JPH11256320A - Zno base sintered compact - Google Patents

Zno base sintered compact

Info

Publication number
JPH11256320A
JPH11256320A JP6277798A JP6277798A JPH11256320A JP H11256320 A JPH11256320 A JP H11256320A JP 6277798 A JP6277798 A JP 6277798A JP 6277798 A JP6277798 A JP 6277798A JP H11256320 A JPH11256320 A JP H11256320A
Authority
JP
Japan
Prior art keywords
zno
powder
sintering
sintered body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6277798A
Other languages
Japanese (ja)
Inventor
Shoji Takanashi
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6277798A priority Critical patent/JPH11256320A/en
Publication of JPH11256320A publication Critical patent/JPH11256320A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ZnO base sintered compact for a sputtering target which enables efficient formation of films having high transmittance, low resistivity, little production of abnormal discharge during DC sputtering over a long time, excellent characteristics and which is excellent in productivity and inexpensive. SOLUTION: This sintered compact contains 3 to 7 atom.% Ga and 0.3 to 3 atom.% one or more kinds of third elements selected from the group consisting of Al, B, In, Ge, Si, Sn and Ti and substantially consists of the complex oxide of zinc, gallium and the third elements above described. Preferably, the ZnO sintered compact has >=4.8 g/cm<3> sintering density and 4 to 15 μm average crystal grain size of the complex oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング法
によって透明導電性膜を形成する際に用いられるスパッ
タリング用ターゲットに関する。
The present invention relates to a sputtering target used for forming a transparent conductive film by a sputtering method.

【0002】[0002]

【従来の技術】液晶ディスプレイや太陽電池の電極材と
して用いられる透明導電性膜には、比抵抗値の低いIn
23−SnO2(ITO)膜や ZnO−Al23(AZ
O)膜が使われるようになってきている。これらの膜
は、スパッタリング用ターゲットを原料としたスパッタ
リング法によって形成され、加熱した基板上に成膜する
ことにより、2×10-4Ω・cm程度の比抵抗値を達成
させることができる。
2. Description of the Related Art A transparent conductive film used as an electrode material of a liquid crystal display or a solar cell has a low specific resistance value of In.
2 O 3 —SnO 2 (ITO) film or ZnO—Al 2 O 3 (AZ
O) Films are being used. These films are formed by a sputtering method using a sputtering target as a raw material, and can be formed on a heated substrate to achieve a specific resistance of about 2 × 10 −4 Ω · cm.

【0003】しかし、液晶ディスプレイや太陽電池の低
コスト化傾向にある現在では、ITOは、その主成分で
あるIn23が高価であるため、コスト面で問題があ
り、一方、AZOは、その原料粉末が安価であるのでコ
スト面では問題ないが、低抵抗な膜を得るための最適な
成膜条件の範囲が狭いため、安定して良好な膜特性が得
られないなどの問題を抱えている。また、最近の傾向と
して、基板温度が低めに設定されるために低温域で低抵
抗を得ることも重要な問題である。
[0003] However, at present, when the cost of liquid crystal displays and solar cells tends to be low, ITO has a problem in cost because its main component, In 2 O 3, is expensive. Although the raw material powder is inexpensive, there is no problem in terms of cost.However, since the range of optimal film forming conditions for obtaining a low-resistance film is narrow, there are problems that stable and good film characteristics cannot be obtained. ing. Also, as a recent tendency, obtaining a low resistance in a low temperature range is an important problem because the substrate temperature is set to be relatively low.

【0004】これらの問題を解決するために、コスト
面、生産性に問題なく低抵抗かつ高透過率を有するZn
O−B23(BZO)膜が、ITOやAZOに代わっ
て、注目されつつある。BZO膜を得るために用いられ
るターゲット材には、結晶平均粒径を2μm以下とする
ために850〜1100℃にてホットプレスを行うBZ
O焼結体が特開平6−2130号公報に開示されてい
る。
In order to solve these problems, Zn having a low resistance and a high transmittance without any problem in cost and productivity has been proposed.
O—B 2 O 3 (BZO) films are attracting attention in place of ITO and AZO. The target material used for obtaining the BZO film includes BZ which is hot-pressed at 850 to 1100 ° C. in order to reduce the average crystal grain size to 2 μm or less.
An O sintered body is disclosed in Japanese Patent Application Laid-Open No. 6-2130.

【0005】しかし、このようにして得られたBZO焼
結体をターゲットとして用いてDCスパッタリング成膜
を行うと、基板温度を室温にして得た膜は、透過率(5
50nm)が80%と高いが、膜比抵抗は1×10-3Ω
・cm程度に達することができない。特に液晶ディスプ
レイや結晶系太陽電池の透明電極に用いる際には、抵抗
値をさらに低くする必要がある。また、BZO膜のター
ゲットはスパッタリング時に異常放電が多発する。異常
放電が頻繁に起こると、プラズマ放電状態が不安定とな
って、安定した成膜が行われない。このため、膜特性が
悪化するという問題が生じている。
However, when DC sputtering film formation is performed using the BZO sintered body thus obtained as a target, the film obtained at a substrate temperature of room temperature has a transmittance (5%).
50 nm) as high as 80%, but the film specific resistance is 1 × 10 −3 Ω.
-It cannot reach about cm. In particular, when used for a transparent electrode of a liquid crystal display or a crystalline solar cell, it is necessary to further lower the resistance value. Also, abnormal discharge frequently occurs in the target of the BZO film during sputtering. If abnormal discharge frequently occurs, the plasma discharge state becomes unstable, and stable film formation is not performed. For this reason, there is a problem that the film characteristics are deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の問題点を解決し、透過率が高くて抵抗値が低く、
DCスパッタリング中の異常放電の発生が長期にわたっ
て少なく、特性の優れた膜を効率よく成膜することが可
能であり、かつ、生産性に優れていて安価なスパッタリ
ングターゲット用ZnO系焼結体を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention solves such a conventional problem and has a high transmittance and a low resistance.
Provision of a ZnO-based sintered body for sputtering targets that is low in occurrence of abnormal discharge during DC sputtering over a long period of time, enables efficient formation of a film with excellent characteristics, and has excellent productivity and is inexpensive. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本願発明のZnO系焼結
体は、Gaを3〜7原子%、そして、Al、B、In、
Ge、Si、SnおよびTiからなる群より選ばれた1
種以上の第3元素を0.3〜3原子%含有し、実質的に
亜鉛とガリウムと前記第3元素の複合酸化物からなる。
このZnO系焼結体は、焼結密度が4.8g/cm3
上であり、かつ、前記複合酸化物の結晶平均粒径が4〜
15μmであることが好ましい。
Means for Solving the Problems The ZnO-based sintered body of the present invention contains 3 to 7 atomic% of Ga, Al, B, In,
1 selected from the group consisting of Ge, Si, Sn and Ti
It contains at least 0.3 to 3 atomic% of at least one third element and is substantially composed of a composite oxide of zinc, gallium and the third element.
This ZnO-based sintered body has a sintering density of 4.8 g / cm 3 or more, and the composite oxide has an average crystal grain size of 4 to
It is preferably 15 μm.

【0008】[0008]

【発明の実施の形態】本発明のZnO系焼結体は、従来
公知の製法によって作製したBZO焼結体を用いて異常
放電発生原因について本発明者が検討を行った結果、得
たものである。すなわち、特開平6−2130号公報に
よれば、850〜1100℃の焼結温度でホットプレス
することより、容易にBZO焼結体を得ることができ
る。しかし、得られたBZO焼結体をターゲット材とし
て用いてDCスパッタリングにて成膜を行うと、異常放
電が多発し、長期的に安定な成膜ができないことがわか
った。
BEST MODE FOR CARRYING OUT THE INVENTION The ZnO-based sintered body of the present invention was obtained as a result of the present inventors' examination of the cause of abnormal discharge using a BZO sintered body manufactured by a conventionally known manufacturing method. is there. That is, according to JP-A-6-2130, a BZO sintered body can be easily obtained by hot pressing at a sintering temperature of 850 to 1100 ° C. However, it was found that when a film was formed by DC sputtering using the obtained BZO sintered body as a target material, abnormal discharge frequently occurred and a stable film could not be formed over a long period of time.

【0009】さらに、本発明者は、ZnO焼結体につい
て解析を行い、その結果、異常放電を抑制するには以下
のことが有効であることが分かった。
Further, the present inventor analyzed the ZnO sintered body, and as a result, it was found that the following was effective in suppressing abnormal discharge.

【0010】(1)焼結密度が4.8g/cm3 以上で
あって、亜鉛とガリウムと他の第3元素の複合酸化物の
結晶平均粒径が4〜15μmであること。
(1) The sintered density is 4.8 g / cm 3 or more, and the composite oxide of zinc, gallium and other third elements has an average crystal grain size of 4 to 15 μm.

【0011】(2)硼素が存在するときは、その偏析径
が10μm以下であること。
(2) When boron is present, its segregation diameter is 10 μm or less.

【0012】(3)焼結体内部に存在する空孔の最大径
が5μm以下であること。
(3) The maximum diameter of pores existing inside the sintered body is 5 μm or less.

【0013】これらを達成することによって、異常放電
の発生が長期にわたって少ない焼結体を得ることでき
る。しかし、このような焼結体を作製するためには、以
下のことを留意して製造しなければならない。
By achieving these, it is possible to obtain a sintered body in which the occurrence of abnormal discharge is small over a long period of time. However, in order to manufacture such a sintered body, it is necessary to pay attention to the following points.

【0014】なお、本発明において、結晶平均粒径、平
均一次粒子径および空孔径は、焼結体破断面を鏡面研磨
した後、熱腐食によって粒界を析出させ、SEM観察に
て測定する。また、抵抗値は、焼結体破断面を鏡面研磨
した後、焼結体中心付近の表面を四探針法によって測定
する。硼素の偏析径は、焼結体の断面を鏡面研磨したあ
と、EMPA線分析によって一定の長さを測定し、硼素
濃度の分布を見ることで判断される。
In the present invention, the average crystal grain size, the average primary particle size, and the pore size are measured by SEM observation after a fracture surface of a sintered body is mirror-polished, and then a grain boundary is precipitated by thermal corrosion. The resistance value is measured by mirror-polishing the fracture surface of the sintered body, and then measuring the surface near the center of the sintered body by a four-probe method. The segregation diameter of boron is determined by mirror-polishing the cross section of the sintered body, measuring a certain length by EMPA line analysis, and observing the distribution of boron concentration.

【0015】本願発明のZnO系焼結体に影響する各因
子について以下に説明する。
The factors affecting the ZnO-based sintered body of the present invention will be described below.

【0016】「焼結密度」ZnO粉末にB23粉末を添
加して焼成を行う場合の問題点として、B23の溶融に
よる欠陥の生成が挙げられる。Bは、融点が低いので、
焼結途中で液相を生成する。従って、Bがない場合は、
固相同士の反応で焼結が行われるが、Bが存在すると固
相と液相の間の反応で焼結が行われる。このため、B2
3が含まれると、主相との濡れ性に劣り、焼結途中で
揮発する問題がある。例えば、常圧焼成法の場合、HP
法に比べて高温域で焼成を行うために、B23の溶融に
よる焼結体内の欠陥は増加しやすい。つまり、B23
600℃近傍で溶融を開始し、B23同士による融着、
粗大化が行われ、焼結体内に偏析が生じる。そして10
00℃近傍から偏析は液相となる。液相の焼成による急
激な焼結収縮が行われて、体積は収縮する。一方、液相
となったB23は、焼結途中で蒸発しやすい。また、B
23相とZnO相は濡れ性が悪い。そのために、液相部
もしくは液相の周囲には空孔が生成し、焼結の進行と共
に空孔は粗大化を起こす。これが原因で異常放電が多発
するので、空孔を消滅させなければならない。また空孔
を制御しなければ4.8/cm3 以上の焼結密度を達成
することができない。
"Sintering Density" A problem in the case of adding B 2 O 3 powder to ZnO powder and performing sintering is the generation of defects due to melting of B 2 O 3 . B has a low melting point,
A liquid phase is generated during sintering. Therefore, if there is no B,
Sintering is performed by the reaction between the solid phases. When B is present, sintering is performed by the reaction between the solid phase and the liquid phase. Therefore, B 2
When O 3 is contained, there is a problem that the wettability with the main phase is inferior and volatilizes during sintering. For example, in the case of the normal pressure firing method, HP
Since the firing is performed in a high temperature range as compared with the method, defects in the sintered body due to melting of B 2 O 3 tend to increase. That is, B 2 O 3 starts melting at around 600 ° C., and fusion between B 2 O 3
Coarsening occurs and segregation occurs in the sintered body. And 10
From around 00 ° C., the segregation becomes a liquid phase. Rapid sintering shrinkage due to firing of the liquid phase is performed, and the volume shrinks. On the other hand, B 2 O 3 in the liquid phase is liable to evaporate during sintering. Also, B
The 2 O 3 phase and the ZnO phase have poor wettability. For this reason, pores are generated in or around the liquid phase, and the pores become coarser as sintering progresses. As a result, abnormal discharge frequently occurs, and the holes must be eliminated. Unless the pores are controlled, a sintered density of 4.8 / cm 3 or more cannot be achieved.

【0017】一方HP法の場合、圧力を掛けながら焼結
しているのでB23が液相になっても流動機構によって
その周囲に空孔は発生しないが、やはり、硼素の偏析径
は増加する。偏析径が大きいとスパッタリング時に問題
が生じる。つまり、硼素濃度の高い偏析部は抵抗が高い
ため、偏析部で異常放電が発生し、その結果、局部的な
加熱によって偏析部は溶融して空洞化するなどの問題が
生じる。このためBZO膜の比抵抗は悪化する。
On the other hand, in the case of the HP method, since sintering is performed while applying pressure, even if B 2 O 3 becomes a liquid phase, no voids are generated around the liquid phase by the flow mechanism. To increase. If the segregation diameter is large, a problem occurs during sputtering. That is, since the segregated portion having a high boron concentration has a high resistance, an abnormal discharge occurs in the segregated portion. As a result, there is a problem that the segregated portion is melted and hollowed out by local heating. For this reason, the specific resistance of the BZO film deteriorates.

【0018】よって本発明では、上記問題点を解決する
ためにB23を使用するときは、B23をZnOやAl
23、Ga23、In23、GeO2、SiO2、TiO
2、SnO2 と複合化させて融点を高める方法を用い
る。その結果B23の焼結挙動は改善され、焼結中に偏
析、空孔が生じないため、スパッタリング時の異常放電
を制御することができる。B23を原料粉末の段階でZ
nOなどと複合化させておくとB23の融点が高くな
り、焼結におけるB23の溶融が防止され、ZnOなど
との濡れ性が改善されるため、空孔発生は制御される。
また、複合化以外の焼結密度増大方法として、焼結中に
酸素導入を行う方法が有効である。
Therefore, according to the present invention, when B 2 O 3 is used to solve the above-mentioned problems, B 2 O 3 is converted to ZnO or Al.
2 O 3 , Ga 2 O 3 , In 2 O 3 , GeO 2 , SiO 2 , TiO
2 , a method of increasing the melting point by complexing with SnO 2 is used. As a result, the sintering behavior of B 2 O 3 is improved, and segregation and voids do not occur during sintering, so that abnormal discharge during sputtering can be controlled. B 2 O 3 is converted to Z
When compounded with nO or the like, the melting point of B 2 O 3 is increased, the melting of B 2 O 3 in sintering is prevented, and the wettability with ZnO or the like is improved. You.
As a method of increasing the sintering density other than the composite, a method of introducing oxygen during sintering is effective.

【0019】「表面抵抗値」硼素を含有するZnO系焼
結体(BZO焼結体)がスパッタリング成膜に必要な導
電性を示すのは、主成分であるZnOの酸素欠損による
ものといわれている。Al23やB23などの酸化物を
微量添加し、高温中で焼結することによって、Al23
やB23などの酸化物はZnO相中に固溶され、Zn原
子との一部置換が行われたり、Zn原子の格子間への侵
入が行われたりする。これにより酸素空孔が増加する。
従って、酸素欠損を生じ、焼結体の体積抵抗率を低減で
きる。
[Surface Resistance Value] It is said that the ZnO-based sintered body containing boron (BZO sintered body) exhibits conductivity required for sputtering film formation due to oxygen deficiency of ZnO as a main component. I have. By adding a small amount of oxide such as Al 2 O 3 or B 2 O 3 and sintering at high temperature, Al 2 O 3
Oxides such as and B 2 O 3 form a solid solution in the ZnO phase, and are partially replaced by Zn atoms or interstitial penetration of Zn atoms. This increases oxygen vacancies.
Therefore, oxygen deficiency occurs, and the volume resistivity of the sintered body can be reduced.

【0020】体積抵抗率が低くなると、スパッタリング
時の投入電力が抑えられるために、ZnO膜へのダメー
ジが少なくなって、良好な比抵抗値のZnO膜が得られ
る。
When the volume resistivity is low, the input power at the time of sputtering is suppressed, so that the damage to the ZnO film is reduced and a ZnO film having a good specific resistance value can be obtained.

【0021】一方、後述のように、焼結中もしくは焼結
終了後に無酸素処理を加えることによって、酸素欠損を
促進させ、一層の低抵抗化を図ることも可能である。
On the other hand, as described later, by adding an oxygen-free treatment during or after sintering, oxygen deficiency can be promoted and the resistance can be further reduced.

【0022】「結晶平均粒径」結晶平均粒径が大きいと
焼結体の抗折力が弱いために、成膜時に急激なパワーを
かけると割れが発生したり、結晶粒の脱落が生じたりす
る。この結果、局所的な異常放電が多発する。よって、
亜鉛とガリウムと第3元素の複合酸化物の結晶粒子(化
合物相、固溶相などを含む)の結晶平均粒径を4〜15
μmの範囲内にする。
"Average crystal grain size" If the crystal average grain size is large, the transverse rupture strength of the sintered body is weak, so if a sharp power is applied during film formation, cracks may occur or crystal grains may fall off. I do. As a result, local abnormal discharge frequently occurs. Therefore,
The crystal average particle size of the crystal particles (including the compound phase, the solid solution phase, etc.) of the composite oxide of zinc, gallium and the third element is 4 to 15
It is within the range of μm.

【0023】「原料粉末」本願発明のZnO系焼結体を
得るための原料であるZnOやGa23などの酸化物
は、単体粉末、もしくは下記に示す複合化粉末として用
いる。単体で用いる際には平均一次粒子径が1μm以下
の粉末を用いる。前述したようにB23相は、融点が低
く、焼結途中で蒸発してしまうため、あらかじめB23
粉末をZnOやGa23などの粉末と複合化する。
"Raw material powder" An oxide such as ZnO or Ga 2 O 3 which is a raw material for obtaining the ZnO-based sintered body of the present invention is used as a simple powder or a composite powder shown below. When used alone, a powder having an average primary particle diameter of 1 μm or less is used. Since the B 2 O 3 phase as described above, low melting point, resulting in evaporation in the course sintering, pre-B 2 O 3
The powder is compounded with a powder such as ZnO or Ga 2 O 3 .

【0024】「複合化方法」ZnOやGa23と第3元
素(Al23など)の酸化物との粉末を所望の組成とな
るように配合し、混合を行った後、仮焼を1100℃以
下にて行い、必要あればさらに粉砕を行えば平均一次粒
子径が5μm以下の複合化粉末が得られる。あるいは、
後述の共沈法等によって作製された水酸化物粉末を10
00℃以下にて仮焼すれば複合化粉末が容易に得られ
る。ただし、上記複合化粉末を用いて常圧焼結法にて焼
結体を得る場合には、複合化のための仮焼温度は500
〜800℃の範囲内が好ましい。800℃以上で行うと
複合化粉末は粗大化され、平均一次粒子径が5μmより
大きくなって焼結性が失われて、本発明で目的とする焼
結密度を達成することができなくなる。
[Composite Method] Powder of ZnO or Ga 2 O 3 and an oxide of a third element (such as Al 2 O 3 ) is blended to have a desired composition, mixed, and then calcined. At 1100 ° C. or lower, and if necessary, further pulverization to obtain a composite powder having an average primary particle diameter of 5 μm or less. Or,
The hydroxide powder produced by the coprecipitation method described below
If calcined at a temperature of 00 ° C. or lower, a composite powder can be easily obtained. However, when a sintered body is obtained by the normal pressure sintering method using the composite powder, the calcining temperature for the composite is 500.
The temperature is preferably in the range of -800 ° C. When the temperature is higher than 800 ° C., the composite powder becomes coarse, the average primary particle diameter becomes larger than 5 μm, the sinterability is lost, and the sintered density intended in the present invention cannot be achieved.

【0025】この複合化粉末は、そのまま焼結原料とす
るか、あるいは、さらにZnOなどの粉末単体と合わせ
て所望の組成となるように配合し、混合を行って焼結原
料とすることもできる。
This composite powder can be used as a raw material for sintering as it is, or can be further mixed with a single powder of ZnO or the like so as to have a desired composition and mixed to obtain a raw material for sintering. .

【0026】「水酸化物粉末の作製」多く用いられる共
沈法での水酸化物粉末の作製方法を以下に示す。まず、
硫酸亜鉛、塩化亜鉛等を水に溶かして水溶液化するか、
もしくは硫酸、塩酸にて金属亜鉛を溶かした溶液を水で
希釈して水溶液化する。その後、水溶液中に硼酸塩、硼
酸、硼酸ナトリウム等を添加し、さらにpHを制御する
ためのアンモニア等のアルカリ類からなる沈殿剤を投入
して中和を行う。次に、固液分離を行い、得られた沈殿
物を濾過後、水洗、粉砕した後に乾燥して複合水酸化物
とする。
"Preparation of hydroxide powder" A method of preparing a hydroxide powder by a commonly used coprecipitation method is described below. First,
Dissolve zinc sulfate, zinc chloride, etc. in water to form an aqueous solution,
Alternatively, a solution in which metal zinc is dissolved with sulfuric acid or hydrochloric acid is diluted with water to form an aqueous solution. Thereafter, borate, boric acid, sodium borate and the like are added to the aqueous solution, and a precipitant made of an alkali such as ammonia for controlling the pH is added to neutralize the solution. Next, solid-liquid separation is performed, and the obtained precipitate is filtered, washed with water, pulverized, and then dried to obtain a composite hydroxide.

【0027】「混合」混合は湿式、または乾式によるボ
ールミル、振動ミル等を用いることができるが、均一微
細な結晶粒および空孔を得るには、凝集体の解砕効率が
高く、添加物の分散状態も良好となる湿式ボールミル混
合法が最も好ましい。ただしホットプレスを用いる場合
には、粉末への吸湿を避けるために、乾式ボールミル、
Vブレンダー等が適用される。湿式ボールミル混合時間
は12〜72時間、乾式ボールミル混合時間は8〜24
時間の範囲が好ましい。湿式混合時間が12時間未満で
あると、均一微細な結晶粒および空孔を得ることができ
ない。また、湿式混合時間が72時間を越えるのは、混
合粉末中に不純物が多く混入するため好ましくない。乾
式混合の場合も同様な理由から混合時間が規制される。
"Mixing" For mixing, a wet or dry ball mill, vibrating mill or the like can be used. In order to obtain uniform fine crystal grains and pores, the agglomerate has a high crushing efficiency and the additive has a high efficiency. Most preferred is a wet ball mill mixing method that also provides a good dispersion state. However, when using a hot press, dry ball mill,
V blender or the like is applied. Wet ball mill mixing time is 12 to 72 hours, dry ball mill mixing time is 8 to 24
Time ranges are preferred. If the wet mixing time is less than 12 hours, uniform fine crystal grains and pores cannot be obtained. Further, it is not preferable that the wet mixing time exceeds 72 hours because a large amount of impurities are mixed in the mixed powder. In the case of dry mixing, the mixing time is regulated for the same reason.

【0028】また、混合する際にはバインダーを任意量
だけ添加し、同時に混合を行う。バインダー種には、ポ
リビニルアルコール、酢酸ビニル等が用いられる。
When mixing, an optional amount of a binder is added, and mixing is performed at the same time. As the binder type, polyvinyl alcohol, vinyl acetate, or the like is used.

【0029】「成形」上記湿式混合によって得られたス
ラリーは、乾燥造粒後、金型または冷間静水圧プレスに
て1ton/cm2 以上の圧力で成形を行う。乾式混合
によって得られた混合粉末は、そのまま、金型または冷
間静水圧プレスにて1ton/cm2以上の圧力で成形
を行う。
[Molding] The slurry obtained by the wet mixing is dried and granulated and then molded by a mold or a cold isostatic press at a pressure of 1 ton / cm 2 or more. The mixed powder obtained by the dry mixing is molded as it is with a mold or a cold isostatic press at a pressure of 1 ton / cm 2 or more.

【0030】「焼結方法」本願発明のZnO系焼結体を
得るには、ホツトプレス・酸素加圧・熱間静水圧等の焼
結方法を用いることができるが、焼結法には常圧焼結法
を用いることが好ましい。なぜなら、常圧焼結法には、
製造コストを低減しやすいうえ、容易に大型焼結体を製
造しやすいなどの利点があるからである。
"Sintering method" In order to obtain the ZnO-based sintered body of the present invention, a sintering method such as hot press, oxygen pressurization and hot isostatic pressure can be used. It is preferable to use a sintering method. Because the normal pressure sintering method
This is because there are advantages that the manufacturing cost can be easily reduced and a large-sized sintered body can be easily manufactured.

【0031】「焼結雰囲気」常圧焼結法では、通常は、
成形体を大気中にて焼結を行う。
"Sintering atmosphere" In the normal pressure sintering method, usually,
The compact is sintered in the air.

【0032】密度を一層高くしたい場合には、昇温過程
で酸素を導入して焼結を行うことも可能である。しか
し、酸素の導入により酸素欠損が抑制され、抵抗値が低
下する恐れがある。酸素を導入する場合の酸素流量とし
ては、2〜20リットル/分が好ましい。2リットル/
分未満であると、ZnOの蒸発抑制(密度増大)効果は
薄れ、20リットル/分を超えると、その流量によって
焼結炉内が冷却され、均熱性が低下してしまう。
When it is desired to further increase the density, sintering can be performed by introducing oxygen during the heating process. However, the introduction of oxygen suppresses oxygen deficiency and may lower the resistance value. The oxygen flow rate when introducing oxygen is preferably 2 to 20 liters / minute. 2 liters /
If it is less than 10 minutes, the effect of suppressing evaporation (increase in density) of ZnO is weakened. If it exceeds 20 liters / minute, the inside of the sintering furnace is cooled by the flow rate, and the heat uniformity is reduced.

【0033】また、逆に、焼結体内の酸素欠損を促進
し、表面抵抗を一層低下させたい場合には、焼結中に無
酸素処理を施すことも可能である。
Conversely, when it is desired to promote oxygen deficiency in the sintered body and further reduce the surface resistance, it is possible to perform an oxygen-free treatment during sintering.

【0034】焼結中の無酸素処理は、昇温中において水
素などの還元ガスやアルゴン、ヘリウム、窒素などの不
活性ガスを導入して達成される。しかし、無酸素雰囲気
にすると、ZnOの蒸発が活発化し、これらの蒸発で、
焼結密度が低下する。従って、1300℃より高い温度
での焼結中の無酸素処理は行えない。
The oxygen-free treatment during sintering is achieved by introducing a reducing gas such as hydrogen or an inert gas such as argon, helium, or nitrogen during the temperature rise. However, in an oxygen-free atmosphere, the evaporation of ZnO is activated, and by these evaporations,
The sintering density decreases. Therefore, oxygen-free treatment during sintering at a temperature higher than 1300 ° C. cannot be performed.

【0035】「焼結温度」焼結温度は1000〜150
0℃、好ましくは1000〜1300℃が良い。この際
の焼結時間は15時間以下とする。1000℃未満であ
ると、4.8g/cm3 以上の焼結密度を得ることがで
きない。一方、1500℃を超えるか、または焼結時間
が15時間を超えると、ZnOの蒸発の活発化により焼
結密度が低下したり、著しい結晶粒成長により結晶粒
径、空孔の粗大化を来たし、異常放電発生の原因にな
る。
"Sintering temperature" The sintering temperature is 1000 to 150.
0 ° C, preferably 1000 to 1300 ° C. The sintering time at this time is 15 hours or less. If the temperature is lower than 1000 ° C., a sintered density of 4.8 g / cm 3 or more cannot be obtained. On the other hand, when the temperature exceeds 1500 ° C. or the sintering time exceeds 15 hours, the sintering density is reduced due to activation of ZnO evaporation, and the crystal grain size and pores are coarsened due to remarkable crystal grain growth. Causes abnormal discharge.

【0036】そして、焼結中の昇温速度においては、6
00〜1300℃の温度範囲の昇温速度を1〜10℃/
分にする必要がある。つまり、600〜1300℃間
は、特にZnOの焼結が最も活発化する温度範囲であ
り、この温度範囲での昇温速度が1℃/分より遅いと、
結晶粒成長が著しくなって、本発明の目的を達成するこ
とができない。また、昇温速度が10℃/分より速い
と、焼結炉内の均熱性が低下し、その結果、焼結中の収
縮量に分布が生じて、焼結体は割れてしまう。
And, at the heating rate during sintering, 6
The heating rate in the temperature range of 00 to 1300 ° C is 1 to 10 ° C /
Need to be minutes. In other words, the temperature range between 600 and 1300 ° C. is a temperature range where sintering of ZnO is most active, and if the rate of temperature rise in this temperature range is lower than 1 ° C./min,
The crystal growth is remarkable, and the object of the present invention cannot be achieved. On the other hand, if the heating rate is higher than 10 ° C./min, the uniformity in the sintering furnace decreases, and as a result, the shrinkage during sintering is distributed and the sintered body is broken.

【0037】ホットプレスを用いる場合の焼結温度は真
空中またはAr雰囲気中で900〜1300℃の範囲
内、その際のプレス圧は200〜400kg/cm2
好ましい。
When a hot press is used, the sintering temperature is preferably in the range of 900 to 1300 ° C. in a vacuum or Ar atmosphere, and the press pressure at that time is preferably 200 to 400 kg / cm 2 .

【0038】「焼結終了後の無酸素処理」表面抵抗を一
層低下させたい場合には、焼結終了後に無酸素処理を施
すことでも目的は達成される。
"Oxygen-free treatment after completion of sintering" If it is desired to further reduce the surface resistance, the object can be achieved by performing oxygen-free treatment after completion of sintering.

【0039】焼結終了後に無酸素処理を施す場合、焼結
終了後、冷却したあとに、あるいは降温中に真空中にて
800℃以上の温度に加熱すれば目的を達成できる。具
体的には、以下の方法にて行うことができる。まず、焼
結終了後、そのまま炉内で900〜1300℃まで5〜
20℃/分にて降温し、該所定温度に30分〜5時間保
持しつつ、不活性ガスや還元ガスを2〜20リットル/
分の割合で導入する。1300℃以上で無酸素処理を行
うと、ZnOの蒸発が活発化して、焼結密度の低下、ま
たは組成ずれを来すばかりか、炉材やヒータの寿命を縮
めて生産性を悪化させる。900℃以下であると、無酸
素処理の効果が薄れ、表面抵抗値を大幅に低下させるこ
とができない。また導入ガス量が2リットル/分未満で
あると、無酸素処理の効果は薄れ、その導入量が多いほ
ど該効果が高いが、20リットル/分を超えると、その
流量によって焼結炉内が冷却され、均熱性が低下する。
When the oxygen-free treatment is performed after the sintering is completed, the object can be achieved by heating to a temperature of 800 ° C. or more in a vacuum after the completion of the sintering, after cooling, or during a temperature decrease. Specifically, it can be performed by the following method. First, after sintering, 5 to 900 to 1300 ° C
The temperature is lowered at 20 ° C./min, and while maintaining the predetermined temperature for 30 minutes to 5 hours, an inert gas or a reducing gas is supplied at 2 to 20 liters / min.
Introduced in minutes. When the oxygen-free treatment is performed at 1300 ° C. or higher, the evaporation of ZnO is activated, which lowers the sintering density or shifts the composition, shortens the life of the furnace material and the heater, and deteriorates the productivity. When the temperature is 900 ° C. or lower, the effect of the oxygen-free treatment is weakened, and the surface resistance cannot be significantly reduced. If the amount of introduced gas is less than 2 liters / minute, the effect of the oxygen-free treatment is diminished. The greater the amount of introduced gas, the higher the effect. It cools and the heat uniformity decreases.

【0040】[0040]

【実施例】本発明に関するZnO系焼結体の製造方法を
以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for producing a ZnO-based sintered body according to the present invention will be described below.

【0041】[実施例1]共沈法によって作製されたZ
nO−40重量%B23水酸化物を700℃3時間にて
仮焼して得た平均一次粒子径が0.5μmの複合化粉末
を、平均一次粒子径が0.1μmのZnO粉末中に、
0.5重量%添加し、さらに平均一次粒子径が0.1μ
mのGa23粉末を6.9重量%添加して原料粉末とし
た。
[Example 1] Z produced by the coprecipitation method
A composite powder having an average primary particle diameter of 0.5 μm obtained by calcining nO-40 wt% B 2 O 3 hydroxide at 700 ° C. for 3 hours is converted into a ZnO powder having an average primary particle diameter of 0.1 μm. inside,
0.5% by weight, and the average primary particle diameter is 0.1 μm.
6.9% by weight of m 2 Ga 2 O 3 powder was added to obtain a raw material powder.

【0042】この原料粉末を樹脂製ポットに入れ、硬質
ZrO2 ボールを用いて湿式ボールミル混合を18時間
行った。なお、混合を行う際、バインダーとしてポリビ
ニルアルコールを1重量%添加した。
This raw material powder was placed in a resin pot, and mixed by a wet ball mill using hard ZrO 2 balls for 18 hours. At the time of mixing, 1% by weight of polyvinyl alcohol was added as a binder.

【0043】その後、スラリーを取り出して乾燥し造粒
した後、造粒粉を冷間静水圧プレスにて3トン/cm2
の圧力で成形し、直径100mm、厚さ8mmの円盤状
の成形体を得た。さらに得られた成形体を大気中にて8
00℃まで1℃/分にて昇温し、800〜1300℃ま
で3℃/分にて昇温した。その後1300℃にて5時間
保持を行った。
Thereafter, the slurry was taken out, dried and granulated, and the granulated powder was subjected to 3 tons / cm 2 by a cold isostatic press.
To obtain a disc-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. Further, the obtained molded body is subjected to 8 in air.
The temperature was raised to 00 ° C at a rate of 1 ° C / min and from 800 to 1300 ° C at a rate of 3 ° C / min. Thereafter, the temperature was held at 1300 ° C. for 5 hours.

【0044】得られた焼結体の密度をアルキメデス法で
測定した。また、同試料を用いて熱腐食し、SEM観察
によって平均結晶粒径、空孔径を測定した。得られた結
果を表1に示す。
The density of the obtained sintered body was measured by the Archimedes method. The sample was thermally corroded, and the average crystal grain size and pore size were measured by SEM observation. Table 1 shows the obtained results.

【0045】また、得られた焼結体を直径75mm、厚
さ6mmの円盤状に加工してスパッタリング用ターゲッ
トを作製し、このターゲットを用いてDCマグネタロン
スパッタリング法によって膜厚5000オングストロー
ムの成膜を行った。スパッタリング条件は投入電力20
0W、Arガス圧0.7Paに固定した。そして実験開
始から10時間経過後の10分間あたりに発生する異常
放電回数、さらに成膜初期における基板温度が室温時の
比抵抗値と、550、1000nm波長域における透過
率を測定した。得られた結果を表1に示す。
The obtained sintered body was processed into a disk having a diameter of 75 mm and a thickness of 6 mm to produce a sputtering target, and a 5,000 angstrom thick film was formed using this target by a DC magnetron sputtering method. Was done. Sputtering conditions are: input power 20
0 W and an Ar gas pressure of 0.7 Pa were fixed. Then, the number of abnormal discharges occurring per 10 minutes after the start of the experiment for 10 minutes, the specific resistance value when the substrate temperature was room temperature at the initial stage of film formation, and the transmittance in the wavelength region of 550 and 1000 nm were measured. Table 1 shows the obtained results.

【0046】[実施例2]共沈法によって作製されたZ
nO−50重量%B23水酸化物を700℃3時間にて
仮焼して得た平均一次粒子径が0.5μmの複合化粉末
を2重量%、平均一次粒子径が0.1μmのZnO粉末
中に添加し、さらに平均一次粒子径が0.1μmのGa
23粉末を4.6重量%添加して原料粉末とした。
Example 2 Z produced by the coprecipitation method
2% by weight of a composite powder having an average primary particle diameter of 0.5 μm obtained by calcining nO-50% by weight of B 2 O 3 hydroxide at 700 ° C. for 3 hours, and an average primary particle diameter of 0.1 μm Of ZnO powder, and Ga having an average primary particle diameter of 0.1 μm.
4.6 wt% of 2 O 3 powder was added to obtain a raw material powder.

【0047】この原料粉末を樹脂製ポットに入れ、硬質
ZrO2 ボールを用いて湿式ボールミル混合を18時間
行った。なお、混合を行う際、バインダーとしてポリビ
ニルアルコールを1重量%添加した。
This raw material powder was placed in a resin pot, and mixed by a wet ball mill using hard ZrO 2 balls for 18 hours. At the time of mixing, 1% by weight of polyvinyl alcohol was added as a binder.

【0048】その後、スラリーを取り出して乾燥し造粒
した後、造粒粉を冷間静水圧プレスにて3トン/cm2
の圧力で成形し、直径100mm、厚さ8mmの円盤状
の成形体を得た。さらに得られた成形体を大気中にて8
00℃まで1℃/分にて昇温し、800〜1300℃ま
で3℃/分にて昇温した。その後1300℃にて5時間
保持を行った。
Thereafter, the slurry was taken out, dried and granulated, and the granulated powder was subjected to 3 tons / cm 2 by a cold isostatic press.
To obtain a disc-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. Further, the obtained molded body is subjected to 8 in air.
The temperature was raised to 00 ° C at a rate of 1 ° C / min and from 800 to 1300 ° C at a rate of 3 ° C / min. Thereafter, the temperature was held at 1300 ° C. for 5 hours.

【0049】得られた焼結体について実施例1と同様の
測定および試験を行い、その結果を表1に示した。
The obtained sintered body was measured and tested in the same manner as in Example 1. The results are shown in Table 1.

【0050】[実施例3]共沈法によって作製されたZ
nO−50重量%B23水酸化物を700℃3時間にて
仮焼して得た平均一次粒子径が0.5μmの複合化粉末
を4重量%、平均一次粒子径が0.1μmのZnO粉末
中に添加し、平均一次粒子径が0.1μmのGa23
末を4.6重量%添加して原料粉末とした。
[Example 3] Z produced by the coprecipitation method
4% by weight of a composite powder having an average primary particle diameter of 0.5 μm obtained by calcining nO-50% by weight of B 2 O 3 hydroxide at 700 ° C. for 3 hours, and an average primary particle diameter of 0.1 μm Of ZnO powder, and 4.6% by weight of a Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm was added to obtain a raw material powder.

【0051】この原料粉末を樹脂製ポットに入れ、硬質
ZrO2 ボールを用いて湿式ボールミル混合を18時間
行った。なお、混合を行う際、バインダーとしてポリビ
ニルアルコールを1重量%添加した。
This raw material powder was placed in a resin pot, and mixed by a wet ball mill using hard ZrO 2 balls for 18 hours. At the time of mixing, 1% by weight of polyvinyl alcohol was added as a binder.

【0052】その後、スラリーを取り出して乾燥し造粒
した後、造粒粉を冷間静水圧プレスにて3トン/cm2
の圧力で成形し、直径100mm、厚さ8mmの円盤状
の成形体を得た。さらに得られた成形体を大気中にて8
00℃まで1℃/分にて昇温し、800〜1300℃ま
で3℃/分にて昇温した。その後、1300℃にて5時
間の保持を行った。
Thereafter, the slurry was taken out, dried and granulated, and the granulated powder was subjected to 3 tons / cm 2 by a cold isostatic press.
To obtain a disc-shaped molded body having a diameter of 100 mm and a thickness of 8 mm. Further, the obtained molded body is subjected to 8 in air.
The temperature was raised to 00 ° C at a rate of 1 ° C / min and from 800 to 1300 ° C at a rate of 3 ° C / min. Thereafter, holding was performed at 1300 ° C. for 5 hours.

【0053】得られた焼結体について実施例1と同様の
測定および試験を行い、その結果を表1に示した。
The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0054】[実施例4]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.6重量%、そして平均一次粒子径
0.1μmからなるGeO2 粉末を1.1重量%添加し
て原料粉末とした。この原料粉末を樹脂製ポットに入
れ、硬質ZrO2 ボールを用いて湿式ボールミル混合を
18時間行った。また混合を行う際、バインダーとして
ポリビニルアルコールを1重量%添加した。その後、ス
ラリーを取り出して、乾燥し造粒した後、造粒粉を冷間
静水圧プレスにて3トン/cm2 の圧力で成形し、直径
100mm厚さ8mmの円盤状の成形体を得た。さらに
得られた成形体を大気中にて800℃まで1℃/分にて
昇温し、800〜1300℃まで3℃/分にて昇温し
た。その後1300℃にて5時間の保持を行った。
Example 4 4.6% by weight of Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm in ZnO powder having an average primary particle diameter of 0.1 μm and an average primary particle diameter of 0.1 μm GeO 2 powder of 1.1% by weight was added to obtain a raw material powder. This raw material powder was placed in a resin pot, and wet ball mill mixing was performed for 18 hours using hard ZrO 2 balls. When mixing, 1% by weight of polyvinyl alcohol was added as a binder. Thereafter, the slurry was taken out, dried and granulated, and the granulated powder was molded at a pressure of 3 ton / cm 2 by a cold isostatic press to obtain a disc-shaped compact having a diameter of 100 mm and a thickness of 8 mm. . Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at a rate of 1 ° C./min, and from 800 to 1300 ° C. at a rate of 3 ° C./min. Thereafter, holding was performed at 1300 ° C. for 5 hours.

【0055】得られた焼結体について実施例1と同様の
測定および試験を行い、その結果を表1に示した。
The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0056】[実施例5]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.5重量%、そして平均一次粒子径
0.1μmからなるIn23粉末を1.7重量%添加し
て原料粉末とした。この原料粉末を樹脂製ポットに入
れ、硬質ZrO2 ボールを用いて湿式ボールミル混合を
18時間行った。また混合を行う際、バインダーとして
ポリビニルアルコールを1重量%添加した。その後、ス
ラリーを取り出して、乾燥し造粒した後、造粒粉を冷間
静水圧プレスにて3トン/cm2 の圧力で成形し、直径
100mm厚さ8mmの円盤状の成形体を得た。さらに
得られた成形体を大気中にて800℃まで1℃/分にて
昇温し、800〜1300℃まで3℃/分にて昇温し
た。その後1300℃にて5時間の保持を行った。
Example 5 4.5% by weight of a Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm in a ZnO powder having an average primary particle diameter of 0.1 μm, and an average primary particle diameter of 0.1 μm In 2 O 3 powder of 1.7% by weight was added to obtain a raw material powder. This raw material powder was placed in a resin pot, and wet ball mill mixing was performed for 18 hours using hard ZrO 2 balls. When mixing, 1% by weight of polyvinyl alcohol was added as a binder. Thereafter, the slurry was taken out, dried and granulated, and the granulated powder was molded at a pressure of 3 ton / cm 2 by a cold isostatic press to obtain a disc-shaped compact having a diameter of 100 mm and a thickness of 8 mm. . Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at a rate of 1 ° C./min, and from 800 to 1300 ° C. at a rate of 3 ° C./min. Thereafter, holding was performed at 1300 ° C. for 5 hours.

【0057】得られた焼結体について実施例1と同様の
測定および試験を行い、その結果を表1に示した。
The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0058】[実施例6]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.6重量%、そして平均一次粒子径
が0.1μmのAl23を0.6重量%添加して原料粉
末とした。この原料粉末を樹脂製ポットに入れ、硬質Z
rO2 ボールを用いて湿式ボールミル混合を18時間行
った。また混合を行う際、バインダーとしてポリビニル
アルコールを1重量%添加した。その後、スラリーを取
り出して、乾燥し造粒した後、造粒粉を冷間静水圧プレ
スにて3トン/cm2 の圧力で成形し、直径100mm
厚さ8mmの円盤状の成形体を得た。さらに得られた成
形体を大気中にて800℃まで1℃/分にて昇温し、8
00〜1300℃まで3℃/分にて昇温した。その後1
300℃にて5時間の保持を行った。得られた焼結体に
ついて実施例1と同様の測定および試験を行い、その結
果を表1に示した。
Example 6 4.6% by weight of Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm was contained in ZnO powder having an average primary particle diameter of 0.1 μm, and the average primary particle diameter was 0.1%. 0.6% by weight of 1 μm Al 2 O 3 was added to obtain a raw material powder. This raw material powder is put into a resin pot and hard Z
Wet ball mill mixing was performed for 18 hours using rO 2 balls. When mixing, 1% by weight of polyvinyl alcohol was added as a binder. After that, the slurry was taken out, dried and granulated, and the granulated powder was molded at a pressure of 3 ton / cm 2 by a cold isostatic press, and the diameter was 100 mm.
An 8 mm-thick disk-shaped compact was obtained. Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at 1 ° C./minute,
The temperature was raised to 00 to 1300 ° C at a rate of 3 ° C / min. Then one
The holding was performed at 300 ° C. for 5 hours. The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0059】[実施例7]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.6重量%、そして平均一次粒子径
が0.1μmのSiO2 を0.6重量%添加して原料粉
末とした。この原料粉末を樹脂製ポットに入れ、硬質Z
rO2 ボールを用いて湿式ボールミル混合を18時間行
った。また混合を行う際、バインダーとしてポリビニル
アルコールを1重量%添加した。その後、スラリーを取
り出して、乾燥し造粒した後、造粒粉を冷間静水圧プレ
スにて3トン/cm2 の圧力で成形し、直径100mm
厚さ8mmの円盤状の成形体を得た。さらに得られた成
形体を大気中にて800℃まで1℃/分にて昇温し、8
00〜1300℃まで3℃/分にて昇温した。その後1
300℃にて5時間の保持を行った。得られた焼結体に
ついて実施例1と同様の測定および試験を行い、その結
果を表1に示した。
Example 7 4.6% by weight of Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm was contained in ZnO powder having an average primary particle diameter of 0.1 μm, and the average primary particle diameter was 0.1%. 0.6 μ% by weight of 1 μm SiO 2 was added to obtain a raw material powder. This raw material powder is put into a resin pot and hard Z
Wet ball mill mixing was performed for 18 hours using rO 2 balls. When mixing, 1% by weight of polyvinyl alcohol was added as a binder. After that, the slurry was taken out, dried and granulated, and the granulated powder was molded at a pressure of 3 ton / cm 2 by a cold isostatic press, and the diameter was 100 mm.
An 8 mm-thick disk-shaped compact was obtained. Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at 1 ° C./minute,
The temperature was raised to 00 to 1300 ° C at a rate of 3 ° C / min. Then one
The holding was performed at 300 ° C. for 5 hours. The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0060】[実施例8]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.6重量%、そして平均一次粒子径
が0.1μmのTiO2 を1.0重量%添加して原料粉
末とした。この原料粉末を樹脂製ポットに入れ、硬質Z
rO2 ボールを用いて湿式ボールミル混合を18時間行
った。また混合を行う際、バインダーとしてポリビニル
アルコールを1重量%添加した。その後、スラリーを取
り出して、乾燥し造粒した後、造粒粉を冷間静水圧プレ
スにて3トン/cm2 の圧力で成形し、直径100mm
厚さ8mmの円盤状の成形体を得た。さらに得られた成
形体を大気中にて800℃まで1℃/分にて昇温し、8
00〜1300℃まで3℃/分にて昇温した。その後1
300℃にて5時間の保持を行った。得られた焼結体に
ついて実施例1と同様の測定および試験を行い、その結
果を表1に示した。
Example 8 4.6% by weight of Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm was contained in ZnO powder having an average primary particle diameter of 0.1 μm, and the average primary particle diameter was 0.1%. 1.0 wt% of 1 μm TiO 2 was added to obtain a raw material powder. This raw material powder is put into a resin pot and hard Z
Wet ball mill mixing was performed for 18 hours using rO 2 balls. When mixing, 1% by weight of polyvinyl alcohol was added as a binder. After that, the slurry was taken out, dried and granulated, and the granulated powder was molded at a pressure of 3 ton / cm 2 by a cold isostatic press, and the diameter was 100 mm.
An 8 mm-thick disk-shaped compact was obtained. Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at 1 ° C./minute,
The temperature was raised to 00 to 1300 ° C at a rate of 3 ° C / min. Then one
The holding was performed at 300 ° C. for 5 hours. The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0061】[実施例9]平均一次粒子径0.1μmか
らなるZnO粉末中に平均一次粒子径0.1μmからな
るGa23粉末を4.5重量%、そして平均一次粒子径
が0.1μmのSnO2 を1.8重量%添加して原料粉
末とした。この原料粉末を樹脂製ポットに入れ、硬質Z
rO2 ボールを用いて湿式ボールミル混合を18時間行
った。混合を行う際に、バインダーとしてポリビニルア
ルコールを1重量%添加した。その後、スラリーを取り
出して、乾燥し造粒した後、造粒粉を冷間静水圧プレス
にて3トン・cm2 の圧力で成形し、直径100mm、
厚さ8mmの円盤状の成形体を得た。さらに、得られた
成形体を大気中にて800℃まで1℃/分にして昇温
し、800〜1300℃まで3℃/分にて昇温した。そ
の後、1300℃にて5時間の保持を行った。得られた
焼結体について実施例1と同様の測定および試験を行
い、その結果を表1に示した。
Example 9 4.5% by weight of Ga 2 O 3 powder having an average primary particle diameter of 0.1 μm was contained in ZnO powder having an average primary particle diameter of 0.1 μm, and the average primary particle diameter was 0.1%. 1.8 wt% of SnO 2 of 1 μm was added to obtain a raw material powder. This raw material powder is put into a resin pot and hard Z
Wet ball mill mixing was performed for 18 hours using rO 2 balls. At the time of mixing, 1% by weight of polyvinyl alcohol was added as a binder. After that, the slurry was taken out, dried and granulated, and the granulated powder was molded with a cold isostatic press at a pressure of 3 ton · cm 2 to have a diameter of 100 mm.
An 8 mm-thick disk-shaped compact was obtained. Further, the temperature of the obtained molded body was raised to 800 ° C. in the atmosphere at 1 ° C./min, and the temperature was raised to 800 to 1300 ° C. at 3 ° C./min. Thereafter, holding was performed at 1300 ° C. for 5 hours. The same measurement and test as in Example 1 were performed on the obtained sintered body, and the results are shown in Table 1.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】本発明のZnO系焼結体は、以上のよう
に構成されているので、DCスパッタリング中の異常放
電の発生が長期にわたって少なく、特性のすぐれた透明
導電性膜を効率よく安価に成膜できる。
Since the ZnO-based sintered body of the present invention is configured as described above, the occurrence of abnormal discharge during DC sputtering is small for a long time, and a transparent conductive film having excellent characteristics can be efficiently produced at low cost. Can be formed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Gaを3〜7原子%、および、Al、
B、In、Ge、Si、SnおよびTiからなる群より
選ばれた1種以上の第3元素を0.3〜3原子%含有
し、実質的に亜鉛とガリウムと前記第3元素の複合酸化
物からなることを特徴とするZnO系焼結体。
1. The method according to claim 1, wherein Ga is 3 to 7 atomic%, and
It contains 0.3 to 3 atomic% of at least one third element selected from the group consisting of B, In, Ge, Si, Sn and Ti, and is substantially a composite oxide of zinc, gallium and the third element. A ZnO-based sintered body characterized by comprising a material.
【請求項2】 焼結密度が4.8g/cm3 以上であ
り、かつ、複合酸化物の結晶平均粒径が4〜15μmで
あることを特徴とする請求項1に記載のZnO系焼結
体。
2. The ZnO-based sintering according to claim 1, wherein the sintering density is 4.8 g / cm 3 or more, and the composite oxide has an average crystal grain size of 4 to 15 μm. body.
【請求項3】 内部に存在する空孔の最大径が5μm以
下であることを特徴とする請求項1に記載のZnO系焼
結体。
3. The ZnO-based sintered body according to claim 1, wherein the maximum diameter of the pores present inside is 5 μm or less.
JP6277798A 1998-03-13 1998-03-13 Zno base sintered compact Pending JPH11256320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277798A JPH11256320A (en) 1998-03-13 1998-03-13 Zno base sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277798A JPH11256320A (en) 1998-03-13 1998-03-13 Zno base sintered compact

Publications (1)

Publication Number Publication Date
JPH11256320A true JPH11256320A (en) 1999-09-21

Family

ID=13210148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277798A Pending JPH11256320A (en) 1998-03-13 1998-03-13 Zno base sintered compact

Country Status (1)

Country Link
JP (1) JPH11256320A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284570A (en) * 2001-03-23 2002-10-03 Tosoh Corp Oxide sintered compact and sputtering target
JP2003007134A (en) * 2001-06-22 2003-01-10 Univ Kanagawa Transparent electrode material
WO2007000878A1 (en) 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
WO2007000867A1 (en) 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP2009114538A (en) * 2007-10-19 2009-05-28 Hakusui Tech Co Ltd Target for ion plating for producing zinc oxide-based thin film
JP2009263709A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Sputtering target for depositing zinc oxide thin film, and display device and solar cell having zinc oxide thin film obtained by using the target,
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
WO2010032542A1 (en) * 2008-09-17 2010-03-25 三井金属鉱業株式会社 Electrically conductive transparent zinc oxide film, and method for producing same
US7790644B2 (en) 2008-09-17 2010-09-07 Mitsui Mining & Smelting Co., Ltd. Zinc-oxide-based target
CN102534496A (en) * 2012-03-13 2012-07-04 大连理工大学 High-thermostability transparent conductive film and preparation method and application thereof
WO2012127883A1 (en) * 2011-03-24 2012-09-27 出光興産株式会社 Sintered material, and process for producing same
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
WO2014025017A1 (en) * 2012-08-10 2014-02-13 三菱マテリアル株式会社 Sputtering target for forming transparent oxide film and method for producing same
JP2014514442A (en) * 2011-03-25 2014-06-19 ▲海▼洋王照明科技股▲ふん▼有限公司 Multi-element doped zinc oxide thin film, fabrication method and application
JP5688179B1 (en) * 2014-09-10 2015-03-25 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target, thin film, and method for producing oxide sintered body
KR20170069933A (en) * 2015-12-11 2017-06-21 히타치 긴조쿠 가부시키가이샤 Sputtering target material

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284570A (en) * 2001-03-23 2002-10-03 Tosoh Corp Oxide sintered compact and sputtering target
JP2003007134A (en) * 2001-06-22 2003-01-10 Univ Kanagawa Transparent electrode material
KR100957733B1 (en) * 2005-06-28 2010-05-12 닛코 킨조쿠 가부시키가이샤 Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2007000878A1 (en) 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
WO2007000867A1 (en) 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
JP2009114538A (en) * 2007-10-19 2009-05-28 Hakusui Tech Co Ltd Target for ion plating for producing zinc oxide-based thin film
JP2009263709A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Sputtering target for depositing zinc oxide thin film, and display device and solar cell having zinc oxide thin film obtained by using the target,
JP2009298649A (en) * 2008-06-13 2009-12-24 Sumitomo Metal Mining Co Ltd Oxide sintered compact, target, transparent conductive film obtained by using the same, and conductive laminate
US7790644B2 (en) 2008-09-17 2010-09-07 Mitsui Mining & Smelting Co., Ltd. Zinc-oxide-based target
WO2010032542A1 (en) * 2008-09-17 2010-03-25 三井金属鉱業株式会社 Electrically conductive transparent zinc oxide film, and method for producing same
JP5997690B2 (en) * 2011-03-24 2016-09-28 出光興産株式会社 Sintered body and manufacturing method thereof
WO2012127883A1 (en) * 2011-03-24 2012-09-27 出光興産株式会社 Sintered material, and process for producing same
CN103459655A (en) * 2011-03-24 2013-12-18 出光兴产株式会社 Sintered body and method for producing same
US9243318B2 (en) 2011-03-24 2016-01-26 Idemitsu Kosan Co., Ltd. Sintered material, and process for producing same
JPWO2012127883A1 (en) * 2011-03-24 2014-07-24 出光興産株式会社 Sintered body and manufacturing method thereof
JP2014514442A (en) * 2011-03-25 2014-06-19 ▲海▼洋王照明科技股▲ふん▼有限公司 Multi-element doped zinc oxide thin film, fabrication method and application
JP2013144820A (en) * 2012-01-13 2013-07-25 Mitsubishi Materials Corp Oxide sputtering target and protective film for optical recording medium
CN102534496A (en) * 2012-03-13 2012-07-04 大连理工大学 High-thermostability transparent conductive film and preparation method and application thereof
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
KR20150040273A (en) * 2012-08-10 2015-04-14 미쓰비시 마테리알 가부시키가이샤 Sputtering target for forming transparent oxide film and method for producing same
CN104540976A (en) * 2012-08-10 2015-04-22 三菱综合材料株式会社 Sputtering target for forming transparent oxide film and method for producing same
WO2014025017A1 (en) * 2012-08-10 2014-02-13 三菱マテリアル株式会社 Sputtering target for forming transparent oxide film and method for producing same
CN104540976B (en) * 2012-08-10 2017-02-22 三菱综合材料株式会社 Sputtering target for forming transparent oxide film and method for producing same
JP5688179B1 (en) * 2014-09-10 2015-03-25 Jx日鉱日石金属株式会社 Oxide sintered body, sputtering target, thin film, and method for producing oxide sintered body
KR20170069933A (en) * 2015-12-11 2017-06-21 히타치 긴조쿠 가부시키가이샤 Sputtering target material

Similar Documents

Publication Publication Date Title
JPH11236219A (en) Zinc oxide-base sintered compact and its production
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP4489842B2 (en) Composite oxide sintered body, method for producing amorphous composite oxide film, amorphous composite oxide film, method for producing crystalline composite oxide film, and crystalline composite oxide film
JPH11302835A (en) Production of zinc oxide base sintered compact
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JPH11322332A (en) Zno-based sintered product and its production
JPH11256320A (en) Zno base sintered compact
KR20120052255A (en) Tablet for ion plating, method for producing same, and transparent conductive film
EP2650271A1 (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
JP4092764B2 (en) ZnO-based sintered body
TW201118058A (en) Indium oxide sintered body and indium oxide transparent conductive film
JPH11171539A (en) Zno-base sintered compact and its production
KR101945145B1 (en) Oxide sintered compact
WO2010125801A1 (en) Sintered body for zno-ga2o3 sputtering target and method for producing same
JP4823386B2 (en) Oxide sintered body for manufacturing transparent conductive film
JP5369444B2 (en) GZO sintered body manufacturing method
JPH10297962A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JPH11158607A (en) Zno sintered compact and its production
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JPH11302836A (en) Zinc oxide-base sintered compact
JPH10297966A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JPH10297965A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JP2013112833A (en) Sputtering target material and method for manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709