JPH11236607A - Production of spherical powder and spherical powder produced thereby - Google Patents

Production of spherical powder and spherical powder produced thereby

Info

Publication number
JPH11236607A
JPH11236607A JP10058968A JP5896898A JPH11236607A JP H11236607 A JPH11236607 A JP H11236607A JP 10058968 A JP10058968 A JP 10058968A JP 5896898 A JP5896898 A JP 5896898A JP H11236607 A JPH11236607 A JP H11236607A
Authority
JP
Japan
Prior art keywords
spherical powder
particles
powder
metal
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10058968A
Other languages
Japanese (ja)
Other versions
JP3276330B2 (en
Inventor
Seirai Kuruma
声雷 車
Koreyasu Mizutani
惟恭 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP05896898A priority Critical patent/JP3276330B2/en
Publication of JPH11236607A publication Critical patent/JPH11236607A/en
Application granted granted Critical
Publication of JP3276330B2 publication Critical patent/JP3276330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the method for producing spherical powder by an atomizing thermal decomposing method by which the spherical powder to be produced is hard to be formed into hollow bodies and porous bodies, and to provide the spherical powder produce by the method. SOLUTION: In this method for producing spherical powder by an stomizing thermal decomposing method using a soln. contg. metallic elements (e.g. an aq. soln. of nickel nitrate) as a starting raw material, a soln. contg. one or more kinds of metallic elements is blended with an additive capable of coordinate linkage with the metallic ions (e.g. ammonia) to form a complex having stability under the condition of a room temp. and decomposed under the condition of heating to form precipitates (e.g. alkaline Ni(NH3 )6 (NO3 )2 ], and the soln. cong. this complex is used as the starting raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属元素が含まれ
る溶液を出発原料とした噴霧熱分解法による粒径サブミ
クロンからミクロン範囲の球状粉末の製造方法とこの方
法により製造された球状粉末に係り、特に、製造される
球状粉末が中空体や多孔体になり難い製造方法の改良と
この改良方法により製造された球状粉末に関するもので
ある。
The present invention relates to a method for producing a spherical powder having a particle size range from submicron to micron by a spray pyrolysis method using a solution containing a metal element as a starting material, and to a spherical powder produced by this method. In particular, the present invention relates to an improvement in a production method in which a spherical powder to be produced hardly becomes a hollow body or a porous body, and a spherical powder produced by this improved method.

【0002】[0002]

【従来の技術】球状で結晶性のよい粒子(球状粉末)を
合成するには、粒子を互い接触させないまま高温で熱処
理することが必要である。そして、噴霧熱分解法はこの
条件を満たす製造方法の一つである。すなわち、この噴
霧熱分解法は、金属元素が含まれる溶液(出発原料)を
ノズルや超音波により霧化して微小な液滴にし、この液
滴の溶媒を高温で蒸発させて溶質から成る固体粒子を得
ると共に、得られた固体粒子を高温で熱分解させて初期
の液滴と略相似形の球状粉末を得る方法であった(特開
平8−170112号公報参照)。
2. Description of the Related Art In order to synthesize spherical particles having good crystallinity (spherical powder), it is necessary to perform heat treatment at a high temperature without bringing the particles into contact with each other. The spray pyrolysis method is one of the production methods satisfying this condition. That is, in the spray pyrolysis method, a solution (starting material) containing a metal element is atomized by a nozzle or ultrasonic waves into fine droplets, and the solvent of the droplets is evaporated at a high temperature to form solid particles composed of a solute. And the obtained solid particles are thermally decomposed at a high temperature to obtain a spherical powder substantially similar in shape to the initial droplets (see JP-A-8-170112).

【0003】そして、この噴霧熱分解法により製造され
る球状粉末は結晶性が良好なため酸化され難く、かつ、
粒径分布が狭く、凝集が少ないといった特徴を有してい
る。また、この方法に使用される製造装置の構造が比較
的簡単でメンテナンスが容易であり、長時間連続運転が
可能となる利点を有している。
[0003] Spherical powder produced by this spray pyrolysis method has good crystallinity and is hardly oxidized.
It has features such as narrow particle size distribution and little aggregation. In addition, there is an advantage that the structure of the manufacturing apparatus used in this method is relatively simple, maintenance is easy, and continuous operation can be performed for a long time.

【0004】[0004]

【発明が解決しようとする課題】しかし、この様な利点
を有している反面、噴霧熱分解法の問題点として、上記
液滴を急速に蒸発させたり固体粒子を急速に熱分解させ
た場合、生成される球状粉末が中空体や多孔体になって
しまうことがあった。
However, while having such an advantage, the problem of the spray pyrolysis method is that when the above-mentioned droplets are rapidly evaporated or solid particles are rapidly pyrolyzed. In some cases, the resulting spherical powder becomes hollow or porous.

【0005】そして、中空体や多孔体となった上記球状
粉末はその密度が小さいため、この球状粉末を焼結体や
厚膜等の原料に適用した場合、焼結時の収縮が大きくな
り、これに起因して得られる焼結体に変形やクラック等
内部欠陥を生じたり、厚膜にボイドや不連続化等が生ず
る問題点を有していた。
[0005] Since the above-mentioned spherical powder which has become a hollow or porous body has a low density, when this spherical powder is applied to a raw material such as a sintered body or a thick film, the shrinkage during sintering becomes large, As a result, the sintered body obtained has problems such as deformation and cracks, internal defects such as cracks, and voids and discontinuities in the thick film.

【0006】そこで、従来においては原料や球状粉末の
性質に合わせてその合成条件を求めると共に合成条件を
精密に制御することで上記中空体や多孔体の生成を抑制
する方法が採られていた。但し、この方法を採るために
は、その前提として合成の最適条件を確定することが必
要となる。
Therefore, conventionally, a method has been adopted in which the synthesis conditions are determined in accordance with the properties of the raw material and the spherical powder, and the formation of the hollow or porous body is suppressed by precisely controlling the synthesis conditions. However, in order to adopt this method, it is necessary to determine the optimum conditions for synthesis as a precondition.

【0007】しかし、合成の最適条件は出発原料と合成
装置に強く依存することが多く、この条件確定のために
は試行錯誤的な実験を繰返し行わなければならない問題
を有しており、かつ、条件確定に困難性が伴うことから
装置のスケールアップや量産化には適さない問題点を有
していた。
However, the optimum conditions for the synthesis often strongly depend on the starting materials and the synthesis apparatus, and there is a problem in that trial and error experiments must be repeatedly performed to determine these conditions. There was a problem that it was not suitable for scale-up and mass production of the apparatus because of difficulty in determining the conditions.

【0008】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、中空体や多孔体に
なり難い噴霧熱分解法による簡便な球状粉末の製造方法
を提供し、合わせてこの方法により製造された球状粉末
を提供することにある。
The present invention has been made in view of such problems, and it is an object of the present invention to provide a simple method for producing a spherical powder by a spray pyrolysis method which hardly becomes a hollow or porous body. In addition, the present invention provides a spherical powder produced by this method.

【0009】[0009]

【課題を解決するための手段】そこで、この様な課題を
解決するため、本発明者等は噴霧熱分解法における粒子
構造の形成メカニズムを詳細に検討しかつこの形成メカ
ニズムに基づき中空体や多孔体の生成原因の究明に鋭意
努力した。以下、Ni(NO32 ・6H2Oの水溶液
を出発原料とした通常の噴霧熱分解法によりNiOやN
i粒子を合成する場合を例に挙げ粒子の生成機構につい
て考察する。
In order to solve such a problem, the present inventors have studied in detail the formation mechanism of the particle structure in the spray pyrolysis method, and based on the formation mechanism, have found a hollow body or a porous body. I worked diligently to determine the cause of body formation. Hereinafter, NiO or N is obtained by a conventional spray pyrolysis method using an aqueous solution of Ni (NO 3 ) 2 .6H 2 O as a starting material.
The generation mechanism of particles will be discussed by taking an example of synthesizing i-particles.

【0010】まず、霧化されたNi(NO32 ・6H
2O水溶液の液滴はキャリアガスにより搬送されて加熱
された反応管内に導入されると、上記液滴は乾燥されて
(すなわち液滴の溶媒が蒸発して)溶質から成るNi
(NO32 水和物の固体粒子となる。
First, atomized Ni (NO 3 ) 2 .6H
When the droplets of the 2 O aqueous solution are introduced into the heated reaction tube by being carried by a carrier gas, the droplets are dried (that is, the solvent of the droplets evaporates), and the Ni
(NO 3) it becomes solid particles dihydrate.

【0011】尚、液滴が乾燥される際、液滴中の溶媒部
分が蒸発して溶質の濃縮が起こりかつ液滴の表面に局所
的な過飽和領域が生成されて溶質成分から成る固体シェ
ルが形成され易くなるため、この固体シェルの形成が中
空体粒子生成の一因になっていると考えられる。
When the droplet is dried, the solvent portion in the droplet evaporates, solute is concentrated, and a local supersaturated region is formed on the surface of the droplet to form a solid shell composed of the solute component. It is considered that the formation of the solid shell contributes to the formation of the hollow body particles because it is easily formed.

【0012】次に、更に加熱されると、温度の上昇に伴
いNi(NO32 の一部がその結晶水に溶けて(すな
わち融解して)粒子は部分的に液滴状となり、次いでこ
の液滴がより高温に晒されると液滴状のNi(NO3
2 が中空状のNiO粒子に熱分解され、更に、熱分解時
に発生したガスにより上記NiO粒子が膨張されてバル
ーン状になり易い。還元性雰囲気が適用されている場合
には、400℃程度の温度条件下において雰囲気中の還
元性ガスによりNiOはNiに還元される。
Then, when the particles are further heated, a part of Ni (NO 3 ) 2 is dissolved (ie, melted) in the water of crystallization as the temperature rises, and the particles partially become droplets. When this droplet is exposed to a higher temperature, the droplet Ni (NO 3 )
2 is thermally decomposed into hollow NiO particles, and the gas generated during the pyrolysis further expands the NiO particles to easily form a balloon. When a reducing atmosphere is applied, NiO is reduced to Ni by a reducing gas in the atmosphere under a temperature condition of about 400 ° C.

【0013】尚、上記Ni(NO32 水和物固体粒子
の一部が融解されて粒子の一部がバルーン状になってい
ることから、上記固体粒子の融解(すなわち液滴化)が
中空体粒子生成の最も重要な原因になっていると考えら
れる。
[0013] Incidentally, since the portion of the Ni (NO 3) 2 portion of the dihydrate solid particles are melted particles is in the balloon shape, melting of the solid particles (i.e., droplets of) the It is considered to be the most important cause of hollow body particle formation.

【0014】そして、部分的にバルーン状となったNi
O若しくはNi粒子が更に高温条件に晒されると、各粒
子中においてNiの焼結が進行し、粒子が緻密化して初
期の液滴と略相似形の球状Ni粉末が得られる。
Then, the partially balloon-shaped Ni
When the O or Ni particles are further exposed to high-temperature conditions, the sintering of Ni proceeds in each particle, and the particles are densified to obtain a spherical Ni powder substantially similar in shape to the initial droplets.

【0015】この様な粒子構造の形成メカニズムの分析
から上記中空体粒子生成の原因として、(1)液滴乾燥時
における固体シェルの形成、及び、(2)Ni(NO3
2 水和物固体粒子の部分的液滴化(融解)現象が考えら
れる。
From the analysis of the formation mechanism of such a particle structure, the causes of the formation of the hollow particles are as follows: (1) formation of a solid shell during drying of droplets; and (2) Ni (NO 3 ).
Partial dropletizing (melting) behavior of the dihydrate solid particles are contemplated.

【0016】そして、(1)固体シェルの形成について
は、従来、合成プロセスにおける液滴の乾燥条件を精密
に制御することである程度防止することは可能であっ
た。
[0016] (1) The formation of a solid shell can be prevented to some extent by precisely controlling the drying conditions of the droplets in the synthesis process.

【0017】しかし、(2)固体粒子の部分的液滴化(融
解)現象を防止するには出発原料に硝酸塩以外のものを
適用するか溶液調製の段階で塩の種類を変える必要があ
り、加熱条件等の制御で融解現象を防止することはでき
ないため、従来の噴霧熱分解法で中空体等の生成を完全
に防止することは困難であることが確認された。
However, (2) in order to prevent the partial dropletization (melting) phenomenon of solid particles, it is necessary to apply a material other than nitrate as a starting material or to change the type of salt at the stage of solution preparation. Since the melting phenomenon cannot be prevented by controlling the heating conditions and the like, it has been confirmed that it is difficult to completely prevent the formation of a hollow body or the like by the conventional spray pyrolysis method.

【0018】この様な粒子構造の形成メカニズムの検討
と中空体等の生成原因の究明を経て、本発明者等は合成
プロセス段階において固体シェルの形成と固体粒子の融
解現象を回避できる新たな噴霧熱分解法を見出だすに至
った。
After examining the formation mechanism of such a particle structure and investigating the causes of the formation of hollow bodies and the like, the present inventors have developed a new spray that can avoid the formation of a solid shell and the melting phenomenon of solid particles in the synthesis process stage. We have found a pyrolysis method.

【0019】すなわち、請求項1に係る発明は、金属元
素が含まれる溶液を出発原料とした噴霧熱分解法により
球状粉末を製造する方法を前提とし、一種以上の金属元
素が含まれる溶液に、当該金属イオンと配位結合可能な
添加物を配合して室温条件下では安定性を有し加熱条件
下では分解されて沈殿物を生成する錯体を形成し、この
錯体が含まれる溶液を上記出発原料とすることを特徴と
するものである。
That is, the invention according to claim 1 is based on a method of producing a spherical powder by a spray pyrolysis method using a solution containing a metal element as a starting material. An additive capable of coordinating with the metal ion is blended to form a complex that is stable under room temperature conditions and decomposed under heating conditions to form a precipitate. It is characterized by being used as a raw material.

【0020】そして、この請求項1記載の発明に係る球
状粉末の製造方法によれば、一種以上の金属元素が含ま
れる溶液に当該金属イオンと配位結合可能な添加物を配
合して従来の原料塩とは異なる錯体を形成しかつこの錯
体が含まれる溶液を出発原料にしているため、上述した
固体粒子の部分的液滴化(融解)現象を回避することが
可能となり粒子のバルーン化が防止される。
According to the method for producing a spherical powder according to the first aspect of the present invention, an additive capable of coordinating with the metal ion is added to a solution containing one or more metal elements. Since a complex different from the raw material salt is formed and a solution containing this complex is used as a starting material, it is possible to avoid the above-described partial dropletization (melting) phenomenon of solid particles, and the ballooning of particles can be achieved. Is prevented.

【0021】また、上記錯体が室温条件下では安定性を
有し加熱条件下では分解されて沈殿物を生成する性質を
備えていることから、加熱された液滴の中で溶質全体の
沈殿反応が起こり、これにより液滴全体に亘って溶質か
ら成る固体が一様に析出するため、従来のように液滴表
面において固体シェルが形成されることがない。
In addition, since the above complex has a property of being stable at room temperature and decomposing under heating conditions to form a precipitate, the precipitation reaction of the entire solute in the heated droplet is performed. This causes solids composed of solute to be uniformly deposited over the entire droplet, so that a solid shell is not formed on the surface of the droplet as in the related art.

【0022】従って、従来のように合成条件を精密に制
御しなくとも中空体や多孔体の生成が回避されるため、
製造条件が緩和されて噴霧熱分解法による球状粉末の量
産化を図ることが可能となる。
Therefore, the formation of a hollow body or a porous body can be avoided even if the synthesis conditions are not precisely controlled as in the prior art.
The manufacturing conditions are relaxed, and it becomes possible to mass-produce spherical powder by spray pyrolysis.

【0023】この様な技術的手段において上記金属イオ
ンと配位結合が可能でかつ室温条件下では安定性を有し
加熱条件下では分解されて沈殿物を生成する錯体を形成
させる添加物としては、適宜沈殿剤、配位剤、還元剤等
が挙げられる。
In such technical means, an additive capable of forming a complex capable of forming a complex which can form a precipitate by being capable of coordinating with the above-mentioned metal ion and being stable at room temperature and decomposed under heating conditions is provided. And a precipitant, a coordinating agent, a reducing agent and the like as appropriate.

【0024】次に、請求項2に係る発明は、金属イオン
と配位結合が可能でかつ室温条件下では安定性を有し加
熱条件下では分解されて沈殿物を生成する錯体を形成さ
せる添加物を特定した発明に関する。
Next, the invention according to claim 2 is an additive which forms a complex which is capable of coordinating with a metal ion, is stable under room temperature conditions, and is decomposed under heating conditions to form a precipitate. It relates to an invention that specifies an object.

【0025】すなわち、請求項2に係る発明は、請求項
1記載の発明に係る球状粉末の製造方法を前提とし、上
記金属イオンと配位結合可能な添加物を、アンモニア、
アンモニウム塩類、過酸化水素、可溶性炭酸塩、有機酸
及びその塩類、ジアミノエチレンから選択された一種類
若しくは複数種類により構成したことを特徴とするもの
である。
In other words, the invention according to claim 2 is based on the method for producing a spherical powder according to the invention according to claim 1, wherein the additive capable of coordinating with the metal ion is ammonia,
It is characterized by comprising one or more kinds selected from ammonium salts, hydrogen peroxide, soluble carbonates, organic acids and salts thereof, and diaminoethylene.

【0026】また、請求項3に係る発明は上記添加物と
金属元素が含まれる溶液を特定した発明に関し、請求項
4に係る発明は本発明により製造された球状粉末を特定
した発明に関する。
The invention according to claim 3 relates to the invention specifying the solution containing the additive and the metal element, and the invention according to claim 4 relates to the invention specifying the spherical powder produced by the present invention.

【0027】すなわち、請求項3に係る発明は、請求項
1または2記載の発明に係る球状粉末の製造方法を前提
とし、上記金属元素が含まれる溶液を硝酸ニッケル溶液
で構成し、かつ、上記金属イオンと配位結合可能な添加
物をアンモニアにより構成したことを特徴とし、また、
請求項4に係る発明は、請求項1、2または3記載の発
明に係る球状粉末の製造方法にて製造される球状粉末を
前提とし、Pt、Pd、Ag、Au、Ni、Co、F
e、Mo、W、Al、Ti、Zr、Ba、Pbから選択
された金属粉末若しくはこれ等の合金粉末、上記金属の
酸化物若しくは複酸化物粉末、上記金属の非酸化物粉
末、または、これ等の複合粉末であることを特徴とする
ものである。
That is, the invention according to claim 3 is based on the method for producing a spherical powder according to claim 1 or 2, wherein the solution containing the metal element is constituted by a nickel nitrate solution, and Characterized in that the additive capable of coordinating with metal ions is constituted by ammonia,
The invention according to claim 4 is based on the premise that the spherical powder is produced by the method for producing a spherical powder according to the invention according to claim 1, 2, or 3, and is composed of Pt, Pd, Ag, Au, Ni, Co, and F.
e, Mo, W, a metal powder selected from Al, Ti, Zr, Ba, and Pb or an alloy powder thereof, an oxide or double oxide powder of the metal, a non-oxide powder of the metal, or And the like.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0029】図1は、本発明に係る球状粉末の製造方法
に適用される噴霧熱分解製造装置の概略構成を示す説明
図である。
FIG. 1 is an explanatory view showing a schematic configuration of a spray pyrolysis production apparatus applied to the method for producing a spherical powder according to the present invention.

【0030】すなわち、この噴霧熱分解製造装置1は、
ミスト発生部(超音波噴霧器、二流体ノズル、静電噴霧
器等)10と、キャリアガス混合・供給系11と、反応
管12と、この反応管12の長さ方向に亘り配置された
第1番目の加熱炉13、第2番目の加熱炉14並びに第
3番目の加熱炉15と、これ等加熱炉の温度制御・記録
系(図示せず)と、金属粉末材料の回収部(サイクロ
ン、フィルタ、静電集塵器等)16と、排気ガス処理部
17とでその主要部が構成されている。
That is, this spray pyrolysis production apparatus 1
A mist generator (ultrasonic sprayer, two-fluid nozzle, electrostatic sprayer, etc.) 10, a carrier gas mixing / supply system 11, a reaction tube 12, and a first tube arranged in the longitudinal direction of the reaction tube 12. Heating furnace 13, a second heating furnace 14 and a third heating furnace 15, a temperature control / recording system (not shown) of these heating furnaces, and a collection unit (cyclone, filter, An electrostatic precipitator, etc.) 16 and an exhaust gas processing unit 17 constitute the main part.

【0031】以下、アンモニア(NH3 )が添加された
Ni(NO32 ・6H2Oの水溶液を出発原料とし、
噴霧熱分解法によりNi若しくはNiO粒子を合成する
場合を例に挙げて実施の形態に係る球状粉末の製造方法
を説明する。
Hereinafter, an aqueous solution of Ni (NO 3 ) 2 .6H 2 O to which ammonia (NH 3 ) is added is used as a starting material,
A method for producing a spherical powder according to an embodiment will be described by taking as an example a case where Ni or NiO particles are synthesized by spray pyrolysis.

【0032】まず、Ni(NO32 ・6H2Oの水溶
液にアンモニア(NH3 )を添加すると、NH3 はNi
イオンと配位し、溶液は事実上アルカリ性Ni(N
3 6(NO32 溶液に変わる。この溶液は室温で
安定するが加熱されるとすぐに分解して沈殿を生成す
る。
First, when ammonia (NH 3 ) is added to an aqueous solution of Ni (NO 3 ) 2 .6H 2 O, NH 3 becomes Ni
And the solution is virtually alkaline Ni (N
H 3) 6 (NO 3) changed to 2 solution. The solution stabilizes at room temperature but decomposes upon heating to form a precipitate.

【0033】そこで、アンモニア(NH3 )が添加され
たNi(NO32 ・6H2Oの水溶液を出発原料とし
た場合、噴霧熱分解の過程で液滴が加熱されると、液滴
全体に亘ってNi(OH)2 の沈殿が析出する。これに
より、上述した液滴乾燥時における固体シェルの形成、
及び、Ni(NO32 水和物固体粒子の部分的液滴化
(融解)現象が防止されて中空体の生成を回避すること
が可能となる。
[0033] Therefore, ammonia (NH 3) Ni (NO 3 ) that was added 2 · 6H 2 when the O aqueous solution of the starting material, the course droplet spray pyrolysis is heated, the entire droplet , Ni (OH) 2 precipitates. Thereby, the formation of the solid shell during the above-described droplet drying,
And, it is possible to Ni (NO 3) 2 partial liquid droplets (melting) of hydrate solid particles phenomenon is prevented to avoid the production of hollow bodies.

【0034】そして、合成雰囲気や合成温度によって中
空体や多孔体をほとんど含まない緻密なNiO球状粉末
若しくはNi球状粉末を合成することができる。
Then, a dense NiO spherical powder or a Ni spherical powder containing almost no hollow or porous material can be synthesized depending on the synthesis atmosphere and the synthesis temperature.

【0035】この場合、生成直後のNiOが合成雰囲気
中のNH3 に還元されて直接Niになるため、還元性ガ
ス(水素、一酸化炭素等)を適用することなく窒素、ア
ルゴン、ヘリウム等キャリアガス雰囲気中でも金属Ni
粒子が得られる。実際に、アンモニアが添加された窒素
中での噴霧熱分解法による合成では、600℃以下では
NiO粒子が生成し、600℃以上でNi粒子が生成さ
れ、熱分解温度が高い程、Niの純度が単調に高くなる
ことが判明している。
In this case, NiO immediately after generation is directly reduced to Ni by being reduced to NH 3 in the synthesis atmosphere. Therefore, a carrier such as nitrogen, argon, helium or the like can be used without applying a reducing gas (hydrogen, carbon monoxide, etc.). Metal Ni even in gas atmosphere
Particles are obtained. In fact, in the synthesis by spray pyrolysis in nitrogen to which ammonia has been added, NiO particles are generated at 600 ° C. or lower, Ni particles are generated at 600 ° C. or higher, and the higher the pyrolysis temperature, the higher the purity of Ni. Has been found to increase monotonically.

【0036】尚、適宜配位剤を選ぶことにより、Ni以
外の、例えば、Pt、Pd、Ag、Au、Co、Fe、
Mo、W、Al、Ti、Zr、Ba、Pb等ほとんどの
元素の金属単体若しくは酸化物の粉末合成にも本発明が
有効であることが各種実験を経て確認されている。
Incidentally, by appropriately selecting the coordinating agent, other than Ni, for example, Pt, Pd, Ag, Au, Co, Fe,
It has been confirmed through various experiments that the present invention is also effective for synthesizing powders of simple metals or oxides of most elements such as Mo, W, Al, Ti, Zr, Ba, and Pb.

【0037】[0037]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0038】[実施例1]第1番目の加熱炉13が40
0℃、第2番目の加熱炉14が800℃、第3番目の加
熱炉15が1200℃に設定された図1の噴霧熱分解製
造装置1を用いると共に、Ni2+に対してモル比6倍の
アンモニアが添加された0.5モル/lの硝酸ニッケル
水溶液を超音波噴霧し、かつ、得られた液滴を窒素ガス
のみでそのガス流速が2.0cm/sec のキャリアガス
により反応管12内に搬入して、平均粒径が約0.7μ
mの純粋な真球状ニッケル粒子を合成した。
[Example 1] The first heating furnace 13 is 40
Using the spray pyrolysis production apparatus 1 of FIG. 1 in which 0 ° C., the second heating furnace 14 is set at 800 ° C., and the third heating furnace 15 is set at 1200 ° C., the molar ratio of Ni 2+ to 6 is used. A 0.5 mol / l aqueous solution of nickel nitrate to which twice the amount of ammonia has been added is ultrasonically sprayed, and the resulting droplets are reacted with a carrier gas having a gas flow rate of 2.0 cm / sec using only nitrogen gas. 12 and the average particle size is about 0.7μ
m of pure spherical nickel particles were synthesized.

【0039】そして、得られたニッケル粒子について超
ミクロトームで薄片化し、透過型電子顕微鏡(TEM)
で粒子の内部構造を観察した結果、ニッケル粒子は略単
結晶化した緻密なものであり、かつ中空粒子が含まれて
いないことが確認された。
Then, the obtained nickel particles were sliced with a super-microtome, and were observed with a transmission electron microscope (TEM).
As a result of observing the internal structure of the particles, it was confirmed that the nickel particles were dense, substantially single-crystallized, and did not include hollow particles.

【0040】[実施例2]第1番目の加熱炉13が20
0℃、第2番目の加熱炉14が400℃、第3番目の加
熱炉15が400℃に設定されている点を除き実施例1
と略同一の条件で噴霧熱分解法により球状粉末の合成を
試みたところ、平均粒径が約1.1μmの純粋な真球状
NiO粒子が得られた。
[Embodiment 2] The first heating furnace 13 is 20
Example 1 except that 0 ° C., the second heating furnace 14 was set to 400 ° C., and the third heating furnace 15 was set to 400 ° C.
An attempt was made to synthesize a spherical powder by spray pyrolysis under substantially the same conditions as in Example 1. Pure spherical NiO particles having an average particle size of about 1.1 μm were obtained.

【0041】そして、得られたNiO粒子について実施
例1と同様の方法により粒子の内部構造を観察した結
果、粒子は数十ナノメートルの微結晶NiOから成る緻
密なものであり、かつ、中空粒子が含まれていないこと
も確認された。
The internal structure of the obtained NiO particles was observed in the same manner as in Example 1. As a result, the particles were dense, consisting of microcrystalline NiO of several tens of nanometers, and were hollow particles. Was not included.

【0042】[実施例3]第1番目の加熱炉13が30
0℃、第2番目の加熱炉14が500℃、第3番目の加
熱炉15が850℃に設定された図1の噴霧熱分解製造
装置1を用いると共に、Ag2+に対してモル比2.5倍
のアンモニアが添加された0.5モル/lの硝酸銀溶液
を超音波噴霧し、かつ、得られた液滴を窒素ガスのみで
そのガス流速が2.0cm/sec のキャリアガスにより
反応管12内に搬入して、平均粒径が約0.6μmの純
粋な真球状金属銀粒子を合成した。
[Embodiment 3] The first heating furnace 13 has 30 heaters.
The spray pyrolysis production apparatus 1 shown in FIG. 1 was set to 0 ° C., the second heating furnace 14 was set to 500 ° C., and the third heating furnace 15 was set to 850 ° C., and the molar ratio to Ag 2+ was 2 A 0.5 mol / l silver nitrate solution to which 0.5 times ammonia was added was ultrasonically sprayed, and the obtained droplets were reacted with a carrier gas having a gas flow rate of 2.0 cm / sec using only nitrogen gas. It was carried into the tube 12 to synthesize pure spherical metallic silver particles having an average particle diameter of about 0.6 μm.

【0043】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、この合成粒子は単結晶に
近い粒子であり、かつ、中空粒子が含まれていないこと
が確認された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, the synthetic particles were particles close to a single crystal and hollow particles. Was not included.

【0044】[実施例4]硝酸ニッケル水溶液に代えて
0.5モル/lの硝酸銅水溶液を適用した点を除き実施
例1と略同一の条件で噴霧熱分解法により球状粉末の合
成を試みたところ、平均粒径が約0.7μmの純粋な真
球状金属銅粒子が得られた。
Example 4 Synthesis of a spherical powder was attempted by spray pyrolysis under substantially the same conditions as in Example 1 except that a 0.5 mol / l copper nitrate aqueous solution was used instead of the nickel nitrate aqueous solution. As a result, pure spherical metallic copper particles having an average particle size of about 0.7 μm were obtained.

【0045】[実施例5]第1番目の加熱炉13が20
0℃、第2番目の加熱炉14が600℃、第3番目の加
熱炉15が1000℃に設定された図1の噴霧熱分解製
造装置1を用い、かつ0.5モル/lの硝酸チタン[T
iO(NO32 ]溶液に、TiO2+に対しモル比2.
2倍の過酸化水素(H22)溶液を添加して錯体[Ti
O(H2222+を生成した。そして、この錯体が含
まれる溶液を出発原料として超音波噴霧し、かつ、得ら
れた液滴を窒素ガスのみでそのガス流速が1.0cm/
secのキャリアガスにより反応管12内に搬入して、平
均粒径が約0.7μmの真球状TiO2 粒子を合成し
た。
[Embodiment 5] The first heating furnace 13 is 20
0 ° C., the second heating furnace 14 is set to 600 ° C., the third heating furnace 15 is set to 1000 ° C., using the spray pyrolysis production apparatus 1 of FIG. [T
TiO (NO 3 ) 2 ] solution with a molar ratio of TiO 2+ to 2.
By adding twice the hydrogen peroxide (H 2 O 2 ) solution, the complex [Ti
O (H 2 O 2) 2 ] were generated 2+. Then, the solution containing the complex is subjected to ultrasonic spraying as a starting material, and the obtained droplets are sprayed with nitrogen gas only at a gas flow rate of 1.0 cm /
The carrier gas was carried into the reaction tube 12 with a carrier gas of sec, and spherical TiO 2 particles having an average particle diameter of about 0.7 μm were synthesized.

【0046】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、この合成粒子はほとんど
緻密なものであり、かつ、中空粒子が含まれていないこ
とが確認された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, the synthetic particles were almost dense and hollow particles were formed. It was confirmed that it was not included.

【0047】[比較例1]アンモニアが添加されていな
い0.5モル/lの硝酸ニッケル水溶液を出発原料とし
ている点と、水素と窒素の比率が1対5の混合キャリア
ガスを適用している点を除き実施例1と略同一の条件で
噴霧熱分解法により球状Ni粒子の合成を試みたとこ
ろ、平均粒径が約1.1μmの純粋な球状Ni粒子が得
られた。
Comparative Example 1 A 0.5 mol / l aqueous solution of nickel nitrate to which ammonia was not added was used as a starting material, and a mixed carrier gas in which the ratio of hydrogen to nitrogen was 1: 5 was applied. Attempts to synthesize spherical Ni particles by the spray pyrolysis method under substantially the same conditions as in Example 1 except for this point resulted in pure spherical Ni particles having an average particle size of about 1.1 μm.

【0048】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、この合成粒子はその半分
ぐらいが中空体であることが確認された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, it was confirmed that about half of the synthetic particles were hollow. Was.

【0049】[比較例2]アンモニアが添加されていな
い0.5モル/lの硝酸ニッケル水溶液を出発原料とし
ている点を除き実施例2と略同一の条件で噴霧熱分解法
により球状NiO粒子の合成を試みたところ平均粒径が
約1.1μmの純粋な球状NiO粒子が得られた。
Comparative Example 2 Spherical NiO particles were obtained by spray pyrolysis under substantially the same conditions as in Example 2 except that a 0.5 mol / l aqueous solution of nickel nitrate containing no ammonia was used as a starting material. When synthesis was attempted, pure spherical NiO particles having an average particle size of about 1.1 μm were obtained.

【0050】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、全ての粒子は数十ナノメ
ートルの微結晶NiOから成る中空体であることが確認
された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, all the particles were hollow bodies composed of microcrystalline NiO of several tens of nanometers. Was confirmed.

【0051】[比較例3]アンモニアが添加されていな
い0.5モル/lの硝酸銀溶液を出発原料としている点
を除き実施例3と略同一の条件で噴霧熱分解法により球
状粉末の合成を試みたところ、平均粒径が約0.7μm
の純粋な球状金属銀粒子が得られた。
Comparative Example 3 A spherical powder was synthesized by spray pyrolysis under substantially the same conditions as in Example 3 except that a 0.5 mol / l silver nitrate solution containing no ammonia was used as a starting material. When we tried, the average particle size was about 0.7 μm
Of pure metallic silver particles were obtained.

【0052】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、その数%の粒子が中空体
であることが確認された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, it was confirmed that a few% of the particles were hollow.

【0053】[比較例4]アンモニアが添加されていな
い0.5モル/lの硝酸銅溶液を出発原料としている点
と、水素と窒素の比率が1対5の混合キャリアガスを適
用している点を除き実施例4と略同一の条件で噴霧熱分
解法により球状粉末の合成を試みたところ、平均粒径が
約0.7μmの緻密な真球状金属銅粒子が得られた。
COMPARATIVE EXAMPLE 4 A 0.5 mol / l copper nitrate solution to which ammonia was not added was used as a starting material, and a mixed carrier gas in which the ratio of hydrogen to nitrogen was 1: 5 was applied. An attempt was made to synthesize a spherical powder by a spray pyrolysis method under substantially the same conditions as in Example 4 except for this point, and dense spherical metallic copper particles having an average particle size of about 0.7 μm were obtained.

【0054】そして、得られた合成粒子について超ミク
ロトームで薄片化し、透過型電子顕微鏡(TEM)で粒
子の内部構造を観察した結果、その数%の粒子が中空体
であることが確認された。
Then, the obtained synthetic particles were sliced with an ultramicrotome, and the internal structure of the particles was observed with a transmission electron microscope (TEM). As a result, it was confirmed that several percent of the particles were hollow.

【0055】[0055]

【発明の効果】請求項1〜3記載の発明に係る球状粉末
の製造方法によれば、一種以上の金属元素が含まれる溶
液に当該金属イオンと配位結合可能な添加物を配合して
従来の原料塩とは異なる錯体を形成しかつこの錯体が含
まれる溶液を出発原料にしているため、上述した固体粒
子の部分的液滴化(融解)現象を回避することが可能と
なり粒子のバルーン化が防止される。
According to the method for producing a spherical powder according to the present invention, an additive capable of coordinating with the metal ion is added to a solution containing one or more metal elements. Since a complex different from the raw material salt is formed and a solution containing the complex is used as a starting material, it is possible to avoid the above-described partial dropletization (melting) phenomenon of solid particles and to form a balloon of particles. Is prevented.

【0056】また、上記錯体が室温条件下では安定性を
有し加熱条件下では分解されて沈殿物を生成する性質を
備えていることから、加熱された液滴の中で溶質全体の
沈殿反応が起こり、これにより液滴全体に亘って溶質か
ら成る固体が一様に析出するため、従来のように液滴表
面において固体シェルが形成されることがない。
Further, since the above complex has the property of being stable under room temperature conditions and decomposing under heating conditions to form a precipitate, the precipitation reaction of the entire solute in heated droplets is performed. This causes solids composed of solute to be uniformly deposited over the entire droplet, so that a solid shell is not formed on the surface of the droplet as in the related art.

【0057】従って、従来のように合成条件を精密に制
御しなくとも中空体や多孔体の生成が回避されるため、
製造条件が緩和されて噴霧熱分解法による球状粉末の量
産化を図ることが可能となる。
Therefore, the formation of a hollow body or a porous body can be avoided even if the synthesis conditions are not precisely controlled as in the prior art.
The manufacturing conditions are relaxed, and it becomes possible to mass-produce spherical powder by spray pyrolysis.

【0058】また、請求項4記載の発明に係る球状粉末
によれば、Pt、Pd、Ag、Au、Ni、Co、F
e、Mo、W、Al、Ti、Zr、Ba、Pbから選択
された金属粉末若しくはこれ等の合金粉末、上記金属の
酸化物若しくは複酸化物粉末、上記金属の非酸化物粉
末、または、これ等の複合粉末が請求項1〜3記載の製
造方法により製造されていることから中空体や多孔体の
含有割合が少ないため、焼結体や厚膜等に好適に利用で
きる効果を有する。
According to the spherical powder according to the fourth aspect of the present invention, Pt, Pd, Ag, Au, Ni, Co, F
e, Mo, W, a metal powder selected from Al, Ti, Zr, Ba, and Pb or an alloy powder thereof, an oxide or double oxide powder of the metal, a non-oxide powder of the metal, or Since the composite powder is manufactured by the manufacturing method according to claims 1 to 3, the content ratio of the hollow body and the porous body is small, so that the composite powder has an effect that it can be suitably used for a sintered body or a thick film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る球状粉末の製造方法に適用される
噴霧熱分解製造装置の概略構成を示す説明図。
FIG. 1 is an explanatory view showing a schematic configuration of a spray pyrolysis production apparatus applied to a method for producing a spherical powder according to the present invention.

【符号の説明】[Explanation of symbols]

1 噴霧熱分解製造装置 10 ミスト発生部 11 キャリアガス混合・供給系 12 反応管 13 加熱炉 14 加熱炉 15 加熱炉 16 回収部 17 排気ガス処理部 DESCRIPTION OF SYMBOLS 1 Spray pyrolysis manufacturing apparatus 10 Mist generation part 11 Carrier gas mixing / supply system 12 Reaction tube 13 Heating furnace 14 Heating furnace 15 Heating furnace 16 Recovery part 17 Exhaust gas processing part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素が含まれる溶液を出発原料とした
噴霧熱分解法により球状粉末を製造する方法において、 一種以上の金属元素が含まれる溶液に、当該金属イオン
と配位結合可能な添加物を配合して室温条件下では安定
性を有し加熱条件下では分解されて沈殿物を生成する錯
体を形成し、この錯体が含まれる溶液を上記出発原料と
することを特徴とする球状粉末の製造方法。
1. A method for producing a spherical powder by a spray pyrolysis method using a solution containing a metal element as a starting material, comprising: adding a solution capable of coordinating with the metal ion to a solution containing one or more metal elements. A spherical powder characterized by comprising a complex which is stable under room temperature conditions and is decomposed under heating conditions to form a precipitate, and a solution containing this complex is used as the starting material. Manufacturing method.
【請求項2】上記金属イオンと配位結合可能な添加物
を、アンモニア、アンモニウム塩類、過酸化水素、可溶
性炭酸塩、有機酸及びその塩類、ジアミノエチレンから
選択された一種類若しくは複数種類により構成したこと
を特徴とする請求項1記載の球状粉末の製造方法。
2. The additive capable of coordinating with a metal ion comprises one or more selected from ammonia, ammonium salts, hydrogen peroxide, soluble carbonates, organic acids and salts thereof, and diaminoethylene. The method for producing a spherical powder according to claim 1, wherein
【請求項3】上記金属元素が含まれる溶液を硝酸ニッケ
ル溶液で構成し、かつ、上記金属イオンと配位結合可能
な添加物をアンモニアにより構成したことを特徴とする
請求項1または2記載の球状粉末の製造方法。
3. The method according to claim 1, wherein the solution containing the metal element is constituted by a nickel nitrate solution, and the additive capable of coordinating with the metal ion is constituted by ammonia. Method for producing spherical powder.
【請求項4】請求項1、2または3記載の製造方法にて
製造される球状粉末が、Pt、Pd、Ag、Au、N
i、Co、Fe、Mo、W、Al、Ti、Zr、Ba、
Pbから選択された金属粉末若しくはこれ等の合金粉
末、上記金属の酸化物若しくは複酸化物粉末、上記金属
の非酸化物粉末、または、これ等の複合粉末であること
を特徴とする球状粉末。
4. The spherical powder produced by the production method according to claim 1, 2 or 3, is Pt, Pd, Ag, Au, N
i, Co, Fe, Mo, W, Al, Ti, Zr, Ba,
A spherical powder characterized by being a metal powder selected from Pb or an alloy powder thereof, an oxide or double oxide powder of the above metal, a non-oxide powder of the above metal, or a composite powder thereof.
JP05896898A 1998-02-24 1998-02-24 Method for producing spherical powder and spherical powder produced by this method Expired - Fee Related JP3276330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05896898A JP3276330B2 (en) 1998-02-24 1998-02-24 Method for producing spherical powder and spherical powder produced by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05896898A JP3276330B2 (en) 1998-02-24 1998-02-24 Method for producing spherical powder and spherical powder produced by this method

Publications (2)

Publication Number Publication Date
JPH11236607A true JPH11236607A (en) 1999-08-31
JP3276330B2 JP3276330B2 (en) 2002-04-22

Family

ID=13099657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05896898A Expired - Fee Related JP3276330B2 (en) 1998-02-24 1998-02-24 Method for producing spherical powder and spherical powder produced by this method

Country Status (1)

Country Link
JP (1) JP3276330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503132B1 (en) * 2002-11-08 2005-07-22 한국화학연구원 Method for producing fine spherical particles of nickel metal
KR100507638B1 (en) * 2002-11-29 2005-08-10 한국화학연구원 A method for producing ultrafine spherical nickel particles
JP2006294517A (en) * 2005-04-13 2006-10-26 Kansai Electric Power Co Inc:The MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL
WO2008018718A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP2013040090A (en) * 2011-08-19 2013-02-28 Nagaoka Univ Of Technology Method of producing metal oxide particle with spherical shape
JP2018076243A (en) * 2016-11-08 2018-05-17 コニカミノルタ株式会社 Supramolecular metal complex particle, film and method for producing supramolecular metal complex particle
TWI638056B (en) * 2013-12-11 2018-10-11 田中貴金屬工業股份有限公司 Method for manufacturing silver particles, and silver particles manufactured by the method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100503132B1 (en) * 2002-11-08 2005-07-22 한국화학연구원 Method for producing fine spherical particles of nickel metal
KR100507638B1 (en) * 2002-11-29 2005-08-10 한국화학연구원 A method for producing ultrafine spherical nickel particles
JP2006294517A (en) * 2005-04-13 2006-10-26 Kansai Electric Power Co Inc:The MANUFACTURING METHOD OF Ga BASED SOLID ELECTROLYTE MATERIAL
WO2008018718A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
KR100918231B1 (en) 2006-08-07 2009-09-21 주식회사 잉크테크 Process for preparing silver nanoparticles or silver nanocolloid, and the compositions of silver ink containing the silver nanoparticles
JP2010500475A (en) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド Method for producing silver nanoparticles and silver ink composition comprising silver nanoparticles produced thereby
US8282860B2 (en) 2006-08-07 2012-10-09 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP2013040090A (en) * 2011-08-19 2013-02-28 Nagaoka Univ Of Technology Method of producing metal oxide particle with spherical shape
TWI638056B (en) * 2013-12-11 2018-10-11 田中貴金屬工業股份有限公司 Method for manufacturing silver particles, and silver particles manufactured by the method
JP2018076243A (en) * 2016-11-08 2018-05-17 コニカミノルタ株式会社 Supramolecular metal complex particle, film and method for producing supramolecular metal complex particle

Also Published As

Publication number Publication date
JP3276330B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
JP3850899B2 (en) Method for producing multi-element metal oxide powder
KR960010247B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
Che et al. Preparation of dense spherical Ni particles and hollow NiO particles by spray pyrolysis
US8052958B2 (en) Method for manufacturing metal oxide hollow nanoparticles and metal oxide hollow nanoparticles manufactured by the same
KR101568122B1 (en) Preparation method of yolkshell structured material by spray drying and yolkshell structured materials prepared thereby
WO2004020128A1 (en) Metallic nickel powder and method for production thereof
KR101509878B1 (en) Metal­ceramic core­shell structured composite powder for multi­layered ceramic capacitor prepared by gas phase process and the preparation method thereof
JP2004526653A (en) Method for producing a plurality of metal oxide powders in a pulse reactor
JPH086129B2 (en) Spray conversion method for nanophase hybrid powder production
Stopić et al. Structural and morphological transformations during NiO and Ni particles generation from chloride precursor by ultrasonic spray pyrolysis
Xia et al. Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl2· 6H2O precursor containing ammonia
JP3276330B2 (en) Method for producing spherical powder and spherical powder produced by this method
US7704297B2 (en) Nickel powder manufacturing method
JP4516642B2 (en) Spray pyrolysis equipment
Park et al. Control of size and morphology in Ni particles prepared by spray pyrolysis.
Subramanian et al. A novel technique for synthesis of silver nanoparticles by laser-liquid interaction
JP2009023888A (en) Method for producing spherical alumina particle
JPH1180818A (en) Production of metal powder, and metal powder produced by the method
JP2002020809A (en) Method for manufacturing metal powder
JPS58207938A (en) Manufacture of fine ceramic particle
Park et al. Particle size control of barium titanate prepared from barium titanyl oxalate
KR20170058727A (en) manufacturing method of porous metal oxide particle
KR101503295B1 (en) Fabrication method of ternary nano type Al oxide core powder by spray pyrolysis
Mančić et al. Structural Properties of Ultradispersed Bi-Pb-Sr-Ca-Cu-O Particles Synthesized from Aerosol
Jung et al. Preparation of Submicron-Size Yttria-Dispersed Copper Powders from a Mixture of Yttrium and Copper Salts Solution by Ultrasonic Mist Pyrolysis Process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees