JP4026194B2 - ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same - Google Patents

ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same Download PDF

Info

Publication number
JP4026194B2
JP4026194B2 JP11108997A JP11108997A JP4026194B2 JP 4026194 B2 JP4026194 B2 JP 4026194B2 JP 11108997 A JP11108997 A JP 11108997A JP 11108997 A JP11108997 A JP 11108997A JP 4026194 B2 JP4026194 B2 JP 4026194B2
Authority
JP
Japan
Prior art keywords
sintering
sintered body
temperature
zno
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11108997A
Other languages
Japanese (ja)
Other versions
JPH10297963A (en
Inventor
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11108997A priority Critical patent/JP4026194B2/en
Publication of JPH10297963A publication Critical patent/JPH10297963A/en
Application granted granted Critical
Publication of JP4026194B2 publication Critical patent/JP4026194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタリング法によって透明導電性膜を形成する際に用いられるスパッタリングターゲット用ZnO−Ga23系焼結体およびその製造方法に関する。
【0002】
【従来の技術】
液晶ディスプレイや太陽電池の電極材として用いられる透明導電性膜には、比抵抗が低いことから、In23−SnO2 系(以下、ITOという)膜やZnO−Al23系(以下、AZOという)膜が多く使われるようになってきている。これらの透明導電性膜は、スパッタリングターゲットを原料とし、加熱した基板上にスパッタリング法によって形成される。形成される膜は、比抵抗値を2×10-4Ω・cm以下とすることができる。
【0003】
しかし、最近の液晶ディスプレイや太陽電池の低コスト化の傾向により、ITOにおいては、主成分であるIn23が高価であるためコスト面で問題があった。また、AZOは、原料粉末が安価であるのでコスト面では問題ないが、低抵抗の膜を得るための最適な成膜条件の範囲が狭いため生産性に問題があった。
【0004】
上記ITO膜やAZO膜に代わって、コスト面および生産性に問題がなく、低抵抗および高耐久性のZnO−Ga23系(以下、GZOという)膜、従ってGZO膜を形成するために用いられるGZOスパッタリングターゲットが注目されつつある。このGZO膜の導電性は、特に、主成分であるZnOが金属過剰(ZnOからOが抜けた状態)型酸化物であること、つまりZnOの酸素欠損によることが知られている。
【0005】
特開平6−25838号公報には、X線回折ピークにおいて、Gaが固溶したZnO相の(002)面のピーク(高角側)の積分強度と、Gaが固溶していないZnO相の(002)面のピーク(低角側)の積分強度との比が0.2以上であるGZO焼結体が開示されている。そして、このGZO焼結体の製造方法として、ZnO粉末とGa23粉末との混合粉末をラバープレス法を用いて成形し、その成形体を1400〜1550℃で焼結する方法が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、特開平6−25838号公報に開示されたGZO焼結体をターゲットとして用いて成膜を行うと、異常放電の発生によってプラズマ放電状態が不安定となり安定した成膜が行われない。そのため膜特性が悪化するという問題点が生じている。
【0007】
ところで、現在では、ディスプレイなどの大画面化に伴って大面積に成膜されることが主流であるため、大型焼結体に対する要求が非常に強くなってきている。
【0008】
本発明の目的は、上記の現状に鑑み、異常放電の発生がなく、安定して、特性の優れたGZO膜を成膜することができるスパッタリングターゲット用GZO焼結体、およびこのGZO焼結体を、安い製造コストで、かつ大型のものも含めて製造することができる方法を提供することにある。
【0009】
上記課題を解決するために、本発明者は鋭意研究した結果、上記特開平6−25838号公報に開示されたGZO焼結体は、焼結密度が低く、また体積抵抗率が5×10-2Ω・cm以上の高抵抗であることが分かった。
【0010】
本発明者は、GZO焼結体についてさらに解析を行って本発明に到達した。
【0012】
【課題を解決するための手段】
発明のスパッタリングターゲット用GZO焼結体の製造方法は、酸化亜鉛粉末に酸化ガリウム粉末を添加して混合し、混合粉末を成形し、成形物を常圧で焼結する方法において、(1)平均粒径が1μm以下の該酸化亜鉛粉末と、平均粒径が1μm以下の該酸化ガリウム粉末とを用い、(2)該成形を冷間で行い、(3)焼結温度を1300〜1550℃とし、該焼結温度まで昇温する途中の1000〜1300℃の温度範囲の昇温速度を1〜10℃/分として該焼結を行うことを特徴とする。
【0013】
【発明の実施の形態】
本発明のスパッタリングターゲット用GZO焼結体は、Gaが好ましくは2重量%以上固溶したZnO相が主な構成相である。その他の構成相は、Gaが固溶していないZnO相やZnGa24相(スピネル相)で表される中間化合物相である。そして、(1)焼結密度が5.2g/cm3 以上、(2)体積抵抗率が2×10-2Ω・cm以下、(3)平均結晶粒径が2〜10μm、および(4)最大空孔径が2μm以下のいずれをも満足する。上記4項目のうちいずれを満足しなくても異常放電を十分に抑制することができない。
【0014】
上記4項目のうち、平均結晶粒径および最大空孔径についてさらに説明する。
【0015】
(1)平均結晶粒径
結晶粒径が大きいと、焼結体の抗折強度が弱い。そのために、成膜時に急激なパワーをかけると、割れが発生したり結晶粒の脱落が生じたりする。すると、局所的な異常放電が多発する。よって、本発明のGZO焼結体では、その平均結晶粒径を2〜10μmにする。
【0016】
(2)最大空孔径
GZO焼結体内の最大空孔径が大きいと、結晶粒の脱落が生じる。すると、局所的な異常放電が多発する。よって、本発明のGZO焼結体では、その最大空孔径を2μm以下にする。
【0017】
本発明のスパッタリングターゲット用GZO焼結体の製造方法は、上記4項目を満足するGZO焼結体の製造方法であり、この製造方法について次に説明する。
【0018】
(1)原料粉末
原料粉末は、平均粒径が1μm以下、好ましくは0.1〜0.6μmの酸化亜鉛粉末、および平均粒径が1μm以下、好ましくは0.05〜0.3μmの酸化ガリウム粉末である。平均粒径が1μmを超える酸化亜鉛粉末、または平均粒径が1μmを超える酸化ガリウム粉末を用いると、焼結密度が5.2g/cm3 以上、最大空孔径が2μm以下、および平均結晶粒径が2〜10μmを満足するGZO焼結体を製造し難い。
【0019】
(2)混合
酸化亜鉛粉末と酸化ガリウム粉末との混合比率を、量にて(87〜97):(3〜13)とすると、製造される焼結体のZnO中にGaを2〜8量%固溶させることができ、ZnOの酸素欠損が増加して、2×10-2Ω・cm以下の体積抵抗率がより得易くなる。それとともに、成膜される膜の耐久性が向上する。Ga固溶量が2量%未満で耐久性が不十分な膜は、液晶ディスプレイ製造時に受ける高温処理によって膜が劣化し易い。固溶したGa量は、8量%あれば十分である。
【0020】
混合は、ボールミル、振動ミルなどを用いて、湿式でも乾式でも行うことができる。均一微細な結晶粒や、微細な(従って最大径の小さな)空孔を得る上で、混合法の中で特に湿式ボールミル混合法が最も好ましい。湿式ボールミル混合法における混合時間は、12〜78時間が好ましい。12時間未満では、均一微細な結晶粒や微細な空孔が得難く、一方、78時間を超えて混合しても、より以上の混合効果が得難く、逆に不純物が混入し易くなる。
【0021】
また、後工程の成形で造粒物を成形する場合、バインダーも一緒に添加混合する。用いるバインダーとして、例えば、ポリビニルアルコール、酢酸ビニルを挙げることができる。
【0022】
(3)成形
成形は、混合物を必要により乾燥、造粒した後、冷間プレス、冷間静水圧プレスなどの冷間成形機を用いて、1ton/cm2 以上の圧力を掛けて行う。ホットプレスなどを用いて熱間で成形を行うと、製造コストが掛かるだけでなく、大型焼結体が製造し難くなる。
【0023】
(4)焼結
焼結は、常圧焼結である。成形を兼ねる加圧焼結を行わないのは、上記した熱間成形を行わないのと同様の理由による。
【0024】
焼結温度を1300〜1550℃、好ましくは1400〜1500℃とし、該焼結温度まで昇温する途中の1000〜1300℃の温度範囲の昇温速度を1〜10℃/分、好ましくは3〜5℃/分として、焼結を行う。
【0025】
焼結温度が1300℃未満では、焼結密度が5.2g/cm3 以上、および最大空孔径が2μm以下を満足する焼結体を得難い。一方、1550℃を超えると、焼結体の結晶粒成長が著しくなるとともに、空孔の粗大化、ひいては最大空孔径の増大化を来すので、最大空孔径が2μm以下、および平均結晶粒径が2〜10μmを満足する焼結体を得難い。焼結温度を1300〜1550℃として焼結を行うので、ZnO中にGaを固溶させZnOの酸素欠損を増加させて、2×10-2Ω・cm以下の体積抵抗率を得ることもできる。
【0026】
また、上記昇温速度が1℃/分より遅いと、焼結体の結晶粒成長が著しくなるとともに、空孔の粗大化、ひいては最大空孔径の増大化を来す。一方、10℃/分より速いと、焼結炉内温度の均一性が低下し、焼結体内の膨脹・収縮量にバラツキを生じて、該焼結体は割れ易い。この昇温速度を1000〜1300℃の温度範囲で規定するのは、この温度範囲でGZO焼結体の焼結が最も活発化するからである。
【0027】
焼結は、雰囲気が一定量以上の酸素を含むように、焼結炉内容積0.1m3 当たり2〜20リットル/分の割合で酸素を大気雰囲気に導入しながら行うのが好ましい(以後、焼結における酸素、および後述する還元における非酸化性ガスの、炉内容積0.1m3 当たりの導入量を、リットル/分/m3 の単位表記にする)。酸素を導入するのは、ZnOの蒸発を抑制し、焼結体の緻密化を一層促すためである。酸素導入量が2リットル/分/m3 未満では、上記作用が薄れる。一方、20リットル/分/m3 を超えると、焼結炉内温度の均一性が乱れ易くなる。
【0028】
焼結温度における保持時間は、3〜15時間とするのが好ましい。保持時間が3時間未満では、焼結密度が5.2g/cm3 以上、および最大空孔径が2μm以下を満足する焼結体を得難い。一方、15時間を超えると、焼結体の結晶粒成長が著しくなるとともに、空孔の粗大化、ひいては最大空孔径の増大化を来す。
【0029】
(5)還元
ZnOの酸素欠損を促進し、体積抵抗率の一層の低下を計るために、焼結を終わった焼結体に対して還元を行うことが好ましい。
【0030】
還元は、例えば、窒素、アルゴン、二酸化炭素、ヘリウムなどの非酸化性ガスを導入しながら常圧で行う方法や、好ましくは2Pa以下の真空雰囲気中1000〜1300℃で加熱する方法により行うことができるが、製造コストをより低くできるため、上記常圧で行う方法が有利である。次に、この常圧で行う方法の一例について説明する。
【0031】
焼結を行った後、焼結温度から還元温度である1100〜1400℃まで1〜10℃/分の降温速度で降温し(酸素を導入しながら焼結を行い、該焼結を行った焼結炉で還元を行う場合は、酸素の導入を止めて降温する)た後、2〜20リットル/分/m3 の割合で非酸化性ガスを導入しながら、該還元温度を3〜10時間保持する。
【0032】
還元温度が1100℃未満では、非酸化性ガスによる上記還元作用が薄れる。一方、1400℃を超えると、ZnOの蒸発が活発化して組成ずれを来し易いばかりか、炉材やヒータの寿命を縮めて生産性を悪化させ易い。降温速度が1℃/分より遅いと、焼結体の結晶粒成長が著しくなる。一方、10℃/分より速いと、還元炉内温度の均一性が低下し、焼結体内の膨脹・収縮量にバラツキを生じて、該焼結体は割れ易い。非酸化性ガスの導入量が2リットル/分/m3 未満では、上記作用が薄れる。一方、20リットル/分/m3 超えると、還元炉内温度の均一性が乱れ易くなる。保持時間が3時間未満では、体積抵抗率を一層低下させることが難しい。一方、10時間を超えると、焼結体の結晶粒成長が著しくなるとともに、空孔の粗大化、ひいては最大空孔径の増大化を来す。
【0033】
【実施例】
参考例1]
平均粒径がいずれも1μm以下の、ZnO粉末およびGa23粉末を原料粉末とした。ZnO粉末とGa23粉末とを量比で95:5の割合で樹脂製ポットに入れ、湿式混合した。湿式混合は、湿式ボールミル混合法を用い、ボールは硬質ZrO2ボールを、バインダーをポリビニルアルコール(全原料粉末量に対して1量%添加)を用い、そして混合時間を18時間とした。混合後のスラリーを取り出し、乾燥、造粒した。造粒した原料粉末を、冷間静水圧プレスで1ton/cm2の圧力を掛けて成形して、直径100mm、厚さ8mmの円盤状成形体を得た。
【0034】
次に、上記成形体を焼結した。焼結は、大気雰囲気中、1000℃までを1℃/分、1000〜1500℃を5℃/分で昇温し、焼結温度である1500℃を5時間保持することにより行った。以上の方法のうち主な条件を表1に示す(後述する参考例2〜4、実施例1〜8および比較例1〜3も同様)。
【0035】
得られた焼結体について、焼結密度、平均結晶粒径、最大空孔径および体積抵抗率を測定した。ここで、平均結晶粒径および最大空孔径は、焼結体を深さ方向に切断し、切断面を鏡面研磨した後、切断面を熱腐食して結晶粒界を析出させた後、SEM観察を行うことにより測定した。また、体積抵抗率は、上記鏡面研磨した切断面上、肌面から2mmの位置において四探針法を用いて測定した。
【0036】
さらに、上記得られた焼結体を直径75mm、厚さ6mmの円盤状に加工してスパッタリングターゲットを作製した。その後、このスパッタリングターゲットを用いてDCマグネトロンスパッタリング法によって成膜を行った。この際のスパッタリング条件は、投入電力を200W、Arガス圧を0.7Paとした。そして、成膜開始から1時間経過後の10分間当たりに発生する異常放電回数を測定した。
【0037】
得られた結果を表2に示す(後述する参考例2〜4、実施例1〜8および比較例1〜3も同様)。
【0038】
参考例2]
焼結において、1000〜1500℃を10℃/分で昇温し、焼結温度である1500℃を10時間保持した以外は、参考例1と同様に試験した。
【0039】
参考例3]
成形において、3ton/cm2の圧力を掛けた以外は、参考例1と同様に試験した。
【0040】
[比較例1] 焼結において、1000〜1500℃を0.5℃/分で昇温した以外は、参考例3と同様に試験した。
【0041】
[実施例] 焼結において、酸素導入量を10リットル/分/m3(炉内容積:0.1m3)とし、1000〜1500℃を3℃/分で昇温した以外は、参考例1と同様に試験した。
【0042】
[実施例] 焼結において、酸素導入量を、2リットル/分/m3(実施例)、および20リットル/分/m3(実施例)とした以外は、実施例と同様に試験した。
【0043】
[比較例2]
焼結において、1000〜1500℃を0.5℃/分で昇温した以外は、実施例と同様に試験した。
【0044】
参考例4
焼結を行った後、焼結温度である1500℃から還元温度である1300℃まで10℃/分で降温した後、10リットル/分/m3の割合でArを導入しながら1300℃を3時間保持することにより還元を行った(還元炉は、焼結を行った焼結炉)以外は、参考例3と同様に試験した。
【0045】
[比較例3]
焼結において、1000〜1500℃を0.5℃/分で昇温した以外は、参考例4と同様に試験した。
【0046】
[実施例
(1)焼結において、酸素導入量を5リットル/分/m3とし、1000〜1500℃を3℃/分で昇温し、(2)焼結を行った後、酸素導入を止め降温した以外は、参考例4と同様に試験した。
【0047】
[実施例
(1)焼結において、酸素導入量を10リットル/分/m3とし、1000〜1400℃を5℃/分で昇温し、焼結温度である1400℃を保持し、(2)還元において、1400℃から還元温度である1200℃まで10℃/分で降温した後、N2を導入しながら1200℃を保持した以外は、実施例と同様に試験した。
【0048】
[実施例
(1)焼結において、酸素導入量を10リットル/分/m3とし、1000〜1300℃を3℃/分で昇温し、焼結温度である1300℃を保持し、(2)還元において、1300℃から還元温度である1100℃まで降温した後、1100℃を保持することにより行った以外は、実施例と同様に試験した。
【0049】
[実施例
焼結において、酸素導入量を10リットル/分/m3とした以外は、実施例と同様に試験した。
【0050】
[実施例
還元において、Ar導入量を2リットル/分/m3とした以外は、実施例と同様に試験した。
【0051】
【表1】

Figure 0004026194
【0052】
【表2】
Figure 0004026194
【0053】
【発明の効果】
本発明のスパッタリングターゲット用GZO焼結体によれば、異常放電の発生がなく、安定して、特性の優れたGZO膜を成膜することができる。
【0054】
また、本発明の製造方法によれば、上記本発明のスパッタリングターゲット用GZO焼結体を、安い製造コストで、かつ大型のものも含めて製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ZnO—Ga 2 O 3 based sintered body for a sputtering target used when forming a transparent conductive film by a sputtering method and a method for producing the same.
[0002]
[Prior art]
A transparent conductive film used as an electrode material for a liquid crystal display or a solar cell has a low specific resistance. Therefore, an In 2 O 3 —SnO 2 (hereinafter referred to as ITO) film or a ZnO—Al 2 O 3 (hereinafter referred to as “ITO”) film is used. (AZO) is increasingly being used. These transparent conductive films are formed by sputtering on a heated substrate using a sputtering target as a raw material. The formed film can have a specific resistance value of 2 × 10 −4 Ω · cm or less.
[0003]
However, due to the recent trend toward cost reduction of liquid crystal displays and solar cells, ITO has a problem in cost because In 2 O 3 which is a main component is expensive. AZO has no problem in terms of cost because the raw material powder is inexpensive, but has a problem in productivity because the range of optimum film formation conditions for obtaining a low resistance film is narrow.
[0004]
In order to form a ZnO—Ga 2 O 3 (hereinafter referred to as GZO) film having a low resistance and high durability, and hence a GZO film, which has no problem in terms of cost and productivity, instead of the ITO film or the AZO film. The GZO sputtering target used is drawing attention. It is known that the conductivity of the GZO film is that the main component, ZnO, is a metal-excess (state in which O is released from ZnO) type oxide, that is, due to oxygen vacancies in ZnO.
[0005]
JP-A-6-25838 discloses an integrated intensity of a peak (high angle side) of a (002) plane of a ZnO phase in which Ga is dissolved in an X-ray diffraction peak, and ( A GZO sintered body in which the ratio of the (002) plane peak (low angle side) to the integrated intensity is 0.2 or more is disclosed. Then, as the method for producing the GZO sintered body, a mixed powder of ZnO powder and Ga 2 O 3 powder was molded by using a rubber press method, a method of sintering is disclosed a molded article thereof at from 1,400 to 1,550 ° C. ing.
[0006]
[Problems to be solved by the invention]
However, when film formation is performed using the GZO sintered body disclosed in JP-A-6-25838 as a target, the plasma discharge state becomes unstable due to the occurrence of abnormal discharge, and stable film formation is not performed. Therefore, the problem that the film | membrane characteristic deteriorates has arisen.
[0007]
By the way, at present, the mainstream is to form a film with a large area in accordance with an increase in the screen size of a display or the like. Therefore, a demand for a large-sized sintered body has become very strong.
[0008]
An object of the present invention is to provide a GZO sintered body for a sputtering target that can stably form a GZO film having excellent characteristics without occurrence of abnormal discharge in view of the above-described present situation, and the GZO sintered body. Is to provide a method that can be manufactured at a low manufacturing cost and including a large size.
[0009]
In order to solve the above-mentioned problems, the present inventor has conducted intensive research. As a result, the GZO sintered body disclosed in JP-A-6-25838 has a low sintering density and a volume resistivity of 5 × 10 −. It was found to have a high resistance of 2 Ω · cm or higher.
[0010]
The present inventor has further analyzed the GZO sintered body to arrive at the present invention.
[0012]
[Means for Solving the Problems]
The method for producing a GZO sintered body for a sputtering target according to the present invention comprises: adding a gallium oxide powder to a zinc oxide powder, mixing the mixture, forming a mixed powder, and sintering the molded product at normal pressure; Using the zinc oxide powder having an average particle diameter of 1 μm or less and the gallium oxide powder having an average particle diameter of 1 μm or less, (2) the molding is performed in a cold state, and (3) the sintering temperature is 1300 to 1550 ° C. The sintering is performed at a temperature rising rate in the temperature range of 1000 to 1300 ° C. during the temperature rising to the sintering temperature at 1 to 10 ° C./min.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The GZO sintered body for a sputtering target of the present invention is mainly composed of a ZnO phase in which Ga is preferably dissolved at 2 wt% or more. The other constituent phase is an intermediate compound phase represented by a ZnO phase or ZnGa 2 O 4 phase (spinel phase) in which Ga is not dissolved. And (1) a sintered density of 5.2 g / cm 3 or more, (2) a volume resistivity of 2 × 10 −2 Ω · cm or less, (3) an average crystal grain size of 2 to 10 μm, and (4) Satisfies any maximum pore diameter of 2 μm or less. Abnormal discharge cannot be sufficiently suppressed even if none of the above four items is satisfied.
[0014]
Of the above four items, the average crystal grain size and the maximum pore size will be further described.
[0015]
(1) Average crystal grain size When the crystal grain size is large, the bending strength of the sintered body is weak. For this reason, if a rapid power is applied during film formation, cracks occur or crystal grains fall off. Then, local abnormal discharge occurs frequently. Therefore, in the GZO sintered body of the present invention, the average crystal grain size is 2 to 10 μm.
[0016]
(2) Maximum pore diameter When the maximum pore diameter in the GZO sintered body is large, crystal grains fall off. Then, local abnormal discharge occurs frequently. Therefore, in the GZO sintered body of the present invention, the maximum pore diameter is set to 2 μm or less.
[0017]
The manufacturing method of the GZO sintered compact for sputtering targets of this invention is a manufacturing method of the GZO sintered compact which satisfies the said 4 items, This manufacturing method is demonstrated below.
[0018]
(1) Raw material powder The raw material powder has an average particle size of 1 μm or less, preferably 0.1 to 0.6 μm of zinc oxide powder, and an average particle size of 1 μm or less, preferably 0.05 to 0.3 μm of gallium oxide. It is a powder. When using zinc oxide powder having an average particle diameter exceeding 1 μm or gallium oxide powder having an average particle diameter exceeding 1 μm, the sintered density is 5.2 g / cm 3 or more, the maximum pore diameter is 2 μm or less, and the average crystal particle diameter However, it is difficult to produce a GZO sintered body satisfying 2 to 10 μm.
[0019]
(2) mixing ratio of the mixed zinc oxide powder and the gallium oxide powder, when in mass and (87-97) :( 3-13), the Ga in the ZnO sintered body produced 2-8 can be dissolved mass%, the oxygen deficiency of ZnO is increased, 2 × 10 -2 Ω · cm or less in volume resistivity is more easy to obtain. At the same time, the durability of the film to be formed is improved. Durability insufficient film Ga solid solution amount is less than 2 mass%, the film is deteriorated by high temperature treatment experienced during liquid crystal display production easy. Solid-dissolved Ga amount is sufficient 8 mass%.
[0020]
Mixing can be performed using a ball mill, a vibration mill or the like, either wet or dry. The wet ball mill mixing method is the most preferable among the mixing methods in order to obtain uniform fine crystal grains and fine pores (and therefore small diameters). The mixing time in the wet ball mill mixing method is preferably 12 to 78 hours. If it is less than 12 hours, uniform fine crystal grains and fine pores are difficult to obtain. On the other hand, even if they are mixed for more than 78 hours, it is difficult to obtain a further mixing effect, and impurities are easily mixed.
[0021]
Moreover, when shape | molding a granulated material by shaping | molding of a post process, a binder is also added and mixed together. Examples of the binder to be used include polyvinyl alcohol and vinyl acetate.
[0022]
(3) Molding is performed by drying and granulating the mixture as necessary, and then applying a pressure of 1 ton / cm 2 or more using a cold molding machine such as a cold press or a cold isostatic press. When hot forming is performed using a hot press or the like, not only the manufacturing cost is increased, but a large sintered body is difficult to manufacture.
[0023]
(4) Sintering sintering is atmospheric pressure sintering. The reason why the pressure sintering which also serves as the molding is not performed is the same as the reason why the hot molding described above is not performed.
[0024]
The sintering temperature is 1300 to 1550 ° C., preferably 1400 to 1500 ° C., and the temperature increase rate in the temperature range of 1000 to 1300 ° C. during the temperature increase to the sintering temperature is 1 to 10 ° C./min, preferably 3 to 3 ° C. Sintering is performed at 5 ° C./min.
[0025]
When the sintering temperature is less than 1300 ° C., it is difficult to obtain a sintered body satisfying a sintering density of 5.2 g / cm 3 or more and a maximum pore diameter of 2 μm or less. On the other hand, when the temperature exceeds 1550 ° C., the crystal grain growth of the sintered body becomes remarkable and the pores become coarse, and consequently the maximum pore diameter increases, so the maximum pore diameter is 2 μm or less, and the average crystal grain size However, it is difficult to obtain a sintered body satisfying 2 to 10 μm. Since sintering is performed at a sintering temperature of 1300 to 1550 ° C., it is possible to obtain a volume resistivity of 2 × 10 −2 Ω · cm or less by increasing the oxygen deficiency of ZnO by dissolving Ga in ZnO. .
[0026]
On the other hand, if the rate of temperature rise is slower than 1 ° C./min, the crystal grain growth of the sintered body becomes remarkable, and the pores become coarse and the maximum pore diameter increases. On the other hand, if it is faster than 10 ° C./minute, the uniformity of the temperature in the sintering furnace decreases, the amount of expansion / contraction in the sintered body varies, and the sintered body is easily cracked. The reason why the temperature increase rate is defined in the temperature range of 1000 to 1300 ° C. is that the sintering of the GZO sintered body is most active in this temperature range.
[0027]
Sintering is preferably performed while oxygen is introduced into the atmospheric air at a rate of 2 to 20 liters / minute per 0.1 m 3 of the sintering furnace volume so that the atmosphere contains a certain amount or more of oxygen (hereinafter referred to as “after”). The introduction amount of oxygen in sintering and non-oxidizing gas in the reduction described later per 0.1 m 3 of furnace volume is expressed in units of liter / min / m 3 ). The reason for introducing oxygen is to suppress the evaporation of ZnO and further promote densification of the sintered body. When the amount of oxygen introduced is less than 2 liters / minute / m 3 , the above action is reduced. On the other hand, if it exceeds 20 liters / minute / m 3 , the uniformity of the temperature in the sintering furnace tends to be disturbed.
[0028]
The holding time at the sintering temperature is preferably 3 to 15 hours. If the holding time is less than 3 hours, it is difficult to obtain a sintered body satisfying a sintered density of 5.2 g / cm 3 or more and a maximum pore diameter of 2 μm or less. On the other hand, when the time exceeds 15 hours, the crystal grain growth of the sintered body becomes remarkable, and the pores become coarse and consequently the maximum pore diameter increases.
[0029]
(5) In order to promote oxygen deficiency of the reduced ZnO and to further reduce the volume resistivity, it is preferable to reduce the sintered body after the sintering.
[0030]
The reduction is performed by, for example, a method of performing normal pressure while introducing a non-oxidizing gas such as nitrogen, argon, carbon dioxide, or helium, or a method of heating at 1000 to 1300 ° C. in a vacuum atmosphere of 2 Pa or less. However, since the production cost can be further reduced, the method performed at normal pressure is advantageous. Next, an example of a method performed at normal pressure will be described.
[0031]
After sintering, the temperature was decreased from the sintering temperature to 1100 to 1400 ° C., which is the reduction temperature, at a temperature decreasing rate of 1 to 10 ° C./min (sintering was performed while introducing oxygen, and the sintering was performed). In the case of performing reduction in the furnace, after the introduction of oxygen is stopped and the temperature is lowered), the non-oxidizing gas is introduced at a rate of 2 to 20 liters / minute / m 3 and the reduction temperature is set to 3 to 10 hours. Hold.
[0032]
When the reduction temperature is less than 1100 ° C., the reduction action by the non-oxidizing gas is reduced. On the other hand, when the temperature exceeds 1400 ° C., the evaporation of ZnO is activated and the composition is likely to shift, and the life of the furnace material and the heater is shortened and the productivity is easily deteriorated. When the temperature lowering rate is slower than 1 ° C./min, the crystal grain growth of the sintered body becomes remarkable. On the other hand, if it is faster than 10 ° C./minute, the uniformity of the temperature in the reducing furnace is lowered, the amount of expansion / contraction in the sintered body varies, and the sintered body is easily cracked. When the introduction amount of the non-oxidizing gas is less than 2 liters / minute / m 3 , the above-described effect is reduced. On the other hand, if it exceeds 20 liters / minute / m 3 , the uniformity of the temperature in the reduction furnace tends to be disturbed. If the holding time is less than 3 hours, it is difficult to further reduce the volume resistivity. On the other hand, when the time exceeds 10 hours, the crystal grain growth of the sintered body becomes remarkable, and the pores become coarse, and consequently the maximum pore diameter increases.
[0033]
【Example】
[ Reference Example 1]
ZnO powder and Ga 2 O 3 powder having an average particle diameter of 1 μm or less were used as raw material powders. A ZnO powder and Ga 2 O 3 powder in mass ratio of 95: put in a resin pot at a rate of 5, were wet-mixed. Wet mixing, using a wet ball mill mixing method, the ball hard ZrO 2 balls, using (1 mass% added to the total feed amount of powder) binder polyvinyl alcohol, and the mixing time was 18 hours. The slurry after mixing was taken out, dried and granulated. The granulated raw material powder was molded by applying a pressure of 1 ton / cm 2 with a cold isostatic press to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm.
[0034]
Next, the molded body was sintered. Sintering was performed by raising the temperature up to 1000 ° C. at 1 ° C./min, 1000-1500 ° C. at 5 ° C./min, and maintaining the sintering temperature of 1500 ° C. for 5 hours in the air atmosphere. The main conditions among the above methods are shown in Table 1 (the same applies to Reference Examples 2 to 4, Examples 1 to 8, and Comparative Examples 1 to 3 described later).
[0035]
About the obtained sintered compact, the sintered density, the average crystal grain size, the maximum pore diameter, and the volume resistivity were measured. Here, the average crystal grain size and the maximum pore diameter are determined by SEM observation after cutting the sintered body in the depth direction, mirror-polishing the cut surface, and thermally corroding the cut surface to precipitate crystal grain boundaries. It was measured by performing. The volume resistivity was measured using a four-probe method at a position 2 mm from the skin surface on the mirror-polished cut surface.
[0036]
Further, the obtained sintered body was processed into a disk shape having a diameter of 75 mm and a thickness of 6 mm to produce a sputtering target. Thereafter, a film was formed by a DC magnetron sputtering method using this sputtering target. The sputtering conditions at this time were an input power of 200 W and an Ar gas pressure of 0.7 Pa. And the frequency | count of abnormal discharge which generate | occur | produces per 10 minutes after 1-hour progress from the film-forming start was measured.
[0037]
The obtained results are shown in Table 2 (the same applies to Reference Examples 2 to 4, Examples 1 to 8 and Comparative Examples 1 to 3 described later).
[0038]
[ Reference Example 2]
In the sintering, the test was performed in the same manner as in Reference Example 1 except that the temperature was increased from 1000 to 1500 ° C. at 10 ° C./min and the sintering temperature of 1500 ° C. was maintained for 10 hours.
[0039]
[ Reference Example 3]
The molding was tested in the same manner as in Reference Example 1 except that a pressure of 3 ton / cm 2 was applied.
[0040]
[Comparative Example 1] Testing was performed in the same manner as in Reference Example 3 except that the temperature was increased from 1000 to 1500 ° C at 0.5 ° C / min.
[0041]
[Example 1 ] Reference Example, except that the amount of oxygen introduced was 10 liters / minute / m 3 (internal furnace volume: 0.1 m 3 ) and the temperature was increased from 1000 to 1500 ° C. at 3 ° C./minute. Tested as in 1.
[0042]
[Examples 2 and 3 ] Example 1 except that the amount of oxygen introduced was 2 liters / minute / m 3 (Example 2 ) and 20 liters / minute / m 3 (Example 3 ) in sintering. Were tested in the same manner.
[0043]
[Comparative Example 2]
In the sintering, the test was performed in the same manner as in Example 1 except that the temperature was increased from 1000 to 1500 ° C. at 0.5 ° C./min.
[0044]
[ Reference Example 4 ]
After sintering, after cooling at 10 ° C. / min from 1500 ° C. is the sintering temperature to 1300 ° C. is a reducing temperature, the 1300 ° C. while introducing Ar at a rate of 10 liters / min / m 3 3 The test was performed in the same manner as in Reference Example 3 except that the reduction was performed by holding for a period of time (the reduction furnace was a sintering furnace in which sintering was performed).
[0045]
[Comparative Example 3]
In the sintering, tests were performed in the same manner as in Reference Example 4 except that the temperature was increased from 1000 to 1500 ° C. at 0.5 ° C./min.
[0046]
[Example 4 ]
(1) In sintering, the amount of oxygen introduced was 5 liters / minute / m 3 , and the temperature was increased from 1000 to 1500 ° C. at 3 ° C./minute. (2) After sintering, the introduction of oxygen was stopped and the temperature was lowered. Except for the above, the test was performed in the same manner as in Reference Example 4 .
[0047]
[Example 5 ]
(1) In sintering, the amount of oxygen introduced is 10 liters / minute / m 3 , the temperature is increased from 1000 to 1400 ° C. at 5 ° C./minute, and the sintering temperature is maintained at 1400 ° C. (2) In the reduction The test was conducted in the same manner as in Example 4 except that the temperature was decreased from 1400 ° C. to 1200 ° C., which was the reduction temperature, at 10 ° C./min, and maintained at 1200 ° C. while introducing N 2 .
[0048]
[Example 6 ]
(1) In sintering, the amount of oxygen introduced was 10 liters / minute / m 3 , the temperature was increased from 1000 to 1300 ° C. at 3 ° C./minute, and the sintering temperature was maintained at 1300 ° C. (2) The test was conducted in the same manner as in Example 4 except that the temperature was lowered from 1300 ° C. to 1100 ° C., which was the reduction temperature, and maintained at 1100 ° C.
[0049]
[Example 7 ]
In the sintering, the test was performed in the same manner as in Example 4 except that the amount of oxygen introduced was 10 liters / minute / m 3 .
[0050]
[Example 8 ]
In the reduction, the test was performed in the same manner as in Example 7 except that the amount of Ar introduced was 2 liters / minute / m 3 .
[0051]
[Table 1]
Figure 0004026194
[0052]
[Table 2]
Figure 0004026194
[0053]
【The invention's effect】
According to the GZO sintered body for sputtering target of the present invention, an abnormal discharge does not occur, and a GZO film having excellent characteristics can be formed stably.
[0054]
Moreover, according to the manufacturing method of this invention, the GZO sintered compact for sputtering targets of the said invention can be manufactured including a large-sized thing with cheap manufacturing cost.

Claims (6)

酸化亜鉛粉末に酸化ガリウム粉末を添加して混合し、混合粉末を成形し、成形物を常圧で焼結する方法において、(1)平均粒径が1μm以下の該酸化亜鉛粉末と、平均粒径が1μm以下の該酸化ガリウム粉末とを用い、酸化亜鉛粉末と酸化ガリウム粉末との混合比率を、質量にて(87〜97):(3〜13)とし、(2)該成形を冷間で行い、(3)焼結温度を1300〜1550℃とし、該焼結温度まで昇温する途中の1000〜1300℃の温度範囲の昇温速度を1〜10℃/分とし、該焼結温度における保持時間を3〜15時間とし、焼結炉内容積0.1m3当たり2〜20リットル/分の割合で酸素を導入しながら該焼結を行うことを特徴とするスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。In a method of adding and mixing gallium oxide powder to zinc oxide powder, molding the mixed powder, and sintering the molded product at normal pressure, (1) the zinc oxide powder having an average particle size of 1 μm or less, and the average particle Using the gallium oxide powder having a diameter of 1 μm or less, the mixing ratio of zinc oxide powder and gallium oxide powder is (87 to 97) :( 3 to 13) by mass, and (2) the molding is cold (3) The sintering temperature is set to 1300 to 1550 ° C., the temperature increasing rate in the temperature range of 1000 to 1300 ° C. during the temperature rising to the sintering temperature is set to 1 to 10 ° C./min, and the sintering temperature The ZnO-Ga for sputtering target is characterized in that the holding time is 3 to 15 hours and the sintering is performed while oxygen is introduced at a rate of 2 to 20 liters / minute per 0.1 m 3 of the sintering furnace internal volume. A method for producing a 2 O 3 sintered body. 混合は、バインダーを用い、混合時間を12〜78時間とする湿式ボールミル混合法により行う請求項1に記載のスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。Mixing, using a binder, a manufacturing method of a sputtering target for ZnO-Ga 2 O 3 sintered body of claim 1 performed by a wet ball mill mixing method with 12 to 78 hours mixing time. 焼結を行った後、還元を行う請求項1に記載のスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。After sintering, the manufacturing method of a sputtering target for ZnO-Ga 2 O 3 sintered body according to claim 1 for reduction. 還元は、焼結温度から還元温度である1100〜1400℃まで1〜10℃/分の降温速度で降温した後、還元炉内容積0.1m3当たり2〜20リットル/分の割合で非酸化性ガスを導入しながら該還元温度を3〜10時間保持することにより行う請求項3に記載のスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。The reduction is performed at a rate of 1 to 10 ° C./min from the sintering temperature to 1100 to 1400 ° C., and then non-oxidized at a rate of 2 to 20 liters / min per 0.1 m 3 of the reducing furnace internal volume. method for producing a sputtering target for ZnO-Ga 2 O 3 sintered body of claim 3 carried out by maintaining 3-10 hours reductive temperature while introducing sex gas. 非酸化性ガスは、窒素、アルゴン、二酸化炭素またはヘリウムである請求項4に記載のスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。Non-oxidizing gas, nitrogen, argon, production method of carbon dioxide or helium in a claim 4 sputtering target for ZnO-Ga 2 O 3 sintered body according to. 還元は、2Pa以下の真空雰囲気中1000〜1300℃で行う請求項3に記載のスパッタリングターゲット用ZnO−Ga23系焼結体の製造方法。The method for producing a ZnO-Ga 2 O 3 -based sintered body for a sputtering target according to claim 3, wherein the reduction is performed at 1000 to 1300 ° C in a vacuum atmosphere of 2 Pa or less.
JP11108997A 1997-04-28 1997-04-28 ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same Expired - Lifetime JP4026194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11108997A JP4026194B2 (en) 1997-04-28 1997-04-28 ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11108997A JP4026194B2 (en) 1997-04-28 1997-04-28 ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10297963A JPH10297963A (en) 1998-11-10
JP4026194B2 true JP4026194B2 (en) 2007-12-26

Family

ID=14552111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11108997A Expired - Lifetime JP4026194B2 (en) 1997-04-28 1997-04-28 ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same

Country Status (1)

Country Link
JP (1) JP4026194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120024A3 (en) * 2008-03-27 2010-01-07 부산대학교 산학협력단 Sintered body for a p-type zinc oxide compound semiconductor material, and a production method for thin films and thick films using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205696B2 (en) * 2006-02-24 2013-06-05 住友金属鉱山株式会社 Gallium oxide based sintered body and method for producing the same
JP4779798B2 (en) * 2006-05-11 2011-09-28 住友金属鉱山株式会社 Oxide sintered body, target, and transparent conductive film obtained using the same
JP5720726B2 (en) * 2006-08-11 2015-05-20 日立金属株式会社 Zinc oxide sintered body and method for producing the same
JP5018831B2 (en) * 2009-06-12 2012-09-05 住友金属鉱山株式会社 Method for producing zinc oxide-based sintered body for sputtering target
JP5365544B2 (en) * 2009-06-17 2013-12-11 住友金属鉱山株式会社 Zinc oxide-based sintered tablet and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120024A3 (en) * 2008-03-27 2010-01-07 부산대학교 산학협력단 Sintered body for a p-type zinc oxide compound semiconductor material, and a production method for thin films and thick films using the same

Also Published As

Publication number Publication date
JPH10297963A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JPH10306367A (en) Zno-ga2o3 sintered body for sputtering target and its production
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
US8569192B2 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JPH11322332A (en) Zno-based sintered product and its production
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JPH11236219A (en) Zinc oxide-base sintered compact and its production
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
JPH11302835A (en) Production of zinc oxide base sintered compact
JP2006200016A (en) ZnO:Al TARGET, THIN FILM THEREOF, AND METHOD FOR MANUFACTURING THIN FILM
JP5285149B2 (en) Sintered body for ZnO-Ga2O3-based sputtering target and method for producing the same
JPH11256320A (en) Zno base sintered compact
EP2573059A1 (en) Sintered zinc oxide tablet and process for producing same
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JP5369444B2 (en) GZO sintered body manufacturing method
JP4092764B2 (en) ZnO-based sintered body
JPH11171539A (en) Zno-base sintered compact and its production
JPH10297962A (en) Zno-ga2o3-based sintered compact for sputtering target and production of the sintered compact
JPH07243036A (en) Ito sputtering target
JPH10297964A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JP2000129432A (en) Electroconductive metallic oxide sinetred body and its use
JPH11158607A (en) Zno sintered compact and its production
JPH10297966A (en) Production of zno-ga2o3-based sintered compact for sputtering target
JPH10297965A (en) Production of zno-ga2o3-based sintered compact for sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030708

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

EXPY Cancellation because of completion of term