JPH06192917A - Production of silicon carbide fiber - Google Patents

Production of silicon carbide fiber

Info

Publication number
JPH06192917A
JPH06192917A JP4347064A JP34706492A JPH06192917A JP H06192917 A JPH06192917 A JP H06192917A JP 4347064 A JP4347064 A JP 4347064A JP 34706492 A JP34706492 A JP 34706492A JP H06192917 A JPH06192917 A JP H06192917A
Authority
JP
Japan
Prior art keywords
fiber
silicon carbide
heating
silicon
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4347064A
Other languages
Japanese (ja)
Other versions
JP2663819B2 (en
Inventor
Kaoru Okada
薫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP4347064A priority Critical patent/JP2663819B2/en
Priority to EP19930120803 priority patent/EP0603888B1/en
Priority to DE1993625350 priority patent/DE69325350T2/en
Publication of JPH06192917A publication Critical patent/JPH06192917A/en
Priority to US08/745,206 priority patent/US5676918A/en
Application granted granted Critical
Publication of JP2663819B2 publication Critical patent/JP2663819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for producing a silicon carbide fiber having excellent high-temperature strength and heat-resistance and densely converted to silicon carbide to the core part. CONSTITUTION:A silicon carbide fiber is produced by reacting silicon monoxide (SiO) gas generated by heating silicon monoxide fine powder with a porous carbon fiber such as activated carbon fiber under reduced pressure or in an inert gas atmosphere at 800-2000 deg.C. The fiber can be treated at a high temperature in an oxidizing atmosphere without causing the oxidation of the core part of the fiber to form a hollow part, the reduction of weight and the lowering of strength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化珪素繊維の製造法
に関するものである。さらに詳しくは、本発明は、複合
材料の強化繊維あるいは断熱材などとして有用な炭化珪
素繊維の製造法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing silicon carbide fibers. More specifically, the present invention relates to a method for producing a silicon carbide fiber useful as a reinforcing fiber of a composite material or a heat insulating material.

【0002】[0002]

【従来の技術】従来からの炭化珪素繊維の製造法として
は、有機珪素化合物を前駆体とする方法、および直径数
μmの炭素繊維やタングステン線にCVDや蒸着などに
よって炭化珪素を被覆する方法がある。
2. Description of the Related Art Conventional methods for producing silicon carbide fibers include a method of using an organic silicon compound as a precursor, and a method of coating carbon fibers or a tungsten wire having a diameter of several μm with silicon carbide by CVD or vapor deposition. is there.

【0003】前者の方法の例としては、特開昭59−3
3681に記載されているように、ジメチルジクロルシ
ランから金属ナトリウムを用いて脱塩素反応によりポリ
ジメチルシランを合成し、さらに熱分解反応によりポリ
カルボシランを合成する。得られたポリマーを溶融紡糸
し、空気中100〜190℃で加熱して熱酸化不融化処
理を行った後、不活性ガス気流中で1200〜1500
℃で焼成する方法が挙げられる。
An example of the former method is disclosed in JP-A-59-3.
As described in 3681, polydimethylsilane is synthesized from dimethyldichlorosilane by a dechlorination reaction using sodium metal, and then polycarbosilane is synthesized by a thermal decomposition reaction. The obtained polymer is melt-spun, heated in air at 100 to 190 ° C. to undergo thermal oxidative infusibilization treatment, and then 1200 to 1500 in an inert gas stream.
Examples include a method of firing at ° C.

【0004】また、後者の方法の例としては、特開昭6
0−231820に記載されるように、炭素繊維を一酸
化珪素(SiO)ガスと加熱,反応させる方法が挙げら
れるが、しかしながら、この方法では炭素繊維のごく表
面にしか炭化珪素が被覆されず、内部まで完全に炭化珪
素化された炭化珪素繊維は得られないという問題があっ
た。
An example of the latter method is Japanese Patent Laid-Open No.
As described in 0-231820, there is a method of heating and reacting carbon fiber with silicon monoxide (SiO) gas. However, in this method, only the very surface of carbon fiber is coated with silicon carbide, There is a problem in that a silicon carbide fiber that is completely converted to silicon carbide cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】炭化珪素被覆処理した
炭素繊維は、繊維のごく表面にしか炭化珪素が存在しな
いため、酸化雰囲気中で高温処理すると、繊維内部の炭
素が酸化されて中空となり、重量が減少し強度が急激に
低下するという問題点があった。本発明は、上記の問題
点を解決し、酸化雰囲気中で高温処理しても酸化されて
繊維が中空になることなく、あるいは重量が減少したり
強度が低下することのない、高温における強度および耐
熱性にすぐれ、内部まで緻密に炭化珪素化された炭化珪
素繊維を製造する方法を提供しようとするものである。
Since the carbon fiber coated with silicon carbide has silicon carbide only on the very surface of the fiber, when it is treated at a high temperature in an oxidizing atmosphere, the carbon inside the fiber is oxidized and becomes hollow, There is a problem that the weight is reduced and the strength is sharply reduced. The present invention solves the above problems and does not oxidize fibers to become hollow even when subjected to high temperature treatment in an oxidizing atmosphere, or the weight does not decrease or the strength does not decrease, and the strength at high temperature and An object of the present invention is to provide a method for producing a silicon carbide fiber which is excellent in heat resistance and is densely siliconized to the inside.

【0006】[0006]

【課題を解決するための手段】本発明の炭化珪素繊維の
製造法は、多孔質炭素繊維と一酸化珪素(SiO)ガス
とを、800〜2000℃で反応させることを特徴とす
るものである。
The method for producing a silicon carbide fiber of the present invention is characterized by reacting a porous carbon fiber with a silicon monoxide (SiO) gas at 800 to 2000 ° C. .

【0007】本発明に用いる多孔質炭素繊維の種類は、
特に限定されないが、細孔径が数オングストロームから
数百オングストロームの均一な細孔を繊維内部に多量に
含み、100〜2500m2 /gの比表面積値を有す
る、繊維径が5〜100μmである炭素繊維を有利に用
いることができる。炭素繊維の比表面積が100m2
g未満では、内部まで完全に炭化珪素化されずに、表面
が炭化珪素で被覆されるだけであり、一方、2500m
2 /gを越えると、得られる炭化珪素繊維の強度が弱く
なり取扱いが難しくなる。さらに、強度の大きい炭化珪
素繊維を得るために、多孔質炭素繊維は直線状であり、
しかも繊維表面が滑らかで欠陥がないもの、できるなら
ば繊維内部にも欠陥のないものを用いるのが望ましい。
The types of porous carbon fibers used in the present invention are
Although not particularly limited, a carbon fiber having a fiber diameter of 5 to 100 μm, which contains a large amount of uniform pores having a pore size of several angstroms to several hundred angstroms inside the fiber and has a specific surface area value of 100 to 2500 m 2 / g. Can be advantageously used. Specific surface area of carbon fiber is 100m 2 /
If it is less than g, the inside is not completely converted to silicon carbide, and the surface is only covered with silicon carbide, while it is 2500 m.
When it exceeds 2 / g, the strength of the obtained silicon carbide fiber becomes weak and handling becomes difficult. Furthermore, in order to obtain a silicon carbide fiber having high strength, the porous carbon fiber is linear,
Moreover, it is desirable to use a fiber having a smooth fiber surface and no defects, and if possible, one having no defects inside the fiber.

【0008】本発明に用いる多孔質炭素繊維のなかでも
とりわけ、炭素繊維を賦活することによって得られる活
性炭繊維が特に好適である。活性炭繊維としては、例え
ばセルロース系繊維,アクリロニトリル系繊維,石油ピ
ッチ系繊維,ポリイミド系繊維およびフェノール系繊維
を原料とし、不活性ガス雰囲気中で200〜400℃程
度に加熱して得られる炭素繊維を、水蒸気等を接触させ
ながら、脱水炭化処理温度より高い450〜1000℃
程度まで加熱する賦活処理によって得られる繊維が挙げ
られ、なかでも、内部まで緻密な炭化珪素繊維を得るた
めには繊維径5〜20μm、比表面積700〜2000
2 /gの活性炭繊維を用いるのがさらに好適である。
活性炭繊維の比表面積が700m2 /g未満では、繊維
内部まで完全に炭化珪素化されずに、表面が炭化珪素で
被覆されるだけであり、一方、2000m2 /gを越え
ると、得られる炭化珪素繊維の強度が弱くなり、取扱い
が難しくなる。
Among the porous carbon fibers used in the present invention, activated carbon fibers obtained by activating the carbon fibers are particularly suitable. As the activated carbon fiber, for example, a carbon fiber obtained by heating cellulose-based fiber, acrylonitrile-based fiber, petroleum pitch-based fiber, polyimide-based fiber and phenol-based fiber as raw materials and heating to about 200 to 400 ° C. in an inert gas atmosphere. 450-1000 ° C higher than dehydration carbonization temperature while contacting
The fiber obtained by the activation treatment of heating to a certain degree is mentioned, and above all, in order to obtain a silicon carbide fiber that is dense to the inside, a fiber diameter of 5 to 20 μm and a specific surface area of 700 to 2000 are mentioned.
It is further preferred to use m 2 / g of activated carbon fiber.
When the specific surface area of the activated carbon fiber is less than 700 m 2 / g, the inside of the fiber is not completely converted to silicon carbide and the surface is only coated with silicon carbide. On the other hand, when it exceeds 2000 m 2 / g, the carbonization obtained is obtained. The strength of the silicon fiber becomes weak and it becomes difficult to handle.

【0009】本発明に用いる一酸化珪素(SiO)ガス
の供給源は特に限定されないが、一酸化珪素,二酸化珪
素の塊または粉末、あるいは珪素と一酸化珪素,珪素と
二酸化珪素の微粒子をよく混合したものを、10-6〜1
0Paの減圧下で500℃以上に加熱して発生するSi
Oガスを用いるのが特に好適である。
The supply source of the silicon monoxide (SiO) gas used in the present invention is not particularly limited, but a mass or powder of silicon monoxide or silicon dioxide, or fine particles of silicon and silicon monoxide or silicon and silicon dioxide are well mixed. Made from 10 -6 to 1
Si generated by heating above 500 ° C under reduced pressure of 0 Pa
It is particularly preferable to use O gas.

【0010】加熱は内熱式,外熱式または誘導加熱式の
減圧下またはガス雰囲気あるいは気流中で試料の焼成が
可能な縦型あるいは横型の加熱炉を用いる。炉はアルミ
ナ,マグネシア,ジルコニア,ムライトまたは炭素など
の材質からなる管状または箱型炉を用いるのが好適であ
る。
For heating, a vertical or horizontal heating furnace capable of firing the sample under a reduced pressure such as an internal heating type, an external heating type or an induction heating type or in a gas atmosphere or an air stream is used. It is preferable to use a tubular or box type furnace made of a material such as alumina, magnesia, zirconia, mullite or carbon as the furnace.

【0011】さらに炭化珪素は、SiOガスが多孔質炭
素繊維の細孔内に入り込み、細孔壁の炭素と反応して生
成するため、細孔内にガスが拡散しやすいように周囲の
SiOガス濃度は高いほうが望ましい。特に好適なガス
濃度は真空度にして10-3〜102 Paであり、この様
にSiOガスをより多く発生させるためには、発生源と
なる物質として粒径が0.1〜5000μmの微粉末あ
るいは粒状のものを用いることが望ましく、中でも1〜
100μmの微粒子が好適であり、かつ加熱炉内を10
Pa以上のできるだけ高い真空度にし、500〜170
0℃、中でも1000〜1400℃に加熱するのが特に
望ましい。
Further, since silicon dioxide is produced by reacting the SiO gas into the pores of the porous carbon fiber and reacting with the carbon on the pore walls, silicon carbide in the surroundings is facilitated so that the gas easily diffuses into the pores. Higher concentration is desirable. A particularly preferable gas concentration is 10 −3 to 10 2 Pa in terms of the degree of vacuum, and in order to generate more SiO gas in this manner, the generation source substance having a particle size of 0.1 to 5000 μm It is desirable to use powder or granules, among which 1 to
Fine particles of 100 μm are preferable, and the inside of the heating furnace is 10
500 to 170 with a vacuum as high as Pa or higher
It is particularly desirable to heat to 0 ° C., especially 1000 to 1400 ° C.

【0012】細孔内に拡散したSiOガスが細孔壁の炭
素と反応するためには、外からエネルギーを与える必要
があり、温度が低いと炭化珪素が生成しない。従って炭
化珪素生成のためには、SiOガスが細孔内に拡散した
後、多孔質炭素繊維および細孔内部のSiOガスを加熱
する必要がある。
In order for the SiO gas diffused in the pores to react with the carbon on the walls of the pores, it is necessary to apply energy from the outside, and silicon carbide will not be produced at low temperatures. Therefore, in order to generate silicon carbide, it is necessary to heat the porous carbon fibers and the SiO gas inside the pores after the SiO gas has diffused into the pores.

【0013】加熱方法としては内熱式,外熱式または誘
導加熱式の減圧下またはガス雰囲気あるいは気流中で試
料の焼成が可能な、アルミナ,マグネシア,ジルコニ
ア,ムライトまたは炭素などの材質からなる管状または
箱型の縦型あるいは横型の加熱炉を用い、真空中あるい
はアルゴン,窒素などの不活性ガス雰囲気中で800〜
2000℃に加熱するのが望ましい。加熱温度が800
℃未満では、反応が不十分で内部まで完全に炭化珪素化
されず、一方、2000℃を越えると、生成した炭化珪
素の微粒子が成長し、折れやすく強度が低下する。特
に、内部まで完全に緻密な炭化珪素を生成するために
は、加熱温度は1000〜1400℃が好適であり、ウ
ィスカーの生成を押さえるためには、10Pa以下の真
空下で反応させることが望ましい。
As a heating method, a tube made of a material such as alumina, magnesia, zirconia, mullite or carbon capable of firing the sample under a reduced pressure of an internal heating type, an external heating type or an induction heating type or in a gas atmosphere or an air stream Alternatively, using a box-type vertical or horizontal heating furnace, in a vacuum or in an inert gas atmosphere such as argon or nitrogen
It is desirable to heat to 2000 ° C. Heating temperature is 800
If the temperature is lower than 0 ° C, the reaction is insufficient and the silicon carbide is not completely converted to the inside. On the other hand, if the temperature exceeds 2000 ° C, the generated silicon carbide fine particles grow and are easily broken, and the strength decreases. In particular, the heating temperature is preferably 1000 to 1400 ° C. in order to generate completely dense silicon carbide even in the interior, and it is desirable to carry out the reaction under a vacuum of 10 Pa or less in order to suppress the formation of whiskers.

【0014】加熱処理時の昇温速度は、特に限定しない
が、50〜1500℃/hrが望ましい。また、加熱処
理における保持時間は1分〜2時間が好ましく、特に3
0分〜1時間30分が最適である。加熱処理が1分未満
では、反応が不十分で内部まで完全に炭化珪素化され
ず、一方、2時間を越えると、生成した炭化珪素の微粒
子が成長し、強度が低下し、折れやすくなる。
The heating rate during the heat treatment is not particularly limited, but is preferably 50 to 1500 ° C./hr. Further, the holding time in the heat treatment is preferably 1 minute to 2 hours, and particularly 3 minutes.
The optimum time is 0 minutes to 1 hour and 30 minutes. If the heat treatment is less than 1 minute, the reaction is insufficient and the silicon carbide is not completely converted to the inside. On the other hand, if the heat treatment is performed for more than 2 hours, fine particles of silicon carbide generated grow, the strength is lowered, and the particles are easily broken.

【0015】多孔質炭素繊維とSiOガスを接触させる
方法としては、加熱炉中で上記の方法に従ってSiOガ
ス発生物質を加熱することによりSiOガスを発生さ
せ、反応炉中に導いて繊維と反応させてもよく、あるい
は、SiOガス発生物質と繊維を同じ炉内におき、双方
を同時に加熱することによってガス発生と炭化珪素生成
を同時に行ってもよい。
As a method of contacting the porous carbon fiber with the SiO gas, the SiO gas generating substance is heated according to the above method in the heating furnace to generate the SiO gas, and the SiO gas is introduced into the reaction furnace to react with the fiber. Alternatively, the SiO gas generating substance and the fiber may be placed in the same furnace, and both may be heated at the same time so that the gas generation and the silicon carbide generation are performed at the same time.

【0016】同じ炉内に置く方法で行う場合には、繊維
周囲のSiOガス濃度を高くするために、SiO発生物
質は上記で述べたような微粉末あるいは粒状であること
が望ましく、その重量は多孔質炭素繊維の質量に対して
2〜30倍量の過剰量で、双方の距離をなるべく小さく
するために粉末あるいは粒状のSiO発生物質の上に繊
維をのせる方法、あるいは粉末の中に繊維を埋め込み、
加熱炉内を10Pa以上のできるだけ高い真空度にし、
800〜1700℃、より好ましくは1000〜140
0℃に加熱する方法が望ましい。この場合、SiOガス
を多孔質炭素繊維に高い濃度で長時間接触させるため
に、SiOガス発生温度における昇温速度はなるべく遅
い方が望ましいが、50〜1500℃/hr、より好ま
しくは200〜1000℃/hrであり、加熱処理にお
ける保持時間も1分〜2時間、より好ましくは30分〜
1時間30分である。
When the method of placing in the same furnace is used, in order to increase the SiO gas concentration around the fiber, it is desirable that the SiO generating substance be fine powder or granular as described above, and its weight is A method of placing the fibers on the powder or granular SiO generating substance in order to make the distance between them as small as possible in an excess amount of 2 to 30 times with respect to the mass of the porous carbon fibers, or the fibers in the powder. Embedded,
Make the inside of the heating furnace a vacuum as high as 10 Pa or higher,
800-1700 ° C, more preferably 1000-140
A method of heating to 0 ° C is desirable. In this case, in order to keep the SiO gas in contact with the porous carbon fiber at a high concentration for a long time, it is desirable that the temperature rising rate at the SiO gas generation temperature is as slow as possible, but 50 to 1500 ° C./hr, and more preferably 200 to 1000. C./hr and the holding time in the heat treatment is 1 minute to 2 hours, more preferably 30 minutes to
It is 1 hour and 30 minutes.

【0017】また、強度の大きい炭化珪素繊維を製造す
るためには、多孔質炭素繊維をSiOガスと接触させて
炭化珪素を生成させる際に、繊維を緊張状態にしておく
ことが望ましい。例えば、長繊維を緊張させたままその
両端を接着剤やおもりで留めたり、あるいは長繊維の一
端を固定し、他端におもりをつけて鉛直方向に下げるな
どの方法をとることが望ましい。
In order to produce silicon carbide fibers having high strength, it is desirable to keep the fibers in a tension state when the porous carbon fibers are brought into contact with SiO gas to generate silicon carbide. For example, it is desirable to use a method in which the both ends of the long fiber are tightened while being fastened with an adhesive or a weight, or one end of the long fiber is fixed and a weight is attached to the other end to lower it vertically.

【0018】このようにして得られた炭化珪素繊維は、
表面が滑らかで硬く、内部まで完全に緻密に炭化珪素化
されているため、酸化雰囲気中において800〜150
0℃の高温で処理しても重量減少および強度の減少が見
られない。
The silicon carbide fiber thus obtained is
The surface is smooth and hard, and the inside is completely densely siliconized, so it is 800 to 150 in an oxidizing atmosphere.
Even when treated at a high temperature of 0 ° C., no weight loss or strength reduction is observed.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0020】実施例1 一酸化珪素微粉末(粒径5〜50μm)2gの上に、フ
ェノール系炭素繊維を賦活することによって得られた活
性炭繊維(繊維径10μm,比表面積1500m2
g、繊維長100mm)の長繊維束0.1gをのせ、繊
維の両端をおもりをのせることによって固定した。固定
した繊維と一酸化珪素粉末を、内熱式の管状炭素炉の中
に入れ、1Paまで減圧し、3000℃/hrの昇温速
度で1000℃まで昇温し、その後1200℃まで20
0℃/hrの昇温速度で昇温した後、1時間保持して焼
成を行った後、再び200℃/hrの速度で1000℃
まで降温した後、室温まで自然冷却した。
Example 1 Activated carbon fiber obtained by activating phenolic carbon fiber on 2 g of silicon monoxide fine powder (particle size 5 to 50 μm) (fiber diameter 10 μm, specific surface area 1500 m 2 /
g, fiber length 100 mm), 0.1 g of long fiber bundle was placed, and both ends of the fiber were fixed by placing weights. The fixed fiber and the silicon monoxide powder are put into an internal heating type tubular carbon furnace, the pressure is reduced to 1 Pa, the temperature is raised to 1000 ° C. at a heating rate of 3000 ° C./hr, and then the temperature is increased to 1200 ° C. for 20 hours.
After heating at a heating rate of 0 ° C./hr, holding for 1 hour to perform firing, and again at a rate of 200 ° C./hr at 1000 ° C.
After cooling to room temperature, it was naturally cooled to room temperature.

【0021】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に炭化珪素の吸収がみられ、またX線回折装置を用
いて結晶の回折角度を調べたところ、CuKα2θ=3
5.7度付近に緩やかなピークが見られたことから、こ
の繊維は微結晶質の炭化珪素繊維であることがわかっ
た。さらに得られた繊維を、酸化雰囲気中で1000
℃,1時間加熱したが、重量減少は全く見られなかった
ことから、繊維は炭素を含まず、内部まで完全に炭化珪
素化していることがわかった。この繊維の束約100〜
300本を、引張試験機を用いて2mm/minの引張
速度で引張試験を行い、10回の平均を求めたところ、
引張強度は1100MPa、また弾性率は120GPa
であった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was 900 cm -1.
Absorption of silicon carbide was observed in the vicinity, and when the diffraction angle of the crystal was examined using an X-ray diffractometer, CuKα2θ = 3
Since a gentle peak was observed around 5.7 degrees, it was found that this fiber was a microcrystalline silicon carbide fiber. Further, the obtained fiber is treated with 1000 in an oxidizing atmosphere.
After heating at 0 ° C. for 1 hour, no weight reduction was observed, so it was found that the fiber did not contain carbon and the interior was completely converted to silicon carbide. This fiber bundle is about 100 ~
When 300 pieces were subjected to a tensile test using a tensile tester at a pulling speed of 2 mm / min and an average of 10 times was obtained,
Tensile strength is 1100 MPa and elastic modulus is 120 GPa
Met.

【0022】実施例2 外熱型加熱炉内において一酸化珪素微粉末(粒径5〜5
0μm)5gを、真空度10-1Paの高真空下で、10
00℃まで昇温速度3000℃/hrで加熱し、さらに
1500℃まで1000℃/hrの昇温速度で加熱し、
SiOガスを発生させた。これとは別に、フェノール系
炭素繊維を賦活することによって得られた活性炭繊維
(繊維径10μm、比表面積1500m2 /g、長さ5
00mm)の束0.5gの一端を固定し、他端におもり
をつけて鉛直方向に緊張させたものを外熱式の管状炉内
に置き、10-2Paまで減圧し、1000℃まで加熱
し、この中に上記で発生させたSiOガスを導き、20
0℃/hrの昇温速度で1200℃まで昇温し、1時間
保持して焼成を行った後、200℃/hrの速度で10
00℃まで降温し、その後、室温まで自然冷却した。な
お、加熱炉内において炭化珪素生成反応が終了するま
で、一酸化珪素の加熱を続けて加熱炉内にガスを供給
し、反応終了後、一酸化珪素は自然冷却した。
Example 2 Silicon monoxide fine powder (particle size: 5 to 5) in an external heating furnace
0 μm) 5 g under high vacuum with a vacuum degree of 10 −1 Pa.
Heating to 00 ° C. at a heating rate of 3000 ° C./hr, and further heating to 1500 ° C. at a heating rate of 1000 ° C./hr,
SiO gas was generated. Separately from this, activated carbon fibers obtained by activating phenolic carbon fibers (fiber diameter 10 μm, specific surface area 1500 m 2 / g, length 5
0.5 mm bundle of 0.5 mm (00 mm) is fixed at one end, a weight is attached to the other end and vertically tensioned, placed in an externally heated tubular furnace, depressurized to 10 -2 Pa, and heated to 1000 ° C. Then, introduce the SiO gas generated above into this,
After heating to 1200 ° C. at a heating rate of 0 ° C./hr and holding for 1 hour to perform firing, 10 ° C. was set at a rate of 200 ° C./hr.
The temperature was lowered to 00 ° C., and then naturally cooled to room temperature. The silicon monoxide was continuously heated until the silicon carbide forming reaction was completed in the heating furnace, and a gas was supplied into the heating furnace. After the reaction was completed, the silicon monoxide was naturally cooled.

【0023】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に炭化珪素の吸収がみられ、またX線回折装置を用
いて結晶の回折角度を調べたところ、CuKα2θ=3
5.7度付近に緩やかなピークが見られたことから、こ
の繊維は微結晶質の炭化珪素繊維であることがわかっ
た。さらに得られた繊維を、酸化雰囲気中で1000
℃,1時間加熱したが、重量減少が10%程度見られ
た。この繊維の束約100〜300本を、引張試験機を
用いて2mm/minの引張速度で引張試験を行い、1
0回の平均を求めたところ、引張強度は1400MP
a、また弾性率は150GPaであった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was 900 cm -1.
Absorption of silicon carbide was observed in the vicinity, and when the diffraction angle of the crystal was examined using an X-ray diffractometer, CuKα2θ = 3
Since a gentle peak was observed around 5.7 degrees, it was found that this fiber was a microcrystalline silicon carbide fiber. Further, the obtained fiber is treated with 1000 in an oxidizing atmosphere.
After heating at 0 ° C for 1 hour, a weight loss of about 10% was observed. About 100 to 300 bundles of this fiber are subjected to a tensile test at a tensile speed of 2 mm / min using a tensile tester, and 1
When the average of 0 times is calculated, the tensile strength is 1400MP
a, and the elastic modulus was 150 GPa.

【0024】比較例1 フェノール系炭素繊維の活性炭繊維の代わりに、賦活を
行っていないフェノール系炭素繊維を用いた以外は、実
施例1と同様にして焼成を行った。
Comparative Example 1 Firing was carried out in the same manner as in Example 1 except that non-activated phenolic carbon fiber was used instead of the activated carbon fiber of phenolic carbon fiber.

【0025】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、900cm-1
付近に吸収がみられ炭化珪素の存在が確認されたが、酸
化雰囲気中で1000℃,1時間加熱したところ、95
%の重量減少が見られ、さらに断面のSEM観察を行っ
たところ、繊維のごく表面にのみ炭化珪素が被覆してお
り、内部は全く炭化珪素化されず炭素のままであること
がわかった。
When the infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method, it was 900 cm -1.
Absorption was observed in the vicinity and the presence of silicon carbide was confirmed, but when heated in an oxidizing atmosphere at 1000 ° C. for 1 hour, 95
%, A cross-section was observed by SEM, and it was found that silicon carbide was coated only on the very surface of the fiber, and the inside was not carbonized at all and remained carbon.

【0026】この比較例1と実施例1および2の結果か
ら明らかなように、SiOガスと炭素繊維を反応させる
場合、多孔質炭素繊維を用いることにより、繊維の内部
まで緻密で完全に炭化珪素化された繊維を得ることがで
きる。
As is clear from the results of Comparative Example 1 and Examples 1 and 2, when the SiO gas and the carbon fiber are reacted, the porous carbon fiber is used so that the inside of the fiber is dense and completely silicon carbide. It is possible to obtain an emulsified fiber.

【0027】比較例2 実施例1と全く同じ方法で、ただし、焼成温度を600
℃および2100℃として焼成を行った。
Comparative Example 2 In exactly the same manner as in Example 1, except that the firing temperature was 600.
Firing was performed at a temperature of 2100C.

【0028】得られた繊維を、臭化カリウム錠剤法によ
って赤外吸収スペクトルを調べたところ、焼成温度60
0℃のものは、900cm-1付近に吸収がみられず、炭
化珪素の存在が確認されなかった。一方、焼成温度21
00℃のものは、900cm-1付近に吸収がみられ、炭
化珪素の存在が確認されたが、X線回折装置を用いて結
晶の回折角度を調べたところ、CuKα2θ=35.7
度付近に鋭いピークが見られたことから、この繊維はか
なり結晶の成長した結晶質の炭化珪素繊維であることが
わかった。また、得られた繊維を、酸化雰囲気中で10
00℃で1時間加熱したところ、焼成温度600℃のも
のは何も残らなかったが、焼成温度2100℃のもの
は、重量減少は全く見られなかったことから、繊維は内
部まで完全に炭化珪素化していることがわかった。さら
に、焼成温度2100℃で得られた繊維の束約100〜
300本を、引張試験機を用いて2mm/minの引張
速度で引張試験を行ったところ、強度が弱く測定不能で
あった。
The infrared absorption spectrum of the obtained fiber was examined by the potassium bromide tablet method.
In the case of 0 ° C., no absorption was observed around 900 cm −1 , and the presence of silicon carbide was not confirmed. On the other hand, firing temperature 21
In the case of 00 ° C., absorption was observed around 900 cm −1 , and the presence of silicon carbide was confirmed. When the diffraction angle of the crystal was examined using an X-ray diffractometer, CuKα2θ = 35.7.
Since a sharp peak was observed in the vicinity of this degree, it was found that this fiber was a crystalline silicon carbide fiber with considerably grown crystals. In addition, the obtained fiber is treated in an oxidizing atmosphere for 10
When heated at 00 ° C. for 1 hour, nothing was left at a firing temperature of 600 ° C., but no weight loss was observed at a firing temperature of 2100 ° C. Therefore, the fibers were completely silicon carbide even inside. I found out that it has become. Furthermore, a fiber bundle obtained at a firing temperature of 2100 ° C. is about 100 to
When 300 pieces were subjected to a tensile test using a tensile tester at a tensile speed of 2 mm / min, the strength was too weak to measure.

【0029】[0029]

【発明の効果】本発明によって、繊維の中心部まで緻密
で、完全に炭化珪素化された、耐熱性に優れ、強度の大
きい炭化珪素繊維を得ることができる。
Industrial Applicability According to the present invention, it is possible to obtain a silicon carbide fiber which is dense up to the central portion of the fiber and is completely siliconized, which has excellent heat resistance and high strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 D01F 9/12 501 7199−3B 11/12 D06M 11/77 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location D01F 9/12 501 7199-3B 11/12 D06M 11/77

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質炭素繊維と一酸化珪素(SiO)
ガスとを、800〜2000℃で反応させることを特徴
とする炭化珪素繊維の製造法。
1. Porous carbon fiber and silicon monoxide (SiO)
A method for producing a silicon carbide fiber, which comprises reacting with a gas at 800 to 2000 ° C.
JP4347064A 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber Expired - Fee Related JP2663819B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4347064A JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber
EP19930120803 EP0603888B1 (en) 1992-12-25 1993-12-23 Method of producing silicon carbide fibers
DE1993625350 DE69325350T2 (en) 1992-12-25 1993-12-23 Process for the production of silicon carbide fibers
US08/745,206 US5676918A (en) 1992-12-25 1996-11-08 Method of producing silicon carbide fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4347064A JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber

Publications (2)

Publication Number Publication Date
JPH06192917A true JPH06192917A (en) 1994-07-12
JP2663819B2 JP2663819B2 (en) 1997-10-15

Family

ID=18387676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4347064A Expired - Fee Related JP2663819B2 (en) 1992-12-25 1992-12-25 Manufacturing method of silicon carbide fiber

Country Status (1)

Country Link
JP (1) JP2663819B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618510A (en) * 1994-04-12 1997-04-08 New Oji Paper Co., Ltd. Process for producing silicon carbide material
US5922300A (en) * 1997-01-23 1999-07-13 Oji Paper Co., Ltd. Process for producing silicon carbide fibers
US6316051B2 (en) 1997-12-26 2001-11-13 Oji Paper Co., Ltd. Process for producing silicon carbide fiber
JP2004307299A (en) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst Nano-size silicon carbide tube and its manufacturing method
JP2012179530A (en) * 2011-02-28 2012-09-20 Silicon Plus Corp Photocatalyst-carrying carbon fiber, and photocatalyst-carrying carbon fiber filter
US8940391B2 (en) * 2010-10-08 2015-01-27 Advanced Ceramic Fibers, Llc Silicon carbide fibers and articles including same
US9010841B1 (en) 2013-12-03 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle door trim panel assembly
US9199227B2 (en) 2011-08-23 2015-12-01 Advanced Ceramic Fibers, Llc Methods of producing continuous boron carbide fibers
US9275762B2 (en) 2010-10-08 2016-03-01 Advanced Ceramic Fibers, Llc Cladding material, tube including such cladding material and methods of forming the same
US9803296B2 (en) 2014-02-18 2017-10-31 Advanced Ceramic Fibers, Llc Metal carbide fibers and methods for their manufacture
US10208238B2 (en) 2010-10-08 2019-02-19 Advanced Ceramic Fibers, Llc Boron carbide fiber reinforced articles
US10793478B2 (en) 2017-09-11 2020-10-06 Advanced Ceramic Fibers, Llc. Single phase fiber reinforced ceramic matrix composites
US10954167B1 (en) 2010-10-08 2021-03-23 Advanced Ceramic Fibers, Llc Methods for producing metal carbide materials

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618510A (en) * 1994-04-12 1997-04-08 New Oji Paper Co., Ltd. Process for producing silicon carbide material
US5922300A (en) * 1997-01-23 1999-07-13 Oji Paper Co., Ltd. Process for producing silicon carbide fibers
US6316051B2 (en) 1997-12-26 2001-11-13 Oji Paper Co., Ltd. Process for producing silicon carbide fiber
JP2004307299A (en) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst Nano-size silicon carbide tube and its manufacturing method
US9272913B2 (en) 2010-10-08 2016-03-01 Advanced Ceramic Fibers, Llc Methods for producing silicon carbide fibers
US8940391B2 (en) * 2010-10-08 2015-01-27 Advanced Ceramic Fibers, Llc Silicon carbide fibers and articles including same
US9275762B2 (en) 2010-10-08 2016-03-01 Advanced Ceramic Fibers, Llc Cladding material, tube including such cladding material and methods of forming the same
US10208238B2 (en) 2010-10-08 2019-02-19 Advanced Ceramic Fibers, Llc Boron carbide fiber reinforced articles
US10954167B1 (en) 2010-10-08 2021-03-23 Advanced Ceramic Fibers, Llc Methods for producing metal carbide materials
JP2012179530A (en) * 2011-02-28 2012-09-20 Silicon Plus Corp Photocatalyst-carrying carbon fiber, and photocatalyst-carrying carbon fiber filter
US9199227B2 (en) 2011-08-23 2015-12-01 Advanced Ceramic Fibers, Llc Methods of producing continuous boron carbide fibers
US9010841B1 (en) 2013-12-03 2015-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle door trim panel assembly
US9803296B2 (en) 2014-02-18 2017-10-31 Advanced Ceramic Fibers, Llc Metal carbide fibers and methods for their manufacture
US10435820B2 (en) 2014-02-18 2019-10-08 Advanced Ceramic Fibers Composite articles comprising metal carbide fibers
US10793478B2 (en) 2017-09-11 2020-10-06 Advanced Ceramic Fibers, Llc. Single phase fiber reinforced ceramic matrix composites

Also Published As

Publication number Publication date
JP2663819B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP3042297B2 (en) Method for producing silicon carbide material
US5676918A (en) Method of producing silicon carbide fibers
JPH06192917A (en) Production of silicon carbide fiber
Kumagawa et al. Fabrication and mechanical properties of new improved Si‐M‐C‐(O) Tyranno fiber
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
JPH11200158A (en) Production of silicon carbide fiber
EP0603888B1 (en) Method of producing silicon carbide fibers
US5114635A (en) Process for producing carbon material and carbon/carbon composites
Hasegawa New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre
JPH0718520A (en) Production of silicon carbide fiber
JPH1161573A (en) Production of silicon carbide fiber
JPH0227308A (en) Optical fiber and its production
JP3300938B2 (en) Method for producing hollow fiber consisting essentially of silicon carbide and hollow fiber
JPH026623A (en) Pitch-based carbon fiber having high strength and elastic modulus
JPH08295565A (en) Production of silicon carbide material
JPH0797281A (en) Production of silicon carbide material
JPS5824394B2 (en) Titsukahousofukugoutaino Seizouhouhou
JPH0351318A (en) Production of carbide ceramics coated carbon fiber
JPH10266022A (en) Production of silicon carbide fiber
KR102208517B1 (en) SiC nanotube and a method thereof
JPS5959976A (en) Production of silicon carbide coated carbon fiber
JPH05279007A (en) Production of silicon carbide powder
JPH04245924A (en) Silicon carbide fiber and its production
JP2001295140A (en) Silicon carbine fiber having carbon film on surface of fiber, and method for producing the same
JPH1053924A (en) Production of silicon carbide fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees