JPH11229239A - Production of high-purity silicon nitride yarn - Google Patents

Production of high-purity silicon nitride yarn

Info

Publication number
JPH11229239A
JPH11229239A JP2984798A JP2984798A JPH11229239A JP H11229239 A JPH11229239 A JP H11229239A JP 2984798 A JP2984798 A JP 2984798A JP 2984798 A JP2984798 A JP 2984798A JP H11229239 A JPH11229239 A JP H11229239A
Authority
JP
Japan
Prior art keywords
silicon nitride
purity silicon
gas
fiber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2984798A
Other languages
Japanese (ja)
Inventor
Noboru Kasai
昇 笠井
Masaki Sugimoto
雅樹 杉本
Tadao Seguchi
忠男 瀬口
Seiji Kamimura
誠二 神村
Kiyoshi Watanabe
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Cable Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Cable Ltd
Priority to JP2984798A priority Critical patent/JPH11229239A/en
Publication of JPH11229239A publication Critical patent/JPH11229239A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject yarn having slight impurity oxygen, hardly deteriorating, having excellent mechanical strength, useful as a heat-resistant insulating material, or the like, by heat-treating an infusibilized polycarbosilane yarn in a specific mixed gas atmosphere after a nitriding treatment. SOLUTION: An infusibilized polycarbosilane yarn is subjected to a nitriding treatment in an ammonia gas atmosphere, heat-treated in an atmosphere of a mixed gas of an inert gas and a halogen-based gas to give a high-purity silicon nitride-based yarn having <=5 wt.% of oxygen content and >=2.0 GPa tensile strength. The heat-treating temperature is >=1,000 deg.C and the volume of the halogen-based gas in the mixed gas is <=30 vol.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度窒化ケイ素
繊維の製造方法に係り、特に、耐熱絶縁材に用いられる
高純度窒化ケイ素繊維の製造方法に関するものである。
The present invention relates to a method for producing a high-purity silicon nitride fiber, and more particularly to a method for producing a high-purity silicon nitride fiber used for a heat-resistant insulating material.

【0002】[0002]

【従来の技術】耐熱絶縁材料として注目されている高純
度窒化ケイ素繊維の製造方法としては、紡糸したポリカ
ルボシラン繊維に、照射線量が0.5〜90MGyの電
離性放射線を照射して不融化処理を施し、その後、不融
化処理を施したポリカルボシラン繊維に、アンモニアな
どの窒化処理可能なガス雰囲気中、800〜1,700
℃の窒化処理を施すことにより、Si−N骨格からなる
高純度窒化ケイ素繊維を作製するという方法が提案され
ている。
2. Description of the Related Art As a method for producing high-purity silicon nitride fiber, which has attracted attention as a heat-resistant insulating material, a spun polycarbosilane fiber is irradiated with ionizing radiation having an irradiation dose of 0.5 to 90 MGy to render it infusible. The polycarbosilane fiber that has been subjected to the treatment and then subjected to the infusibilization treatment is subjected to a nitriding treatment in a gas atmosphere such as ammonia at 800 to 1,700.
There has been proposed a method of producing a high-purity silicon nitride fiber composed of a Si-N skeleton by performing a nitriding treatment at a temperature of ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、ポリカ
ルボシラン繊維を出発原料とした従来の高純度窒化ケイ
素繊維の製造方法においては、繊維中に不純物酸素が多
量に取り込まれてしまうため、高温の熱処理中に繊維が
酸化されて劣化し、得られる高純度窒化ケイ素繊維が脆
くなってしまう。酸素を多量に含む高純度窒化ケイ素繊
維の初期引張強度は、1GPa以下であり、機械的強度
が低いという問題がある。
However, in the conventional method for producing high-purity silicon nitride fiber using polycarbosilane fiber as a starting material, a large amount of impurity oxygen is incorporated into the fiber, so that high-temperature heat treatment is performed. The fibers are oxidized and deteriorated, and the resulting high-purity silicon nitride fibers become brittle. The initial tensile strength of a high-purity silicon nitride fiber containing a large amount of oxygen is 1 GPa or less, and there is a problem that the mechanical strength is low.

【0004】そこで本発明は、上記課題を解決し、酸素
含有量が少なく、かつ、機械的強度に優れた高純度窒化
ケイ素繊維の製造方法を提供することにある。
Accordingly, an object of the present invention is to solve the above problems and to provide a method for producing a high-purity silicon nitride fiber having a low oxygen content and excellent mechanical strength.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、不融化処理を施したポリカルボシ
ラン繊維に、アンモニアガス雰囲気中で窒化処理を施し
た後、不活性ガスとハロゲン系ガスとの混合ガス雰囲気
中で熱処理を施し、酸素含有量5wt%以下、引張強度
2.0GPa以上の高純度窒化ケイ素繊維を得るもので
ある。
According to a first aspect of the present invention, a polycarbosilane fiber that has been subjected to an infusibilizing treatment is subjected to a nitriding treatment in an ammonia gas atmosphere and then to an inert gas. A high-purity silicon nitride fiber having an oxygen content of 5 wt% or less and a tensile strength of 2.0 GPa or more is obtained by performing a heat treatment in a mixed gas atmosphere of hydrogen and a halogen-based gas.

【0006】請求項2の発明は、不融化処理を施したポ
リカルボシラン繊維に、500℃以上のアンモニアガス
雰囲気中で窒化処理を施した後、1,000℃以上の不
活性ガスとハロゲン系ガスとの混合ガス雰囲気中で熱処
理を施し、酸素含有量5wt%以下、引張強度2.0G
Pa以上の高純度窒化ケイ繊維素を得るものである。
A second aspect of the present invention is to provide an infusibilized polycarbosilane fiber which is subjected to nitriding in an ammonia gas atmosphere at 500 ° C. or more, followed by an inert gas at 1,000 ° C. or more and a halogen-based material. Heat treatment in a mixed gas atmosphere with a gas, oxygen content 5 wt% or less, tensile strength 2.0 G
It is intended to obtain a high-purity silicon nitride fibrous material of Pa or more.

【0007】請求項3の発明は、上記窒化処理後の上記
ポリカルボシラン繊維を、大気に接触させることなく連
続して熱処理を施す請求項1記載の高純度窒化ケイ素繊
維の製造方法である。
A third aspect of the present invention is the method for producing a high-purity silicon nitride fiber according to the first aspect, wherein the polycarbosilane fiber after the nitriding treatment is continuously heat-treated without being brought into contact with the atmosphere.

【0008】請求項4の発明は、上記窒化処理温度が5
00〜1,000℃である請求項1又は請求項2記載の
高純度窒化ケイ素繊維の製造方法である。
According to a fourth aspect of the present invention, the nitriding temperature is 5
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, wherein the temperature is from 00 to 1,000 ° C.

【0009】請求項5の発明は、上記熱処理温度が1,
000〜1,300℃である請求項1又は請求項2記載
の高純度窒化ケイ素繊維の製造方法である。
According to a fifth aspect of the present invention, the heat treatment temperature is 1
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, wherein the temperature is from 000 to 1,300 ° C.

【0010】請求項6の発明は、上記混合ガス中のハロ
ゲン系ガスの割合が30体積%以下である請求項1、請
求項2、又は請求項5記載の高純度窒化ケイ素繊維の製
造方法である。
The invention according to claim 6 is the method according to claim 1, wherein the proportion of the halogen-based gas in the mixed gas is 30% by volume or less. is there.

【0011】請求項7の発明は、上記窒化処理および上
記熱処理の昇温速度が200℃/hr以上である請求項
1乃至請求項6記載の高純度窒化ケイ素繊維の製造方法
である。
The invention according to claim 7 is the method for producing a high-purity silicon nitride fiber according to any one of claims 1 to 6, wherein the heating rate of the nitriding treatment and the heat treatment is 200 ° C./hr or more.

【0012】請求項8の発明は、上記アンモニアガスお
よび上記混合ガスを、予め、上記窒化処理温度および上
記熱処理温度に予熱しておく請求項1乃至請求項6記載
の高純度窒化ケイ素繊維の製造方法である。
The invention according to claim 8 is a method for producing a high-purity silicon nitride fiber according to any one of claims 1 to 6, wherein the ammonia gas and the mixed gas are preheated to the nitriding temperature and the heat treatment temperature in advance. Is the way.

【0013】請求項9の発明は、上記不融化処理が、
0.5〜90MGyの電離性放射線の照射によるもので
ある請求項1又は請求項2記載の高純度窒化ケイ素繊維
の製造方法である。
[0013] According to a ninth aspect of the present invention, the infusibilizing treatment comprises:
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, which is performed by irradiation of ionizing radiation of 0.5 to 90 MGy.

【0014】上記数値範囲の限定理由を以下に述べる。The reasons for limiting the above numerical range will be described below.

【0015】窒化処理温度を500℃以上としたのは、
温度が500℃よりも低いと窒化反応が生じないためで
ある。上限温度は特に限定するものではないが、1,0
00℃で窒化が完了するため、1,000℃以上の温度
での窒化処理は無意味であり、好ましくは1,000℃
以下とする。
The reason why the nitriding temperature is set to 500 ° C. or more is as follows.
If the temperature is lower than 500 ° C., no nitriding reaction occurs. Although the upper limit temperature is not particularly limited,
Since nitriding is completed at 00 ° C., nitriding at a temperature of 1,000 ° C. or more is meaningless, and preferably 1,000 ° C.
The following is assumed.

【0016】熱処理温度を1,000℃以上としたの
は、温度が1,000℃よりも低いと繊維中に活性なラ
ジカル(遊離基)が残存し、繊維を大気中に取出した後
に酸素が混入する原因となるためであり、上限温度は特
に限定するものではないが、1,300℃で未反応のラ
ジカルの処理および活性基(シラザン;SiNH)の処
理が完了するため、1,300℃以上の温度での熱処理
は無意味であり、好ましくは1,300℃以下とする。
The reason why the heat treatment temperature is set to 1,000 ° C. or higher is that if the temperature is lower than 1,000 ° C., active radicals (free radicals) remain in the fiber, and oxygen is removed after the fiber is taken out to the atmosphere. The upper limit temperature is not particularly limited, but the treatment of unreacted radicals and the treatment of active groups (silazane; SiNH) at 1,300 ° C. are completed. The heat treatment at the above temperature is meaningless, and is preferably 1,300 ° C. or less.

【0017】混合ガス中のハロゲン系ガスの割合を30
体積%以下としたのは、ハロゲン系ガスの割合が30体
積%よりも多いと、繊維中にハロゲン元素が不純物とし
て導入されて、高温の熱処理中に繊維が酸化される原因
となり、この酸化により機械的強度が低下するためであ
る。
The proportion of the halogen-based gas in the mixed gas is 30
The reason why the content is set to be not more than 30% by volume is that when the proportion of the halogen-based gas is more than 30% by volume, a halogen element is introduced as an impurity into the fiber, which causes the fiber to be oxidized during a high-temperature heat treatment. This is because the mechanical strength decreases.

【0018】窒化処理および熱処理における昇温速度を
200℃/hr以上としたのは、昇温速度が200℃/
hrよりも小さいと窒化ケイ素繊維中における酸素含有
量が高くなるためである。
The reason why the heating rate in the nitriding treatment and the heat treatment is set to 200 ° C./hr or more is that the heating rate is 200 ° C./hr.
This is because if it is smaller than hr, the oxygen content in the silicon nitride fiber increases.

【0019】電離性放射線の照射線量を0.5〜90M
Gyとしたのは、照射線量が0.5MGyよりも少ない
とポリカルボシラン繊維の不融化が不十分となり、窒化
処理または熱処理中に溶融してしまうためである。ま
た、照射線量が90MGyの時、ゲル分率が100以上
となるため、照射線量を90MGyよりも多くしても無
意味である。
The irradiation dose of ionizing radiation is 0.5 to 90 M
The reason why Gy is set is that if the irradiation dose is less than 0.5 MGy, the insolubilization of the polycarbosilane fiber becomes insufficient, and the fiber is melted during the nitriding treatment or the heat treatment. In addition, when the irradiation dose is 90 MGy, the gel fraction becomes 100 or more, so it is meaningless to increase the irradiation dose to more than 90 MGy.

【0020】以上の構成によれば、不融化処理を施した
ポリカルボシラン繊維に、アンモニアガス雰囲気中で窒
化処理を施した後、不活性ガスとハロゲン系ガスとの混
合ガス雰囲気中で熱処理を施したため、酸素含有量が少
なく、かつ、機械的強度に優れた高純度窒化ケイ素繊維
を得ることができる。
According to the above arrangement, the polycarbosilane fiber subjected to the infusibilizing treatment is subjected to a nitriding treatment in an ammonia gas atmosphere and then to a heat treatment in a mixed gas atmosphere of an inert gas and a halogen-based gas. As a result, a high-purity silicon nitride fiber having a low oxygen content and excellent mechanical strength can be obtained.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0022】本発明の高純度窒化ケイ素繊維の製造方法
は、先ず、照射線量が0.5〜90MGyの電離性放射
線を、紡糸したポリカルボシラン繊維に照射して、ポリ
カルボシラン繊維に不融化処理を施す。ここで、電離性
放射線としては、電子線、α線、γ線、X線などが挙げ
られる。
In the method for producing a high-purity silicon nitride fiber according to the present invention, first, an ionizing radiation having an irradiation dose of 0.5 to 90 MGy is irradiated on the spun polycarbosilane fiber so as to make the polycarbosilane fiber infusible. Perform processing. Here, examples of the ionizing radiation include an electron beam, α-ray, γ-ray, and X-ray.

【0023】次に、不融化処理を施したポリカルボシラ
ン繊維を、室温のアンモニアガス雰囲気内に搬送した
後、200℃/hr以上の昇温速度で500℃以上(好
ましくは500〜1,000℃)の温度に加熱して、ポ
リカルボシラン繊維に窒化処理を施す。
Next, the infusibilized polycarbosilane fiber is conveyed into an ammonia gas atmosphere at room temperature, and is then heated at a temperature rising rate of 200 ° C./hr or more to 500 ° C. or more (preferably 500 to 1,000). (° C.) to perform a nitriding treatment on the polycarbosilane fiber.

【0024】次に、この窒化処理後、ポリカルボシラン
繊維に大気を接触させることなく、かつ、連続して熱処
理を施す。
Next, after the nitriding treatment, the polycarbosilane fiber is subjected to a continuous heat treatment without contacting the atmosphere.

【0025】この熱処理は、窒化処理を施したポリカル
ボシラン繊維を、不活性ガス中に30体積%以下のハロ
ゲン系ガスを混入した混合ガス雰囲気内に搬送した後、
200℃/hr以上の昇温速度で1,000℃以上(好
ましくは1,000〜1,300℃)の温度に加熱する
ものである。ここで、ハロゲン系ガスとしては、塩素ガ
ス、フッ素ガスなどが挙げられ、不活性ガスとしては、
窒素ガス、アルゴンガスなどが挙げられる。
In the heat treatment, the polycarbosilane fiber subjected to the nitriding treatment is transferred into a mixed gas atmosphere in which 30% by volume or less of a halogen-based gas is mixed in an inert gas.
The heating is performed at a temperature rising rate of 200 ° C./hr or more to a temperature of 1,000 ° C. or more (preferably 1,000 to 1,300 ° C.). Here, examples of the halogen-based gas include chlorine gas and fluorine gas, and examples of the inert gas include:
Examples include nitrogen gas and argon gas.

【0026】この時、窒化処理温度および熱処理温度と
同じ温度に予熱しておいたアンモニアガスおよび混合ガ
スを用いてもよく、その場合、ポリカルボシラン繊維の
表面温度が下がらないため、窒化処理中および熱処理中
におけるポリカルボシラン繊維内への酸素混入を更に抑
制することができると共に、高純度窒化ケイ素繊維の機
械的強度が更に向上する。
At this time, an ammonia gas or a mixed gas preheated to the same temperature as the nitriding temperature and the heat treatment temperature may be used. In this case, since the surface temperature of the polycarbosilane fiber does not drop, the nitriding In addition, oxygen contamination into the polycarbosilane fiber during the heat treatment can be further suppressed, and the mechanical strength of the high-purity silicon nitride fiber is further improved.

【0027】熱処理後、室温まで徐冷して高純度窒化ケ
イ繊維素を得る。
After the heat treatment, the mixture is gradually cooled to room temperature to obtain a high-purity silicon nitride fiber.

【0028】すなわち、不融化処理後のポリカルボシラ
ン繊維に対する従来の熱処理は一工程であったのに対
し、本発明の高純度窒化ケイ素繊維の製造方法における
熱処理は、アンモニアガス雰囲気中で窒化処理を施すと
共に、不活性ガス中にハロゲン系ガスを混入した混合ガ
ス雰囲気中で熱処理を施すという具合に、二工程に分離
させているため、酸素含有量が5wt%以下、かつ、引
張強度が2.0GPa以上の高純度窒化ケイ素繊維を得
ることができる。
That is, while the conventional heat treatment for the polycarbosilane fiber after the infusibilization treatment was one step, the heat treatment in the method for producing a high-purity silicon nitride fiber of the present invention is a nitridation treatment in an ammonia gas atmosphere. And the heat treatment is performed in a mixed gas atmosphere in which a halogen-based gas is mixed in an inert gas, so that the oxygen content is 5 wt% or less and the tensile strength is 2 A high-purity silicon nitride fiber of 0.0 GPa or more can be obtained.

【0029】[0029]

【実施例】(実施例1)先ず、紡糸装置を用いて直径1
8μmのポリカルボシラン繊維を作製した後、このポリ
カルボシラン繊維に、Heガス雰囲気中で15MGyの
電離性放射線を照射して不融化処理を施す。
(Example 1) First, using a spinning apparatus, a diameter of 1 mm was used.
After producing an 8 μm polycarbosilane fiber, the polycarbosilane fiber is irradiated with 15 MGy of ionizing radiation in a He gas atmosphere to be infusibilized.

【0030】次に、この不融化処理を施したポリカルボ
シラン繊維を室温のアンモニアガス雰囲気内に搬送した
後、無張力下において、300℃/hr以上の昇温速度
で1,000℃の温度に加熱して、ポリカルボシラン繊
維に窒化処理を施す。
Next, the polycarbosilane fiber subjected to the infusibilizing treatment is conveyed into an ammonia gas atmosphere at room temperature, and then, under no tension, at a temperature increase rate of 300 ° C./hr or more at a temperature of 1,000 ° C. To perform a nitriding treatment on the polycarbosilane fiber.

【0031】窒化処理後、このポリカルボシラン繊維
を、大気に接触させることなく、かつ、連続して、窒素
ガス中に30体積%の塩素ガスを混入した混合ガス気流
中に搬送する。その後、300℃/hr以上の昇温速度
で1,300℃の温度に加熱して、ポリカルボシラン繊
維に熱処理を施す。
After the nitriding treatment, the polycarbosilane fibers are continuously conveyed into a mixed gas stream in which 30% by volume of chlorine gas is mixed in nitrogen gas without being brought into contact with the atmosphere. Thereafter, the polycarbosilane fiber is heated by heating to a temperature of 1,300 ° C. at a rate of 300 ° C./hr or more.

【0032】その後、室温まで徐冷して、無色透明の繊
維を得る。
Thereafter, the mixture is gradually cooled to room temperature to obtain colorless and transparent fibers.

【0033】(実施例2)窒素ガス中に10体積%の塩
素ガスを混入した混合ガスを用いる以外は実施例1と同
様にして、無色透明の繊維を得る。
Example 2 A colorless and transparent fiber is obtained in the same manner as in Example 1 except that a mixed gas obtained by mixing 10% by volume of chlorine gas in nitrogen gas is used.

【0034】(実施例3)窒化処理温度を800℃とす
る以外は実施例2と同様にして、無色透明の繊維を得
る。
(Example 3) A colorless and transparent fiber is obtained in the same manner as in Example 2 except that the nitriding temperature is set to 800 ° C.

【0035】(実施例4)熱処理温度を1,200℃と
する以外は実施例3と同様にして、無色透明の繊維を得
る。
Example 4 A colorless and transparent fiber is obtained in the same manner as in Example 3 except that the heat treatment temperature is set to 1,200 ° C.

【0036】(実施例5)熱処理温度を1,000℃と
する以外は実施例2と同様にして、無色透明の繊維を得
る。
Example 5 A colorless and transparent fiber was obtained in the same manner as in Example 2 except that the heat treatment temperature was changed to 1,000 ° C.

【0037】(比較例1)混合ガスではなく100体積
%の窒素ガスを用いる以外は実施例1と同様にして、無
色透明の繊維を得る。
Comparative Example 1 A colorless and transparent fiber was obtained in the same manner as in Example 1 except that 100% by volume of nitrogen gas was used instead of the mixed gas.

【0038】(比較例2)窒化処理温度を400℃とす
る以外は実施例2と同様にして、黒色の繊維を得る。
Comparative Example 2 A black fiber is obtained in the same manner as in Example 2 except that the nitriding temperature is set to 400 ° C.

【0039】(比較例3)昇温速度を100℃/hrと
する以外は実施例1と同様にして、無色透明の繊維を得
る。
(Comparative Example 3) A colorless and transparent fiber was obtained in the same manner as in Example 1 except that the heating rate was 100 ° C / hr.

【0040】実施例1〜5および比較例1〜3の各繊維
を、メノウ乳鉢に入れて粉砕した後、蛍光X線分析によ
り元素分析測定を行う。また、引張試験機を用いて常温
における各繊維の単繊維引張強度を測定する。
Each of the fibers of Examples 1 to 5 and Comparative Examples 1 to 3 is ground in an agate mortar, and then subjected to elemental analysis by fluorescent X-ray analysis. In addition, the single fiber tensile strength of each fiber at room temperature is measured using a tensile tester.

【0041】実施例1〜5および比較例1〜3の各繊維
の処理条件および各測定結果を表1に示す。
Table 1 shows the processing conditions and measurement results for each fiber of Examples 1 to 5 and Comparative Examples 1 to 3.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示すように、実施例1〜5の各繊維
は、窒化処理および熱処理の各処理条件を規定範囲内に
制御しているため、各繊維の酸素含有量は、いずれも5
wt%以下(それぞれ2.0wt%、2.1wt%、
2.8wt%、2.8wt%、3.0wt%)であると
共に、各繊維の引張強度も、いずれも2.0GPa以上
(それぞれ3.0GPa、2.8GPa、2.7GP
a、2.7GPa、2.5Pa)であり、高純度窒化ケ
イ素繊維が得られた。
As shown in Table 1, each of the fibers of Examples 1 to 5 controls the respective nitriding treatment and heat treatment conditions within a specified range.
wt% or less (2.0 wt%, 2.1 wt%, respectively)
2.8 wt%, 2.8 wt%, 3.0 wt%) and the tensile strength of each fiber is 2.0 GPa or more (3.0 GPa, 2.8 GPa, 2.7 GPa, respectively).
a, 2.7 GPa, 2.5 Pa), and a high-purity silicon nitride fiber was obtained.

【0044】これに対して、比較例1の繊維は、引張強
度は2.0GPa以上(2.1GPa)であるものの、
熱処理の雰囲気ガスが100体積%の窒素ガスであり、
規定(不活性ガス中に30体積%以下のハロゲン系ガス
を混入した混合ガス)以外の雰囲気ガスを用いているた
め、酸素含有量が8.0wt%と高くなった。
On the other hand, although the fiber of Comparative Example 1 has a tensile strength of 2.0 GPa or more (2.1 GPa),
The atmosphere gas for the heat treatment is 100% by volume nitrogen gas,
Since an atmosphere gas other than the regulation (a mixed gas containing 30 vol% or less of a halogen-based gas in an inert gas) was used, the oxygen content was increased to 8.0 wt%.

【0045】また、比較例2の繊維は、窒化処理温度が
400℃であり、規定(500℃以上)外の温度である
ため、炭素含有量が50wt%となっており、得られた
繊維は炭化ケイ素繊維であった。
The fiber of Comparative Example 2 had a nitriding temperature of 400 ° C., which was out of the specified range (500 ° C. or higher), so that the carbon content was 50 wt%. It was a silicon carbide fiber.

【0046】さらに、比較例3の繊維は、引張強度は
2.0GPa以上(2.1GPa)であるものの、昇温
速度が100℃/hrであり、規定(200℃/hr以
上)外であるため、酸素含有量が8.0wt%と高くな
った。
Further, the fiber of Comparative Example 3 has a tensile strength of 2.0 GPa or more (2.1 GPa), but a heating rate of 100 ° C./hr, which is out of the specified range (200 ° C./hr or more). Therefore, the oxygen content was increased to 8.0 wt%.

【0047】[0047]

【発明の効果】以上要するに本発明によれば、不融化処
理を施したポリカルボシラン繊維に、アンモニアガス雰
囲気中で窒化処理を施した後、不活性ガスとハロゲン系
ガスとの混合ガス雰囲気中で熱処理を施すことで、酸素
含有量が5wt%以下、かつ、引張強度が2.0GPa
以上の高純度窒化ケイ素繊維を得ることができるという
優れた効果を発揮する。
In summary, according to the present invention, the polycarbosilane fiber which has been subjected to the infusibilizing treatment is subjected to nitriding treatment in an ammonia gas atmosphere and then to a mixed gas atmosphere of an inert gas and a halogen-based gas. The oxygen content is 5 wt% or less and the tensile strength is 2.0 GPa
An excellent effect that the above-described high-purity silicon nitride fiber can be obtained is exhibited.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬口 忠男 群馬県高崎市綿貫町1233番地 日本原子力 研究所 高崎研究所内 (72)発明者 神村 誠二 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 (72)発明者 渡辺 清 茨城県日立市日高町5丁目1番1号 日立 電線株式会社パワーシステム研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadao Seguchi 1233 Watanukicho, Takasaki City, Gunma Prefecture Inside the Japan Atomic Energy Research Institute Takasaki Research Laboratory (72) Inventor Seiji Kamimura 5-1-1 Hidakacho Hitachi, Hitachi City, Ibaraki Hitachi (72) Inventor Kiyoshi Watanabe 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture Power Systems Laboratory, Hitachi Cable, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 不融化処理を施したポリカルボシラン繊
維に、アンモニアガス雰囲気中で窒化処理を施した後、
不活性ガスとハロゲン系ガスとの混合ガス雰囲気中で熱
処理を施し、酸素含有量5wt%以下、引張強度2.0
GPa以上の高純度窒化ケイ素繊維を得ることを特徴と
する高純度窒化ケイ素繊維の製造方法。
Claims: 1. After subjecting a polycarbosilane fiber subjected to an infusibilizing treatment to a nitriding treatment in an ammonia gas atmosphere,
Heat treatment is performed in a mixed gas atmosphere of an inert gas and a halogen-based gas, and the oxygen content is 5 wt% or less and the tensile strength is 2.0
A method for producing a high-purity silicon nitride fiber, which comprises obtaining a high-purity silicon nitride fiber of GPa or more.
【請求項2】 不融化処理を施したポリカルボシラン繊
維に、500℃以上のアンモニアガス雰囲気中で窒化処
理を施した後、1,000℃以上の不活性ガスとハロゲ
ン系ガスとの混合ガス雰囲気中で熱処理を施し、酸素含
有量5wt%以下、引張強度2.0GPa以上の高純度
窒化ケイ繊維素を得ることを特徴とする高純度窒化ケイ
素繊維の製造方法。
2. A polycarbosilane fiber subjected to an infusibilizing treatment is subjected to a nitriding treatment in an ammonia gas atmosphere at 500 ° C. or more, and then a mixed gas of an inert gas and a halogen-based gas at 1,000 ° C. or more. A method for producing a high-purity silicon nitride fiber, comprising performing a heat treatment in an atmosphere to obtain a high-purity silicon nitride fiber having an oxygen content of 5 wt% or less and a tensile strength of 2.0 GPa or more.
【請求項3】 上記窒化処理後の上記ポリカルボシラン
繊維を、大気に接触させることなく連続して熱処理を施
す請求項1記載の高純度窒化ケイ素繊維の製造方法。
3. The method for producing a high-purity silicon nitride fiber according to claim 1, wherein the polycarbosilane fiber after the nitriding treatment is continuously subjected to a heat treatment without being brought into contact with the atmosphere.
【請求項4】 上記窒化処理温度が500〜1,000
℃である請求項1又は請求項2記載の高純度窒化ケイ素
繊維の製造方法。
4. The nitriding temperature is 500 to 1,000.
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, wherein the temperature is ° C.
【請求項5】 上記熱処理温度が1,000〜1,30
0℃である請求項1又は請求項2記載の高純度窒化ケイ
素繊維の製造方法。
5. The heat treatment temperature is 1,000 to 1,30.
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, wherein the temperature is 0 ° C.
【請求項6】 上記混合ガス中のハロゲン系ガスの割合
が30体積%以下である請求項1、請求項2、又は請求
項5記載の高純度窒化ケイ素繊維の製造方法。
6. The method for producing a high-purity silicon nitride fiber according to claim 1, wherein the proportion of the halogen-based gas in the mixed gas is 30% by volume or less.
【請求項7】 上記窒化処理および上記熱処理の昇温速
度が200℃/hr以上である請求項1乃至請求項6記
載の高純度窒化ケイ素繊維の製造方法。
7. The method for producing a high-purity silicon nitride fiber according to claim 1, wherein a temperature rising rate of the nitriding treatment and the heat treatment is 200 ° C./hr or more.
【請求項8】 上記アンモニアガスおよび上記混合ガス
を、予め、上記窒化処理温度および上記熱処理温度に予
熱しておく請求項1乃至請求項6記載の高純度窒化ケイ
素繊維の製造方法。
8. The method for producing a high-purity silicon nitride fiber according to claim 1, wherein the ammonia gas and the mixed gas are preheated to the nitriding temperature and the heat treatment temperature in advance.
【請求項9】 上記不融化処理が、0.5〜90MGy
の電離性放射線の照射によるものである請求項1又は請
求項2記載の高純度窒化ケイ素繊維の製造方法。
9. The method according to claim 1, wherein the infusibilizing treatment is performed at 0.5 to 90 MGy.
The method for producing a high-purity silicon nitride fiber according to claim 1 or 2, which is performed by irradiation with ionizing radiation.
JP2984798A 1998-02-12 1998-02-12 Production of high-purity silicon nitride yarn Pending JPH11229239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2984798A JPH11229239A (en) 1998-02-12 1998-02-12 Production of high-purity silicon nitride yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2984798A JPH11229239A (en) 1998-02-12 1998-02-12 Production of high-purity silicon nitride yarn

Publications (1)

Publication Number Publication Date
JPH11229239A true JPH11229239A (en) 1999-08-24

Family

ID=12287392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2984798A Pending JPH11229239A (en) 1998-02-12 1998-02-12 Production of high-purity silicon nitride yarn

Country Status (1)

Country Link
JP (1) JPH11229239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075012A1 (en) * 2001-12-21 2009-07-01 PSIMEDICA Limited Medical fibres
CN104818609A (en) * 2015-05-14 2015-08-05 中国人民解放军国防科学技术大学 Polycarbosilane fiber low-oxygen non-melting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075012A1 (en) * 2001-12-21 2009-07-01 PSIMEDICA Limited Medical fibres
CN104818609A (en) * 2015-05-14 2015-08-05 中国人民解放军国防科学技术大学 Polycarbosilane fiber low-oxygen non-melting method

Similar Documents

Publication Publication Date Title
US6372192B1 (en) Carbon fiber manufacturing via plasma technology
US9045347B2 (en) Stiochiometric silicon carbide fibers from thermo-chemically cured polysilazanes
US8987402B2 (en) Stoichiometric silicon carbide fibers from thermo-chemically cured polysilazanes
JP2002097074A (en) Manufacture of silicon carbide composite material by applying radiation to silicon-based polymer
Kamimura et al. Development of silicon nitride fiber from Si-containing polymer by radiation curing and its application
Mittal et al. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers
JP2525286B2 (en) Method for producing super heat resistant silicon carbide fiber
US3972984A (en) Process for the preparation of carbon fiber
US5322822A (en) Ultra-high-strength refractory silicon carbide fiber and process for producing same
JPH11229239A (en) Production of high-purity silicon nitride yarn
JPH06192917A (en) Production of silicon carbide fiber
JP2963021B2 (en) Method for producing silicon carbide fiber
US5051215A (en) Curing preceramic polymers by exposure to nitrogen dioxide
Raman et al. Synthesis of silicon carbide through the sol—gel process from rayon fibers
JP3155687B2 (en) Method for producing silicon nitride fiber
JP3279144B2 (en) High heat resistant ceramic fiber and method for producing the same
JPH01139819A (en) Ceramics fiber and production thereof
JP3198014B2 (en) Method and apparatus for producing continuous silicon nitride fiber that can be woven
JP2001207377A (en) Surface-modified carbon fiber
JPH0941225A (en) Production of silicon carbide fiber
JP2574179B2 (en) Method for producing super heat resistant high strength silicon carbide fiber
JP2001295140A (en) Silicon carbine fiber having carbon film on surface of fiber, and method for producing the same
JP3457774B2 (en) Method for producing highly elastic carbon fiber having excellent interfacial adhesion to resin
JP3002698B2 (en) Manufacturing method of graphite fiber
JPS6119817A (en) Silicon oxide fiber and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A02