JPH11224664A - Lithium-ion secondary battery having high moisture resistance and high safety - Google Patents

Lithium-ion secondary battery having high moisture resistance and high safety

Info

Publication number
JPH11224664A
JPH11224664A JP10025401A JP2540198A JPH11224664A JP H11224664 A JPH11224664 A JP H11224664A JP 10025401 A JP10025401 A JP 10025401A JP 2540198 A JP2540198 A JP 2540198A JP H11224664 A JPH11224664 A JP H11224664A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
water
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10025401A
Other languages
Japanese (ja)
Inventor
Masaki Watanabe
政喜 渡辺
Tsutomu Toida
努 戸井田
Makoto Maeda
誠 前田
Takayuki Fujita
隆幸 藤田
Koji Mizusawa
浩二 水沢
Masaharu Sakai
雅春 坂井
Yoshio Fujii
芳夫 藤井
Masami Sakaguchi
正巳 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKI CHEMCAL CO Ltd
Original Assignee
NIKKI CHEMCAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKI CHEMCAL CO Ltd filed Critical NIKKI CHEMCAL CO Ltd
Priority to JP10025401A priority Critical patent/JPH11224664A/en
Publication of JPH11224664A publication Critical patent/JPH11224664A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a safe lithium-ion secondary battery having high moisture- resistance where battery performance is prevented from decreasing caused by the effect of water on lithium containing complex oxide of a positive electrode material, and heat generation at the time of short-circuiting, etc., of the battery can be inhibited low. SOLUTION: This lithium-ion secondary battery has positive electrodes containing a positive electrode material made of particulates of lithium containing complex oxide, negative electrodes containing an active material enabling occlusion and emission of metal lithium, a lithium alloy and lithium ions, and an electrolyte. Here, at least one of surfaces of the lithium containing complex oxide partculates and surfaces of the positive electrodes have film made of a water-repellent material. At least on selected from among a fluorine containing macromolecular compound and an organosilicon compound are desirable as the water-repellent material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐湿性が改良され
ると共に安全性が向上したリチウムイオン二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery having improved moisture resistance and improved safety.

【0002】[0002]

【従来の技術】リチウムイオン二次電池はニッカド電池
やニッケル水素電池に比べて体積エネルギー密度、質量
エネルギー密度が高いので、携帯電話、カメラ一体型V
TR、ノート型パソコンなどの携帯機器の電源としての
発展が期待されている。リチウムイオン二次電池は、リ
チウム含有複合酸化物微粒子よりなる正極材を含む正極
と、金属リチウム、リチウム合金またはリチウムイオン
を吸蔵放出可能な活物質を含む負極と、電解質とを有す
る。リチウムイオン二次電池用正極材として用いられて
いるコバルト酸リチウム、ニッケル酸リチウムまたはマ
ンガン酸リチウムなどの複合酸化物は、微粒子の状態で
はもちろんのこと、正極を形成させた後でも、空気中に
放置するとその結晶粒子の表面に空気中の水分が吸着す
る。このような、水分が吸着した正極材を用いて製造さ
れた正極または水分を吸着していない正極材を用いて製
造された後水分を吸着した正極を用いた場合は、水分を
吸着していない正極を用いた場合よりもリチウムイオン
二次電池の充放電効率などの電池性能が低下する。特に
上記の傾向は、ニッケル酸リチウムに著しい。正極材ま
たは正極にいったん水分が吸着すると、例えば加熱など
の乾燥処理をして吸着した水分を除去しても、電池性能
は劣る。このため、従来は正極材を製造後、乾燥ガス雰
囲気中に保管するなど湿気との接触を断つための方法が
とられている。また正極の製造工程でもできるだけ湿潤
空気との接触を避けるため、ドライルームなど除湿設備
を設けた作業室で作業するなどの方法がとられている。
さらに正極そのものも、電池に組み込むまでは湿気に触
れないようにしなければならない。そこで、これら正極
材や正極の耐湿性を向上させ取扱を容易にすることが望
まれている。また複合酸化物を正極材に用いたリチウム
イオン二次電池は、短絡や誤用などにより大電流が流れ
た場合、電池温度が上昇し発熱することがある。このよ
うなときの電池の安全性確保のために種々の安全対策が
施されているが、さらなる安全性の向上が望まれてい
る。
2. Description of the Related Art A lithium ion secondary battery has a higher volume energy density and a higher mass energy density than a nickel-cadmium battery or a nickel-metal hydride battery.
It is expected to develop as a power source for portable devices such as TRs and notebook computers. A lithium ion secondary battery has a positive electrode including a positive electrode material composed of lithium-containing composite oxide fine particles, a negative electrode including a metal lithium, a lithium alloy, or an active material capable of inserting and extracting lithium ions, and an electrolyte. Composite oxides such as lithium cobaltate, lithium nickelate or lithium manganate used as the cathode material for lithium ion secondary batteries are not only in the form of fine particles, but also in the air even after the cathode is formed. When left to stand, moisture in the air is adsorbed on the surface of the crystal particles. Such a positive electrode manufactured using a positive electrode material to which water is adsorbed or a positive electrode to which water is adsorbed after being manufactured using a positive electrode material to which no water is adsorbed does not adsorb water. Battery performance such as charge / discharge efficiency of a lithium ion secondary battery is lower than when a positive electrode is used. In particular, the above tendency is remarkable for lithium nickelate. Once moisture is adsorbed on the positive electrode material or the positive electrode, battery performance is inferior even if the adsorbed moisture is removed by, for example, drying treatment such as heating. For this reason, conventionally, a method for cutting off the contact with moisture, such as storing the positive electrode material in a dry gas atmosphere, has been adopted. In order to avoid contact with humid air as much as possible in the manufacturing process of the positive electrode, a method of working in a working room provided with a dehumidifying facility such as a dry room has been adopted.
In addition, the positive electrode itself must be protected from moisture until it is incorporated into the battery. Therefore, it is desired to improve the moisture resistance of the positive electrode material and the positive electrode to facilitate handling. In addition, in a lithium ion secondary battery using a composite oxide as a positive electrode material, when a large current flows due to a short circuit, misuse, or the like, the battery temperature may increase and generate heat. Various safety measures have been taken to ensure the safety of the battery in such a case, but further improvement in safety is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、正極材のリ
チウム含有複合酸化物が水分の影響を受けて電池性能が
低下するのを防止すると共に、電池の短絡などの場合の
発熱を少なく抑えるこができる安全性が高いリチウムイ
オン二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention prevents the lithium-containing composite oxide of the positive electrode material from deteriorating battery performance due to the influence of moisture and suppresses heat generation in the event of a battery short circuit or the like. It is an object of the present invention to provide a highly safe lithium-ion secondary battery capable of performing this.

【0004】[0004]

【課題を解決するための手段】本発明に係るリチウムイ
オン二次電池は、リチウム含有複合酸化物微粒子よりな
る正極材を含む正極と、金属リチウム、リチウム合金ま
たはリチウムイオンを吸蔵放出可能な活物質を含む負極
と、電解質とを有するリチウムイオン二次電池におい
て、該リチウム含有複合酸化物微粒子の表面及び該正極
の表面のうちの少なくとも一方が、撥水性物質の被膜を
有することを特徴とする。撥水性物質としては、フッ素
含有高分子化合物及び有機ケイ素化合物の中から選ばれ
た少なくとも1種が好ましい。
According to the present invention, there is provided a lithium ion secondary battery comprising: a cathode including a cathode material comprising lithium-containing composite oxide fine particles; and an active material capable of inserting and extracting lithium metal, a lithium alloy or lithium ions. In a lithium ion secondary battery having a negative electrode containing: and an electrolyte, at least one of the surface of the lithium-containing composite oxide fine particles and the surface of the positive electrode has a coating of a water-repellent substance. As the water-repellent substance, at least one selected from a fluorine-containing polymer compound and an organosilicon compound is preferable.

【0005】本発明で用いられるリチウム含有複合酸化
物としては、リチウムイオン二次電池用の正極材として
用いられているコバルト酸リチウム、ニッケル酸リチウ
ム又はマンガン酸リチウムなどの複合酸化物、またはコ
バルト原子、ニッケル原子、マンガン原子の一部が他の
元素で置換された複合酸化物が挙げられる。例えば、ニ
ッケル酸リチウムの結晶構造中にCo、Mn、Fe、M
g、Alなどの金属元素の1種または2種以上が均一に
固溶した構造の複合ニッケル酸リチウムが用いられる。
この場合、上記のリチウム、ニッケル以外の金属元素を
Mとしたときのそれぞれの原子比が、Ni/M=70/
30〜95/5、Li/(Ni+M)=0.95〜1.
30の範囲にあるような複合ニッケル酸リチウムが好ま
しい。
[0005] The lithium-containing composite oxide used in the present invention includes a composite oxide such as lithium cobalt oxide, lithium nickel oxide or lithium manganate used as a positive electrode material for a lithium ion secondary battery, or a cobalt atom. , A nickel oxide, and a composite oxide in which part of a manganese atom is replaced with another element. For example, in the crystal structure of lithium nickelate, Co, Mn, Fe, M
Composite lithium nickelate having a structure in which one or more metal elements such as g and Al are uniformly dissolved is used.
In this case, when the above metal elements other than lithium and nickel are represented by M, the respective atomic ratios are Ni / M = 70 /
30-95 / 5, Li / (Ni + M) = 0.95-1.
Complex lithium nickelates in the range of 30 are preferred.

【0006】このようなリチウム含有複合酸化物の製造
法は特に制限なく、従来公知の方法で製造されたものが
用いられる。例えば、上記の複合ニッケル酸リチウム
は、本出願人が先に出願した特願平8−284380に
記載の方法で製造される。すなわち、硝酸ニッケルなど
の水溶性ニッケル化合物と第三成分の金属の硝酸塩など
の水溶性金属化合物の混合水溶液に、アルカリを添加し
てニッケル化合物と第三成分の金属化合物の共沈殿物を
得る。この共沈殿物を乾燥、焼成した粉末と水酸化リチ
ウムなどのリチウム化合物を混合し、600〜850℃
で焼成することにより、微粒子として得られる。
The method for producing such a lithium-containing composite oxide is not particularly limited, and those produced by a conventionally known method are used. For example, the above composite lithium nickelate is produced by the method described in Japanese Patent Application No. 8-284380 filed earlier by the present applicant. That is, an alkali is added to a mixed aqueous solution of a water-soluble nickel compound such as nickel nitrate and a water-soluble metal compound such as a nitrate of a third component metal to obtain a coprecipitate of the nickel compound and the third component metal compound. A powder obtained by drying and firing the coprecipitate is mixed with a lithium compound such as lithium hydroxide.
And obtained as fine particles.

【0007】[0007]

【発明の実施の形態】本発明の第一の実施形態において
は、リチウム含有複合酸化物の微粒子製造後直ちに撥水
性物質で処理し微粒子表面に被膜を形成してから、それ
を用いて正極を形成する。第二の実施形態においては、
リチウム含有複合酸化物の微粒子製造後直ちに正極に形
成してから撥水性物質で処理し正極表面に被膜を形成す
る。第三の実施形態は、第一の実施形態と第二の実施形
態を併用したもので、リチウム含有複合酸化物の微粒子
製造後直ちに撥水性物質で処理し微粒子表面に被膜を形
成してから、それを用いて正極を形成し、さらに撥水性
物質で処理して正極表面に被膜を形成する。いずれの場
合も、撥水性物質で処理するまでは、できるだけ湿潤空
気との接触を避けるため、ドライルームなど除湿設備を
設けた作業室で作業することが望ましい。リチウム含有
複合酸化物の微粒子製造と正極の製造を、同一場所で連
続的に行なう場合は第二の実施形態で良いが、異なる場
所または異なる時期に行なう場合は第一または第三の実
施形態が望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a first embodiment of the present invention, a lithium-containing composite oxide is treated with a water-repellent substance immediately after the production of fine particles of the lithium-containing composite oxide to form a film on the surface of the fine particles. Form. In the second embodiment,
Immediately after the production of fine particles of lithium-containing composite oxide, a positive electrode is formed and then treated with a water-repellent substance to form a coating on the positive electrode surface. The third embodiment is a combination of the first embodiment and the second embodiment, immediately after the production of fine particles of lithium-containing composite oxide, treated with a water-repellent substance to form a coating on the surface of the fine particles, A positive electrode is formed by using the same, and further treated with a water-repellent substance to form a film on the positive electrode surface. In any case, it is desirable to work in a work room provided with a dehumidifying facility such as a dry room in order to avoid contact with humid air as much as possible before treatment with a water-repellent substance. When the production of fine particles of the lithium-containing composite oxide and the production of the positive electrode are continuously performed at the same place, the second embodiment may be used. desirable.

【0008】本発明で用いられる撥水性物質としては、
前記第一、第二または第三の実施形態において、充放電
に伴う正極でのリチウムイオンの吸蔵、放出が撥水性物
質で阻害されるようなことのない、すなわちリチウムイ
オン伝導性を有するものでなければならない。このよう
な撥水性物質としては、フッ素含有高分子化合物または
有機ケイ素化合物などが挙げられるが、リチウムイオン
伝導性を有する撥水性物質であれば、特に制限はない。
具体的な化合物としては、ポリ四フッ化エチレン、ポリ
フッ化ビニリデンなどのフッ素系高分子化合物、トリク
ロロメチルシラン、ジクロロジメチルシランなどのオル
ガノクロロシラン類の重縮合物からなるシリコーン系高
分子化合物、またはテトラメトキシシラン、テトラエト
キシシラン、デシルトリメトキシシランなどのシランカ
ップリング剤が挙げられる。
The water-repellent substance used in the present invention includes:
In the first, second or third embodiment, occlusion and release of lithium ions at the positive electrode during charge / discharge are not hindered by the water-repellent substance, that is, those having lithium ion conductivity. There must be. Examples of such a water-repellent substance include a fluorine-containing polymer compound and an organosilicon compound, but are not particularly limited as long as the substance has lithium ion conductivity.
Specific compounds include a fluorine-based polymer compound such as polytetrafluoroethylene and polyvinylidene fluoride, a silicone-based polymer compound composed of a polycondensate of organochlorosilanes such as trichloromethylsilane and dichlorodimethylsilane, or Examples include silane coupling agents such as methoxysilane, tetraethoxysilane, and decyltrimethoxysilane.

【0009】リチウム含有複合酸化物微粒子(正極材)
または正極の撥水性物質による表面処理の方法は特に制
限はないが、浸漬またはスプレーが便利である。撥水性
物質が液状の場合は、その粘度に応じて、そのまま、あ
るいは適当な有機溶媒に溶解させたもの、撥水性物質が
固体状の場合は適当な有機溶媒に溶解させたもの、例え
ば、ポリフッ化ビニリデンなどの撥水性物質をN−メチ
ルピロリドンなどの有機溶媒に溶解したもの、に浸漬す
るか、それをスプレーする。その後有機溶媒を除去、乾
燥することにより、撥水性物質の被膜が正極材または正
極の表面に形成され、目的の高耐湿性のリチウム含有複
合酸化物からなる正極材または正極が得られる。
Fine particles of lithium-containing composite oxide (cathode material)
Alternatively, the method for surface treatment of the positive electrode with a water-repellent substance is not particularly limited, but immersion or spraying is convenient. When the water-repellent substance is liquid, depending on its viscosity, it may be used as it is or dissolved in an appropriate organic solvent.If the water-repellent substance is solid, it may be dissolved in an appropriate organic solvent, for example, polyfluoroethylene. A water-repellent substance such as vinylidene fluoride dissolved in an organic solvent such as N-methylpyrrolidone is immersed or sprayed. Thereafter, by removing and drying the organic solvent, a coating of a water-repellent substance is formed on the surface of the positive electrode material or the positive electrode, and the desired positive electrode material or positive electrode made of a highly moisture-resistant lithium-containing composite oxide is obtained.

【0010】正極材から正極を形成する方法は従来公知
の方法で良い。具体的には、リチウム含有複合酸化物微
粒子に、アセチレンブラックなどの導電助剤、ポリフッ
化ビニリデンなどの粘結剤及びN−メチルピロリドンな
どの有機溶媒を混練してインク(スラリー)を調製す
る。このインクを集電体のアルミ箔に塗布し乾燥した
後、正極材と集電体との接触を良くすると共に正極材の
密度を高めるためにローラープレス機にかけることによ
り正極を得る方法や、正極材にアセチレンブラックおよ
びポリ四フッ化エチレン粉末を充分混合したのち、ロー
ラープレスでシート状に成形して正極を得る方法があ
る。
The method for forming the positive electrode from the positive electrode material may be a conventionally known method. Specifically, an ink (slurry) is prepared by kneading lithium-containing composite oxide fine particles with a conductive auxiliary such as acetylene black, a binder such as polyvinylidene fluoride, and an organic solvent such as N-methylpyrrolidone. After applying and drying this ink on the aluminum foil of the current collector, a method of obtaining a positive electrode by applying a roller press to improve the contact between the positive electrode material and the current collector while improving the contact between the positive electrode material and the current collector, There is a method in which acetylene black and polytetrafluoroethylene powder are sufficiently mixed in a positive electrode material, and then formed into a sheet by a roller press to obtain a positive electrode.

【0011】本発明に係るリチウムイオン二次電池は、
上記のようにして得られた正極と、金属リチウム、リチ
ウム合金またはリチウムイオンを吸蔵放出可能な活物質
よりなる負極と、電解質及びセパレーターから構成され
ており、これらを用いて公知の方法で製造される。電池
の形状は特に限定されず、コイン型、円筒型、角形など
任意の形状が挙げられる。
[0011] The lithium ion secondary battery according to the present invention comprises:
The positive electrode obtained as described above, lithium metal, a negative electrode made of a lithium alloy or an active material capable of inserting and extracting lithium ions, and an electrolyte and a separator, and manufactured by a known method using these. You. The shape of the battery is not particularly limited, and may be any shape such as a coin shape, a cylindrical shape, and a square shape.

【0012】リチウムイオンを吸蔵放出可能な活物質と
しては、グラファイト、カーボンブラックなどの炭素質
物質が挙げられる。通常はこれらの炭素質物質とポリフ
ッ化ビニリデンなどの結着剤の混合物が銅箔などの集電
体に塗布、固着されて負極が構成される。電解質として
は、LiClO4 ,LiPF6 などのリチウム塩をプロ
ピレンカーボネート、エチレンカーボネート、1,2-ジメ
トキシエタンなどの有機溶媒に溶解させた液体電解質、
ポリエチレンオキサイド系高分子化合物などの固体電解
質が挙げられる。
Examples of the active material capable of inserting and extracting lithium ions include carbonaceous materials such as graphite and carbon black. Usually, a mixture of such a carbonaceous substance and a binder such as polyvinylidene fluoride is applied and fixed to a current collector such as a copper foil to form a negative electrode. As the electrolyte, a liquid electrolyte in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, or 1,2-dimethoxyethane;
A solid electrolyte such as a polyethylene oxide-based polymer compound may be used.

【0013】さらに、正極と負極とを隔離し、短絡を防
止しつつ、電解質およびリチウムイオンを透過させるた
めの、ポリエチレンなどのポリオレフィン系樹脂の多孔
性膜からなるセパレーターが正極と負極の間に設けるの
が良い。
Further, a separator made of a porous film of a polyolefin resin such as polyethylene is provided between the positive electrode and the negative electrode for separating the positive electrode and the negative electrode and preventing a short circuit while allowing the electrolyte and lithium ions to pass therethrough. Is good.

【0014】以下実施例により本発明を具体的に説明す
るが、本発明は下記の実施例に限られるものではない。
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.

【0015】[0015]

【実施例1】硝酸ニッケル(6水塩)494.2gおよ
び硝酸コバルト(6水塩)89.1gを2Lの純水に溶
解した混合水溶液を調製した(A液)。また、炭酸ナト
リウム318.0gを1.8L(リッター)の純水に溶
解した炭酸ナトリウム水溶液を調製した(B液)。80
℃の熱水1LにA液とB液を同時に注加し、反応させ
た。得られた沈殿物を濾過、洗浄、乾燥したのち空気中
で400℃で3時間、焼成して、Ni、Coの複合酸化
物(Ni:Co原子比=85:15)を得た。上記で得
られた複合酸化物にLi/(Ni+Co)原子比=0.
97、1.03、1.10になるように水酸化リチウム
粉末を加えて混合した後、ロータリーキルンを用いて酸
素気流中で、750℃、10時間焼成することにより、
複合ニッケル酸リチウム微粒子を得た。次いで、これら
を、それぞれポリ四フッ化エチレン溶液(旭硝子(株)
製サイトップ)に浸漬した後、加熱して溶媒を蒸発させ
て、それぞれの微粒子の表面に撥水性被膜が形成された
複合ニッケル酸リチウム微粒子(試料1、2、3)を得
た。試料1、2、3のそれぞれを大気中に1週間放置し
た後、これらにアセチレンブラックおよびポリ四フッ化
エチレン粉末を75:20:5の重量比で充分混合した
のち、ローラープレスで厚さ0.1mm、直径16mm
の試験用正極を作製した。これらの正極と、プロピレン
カーボネートおよびジメトキシエタン混合溶液(体積比
1:1)に1モル/LのLiClO4を溶解した電解
液、セパレーター(商品名:セルガード)、金属リチウ
ム箔(厚さ0.2mm)を用いて試験用電池を作製し
た。これらの電池について充放電試験を行った。充放電
条件は定電流で0.5mA/cm2 の電流密度で行い、
充電電位は4.3Vまで、放電電位は3.0Vまでの電
位規制を行った。結果を表1に示す。
Example 1 A mixed aqueous solution was prepared by dissolving 494.2 g of nickel nitrate (hexahydrate) and 89.1 g of cobalt nitrate (hexahydrate) in 2 L of pure water (solution A). In addition, an aqueous solution of sodium carbonate was prepared by dissolving 318.0 g of sodium carbonate in 1.8 L (liter) of pure water (Solution B). 80
The solution A and the solution B were simultaneously added to 1 L of hot water at a temperature of 0 ° C. and reacted. The obtained precipitate was filtered, washed and dried, and then calcined in air at 400 ° C. for 3 hours to obtain a composite oxide of Ni and Co (Ni: Co atomic ratio = 85: 15). In the composite oxide obtained above, the Li / (Ni + Co) atomic ratio = 0.
After adding and mixing lithium hydroxide powder so as to obtain 97, 1.03, and 1.10, the mixture is baked at 750 ° C. for 10 hours in an oxygen stream using a rotary kiln,
Composite lithium nickelate fine particles were obtained. Then, these were each added to a polytetrafluoroethylene solution (Asahi Glass Co., Ltd.)
After immersion in CYTOP, the solvent was evaporated by heating to obtain composite lithium nickelate fine particles (Samples 1, 2, and 3) having a water-repellent coating formed on the surface of each fine particle. After leaving each of Samples 1, 2, and 3 in the air for one week, acetylene black and polytetrafluoroethylene powder were sufficiently mixed in a weight ratio of 75: 20: 5, and then, the thickness was reduced to 0 by a roller press. .1mm, diameter 16mm
Was prepared. These positive electrodes, an electrolytic solution obtained by dissolving 1 mol / L LiClO 4 in a mixed solution of propylene carbonate and dimethoxyethane (volume ratio 1: 1), a separator (trade name: Celgard), a metal lithium foil (0.2 mm thick) ) Was used to produce a test battery. A charge / discharge test was performed on these batteries. The charge and discharge conditions are a constant current and a current density of 0.5 mA / cm 2 ,
Potential regulation was performed so that the charge potential was up to 4.3 V and the discharge potential was up to 3.0 V. Table 1 shows the results.

【0016】[0016]

【実施例2】実施例1と同様の条件で、Li/(Ni+
Co)原子比=0.97の複合ニッケル酸リチウム微粒
子を調製した。この微粒子を、ジクロロジメチルシラン
の重縮合物のトルエン溶液に浸漬した後加熱して溶媒を
蒸発させて表面に撥水性被膜が形成された複合ニッケル
酸リチウム微粒子(試料4)を得た。試料4を大気中に
1週間放置した後、実施例1と同様の方法で正極および
試験用電池を作成し、実施例1と同様の条件で充放電試
験を行った。結果を表1に示す。
Example 2 Under the same conditions as in Example 1, Li / (Ni +
Co) Composite lithium nickel oxide fine particles having an atomic ratio of 0.97 were prepared. The fine particles were immersed in a toluene solution of a polycondensate of dichlorodimethylsilane and then heated to evaporate the solvent, thereby obtaining composite lithium nickelate fine particles having a water-repellent coating on the surface (Sample 4). After the sample 4 was left in the air for one week, a positive electrode and a test battery were prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the results.

【0017】[0017]

【実施例3】実施例1と同様の条件で、Li/(Ni+
Co)原子比=0.97の複合ニッケル酸リチウム微粒
子を調製した。この微粒子を、テトラエトキシシランの
キシレン溶液(濃度5重量%)に浸漬した後溶媒を蒸発
させて、表面に撥水性被膜が形成された複合ニッケル酸
リチウム微粒子(試料5)を得た。試料5を大気中に1
週間放置した後、実施例1と同様の方法で正極および試
験用電池を作成し、実施例1と同様の条件で充放電試験
を行った。結果を表1に示す。
Embodiment 3 Under the same conditions as in Embodiment 1, Li / (Ni +
Co) Composite lithium nickel oxide fine particles having an atomic ratio of 0.97 were prepared. The fine particles were immersed in a xylene solution of tetraethoxysilane (concentration: 5% by weight), and then the solvent was evaporated to obtain composite lithium nickelate fine particles having a water-repellent coating on the surface (Sample 5). Place sample 5 in air
After standing for a week, a positive electrode and a test battery were prepared in the same manner as in Example 1, and a charge / discharge test was performed under the same conditions as in Example 1. Table 1 shows the results.

【0018】[0018]

【比較例1】実施例1と同様の条件でLi/(Ni+C
o)原子比=0.97、1.03および1.10の複合
ニッケル酸リチウム微粒子(試料6、7、8)を調製し
た。撥水性物質による処理を行わず、そのまま大気中に
1週間放置した後実施例2と同様にして試験用正極およ
び試験用電極を作成し、同様の充放電試験を行った。結
果を表1に示す。
Comparative Example 1 Li / (Ni + C) under the same conditions as in Example 1.
o) Composite lithium nickelate fine particles (Samples 6, 7, and 8) having atomic ratios of 0.97, 1.03, and 1.10. After being left in the air for one week without treatment with a water-repellent substance, a test positive electrode and a test electrode were prepared in the same manner as in Example 2, and the same charge / discharge test was performed. Table 1 shows the results.

【0019】[0019]

【比較例2】実施例1と同様の条件でLi/(Ni+C
o)原子比=0.97の複合ニッケル酸リチウム微粒子
(試料9)を調製した。これを直ちに乾燥空気雰囲気中
(露点:−50℃)で実施例2と同様にして試験用正極
および試験用電池を作成し、同様の充放電試験を行っ
た。結果を表1に示す。
Comparative Example 2 Li / (Ni + C) under the same conditions as in Example 1.
o) Composite lithium nickelate fine particles (Sample 9) having an atomic ratio of 0.97 were prepared. A test positive electrode and a test battery were immediately prepared in the same manner as in Example 2 in a dry air atmosphere (dew point: -50 ° C.), and the same charge / discharge test was performed. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より、撥水性物質で処理した正極材
は、1週間大気中に放置しても充電容量、放電容量およ
び充放電効率の低下は殆どないことが示された。またこ
れらの撥水性物質で処理した正極材を含む正極を用いた
電池の充電容量、放電容量および充放電効率は、正極材
を調製後乾燥雰囲気中で取り扱い、水分の影響を受けて
いない試料9を用いた電池と比較してもほぼ同等の値を
示していることから、正極材に撥水処理を行っても電池
性能を低下させることはない。
Table 1 shows that the positive electrode material treated with the water-repellent substance hardly deteriorates in charge capacity, discharge capacity and charge / discharge efficiency even when left in the air for one week. The charge capacity, discharge capacity and charge / discharge efficiency of a battery using a positive electrode containing a positive electrode material treated with these water-repellent materials were measured in a dry atmosphere after preparation of the positive electrode material. Even when compared with a battery using, the battery performance is not reduced even if the positive electrode material is subjected to the water-repellent treatment.

【0022】[0022]

【実施例4】実施例1と同様の条件でLi/(Ni+C
o)原子比=0.97および1.10の複合ニッケル酸
リチウム微粒子を得た。次いで直ちにこれらにアセチレ
ンブラック及びポリ四フッ化エチレン粉末を75:2
0:5の重量比で充分混合した後、ローラープレスで成
型し厚さ0.1mm、直径16mmの正極を作成した。
これらの正極を、それぞれポリ四フッ化エチレン溶液
(旭硝子(株)製サイトップ)に浸漬したのち加熱して
溶媒を蒸発させて、正極表面に撥水性被膜が形成された
試験用正極(試料10、11)を得た。これらの試験用
正極を大気中に1週間放置したのち、プロピレンカーボ
ネート及びジメトキシエタン混合溶液(体積比1:1)
に1モル/LのLiClO4 を溶解した電解液、セパレ
ーター(商品名:セルガード)、金属リチウム箔(厚さ
0.2mm)を用いて試験用電池を作製した。これらの
電池について、充放電試験を行った。充放電条件は、定
電流で0.5mA/cm2 の電流密度で行い、充電電位
は4.3Vまで、放電電位は3.0Vまでの電位規制を
行った。結果を表2に示す。
Embodiment 4 Li / (Ni + C) under the same conditions as in Embodiment 1.
o) Composite lithium nickelate fine particles having an atomic ratio of 0.97 and 1.10. Then immediately acetylene black and polytetrafluoroethylene powder were added to them at 75: 2.
After sufficient mixing at a weight ratio of 0: 5, the mixture was molded by a roller press to prepare a positive electrode having a thickness of 0.1 mm and a diameter of 16 mm.
Each of these positive electrodes was immersed in a polytetrafluoroethylene solution (Cytop manufactured by Asahi Glass Co., Ltd.), and then heated to evaporate the solvent, and a test positive electrode having a water-repellent film formed on the positive electrode surface (sample 10) , 11). After leaving these test cathodes in the air for one week, a mixed solution of propylene carbonate and dimethoxyethane (volume ratio 1: 1)
A test battery was prepared using an electrolyte solution in which 1 mol / L of LiClO 4 was dissolved, a separator (trade name: Celgard), and a metal lithium foil (thickness: 0.2 mm). These batteries were subjected to a charge / discharge test. The charge and discharge conditions were a constant current and a current density of 0.5 mA / cm 2 , and the charge potential was regulated to 4.3 V and the discharge potential was regulated to 3.0 V. Table 2 shows the results.

【0023】[0023]

【実施例5】実施例1と同様の条件でLi/(Ni+C
o)原子比0.97の複合ニッケル酸リチウム微粒子を
調製し、これを用いて実施例4と同様の方法で正極を作
成した。次いでこの正極をジクロロジメチルシラン重縮
合物のトルエン溶液に浸漬した後溶媒を蒸発させて、表
面に撥水性被膜が形成された試験用正極(試料12)を
得た。試料12を大気中に1週間放置した後実施例4と
同様の方法で試験用電池を作成し、実施例4と同様の条
件で充放電試験を行った結果を表2に示す。
Embodiment 5 Li / (Ni + C) under the same conditions as in Embodiment 1.
o) Composite lithium nickelate fine particles having an atomic ratio of 0.97 were prepared, and a positive electrode was prepared using the fine particles in the same manner as in Example 4. Next, this positive electrode was immersed in a toluene solution of dichlorodimethylsilane polycondensate, and then the solvent was evaporated to obtain a positive electrode for testing (sample 12) having a water-repellent film formed on the surface. After leaving the sample 12 in the air for one week, a test battery was prepared in the same manner as in Example 4, and the results of a charge / discharge test performed under the same conditions as in Example 4 are shown in Table 2.

【0024】[0024]

【実施例6】実施例1と同様の条件でLi/(Ni+C
o)原子比0.97の複合ニッケル酸リチウム微粒子を
調製し、これを用いて実施例4と同様の方法で正極を作
成した。次いでこの正極をテトラエトキシシランのキシ
レン溶液(濃度5重量%)に浸漬した後溶媒を蒸発させ
て、表面に撥水性被膜が形成された試験用正極(試料1
3)を得た。試料13を大気中に1週間放置したのち実
施例4と同様の方法で試験用電池を作成し、実施例4と
同様の条件で充放電試験を行った。結果を表2に示す。
Embodiment 6 Li / (Ni + C) under the same conditions as in Embodiment 1.
o) Composite lithium nickelate fine particles having an atomic ratio of 0.97 were prepared, and a positive electrode was prepared using the fine particles in the same manner as in Example 4. Next, the positive electrode was immersed in a xylene solution of tetraethoxysilane (concentration: 5% by weight), and then the solvent was evaporated to form a test positive electrode having a water-repellent coating on the surface (sample 1).
3) was obtained. After the sample 13 was left in the air for one week, a test battery was prepared in the same manner as in Example 4, and a charge / discharge test was performed under the same conditions as in Example 4. Table 2 shows the results.

【0025】[0025]

【比較例3】実施例1と同様の条件で複合ニッケル酸リ
チウム微粒子を調製し、撥水性物質による処理を行わな
い以外は実施例4と同様にして試験用正極(試料14、
15)を得た。これらの試験用正極を大気中に1週間放
置したのち、実施例4と同様に試験用電池を作成し、充
放電試験を行った。結果を表2に示す。
COMPARATIVE EXAMPLE 3 Composite lithium nickel oxide fine particles were prepared under the same conditions as in Example 1, and the same procedure as in Example 4 was carried out except that the treatment with the water-repellent substance was not performed.
15) was obtained. After these test positive electrodes were left in the air for one week, a test battery was prepared in the same manner as in Example 4, and a charge / discharge test was performed. Table 2 shows the results.

【0026】[0026]

【実施例7】実施例4〜6で得られた試験用正極10、
11、12および13について、大気中に放置せず直ち
に実施例4と同様の電池を作成した。これらの電池につ
いて充放電試験を行った。結果を表2に示す。
Example 7 The test positive electrode 10 obtained in Examples 4 to 6,
With respect to 11, 12, and 13, batteries similar to those of Example 4 were produced immediately without being left in the air. A charge / discharge test was performed on these batteries. Table 2 shows the results.

【0027】[0027]

【比較例4】比較例3で得られた試験用正極14、15
について、大気中に放置せず直ちに実施例4と同様の電
池を作成した。これらの電池について充放電試験を行っ
た。結果を表2に示す。
COMPARATIVE EXAMPLE 4 Test Positive Electrodes 14, 15 Obtained in Comparative Example 3
For, a battery similar to that of Example 4 was immediately prepared without leaving it in the air. A charge / discharge test was performed on these batteries. Table 2 shows the results.

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、撥水処理した正
極も、撥水処理をしない正極も、大気中に放置せず直ち
に電池を作成した場合は殆ど同じ電池性能で、撥水処理
による悪影響は認められない。しかし、撥水処理した正
極は大気中に1週間放置しても湿分の影響を受けず、電
池性能の低下は殆ど認められないのに対し、撥水処理を
しない正極では大気中に1週間放置すると電池性能が大
きく低下している。
As is clear from Table 2, both the positive electrode subjected to the water-repellent treatment and the positive electrode not subjected to the water-repellent treatment have almost the same battery performance when the batteries are immediately prepared without being left in the air. It is not allowed. However, the water-repellent positive electrode was not affected by moisture even after being left in the air for one week, and the battery performance was hardly reduced. When left unattended, the battery performance is greatly reduced.

【0030】[0030]

【実施例8】リチウムイオン二次電池の安全性試験とし
て、次のような示差熱天秤による発熱試験を行った。実
施例4〜6と同様に作成した試料10、11、12、1
3を用いて電池を形成し、初期充電を4.3Vまで行っ
た後、電池より正極を抜き取り真空脱気して測定用試料
を調製した。これにエチレンカーボネート(EC)を
1:1(重量比)の割合で混合し、示差熱天秤にかけて
空気雰囲気で昇温し、発熱量を測定した。発熱量はEC
の蒸発による吸熱と燃焼による発熱が平行して進行して
いることから、ECの蒸発による吸熱量を差し引いて発
熱量を求めた。結果は比較例5の試料14の発熱量を1
00とした相対的発熱量を求めて表3に示した。
Example 8 As a safety test of a lithium ion secondary battery, the following heat generation test was performed using a differential thermal balance. Samples 10, 11, 12, 1 prepared in the same manner as in Examples 4 to 6.
3 was used to form a battery, and after initial charging was performed up to 4.3 V, a positive electrode was taken out of the battery and vacuum degassed to prepare a measurement sample. Ethylene carbonate (EC) was mixed with the mixture at a ratio of 1: 1 (weight ratio), and the mixture was heated in an air atmosphere using a differential thermobalance, and the calorific value was measured. Heat value is EC
Since the heat absorption due to the evaporation and the heat generation due to the combustion proceed in parallel, the heat absorption due to the evaporation of the EC was subtracted to obtain the heat generation. As a result, the calorific value of Sample 14 of Comparative Example 5 was 1
Table 3 shows the relative calorific value determined as 00.

【0031】[0031]

【比較例5】実施例8と同様な方法で試料14、15を
用いて、同様の発熱試験を行った。結果は試料14の発
熱量を100として相対発熱量で表し、表3に示した。
Comparative Example 5 A similar heat generation test was performed using samples 14 and 15 in the same manner as in Example 8. The results are shown in Table 3 as relative heat values with the heat value of Sample 14 taken as 100.

【0032】[0032]

【表3】 [Table 3]

【0033】表3より、撥水処理した正極を用いた電池
から充電後に取り出した正極では、撥水処理をしていな
い正極を用いた電池から充電後に取り出した正極に比較
して発熱が抑えられていることがわかる。
From Table 3, it can be seen that the positive electrode taken out of the battery using the positive electrode subjected to the water repellent treatment after charging was suppressed in heat generation as compared with the positive electrode taken out of the battery using the positive electrode not subjected to the water repellent treatment after charging. You can see that it is.

【0034】[0034]

【発明の効果】本発明に係るリチウムイオン二次電池に
用いられる正極材及び/または正極は撥水性物質で処理
されている。そのため正極材および正極は耐湿性に優れ
ているので、大気中の水分の吸着がなく、水分の吸着に
よる電池性能の低下がない。また、正極材であるリチウ
ム含有複合酸化物と電解液が直接接触することがない。
従って、正極と負極が短絡しても発熱が抑制され、安全
性が向上している。
The positive electrode material and / or the positive electrode used in the lithium ion secondary battery according to the present invention is treated with a water-repellent substance. Therefore, since the positive electrode material and the positive electrode have excellent moisture resistance, there is no adsorption of moisture in the air, and there is no decrease in battery performance due to the adsorption of moisture. Further, the lithium-containing composite oxide serving as the positive electrode material does not come into direct contact with the electrolytic solution.
Therefore, even if the positive electrode and the negative electrode are short-circuited, heat generation is suppressed, and safety is improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 隆幸 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 (72)発明者 水沢 浩二 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 (72)発明者 坂井 雅春 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 (72)発明者 藤井 芳夫 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 (72)発明者 坂口 正巳 新潟県新津市滝谷本町1−26日揮化学株式 会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Fujita 1-26 Takiya Honmachi Niigata Niigata Pref. Inside the R & D Laboratories (72) Inventor Koji Mizusawa 1-26 Takitani Honmachi Niigata Niigata Nikki Chemical Co., Ltd. Inside the Research Laboratory (72) Inventor Masaharu Sakai 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals R & D Laboratories (72) Inventor Yoshio Fujii 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals R & D Laboratory ( 72) Inventor Masami Sakaguchi 1-26 Takiya Honcho, Niitsu City, Niigata Pref.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物微粒子よりなる
正極材を含む正極と、金属リチウム、リチウム合金また
はリチウムイオンを吸蔵放出可能な活物質を含む負極
と、電解質とを有するリチウムイオン二次電池におい
て、該リチウム含有複合酸化物微粒子の表面及び該正極
の表面のうちの少なくとも一方が、撥水性物質の被膜を
有することを特徴とするリチウムイオン二次電池。
1. A lithium ion secondary battery comprising: a positive electrode including a positive electrode material composed of lithium-containing composite oxide fine particles; a negative electrode including metallic lithium, a lithium alloy or an active material capable of inserting and extracting lithium ions; and an electrolyte. A lithium ion secondary battery, wherein at least one of the surface of the lithium-containing composite oxide fine particles and the surface of the positive electrode has a coating of a water-repellent substance.
【請求項2】 撥水性物質が、フッ素含有高分子化合物
および有機ケイ素化合物の中から選ばれた少なくとも1
種である請求項1に記載のリチウムイオン二次電池。
2. The water-repellent substance is at least one selected from a fluorine-containing polymer compound and an organosilicon compound.
The lithium ion secondary battery according to claim 1, which is a seed.
JP10025401A 1998-02-06 1998-02-06 Lithium-ion secondary battery having high moisture resistance and high safety Pending JPH11224664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10025401A JPH11224664A (en) 1998-02-06 1998-02-06 Lithium-ion secondary battery having high moisture resistance and high safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10025401A JPH11224664A (en) 1998-02-06 1998-02-06 Lithium-ion secondary battery having high moisture resistance and high safety

Publications (1)

Publication Number Publication Date
JPH11224664A true JPH11224664A (en) 1999-08-17

Family

ID=12164893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10025401A Pending JPH11224664A (en) 1998-02-06 1998-02-06 Lithium-ion secondary battery having high moisture resistance and high safety

Country Status (1)

Country Link
JP (1) JPH11224664A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058055A (en) * 1998-08-11 2000-02-25 Mitsui Mining & Smelting Co Ltd Positive electrode material for lithium secondary battery
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007234255A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Anode for lithium secondary battery, its manufacturing method and lithium secondary battery
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
US7846586B2 (en) 2002-11-20 2010-12-07 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode of lithium secondary battery
WO2011125410A1 (en) * 2010-04-01 2011-10-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR101497912B1 (en) * 2012-01-17 2015-03-05 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising the Same
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
CN105336927A (en) * 2015-09-28 2016-02-17 深圳市贝特瑞新能源材料股份有限公司 Modified super-hydrophobic material-coated lithium ion battery high-nickel cathode material and preparation method thereof
JP2016081922A (en) * 2014-10-15 2016-05-16 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic equipment, and method for manufacturing electrode
JP2017174692A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Electrode and secondary battery
CN112397719A (en) * 2020-11-16 2021-02-23 华鼎国联动力电池有限公司 Hydrophobic lithium battery positive electrode material, positive electrode and preparation method thereof

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058055A (en) * 1998-08-11 2000-02-25 Mitsui Mining & Smelting Co Ltd Positive electrode material for lithium secondary battery
EP1184927A4 (en) * 2000-02-10 2006-06-28 Mitsubishi Electric Corp Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2002367610A (en) * 2001-06-07 2002-12-20 Hitachi Maxell Ltd Nonaqueous secondary cell
US7846586B2 (en) 2002-11-20 2010-12-07 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode of lithium secondary battery
US7645542B2 (en) 2003-02-21 2010-01-12 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode in non-aqueous electrolyte secondary battery having SO4 ions
JP4616592B2 (en) * 2003-07-29 2011-01-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery, manufacturing method thereof, and electrode material for electrolyte secondary battery
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
WO2006068143A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
US7687202B2 (en) 2004-12-24 2010-03-30 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8951674B2 (en) 2004-12-24 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2007072596A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007072595A1 (en) * 2005-12-20 2007-06-28 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007234255A (en) * 2006-02-27 2007-09-13 Sanyo Electric Co Ltd Anode for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2011125410A1 (en) * 2010-04-01 2011-10-13 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2011125410A1 (en) * 2010-04-01 2013-07-08 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN102834954A (en) * 2010-04-01 2012-12-19 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP5666561B2 (en) * 2010-04-01 2015-02-12 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN102834954B (en) * 2010-04-01 2015-03-18 三洋电机株式会社 Nonaqueous electrolyte secondary battery
KR101497912B1 (en) * 2012-01-17 2015-03-05 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery Comprising the Same
US10516159B2 (en) 2014-05-28 2019-12-24 Nichia Corporation Positive electrode active material for nonaqueous secondary battery
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
JP2016081922A (en) * 2014-10-15 2016-05-16 株式会社半導体エネルギー研究所 Electrode, power storage device, electronic equipment, and method for manufacturing electrode
JP2020102455A (en) * 2014-10-15 2020-07-02 株式会社半導体エネルギー研究所 Lithium ion battery
US11322745B2 (en) 2014-10-15 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and manufacturing method of electrode
CN105336927A (en) * 2015-09-28 2016-02-17 深圳市贝特瑞新能源材料股份有限公司 Modified super-hydrophobic material-coated lithium ion battery high-nickel cathode material and preparation method thereof
JP2017174692A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Electrode and secondary battery
CN112397719A (en) * 2020-11-16 2021-02-23 华鼎国联动力电池有限公司 Hydrophobic lithium battery positive electrode material, positive electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH11224664A (en) Lithium-ion secondary battery having high moisture resistance and high safety
JP4518125B2 (en) Positive electrode active material and lithium secondary battery
WO2013176067A1 (en) Positive electrode active material for non-aqueous secondary batteries
CN109244546B (en) Solid composite electrolyte film, preparation method thereof and all-solid-state battery
JP7024715B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
EP2926352A2 (en) Lithium-ion capacitors and methods of production
KR101495451B1 (en) Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
CN113690406A (en) Negative electrode and method for producing a negative electrode
CN110104677B (en) Composite lithium titanate material and preparation method and application thereof
US10586983B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
TW201717470A (en) Ion scavenger for lithium ion secondary cell, liquid electrolyte, separator, and lithium ion secondary cell
JPH11167919A (en) Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
CN110838575A (en) Cathode for improving rate capability of lithium ion energy storage device and application thereof
CN115152049A (en) Negative electrode for secondary battery, method for producing same, and secondary battery
JP2009087891A (en) Manufacturing method of positive-electrode active material, and manufacturing method of lithium secondary cell
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP2014220115A (en) Sodium secondary battery
KR101957233B1 (en) A cathode active material for lithium secondary battery and a method of preparing the same
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
CN111201638A (en) Electrode plate, electricity storage element, and method for manufacturing electrode plate
CN114122380A (en) Preparation method of zirconium-doped cerium fluoride-coated nickel-cobalt-manganese ternary positive electrode material and prepared positive electrode material
JP2018006332A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2017183256A (en) Nonaqueous electrolyte secondary battery
JP2019160517A (en) Positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113078303B (en) Positive electrode material and electrochemical device comprising same