furnace hearth part in blast furnace
JP3787240B2 (en) How to charge the blast furnace center
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JP3787238B2 (en) Charging method into the center of the blast furnace
JP2009062576A (en) Method and apparatus for charging raw material into blast furnace
JP2000160214A (en) Method for charging material to be charged into center part of blast furnace
JP5029085B2 (en) How to protect refractories at the bottom of the blast furnace
WO2010016553A1 (en) Iron bath-type melting furnace
JP2000199005A (en) Method for controlling center gas flow in blast furnace
JPH11209806A (en) Method for charging material to be charged into center of blast furnace
JP2921392B2 (en) Blast furnace operation method
KR20000043781A (en) Method of controlling distribution of proper charged material for high pulverized coal ratio
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
JPH1060507A (en) Operation of blast furnace
JP2000273508A (en) Method for strengthening center gas flow in blast furnace
JPH11217605A (en) Method for charging charging material into blast furnace
JPH07305103A (en) Method for charging raw material into blast furnace
JP2000212612A (en) Control of distribution of charged material in blast furnace
JP2000282110A (en) Operation of blast furnace
JPH04247816A (en) Method for operating blast furnace
JP2000212613A (en) Control of distribution of charged material in blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404