JPH11220168A - Gallium nitride compound semiconductor device and manufacture thereof - Google Patents

Gallium nitride compound semiconductor device and manufacture thereof

Info

Publication number
JPH11220168A
JPH11220168A JP3661898A JP3661898A JPH11220168A JP H11220168 A JPH11220168 A JP H11220168A JP 3661898 A JP3661898 A JP 3661898A JP 3661898 A JP3661898 A JP 3661898A JP H11220168 A JPH11220168 A JP H11220168A
Authority
JP
Japan
Prior art keywords
layer
positive electrode
metal layer
thin
gallium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3661898A
Other languages
Japanese (ja)
Inventor
Toshiya Kamimura
俊也 上村
Shizuyo Noiri
静代 野杁
Shigemi Horiuchi
茂美 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP3661898A priority Critical patent/JPH11220168A/en
Publication of JPH11220168A publication Critical patent/JPH11220168A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To uniform the contact resistance at a contact plane between a thick film positive electrode and contact layer by providing a thin metal layer between the contact layer at a p-side semiconductor and thick film positive electrode connected to the contact layer for reflecting a light. SOLUTION: On a contact layer 107, a thin metal layer 110 is formed by the metal deposition and composed of a first Co thin metal layer 111 bonded to the contact layer 107 and second Au thin metal layer connected to Co. A thick film positive electrode 120 is formed by laminating on this thin film metal layer 110 a first Ni thick film positive electrode layer 121, second Ti thick film positive electrode layer 122, and third Ni thick film positive electrode layer 123. According to this constitution the intervention of the thin film metal layer 110 results in that the contact resistance between the contact layer 107 and thin film metal layer 110 is low, uniform and good Ohmic over the entire contact plane and no emission light intensity nonuniformity occurs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に窒化ガリ
ウム系化合物半導体から成る層が積層されたフリップチ
ップ型の発光素子に関し、特に発光ムラがなく、高光度
で、駆動電圧の低いフリップチップ型の発光素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip-chip type light-emitting device in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate, and more particularly, to a flip-chip type light-emitting device having no unevenness of light emission, high luminous intensity and low driving voltage. Light emitting device of the type.

【0002】[0002]

【従来の技術】図4に、従来技術によるフリップチップ
型の発光素子400の断面図を示す。101は、サファ
イヤ基板、102は、AlNバッファ層、103は、n
型のGaN層、104は、n型のGaNクラッド層、1
05は、活性層、106は、p型のAlGaNクラッド
層、107は、p型のGaNコンタクト層、420は、
正電極、130は、保護膜、140は、多層構造の負電
極である。また、コンタクト層107に接続されている
正電極420は、例えば、ニッケル(Ni)より成る膜
厚3000Åの金属層により形成されている。
2. Description of the Related Art FIG. 4 shows a sectional view of a flip-chip type light emitting device 400 according to the prior art. 101 is a sapphire substrate, 102 is an AlN buffer layer, 103 is n
GaN layer 104 is an n-type GaN cladding layer, 1
05 is an active layer, 106 is a p-type AlGaN cladding layer, 107 is a p-type GaN contact layer, and 420 is
The positive electrode, 130 is a protective film, and 140 is a negative electrode having a multilayer structure. The positive electrode 420 connected to the contact layer 107 is formed of, for example, a metal layer of nickel (Ni) having a thickness of 3000 °.

【0003】[0003]

【発明が解決しようとする課題】サファイヤ基板101
の側に光を十分に反射させるために、通常フリップチッ
プ型の正電極420には、厚膜のメタル電極を用いる。
しかし、コンタクト層107上に直接厚膜の正電極42
0を形成した場合、コンタクト層107との接触面にお
ける接触抵抗は、不均一となり、点状に接触抵抗の低い
所が多数発生する。このため、この接触面を通る電流の
面密度にムラが生じ、電流は、接触抵抗の小さな箇所に
集中するようになる。したがって、活性層の光度にも空
間的なムラが発生する。また、コンタクト層107上に
直接厚膜の正電極420を形成した場合、接触面全体と
しての接触抵抗の値が大きくなるため、発光素子400
の駆動電圧は高くなる。
SUMMARY OF THE INVENTION Sapphire substrate 101
In order to sufficiently reflect light to the side of the substrate, a thick-film metal electrode is usually used for the flip-chip type positive electrode 420.
However, the thick positive electrode 42 is directly formed on the contact layer 107.
When 0 is formed, the contact resistance at the contact surface with the contact layer 107 becomes non-uniform, and a number of points having low contact resistance are generated in a dot-like manner. For this reason, unevenness occurs in the surface density of the current passing through the contact surface, and the current is concentrated on a portion having a small contact resistance. Therefore, spatial unevenness also occurs in the luminous intensity of the active layer. Further, when the thick positive electrode 420 is formed directly on the contact layer 107, the value of the contact resistance of the entire contact surface becomes large.
Drive voltage becomes higher.

【0004】本発明は、上記の問題を解決するために成
されたものであり、その目的は、発光光度にムラがな
く、高光度、低駆動電圧の発光素子を提供することであ
る。
The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a light-emitting element having high luminosity and low driving voltage without unevenness in luminous intensity.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めの第1の手段は、基板上に窒化ガリウム系化合物半導
体から成る層が積層されたフリップチップ型の発光素子
において、p型半導体側のコンタクト層と前記コンタク
ト層に接続する光を反射する厚膜正電極との間に発光ム
ラの発生を抑止するための薄膜金属層を設けることであ
る。また、第2の手段は、上記の薄膜金属層の膜厚を5
0Å〜500Åとすることである。また、第3の手段
は、上記の薄膜金属層を複数の種類の金属より形成され
た多層構造とすることである。また、第4の手段は、上
記の厚膜正電極を複数の種類の金属より形成された多層
構造とすることである。また、第5の手段は、上記の薄
膜金属層をプラチナ(Pt)、コバルト(Co)、金
(Au)、パラジウム(Pd)、ニッケル(Ni)、マ
グネシウム(Mg)、銀(Ag)、アルミニウム(A
l)、バナジウム(V)、マンガン(Mn)、ビスマス
(Bi)またはレニウム(Re)の内の少なくとも1種
類の金属により形成することである。更に、第6の手段
は、上記の厚膜正電極をプラチナ(Pt)、コバルト
(Co)、金(Au)、パラジウム(Pd)、ニッケル
(Ni)、マグネシウム(Mg)、銀(Ag)、アルミ
ニウム(Al)、バナジウム(V)、銅(Cu)、スズ
(Sn)またはロジウム(Rh)の内の少なくとも1種
類の金属により形成することである。
A first means for solving the above-mentioned problem is to provide a flip-chip type light-emitting element in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate. Between the contact layer and the thick positive electrode that reflects light connected to the contact layer. The second means is to set the thickness of the thin film metal layer to 5
0 ° to 500 °. A third means is that the thin-film metal layer has a multilayer structure formed of a plurality of types of metals. A fourth means is that the thick-film positive electrode has a multilayer structure formed of a plurality of types of metals. The fifth means is that the thin film metal layer is formed of platinum (Pt), cobalt (Co), gold (Au), palladium (Pd), nickel (Ni), magnesium (Mg), silver (Ag), aluminum (A
1), vanadium (V), manganese (Mn), bismuth (Bi) or rhenium (Re). Further, a sixth means is that the above-mentioned thick film positive electrode is formed of platinum (Pt), cobalt (Co), gold (Au), palladium (Pd), nickel (Ni), magnesium (Mg), silver (Ag), It is formed of at least one kind of metal among aluminum (Al), vanadium (V), copper (Cu), tin (Sn) and rhodium (Rh).

【0006】また、上記の半導体発光素子を製造する方
法には、以下の手段がある。即ち、第7の手段は、p型
半導体側のコンタクト層に接続する光を反射する厚膜正
電極を形成する前に、前記コンタクト層の上に発光ムラ
の発生を抑止するための薄膜金属層を形成し、この薄膜
金属層を熱処理した後に前記厚膜正電極を形成すること
である。また、第8の手段は、上記の熱処理を酸素(O2)
雰囲気中で行うことである。
[0006] The method for manufacturing the above semiconductor light emitting device includes the following means. That is, the seventh means is that, before forming a thick film positive electrode for reflecting light connected to the contact layer on the p-type semiconductor side, a thin film metal layer for suppressing the occurrence of uneven light emission on the contact layer. And forming the thick-film positive electrode after heat-treating the thin-film metal layer. Eighth means is that the above heat treatment is performed using oxygen (O 2 )
It is done in an atmosphere.

【0007】[0007]

【作用及び発明の効果】p型半導体側のコンタクト層と
このコンタクト層に接続する光を反射する厚膜正電極と
の間に発光ムラの発生を抑止するための薄膜金属層を設
けたことにより、発光光度にムラがなく、高光度、低駆
動電圧の発光素子を得ることができた。これは、この薄
膜金属層の介在の結果、図1に示すコンタクト層107
と薄膜金属層110との間の接触抵抗が接触面全体に渡
って低く、一様で、且つ、オーミック性の良いものとな
ったためだと考えられる。また、上記薄膜金属層の材料
として、前記の金属の内の少なくとも1種類の金属を用
いれば、上記の接触抵抗をより小さくできるため、光
度、駆動電圧の点でより優れた発光素子が得られる。ま
た、上記厚膜正電極の材料として、前記の金属の内の少
なくとも1種類の金属を用いれば、これらの金属は仕事
関数が大きいため、より酸化されにくい電極が得られ
る。また、p型半導体側のコンタクト層に接続する光を
反射する厚膜正電極を形成する前に、コンタクト層の上
に発光ムラの発生を抑止するための薄膜金属層を形成
し、この薄膜金属層を熱処理した後に厚膜正電極を形成
することにより、更により発光光度にムラがなく、高光
度、低駆動電圧の発光素子を得ることができた。これ
は、上記の熱処理の結果、図1に示すコンタクト層10
7と薄膜金属層110との間の接触抵抗が接触面全体に
渡って更により低く、一様で、且つ、オーミック性の良
いものとなったためだと考えられる。更に詳細な作用機
構については、現段階では不明であるが、今のところそ
の可能性としては、以下の(1)〜(3)内の少なくと
も1つではないかと考えられる。 (1)薄膜金属層110は、非常に薄い(75Å)の
で、粒界がないか、或いは、粒界が非常に密でムラがな
いため。 (2)薄膜金属層110は、非常に薄い(75Å)の
で、薄膜金属層110の内部の歪み(応力)が小さいた
め。 (3)コンタクト層107との接触面において、コンタ
クト抵抗を低くするためには、酸素(O2 )もしくは何
らかの気相との接触が必要となるため。 重要なことは、上記の薄膜金属層110の介在の結果、
或いは更には、上記の熱処理により、発光光度にムラが
なく、高光度、低駆動電圧の発光素子が間違いなく得ら
れるということである。
The thin-film metal layer for suppressing the occurrence of uneven light emission is provided between the contact layer on the p-type semiconductor side and the thick-film positive electrode reflecting light connected to this contact layer. Thus, a light emitting device having high luminous intensity and low driving voltage without unevenness in luminous intensity was obtained. This is because the interposition of the thin film metal layer results in the contact layer 107 shown in FIG.
It is considered that the contact resistance between the contact layer and the thin film metal layer 110 is low over the entire contact surface, is uniform, and has a good ohmic property. Further, if at least one of the above-mentioned metals is used as the material of the thin-film metal layer, the contact resistance can be made smaller, so that a light-emitting element having more excellent luminous intensity and driving voltage can be obtained. . If at least one of the above-mentioned metals is used as the material of the thick film positive electrode, an electrode which is less likely to be oxidized can be obtained because these metals have a large work function. In addition, before forming a thick-film positive electrode that reflects light connected to the contact layer on the p-type semiconductor side, a thin-film metal layer is formed on the contact layer to suppress the occurrence of uneven light emission. By forming a thick-film positive electrode after heat-treating the layer, a light-emitting element with even higher luminous intensity and lower driving voltage was obtained with even more uniform luminous intensity. This is because, as a result of the above heat treatment, the contact layer 10 shown in FIG.
It is considered that the contact resistance between the thin film metal layer 7 and the thin film metal layer 110 was even lower over the entire contact surface, and was uniform and had good ohmic properties. Although a more detailed mechanism of action is unknown at this stage, it is considered that the possibility is at least one of the following (1) to (3) at present. (1) Since the thin film metal layer 110 is very thin (75 °), there is no grain boundary, or the grain boundary is very dense and uniform. (2) The strain (stress) inside the thin film metal layer 110 is small because the thin film metal layer 110 is very thin (75 °). (3) In order to lower the contact resistance at the contact surface with the contact layer 107, contact with oxygen (O 2 ) or some gas phase is required. Importantly, as a result of the intervening thin metal layer 110,
Alternatively, the heat treatment described above can provide a light-emitting element with high luminous intensity and low driving voltage without unevenness in luminous intensity.

【0008】[0008]

【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。なお、本発明は、以下の実施例に限
定されるものではない。図1に、本発明によるフリップ
チップ型の半導体発光素子100の断面図を示す。サフ
ァイヤ基板101の上には窒化アルミニウム(AlN) から
成る膜厚約200Åのバッファ層102が設けられ、そ
の上にシリコン(Si)ドープのGaN から成る膜厚約4.0 μ
mの高キャリア濃度n+ 層103が形成されている。こ
の高キャリア濃度n+ 層103の上にSiドープのn型Ga
N から成る膜厚約0.5 μmのクラッド層104が形成さ
れている。そして、クラッド層104の上に単一量子井
戸構造(SQW)の中心となる膜厚約500Åの活性層
105が形成されている。活性層105の上にはp型Al
0.15Ga0.85N から成る膜厚約600Åのクラッド層10
6が形成されている。さらに、クラッド層106の上に
はp型GaN から成る膜厚約1500Åのコンタクト層1
07が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. Note that the present invention is not limited to the following embodiments. FIG. 1 is a sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention. On the sapphire substrate 101, a buffer layer 102 of aluminum nitride (AlN) having a thickness of about 200 ° is provided, and a buffer layer 102 of silicon (Si) doped GaN of about 4.0 μm is formed thereon.
An m + high carrier concentration n + layer 103 is formed. On this high carrier concentration n + layer 103, a Si-doped n-type Ga
A cladding layer 104 made of N and having a thickness of about 0.5 μm is formed. Then, on the cladding layer 104, an active layer 105 having a thickness of about 500 °, which is the center of the single quantum well structure (SQW), is formed. P-type Al on the active layer 105
Cladding layer 10 of 0.15 Ga 0.85 N with a thickness of about 600 °
6 are formed. Further, a contact layer 1 made of p-type GaN and having a thickness of about 1500
07 is formed.

【0009】又、コンタクト層107の上には金属蒸着
による薄膜金属層110が、n+ 層103上には負電極
140が形成されている。薄膜金属層110は、コンタ
クト層107に接合する膜厚約15Åのコバルト(Co)より
成る薄膜金属層第1層111と、Coに接合する膜厚約60
Åの金(Au)より成る薄膜金属層第2層112とで構成さ
れている。厚膜正電極120は、膜厚約500Åのニッ
ケル(Ni)より成る厚膜正電極第1層121と、膜厚約5
00Åのチタン(Ti)より成る厚膜正電極第2層122
と、膜厚約5000Åのニッケル(Ni)より成る厚膜正電
極第3層123とを薄膜金属層110の上から順次積層
させることにより構成されている。多層構造の負電極1
40は、膜厚約175Åのバナジウム(V) 層141と、
膜厚約1000Åのアルミニウム(Al)層142と、膜厚
約500Åのバナジウム(V) 層143と、膜厚約500
0Åのニッケル(Ni)層144とを高キャリア濃度n+
103の一部露出された部分の上から順次積層させるこ
とにより構成されている。また最上部には、SiO2
より成る保護膜130が形成されている。
A thin metal layer 110 is formed on the contact layer 107 by metal evaporation, and a negative electrode 140 is formed on the n + layer 103. The thin-film metal layer 110 has a thin-film metal layer first layer 111 of cobalt (Co) having a thickness of about 15 ° to be bonded to the contact layer 107 and a film thickness of about 60 to be bonded to Co.
And a second thin film metal layer 112 made of gold (Au). The thick positive electrode 120 includes a thick positive electrode first layer 121 made of nickel (Ni) having a thickness of about 500
Thick film positive electrode second layer 122 of titanium (Ti)
And a third layer 123 of a thick positive electrode made of nickel (Ni) having a thickness of about 5000 ° are sequentially laminated on the thin metal layer 110. Negative electrode 1 with multilayer structure
40 is a vanadium (V) layer 141 having a thickness of about 175 °,
An aluminum (Al) layer 142 having a thickness of about 1000 °, a vanadium (V) layer 143 having a thickness of about 500
A nickel (Ni) layer 144 of 0 ° is sequentially laminated on a part of the high carrier concentration n + layer 103 which is partially exposed. A protective film 130 made of a SiO 2 film is formed on the uppermost portion.

【0010】次に、この発光素子100の製造方法につ
いて説明する。上記発光素子100は、有機金属気相成
長法(MOVPE法)による気相成長により製造され
た。用いられたガスは、アンモニア(NH3) 、キャリアガ
ス(H2,N2) 、トリメチルガリウム(Ga(CH3)3)(以下「TM
G 」と記す)、トリメチルアルミニウム(Al(CH3)3)(以
下「TMA 」と記す)、トリメチルインジウム(In(CH3)3)
(以下「TMI 」と記す)、シラン(SiH4)とシクロペンタ
ジエニルマグネシウム(Mg(C5H5)2) (以下「CP2Mg 」と
記す)である。まず、有機洗浄及び熱処理により洗浄し
たa面を主面とした単結晶の基板101をMOVPE 装置の
反応室に載置されたサセプタに装着する。次に、常圧で
H2を反応室に流しながら温度1150℃で基板101を
ベーキングした。次に、基板101の温度を400℃ま
で低下させて、H2、NH3 及びTMA を供給してAlN のバッ
ファ層102を約200Åの膜厚に形成した。
Next, a method for manufacturing the light emitting device 100 will be described. The light emitting device 100 was manufactured by vapor phase growth using metal organic chemical vapor deposition (MOVPE). The gases used were ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter “TM
G ”), trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as“ TMA ”), trimethylindium (In (CH 3 ) 3 )
(Hereinafter referred to as "TMI"), a silane (SiH 4) and cyclopentadienyl magnesium (Mg (C 5 H 5) 2) ( hereinafter referred to as "CP 2 Mg"). First, a single-crystal substrate 101 whose main surface is the a-plane cleaned by organic cleaning and heat treatment is mounted on a susceptor placed in a reaction chamber of a MOVPE apparatus. Next, at normal pressure
The substrate 101 was baked at a temperature of 1150 ° C. while flowing H 2 into the reaction chamber. Next, the temperature of the substrate 101 was lowered to 400 ° C., and H 2 , NH 3 and TMA were supplied to form the AlN buffer layer 102 to a thickness of about 200 °.

【0011】次に、基板101の温度を1150℃にま
で上げ、H2、NH3 、TMG 及びシランを供給し、膜厚約4.
0 μm、電子濃度2 ×1018/cm3のシリコン(Si)ドー
プのGaN から成る高キャリア濃度n+ 層103を形成し
た。次に、基板101の温度を1100℃に保持し、N2
又はH2、NH3 、TMG 及びシランを供給して、膜厚約0.
5μm、電子濃度1×1018/cm3のシリコン(Si)ドー
プのGaNから成るクラッド層104を形成した。上記
のクラッド層104を形成した後、結晶温度を850℃
に降温し、N2又はH2、NH3 、TMG 及びTMI を供給して、
膜厚約500ÅのGa0.8In0.2N から成る活性層105を
形成した。
Next, the temperature of the substrate 101 is raised to 1150 ° C., and H 2 , NH 3 , TMG and silane are supplied, and the film thickness is reduced to about 4.
A high carrier concentration n + layer 103 made of GaN doped with silicon (Si) having an electron concentration of 0 μm and an electron concentration of 2 × 10 18 / cm 3 was formed. Then, maintaining the temperature of the substrate 101 to 1100 ° C., N 2
Alternatively, H 2 , NH 3 , TMG and silane are supplied to form a film having a thickness of about 0.1 μm.
A cladding layer 104 made of GaN doped with silicon (Si) having a thickness of 5 μm and an electron concentration of 1 × 10 18 / cm 3 was formed. After forming the cladding layer 104, the crystal temperature is set to 850 ° C.
And supply N 2 or H 2 , NH 3 , TMG and TMI,
An active layer 105 of Ga 0.8 In 0.2 N having a thickness of about 500 ° was formed.

【0012】次に、基板101の温度を1000℃に昇
温し、N2又はH2、NH3 、TMG 、TMA及びCP2Mg を供給し
て、膜厚約50nm、マグネシウム(Mg)をドープしたp型Al
0.15Ga0.85N から成るクラッド層106を形成した。次
に、基板101の温度を1000℃に保持し、N2又は
H2、NH3 、TMG 及びCP2Mg を供給して、膜厚約100nm 、
Mgをドープしたp型GaN から成るコンタクト層107を
形成した。次に、コンタクト層107の上にエッチング
マスクを形成し、所定領域のマスクを除去して、マスク
で覆われていない部分のコンタクト層107、クラッド
層106、活性層105、クラッド層104、n+ 層1
03の一部を塩素を含むガスによる反応性イオンエッチ
ングによりエッチングして、n+ 層103の表面を露出
させた。次に、以下の手順で、n+ 層103に接合する
負電極140と、コンタクト層107に接合する薄膜金
属層110とを形成した。
Next, the temperature of the substrate 101 is raised to 1000 ° C., and N 2 or H 2 , NH 3 , TMG, TMA and CP 2 Mg are supplied, and a film thickness of about 50 nm and doped with magnesium (Mg). P-type Al
A cladding layer 106 made of 0.15 Ga 0.85 N was formed. Next, the temperature of the substrate 101 is maintained at 1000 ° C., and N 2 or
By supplying H 2 , NH 3 , TMG and CP 2 Mg, the film thickness is about 100 nm,
A contact layer 107 made of Mg-doped p-type GaN was formed. Next, an etching mask is formed on the contact layer 107, the mask in a predetermined region is removed, and portions of the contact layer 107, the cladding layer 106, the active layer 105, the cladding layer 104, and n + that are not covered with the mask are removed. Tier 1
03 was etched by reactive ion etching using a gas containing chlorine to expose the surface of the n + layer 103. Next, a negative electrode 140 bonded to the n + layer 103 and a thin film metal layer 110 bonded to the contact layer 107 were formed by the following procedure.

【0013】(1) フォトレジストを塗布し、フォトリソ
グラフィによりn+ 層103の露出面上の所定領域に窓
を形成して、10-6Torrオーダ以下の高真空に排気した
後、膜厚約175Åのバナジウム(V) 層141と、膜厚
約1000Åのアルミニウム(Al)層142と、膜厚約5
00Åのバナジウム(V) 層143と、膜厚約5000Å
のニッケル(Ni)層144とを順次蒸着した。次に、フォ
トレジストを除去する。これによりn+ 層103の露出
面上に負電極140が形成される。 (2) 次に、表面上にフォトレジストを一様に塗布して、
フォトリソグラフィにより、コンタクト層107の上の
薄膜金属層110形成部分のフォトレジストを除去し
て、窓部を形成する。 (3) 蒸着装置にて、フォトレジスト及び露出させたコン
タクト層107上に、10-6Torrオーダ以下の高真空に排
気した後、膜厚約15ÅのCoを成膜し、このCoより形成さ
れた薄膜金属層第1層111の上に膜厚約60ÅのAuより
成る薄膜金属層第2層112を成膜する。 (4) 次に、試料を蒸着装置から取り出し、リフトオフ法
によりフォトレジスト上に堆積したCo、Auを除去し、コ
ンタクト層107上に薄膜金属層110を形成する。 (5) その後、発光ムラの発生を抑止するための薄膜金属
層110の熱処理を行った。即ち、試料雰囲気を真空ポ
ンプで排気し、O2ガスを供給して圧力10Paとし、そ
の状態で雰囲気温度を約 570℃にして、約4 分程度加熱
した。
(1) A photoresist is applied, a window is formed in a predetermined region on the exposed surface of the n + layer 103 by photolithography, and the window is evacuated to a high vacuum of the order of 10 −6 Torr or less. A 175% vanadium (V) layer 141, an aluminum (Al) layer 142 having a thickness of about 1000
A vanadium (V) layer 143 of 00Å and a film thickness of about 5000Å
And a nickel (Ni) layer 144 were sequentially deposited. Next, the photoresist is removed. Thereby, negative electrode 140 is formed on the exposed surface of n + layer 103. (2) Next, apply photoresist uniformly on the surface,
The photoresist is removed by photolithography at the portion where the thin-film metal layer 110 is formed on the contact layer 107 to form a window. (3) After evacuation to a high vacuum of the order of 10 −6 Torr or less on the photoresist and the exposed contact layer 107 using a vapor deposition apparatus, a Co film having a film thickness of about 15 ° is formed. A second thin film metal layer 112 made of Au having a thickness of about 60 ° is formed on the first thin film metal layer 111. (4) Next, the sample is taken out of the vapor deposition apparatus, Co and Au deposited on the photoresist are removed by a lift-off method, and a thin film metal layer 110 is formed on the contact layer 107. (5) Thereafter, a heat treatment was performed on the thin-film metal layer 110 to suppress the occurrence of uneven light emission. That is, the sample atmosphere was evacuated with a vacuum pump, O 2 gas was supplied to a pressure of 10 Pa, and in that state, the atmosphere temperature was set to about 570 ° C. and heating was performed for about 4 minutes.

【0014】上記の工程により形成された薄膜金属層1
10上に、更に、厚膜正電極120を形成するために、
フォトレジストを一様に塗布して、厚膜正電極120の
形成部分のフォトレジストに窓を開ける。その後、膜厚
約500Åのニッケル(Ni)層121と、膜厚約500Å
のチタン(Ti)層122と、膜厚約5000Åのニッケル
(Ni)層123とを薄膜金属層110の上に順次蒸着によ
り成膜させ、(4) の工程と同様にリフトオフ法により厚
膜正電極120を形成する。最後に、エレクトロンビー
ム蒸着により、最上層に一様にSiO2 より成る保護膜
130を形成し、フォトレジストの塗布、フォトリソグ
ラフィー工程を経て、厚膜正電極120および負電極1
40に外部露出部分ができるようにほぼ同面積の窓をそ
れぞれ一つづつウエットエッチングにより形成する。こ
のようにして、発光素子100を形成した。
The thin film metal layer 1 formed by the above steps
10 and further to form a thick-film positive electrode 120,
A photoresist is applied uniformly, and a window is opened in the photoresist at the portion where the thick film positive electrode 120 is formed. Thereafter, a nickel (Ni) layer 121 having a thickness of about 500 、 and a nickel (Ni) layer 121 having a thickness of about 500 Å
Of titanium (Ti) layer 122 and nickel
The (Ni) layer 123 is sequentially formed on the thin film metal layer 110 by vapor deposition, and the thick film positive electrode 120 is formed by the lift-off method in the same manner as in the process (4). Finally, a protective film 130 made of SiO 2 is uniformly formed on the uppermost layer by electron beam evaporation, and a thick film positive electrode 120 and a negative electrode 1 are formed through a photoresist coating and a photolithography process.
Windows each having substantially the same area are formed one by one by wet etching so that an externally exposed portion is formed at 40. Thus, the light emitting element 100 was formed.

【0015】図2に、性能比較を行うために試作された
半導体発光素子300(図3)と本発明による上記の半
導体発光素子100との性能比較表を示す。半導体発光
素子300(図3)は、半導体発光素子100と同様の
厚膜正電極120を半導体発光素子100作成時と同様
の方法で直接コンタクト層107に形成したものであ
る。この表より、薄膜金属層110を有する本発明の半
導体発光素子100の方が、光度、駆動電圧の両面にお
いて薄膜金属層110を有しない上記試作の半導体発光
素子300よりも優れていることが分かる。
FIG. 2 shows a performance comparison table between a prototype semiconductor light emitting device 300 (FIG. 3) and a semiconductor light emitting device 100 according to the present invention. In the semiconductor light emitting device 300 (FIG. 3), a thick film positive electrode 120 similar to that of the semiconductor light emitting device 100 is directly formed on the contact layer 107 by the same method as when the semiconductor light emitting device 100 is manufactured. From this table, it can be seen that the semiconductor light-emitting device 100 of the present invention having the thin-film metal layer 110 is superior to the prototype semiconductor light-emitting device 300 without the thin-film metal layer 110 in terms of both luminous intensity and driving voltage. .

【0016】また、発光素子300におけるニッケル
(Ni)より形成された膜厚500Åの厚膜正電極第1
層121に対して、薄膜金属層110の形成時と同様の
熱処理を行った結果、半導体発光素子300の光度は変
わらず、駆動電圧は逆に上昇した。このことから、薄膜
金属層110の厚さは、その金属の種類にも多少依存す
るものの、500Å以下でなければならないことが判っ
た。また、50Åよりも薄い場合には、膜厚を一様にす
ることが難しく、また膜厚が薄過ぎて薄膜金属層110
の効果が出にくくなる。
In the light emitting device 300, the first thick positive electrode 500 nm thick made of nickel (Ni) is used.
As a result of performing the same heat treatment as in forming the thin-film metal layer 110 on the layer 121, the luminous intensity of the semiconductor light-emitting element 300 did not change, and the driving voltage increased. From this, it was found that the thickness of the thin-film metal layer 110 had to be less than 500 °, although it also depended on the kind of the metal. If the thickness is less than 50 °, it is difficult to make the film thickness uniform, and the film thickness is too small,
Is less effective.

【0017】また、薄膜金属層110を積層した後の上
記(5) の熱処理は、酸素(O2)雰囲気中にて行ったが、酸
素は、極微量の酸素分子、酸素原子を含むガスまたはプ
ラズマであってもよい。従って、上記の熱処理の酸素雰
囲気としては、例えば、O2、O3、CO、CO2 、NO、N2O 、
NO2 または、H2O の少なくとも1種又はこれらの混合ガ
ス、或いは、O2、O3、CO、CO2 、NO、N2O 、NO2 また
は、H2O の少なくとも1種と、N2またはHe、Ne、Ar、Kr
などの不活性ガスとの混合ガス、或いは、O2、O3、CO、
CO2 、NO、N2O 、NO2 または、H2O の混合ガスと、N2
たはHe、Ne、Ar、Krなどの不活性ガスとの混合ガス等を
用いることもできる。これらのガスを使用した場合に
も、接触抵抗の低抵抗化の実現による本発明の効果を得
ることができる。
The heat treatment (5) after the lamination of the thin-film metal layer 110 is performed in an oxygen (O 2 ) atmosphere. The oxygen is a gas or gas containing a trace amount of oxygen molecules and oxygen atoms. It may be plasma. Therefore, as the oxygen atmosphere for the above heat treatment, for example, O 2 , O 3 , CO, CO 2 , NO, N 2 O,
At least one of NO 2 or H 2 O or a mixed gas thereof, or at least one of O 2 , O 3 , CO, CO 2 , NO, N 2 O, NO 2 or H 2 O; 2 or He, Ne, Ar, Kr
Mixed gas with an inert gas such as O 2 , O 3 , CO,
A mixed gas of CO 2 , NO, N 2 O, NO 2 or a mixed gas of H 2 O and N 2 or an inert gas such as He, Ne, Ar, or Kr can also be used. Even when these gases are used, the effect of the present invention by realizing a low contact resistance can be obtained.

【0018】また、上記実施例では、上記(5) の熱処理
において、10PaのO2 ガス雰囲気を用いたが、O2
ガスの圧力は、これ以上であっても十分な効果を発揮す
る。例えば、N2 ガスに対して1%のO2 ガスを含ま
せ、そのO2 ガスの分圧を100Paとした雰囲気中で
の熱処理を行ったが、同様の効果が得られた。即ち、圧
力或いは酸素ガスの分圧は、上述した圧力の範囲で全て
適用可能である。
[0018] In the above embodiment, in the heat treatment of the above (5), but using O 2 gas atmosphere 10 Pa, O 2
Even if the gas pressure is higher than this, a sufficient effect is exhibited. For example, a heat treatment was performed in an atmosphere in which 1% O 2 gas was contained with respect to N 2 gas and the partial pressure of the O 2 gas was 100 Pa, but the same effect was obtained. That is, the pressure or the partial pressure of the oxygen gas is all applicable within the above-mentioned pressure range.

【0019】また、上記実施例では、上記(5) の熱処理
において、加熱温度を570℃としたが、加熱温度は、
400〜700℃の範囲で適用可能であり、望ましく
は、450〜650℃の範囲が良い。400℃未満で熱
処理されると、薄膜金属層110はオーミック特性を示
さず、700℃よりも高い温度で熱処理されると、素子
の形に変形が発生しやすくなり、発光や反射光の方向性
に問題が生じる。このため、熱処理温度は、400〜7
00℃の範囲が良い。
In the above embodiment, the heating temperature was set at 570 ° C. in the heat treatment (5).
It is applicable in the range of 400 to 700 ° C, and preferably in the range of 450 to 650 ° C. When the heat treatment is performed at a temperature lower than 400 ° C., the thin-film metal layer 110 does not show the ohmic characteristics. When the heat treatment is performed at a temperature higher than 700 ° C., the shape of the element is easily deformed, and the direction of light emission and reflected light is increased. Problem. Therefore, the heat treatment temperature is 400 to 7
The range of 00 ° C is good.

【0020】また、上記実施例では、薄膜金属層110
は、膜厚約15Åのコバルト(Co)より成る薄膜金属層第1
層111と、Coに接合する膜厚約60Åの金(Au)より成る
薄膜金属層第2層112とで構成されているが、薄膜金
属層は、プラチナ(Pt)、コバルト(Co)、金(A
u)、パラジウム(Pd)、ニッケル(Ni)、マグネ
シウム(Mg)、銀(Ag)、アルミニウム(Al)、
バナジウム(V)、マンガン(Mn)、ビスマス(B
i)またはレニウム(Re)の内の少なくとも1種類の
金属を含んでいる単層構造の金属層であっても、また、
これらの金属を2種類以上含んだ多層構造の金属層であ
っても本実施例と同様の効果が得られる。
In the above embodiment, the thin film metal layer 110
Is a thin film metal layer made of cobalt (Co) having a thickness of about 15 mm.
A layer 111 and a second thin-film metal layer 112 made of gold (Au) having a thickness of about 60 ° bonded to Co. The thin-film metal layer is made of platinum (Pt), cobalt (Co), or gold. (A
u), palladium (Pd), nickel (Ni), magnesium (Mg), silver (Ag), aluminum (Al),
Vanadium (V), manganese (Mn), bismuth (B
i) or a single-layer metal layer containing at least one metal of rhenium (Re),
Even in the case of a metal layer having a multilayer structure containing two or more kinds of these metals, the same effect as in the present embodiment can be obtained.

【0021】また、上記実施例では、厚膜正電極120
は、膜厚約500Åのニッケル(Ni)より成る厚膜正電極
第1層121と、膜厚約500Åのチタン(Ti)より成る
厚膜正電極第2層122と、膜厚約5000Åのニッケ
ル(Ni)より成る厚膜正電極第3層123とを薄膜金属層
110の上から順次積層させることにより構成されてい
るが、厚膜正電極は、プラチナ(Pt)、コバルト(C
o)、金(Au)、パラジウム(Pd)、ニッケル(N
i)、マグネシウム(Mg)、銀(Ag)、アルミニウ
ム(Al)、バナジウム(V)、銅(Cu)、スズ(S
n)またはロジウム(Rh)の内の少なくとも1種類の
金属を含んでいる単層構造の電極であっても、また、こ
れらの金属を2種類以上含んだ多層構造の電極であって
も本実施例と同様の効果が得られる。
In the above embodiment, the thick film positive electrode 120 is used.
A thick positive electrode first layer 121 made of nickel (Ni) having a thickness of about 500 °, a thick positive electrode second layer 122 made of titanium (Ti) having a thickness of about 500 °, and a nickel (Ni) and a third layer 123 of a thick film positive electrode are sequentially laminated on the thin film metal layer 110. The thick film positive electrode is made of platinum (Pt), cobalt (C
o), gold (Au), palladium (Pd), nickel (N
i), magnesium (Mg), silver (Ag), aluminum (Al), vanadium (V), copper (Cu), tin (S
The present invention may be applied to a single-layer electrode containing at least one metal of n) or rhodium (Rh), or a multi-layer electrode containing two or more of these metals. The same effect as the example can be obtained.

【0022】なお、上記の実施例では、発光素子100
の活性層105はSQW構造としたが、活性層の構造
は、MQW構造でもよい。また、活性層、クラッド層、
コンタクト層、その他の層は、任意の混晶比の4元、3
元、2元系のAlx Gay In1-x-yN (0≦x≦1,0≦y
≦1)としても良い。又、p型不純物としてMgを用いた
がベリリウム(Be)、亜鉛(Zn)等の2族元素を用いること
ができる。
In the above embodiment, the light emitting device 100
Although the active layer 105 has an SQW structure, the active layer may have an MQW structure. Also, active layer, cladding layer,
The contact layer and other layers are quaternary, 3 and
, Binary Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y
≤ 1). Although Mg is used as the p-type impurity, a Group 2 element such as beryllium (Be) and zinc (Zn) can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるフリップチップ型の半導体発光素
子100の断面図。
FIG. 1 is a cross-sectional view of a flip-chip type semiconductor light emitting device 100 according to the present invention.

【図2】半導体発光素子100と半導体発光素子300
の性能比較表。
FIG. 2 shows a semiconductor light emitting device 100 and a semiconductor light emitting device 300.
Performance comparison table.

【図3】性能比較を行うために試作された半導体発光素
子300の断面図。
FIG. 3 is a cross-sectional view of a prototype semiconductor light emitting device 300 for performance comparison.

【図4】従来技術によるフリップチップ型の半導体発光
素子400の断面図。
FIG. 4 is a sectional view of a flip-chip type semiconductor light emitting device 400 according to the related art.

【符号の説明】[Explanation of symbols]

101…サファイヤ基板 102…AlNバッファ層 103…n型のGaN層 104…n型のGaNクラッド層 105…活性層 106…p型のAlGaNクラッド層 107…p型のGaNコンタクト層 110…薄膜金属層 111…薄膜金属層第1層 112…薄膜金属層第2層 120、420…厚膜正電極 121…厚膜正電極第1層 122…厚膜正電極第2層 123…厚膜正電極第3層 130…保護膜 140…多層構造の負電極 DESCRIPTION OF SYMBOLS 101 ... Sapphire substrate 102 ... AlN buffer layer 103 ... n-type GaN layer 104 ... n-type GaN cladding layer 105 ... Active layer 106 ... p-type AlGaN cladding layer 107 ... p-type GaN contact layer 110 ... thin film metal layer 111 ... thin film metal layer first layer 112 ... thin film metal layer second layer 120, 420 ... thick film positive electrode 121 ... thick film positive electrode first layer 122 ... thick film positive electrode second layer 123 ... thick film positive electrode third layer 130: protective film 140: multilayer structure negative electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上に窒化ガリウム系化合物半導体か
ら成る層が積層されたフリップチップ型の発光素子にお
いて、 p型半導体側のコンタクト層と前記コンタクト層に接続
する光を反射する厚膜正電極との間に発光ムラの発生を
抑止するための薄膜金属層を設けたことを特徴とする窒
化ガリウム系化合物半導体素子。
1. A flip-chip type light-emitting device in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate, a thick film positive electrode for reflecting light connected to the p-type semiconductor side contact layer and the contact layer. A gallium nitride-based compound semiconductor device, wherein a thin-film metal layer for suppressing the occurrence of uneven light emission is provided between the gallium nitride-based compound semiconductor device.
【請求項2】 前記薄膜金属層の膜厚は、50Å〜50
0Åであることを特徴とする請求項1に記載の窒化ガリ
ウム系化合物半導体素子。
2. The thin film metal layer has a thickness of 50 ° to 50 °.
2. The gallium nitride-based compound semiconductor device according to claim 1, wherein the angle is 0 °.
【請求項3】 前記薄膜金属層は、複数の種類の金属よ
り形成された多層構造をしていることを特徴とする請求
項1または請求項2に記載の窒化ガリウム系化合物半導
体素子。
3. The gallium nitride based compound semiconductor device according to claim 1, wherein the thin film metal layer has a multilayer structure formed of a plurality of types of metals.
【請求項4】 前記厚膜正電極は、複数の種類の金属よ
り形成された多層構造をしていることを特徴とする請求
項1乃至請求項3のいずれか1項に記載の窒化ガリウム
系化合物半導体素子。
4. The gallium nitride-based electrode according to claim 1, wherein the thick film positive electrode has a multilayer structure formed of a plurality of types of metals. Compound semiconductor device.
【請求項5】 前記薄膜金属層は、プラチナ(Pt)、
コバルト(Co)、金(Au)、パラジウム(Pd)、
ニッケル(Ni)、マグネシウム(Mg)、銀(A
g)、アルミニウム(Al)、バナジウム(V)、マン
ガン(Mn)、ビスマス(Bi)またはレニウム(R
e)の内の少なくとも1種類の金属を含んでいることを
特徴とする請求項1乃至請求項4のいずれか1項に記載
の窒化ガリウム系化合物半導体素子。
5. The thin-film metal layer is formed of platinum (Pt),
Cobalt (Co), gold (Au), palladium (Pd),
Nickel (Ni), magnesium (Mg), silver (A
g), aluminum (Al), vanadium (V), manganese (Mn), bismuth (Bi) or rhenium (R
The gallium nitride-based compound semiconductor device according to any one of claims 1 to 4, further comprising at least one metal selected from the group consisting of (e) and (e).
【請求項6】 前記厚膜正電極は、プラチナ(Pt)、
コバルト(Co)、金(Au)、パラジウム(Pd)、
ニッケル(Ni)、マグネシウム(Mg)、銀(A
g)、アルミニウム(Al)、バナジウム(V)、銅
(Cu)、スズ(Sn)またはロジウム(Rh)の内の
少なくとも1種類の金属を含んでいることを特徴とする
請求項1乃至請求項5のいずれか1項に記載の窒化ガリ
ウム系化合物半導体素子。
6. The thick-film positive electrode comprises platinum (Pt),
Cobalt (Co), gold (Au), palladium (Pd),
Nickel (Ni), magnesium (Mg), silver (A
g), at least one metal selected from the group consisting of aluminum (Al), vanadium (V), copper (Cu), tin (Sn) and rhodium (Rh). 6. The gallium nitride-based compound semiconductor device according to any one of 5.
【請求項7】 基板上に窒化ガリウム系化合物半導体か
ら成る層が積層されたフリップチップ型の発光素子の製
造方法であって、 p型半導体側のコンタクト層に接続する光を反射する厚
膜正電極を形成する前に、前記コンタクト層の上に発光
ムラの発生を抑止するための薄膜金属層を形成し、この
薄膜金属層を熱処理した後に前記厚膜正電極を形成する
ことを特徴とする窒化ガリウム系化合物半導体素子の製
造方法。
7. A method for manufacturing a flip-chip type light emitting device in which a layer made of a gallium nitride-based compound semiconductor is laminated on a substrate, comprising: a thick film positive electrode for reflecting light connected to a contact layer on a p-type semiconductor side. Before forming an electrode, a thin metal layer is formed on the contact layer for suppressing emission unevenness, and the thick metal positive electrode is formed after heat treatment of the thin metal layer. A method for manufacturing a gallium nitride-based compound semiconductor device.
【請求項8】 前記熱処理は、酸素(O2 )雰囲気中で
行われることを特徴とする請求項7に記載の窒化ガリウ
ム系化合物半導体素子の製造方法。
8. The method according to claim 7, wherein the heat treatment is performed in an oxygen (O 2 ) atmosphere.
JP3661898A 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device and manufacture thereof Pending JPH11220168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3661898A JPH11220168A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3661898A JPH11220168A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11220168A true JPH11220168A (en) 1999-08-10

Family

ID=12474800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3661898A Pending JPH11220168A (en) 1998-02-02 1998-02-02 Gallium nitride compound semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11220168A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047038A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for light-emitting semiconductor devices
WO2001061804A1 (en) * 2000-02-16 2001-08-23 Nichia Corporation Nitride semiconductor laser device
WO2001091195A1 (en) * 2000-05-26 2001-11-29 Osram Opto Semiconductors Gmbh Light-emitting-diode chip comprising a sequence of gan-based epitaxial layers which emit radiation, and a method for producing the same
JP2002026392A (en) * 2000-06-30 2002-01-25 Toshiba Corp Semiconductor light emitting device and its manufacturing method and semiconductor light emitting equipment
WO2003010817A3 (en) * 2001-07-23 2003-07-10 Cree Inc Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
JP2004505434A (en) * 1999-12-03 2004-02-19 クリー インコーポレイテッド Micro light-emitting diode array with improved light extraction
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
WO2004010509A3 (en) * 2002-07-22 2004-09-23 Cree Inc Light emitting diode including barrier layers and manufacturing methods therefor
JP2004274061A (en) * 2003-03-07 2004-09-30 Lg Electron Inc Method of manufacturing compound semiconductor light emitting element
WO2004030108A3 (en) * 2002-09-23 2004-12-29 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
JP2005117035A (en) * 2003-09-19 2005-04-28 Showa Denko Kk Flip-chip gallium-nitride-based semiconductor light-emitting element and method of fabricating same
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
WO2005081328A1 (en) * 2004-02-24 2005-09-01 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
JP2005277403A (en) * 2004-02-24 2005-10-06 Showa Denko Kk Gallium nitride-based compound semiconductor light-emitting device
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
US6960485B2 (en) 2000-03-31 2005-11-01 Toyoda Gosei Co., Ltd. Light-emitting device using a group III nitride compound semiconductor and a method of manufacture
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
JP2006135293A (en) * 2004-11-08 2006-05-25 Samsung Electro Mech Co Ltd Method of forming electrode for compound semiconductor device
US7193249B2 (en) 2003-10-16 2007-03-20 Samsung Electronics Co., Ltd. Nitride-based light emitting device and method of manufacturing the same
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
JP2007518260A (en) * 2004-01-15 2007-07-05 ソウル オプト−デバイス シーオー エル ティー ディー Gallium nitride III-V compound semiconductor device and method for manufacturing the same
US7323783B2 (en) 2003-12-08 2008-01-29 Nec Corporation Electrode, method for producing same and semiconductor device using same
KR100831957B1 (en) 2004-02-24 2008-05-23 쇼와 덴코 가부시키가이샤 Gallium nitride-based compound semiconductor light-emitting device
KR100978234B1 (en) 2004-01-06 2010-08-26 삼성엘이디 주식회사 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
JP2012019234A (en) * 2000-04-26 2012-01-26 Osram Opto Semiconductors Gmbh GaN BASED LIGHT-EMITTING DIODE CHIP AND METHOD OF MANUFACTURING LIGHT-EMITTING DIODE STRUCTURE ELEMENT
TWI382563B (en) * 2005-05-19 2013-01-11 Nichia Corp Nitride semiconductor device

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
US7109529B2 (en) 1998-05-13 2006-09-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
JP2004505434A (en) * 1999-12-03 2004-02-19 クリー インコーポレイテッド Micro light-emitting diode array with improved light extraction
JP2001210868A (en) * 1999-12-22 2001-08-03 Lumileds Lighting Us Llc Multilayer/high reflectivity ohmic contact point for semiconductor device
US6992334B1 (en) 1999-12-22 2006-01-31 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for semiconductor devices
WO2001047038A1 (en) * 1999-12-22 2001-06-28 Lumileds Lighting U.S., Llc Multi-layer highly reflective ohmic contacts for light-emitting semiconductor devices
KR100843788B1 (en) * 1999-12-22 2008-07-03 필립스 루미리즈 라이팅 캄파니 엘엘씨 Multi-layer highly reflective ohmic contacts for light-emitting semiconductor devices
US7167497B2 (en) * 2000-02-16 2007-01-23 Nichia Corporation Nitride semiconductor laser device
US6838701B2 (en) 2000-02-16 2005-01-04 Nichia Corporation Nitride semiconductor laser device
WO2001061804A1 (en) * 2000-02-16 2001-08-23 Nichia Corporation Nitride semiconductor laser device
KR100790964B1 (en) * 2000-02-16 2008-01-04 니치아 카가쿠 고교 가부시키가이샤 Nitride Semiconductor Laser Device
AU2001232297B2 (en) * 2000-02-16 2005-10-06 Nichia Corporation Nitride semiconductor laser device
US6960485B2 (en) 2000-03-31 2005-11-01 Toyoda Gosei Co., Ltd. Light-emitting device using a group III nitride compound semiconductor and a method of manufacture
JP2012019234A (en) * 2000-04-26 2012-01-26 Osram Opto Semiconductors Gmbh GaN BASED LIGHT-EMITTING DIODE CHIP AND METHOD OF MANUFACTURING LIGHT-EMITTING DIODE STRUCTURE ELEMENT
JP2003534668A (en) * 2000-05-26 2003-11-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent diode chip having a GaN-based epitaxy continuous layer emitting radiation and method of manufacturing the same
JP2012028828A (en) * 2000-05-26 2012-02-09 Osram Opto Semiconductors Gmbh Method for manufacturing luminescence diode chip and luminescence diode element
WO2001091195A1 (en) * 2000-05-26 2001-11-29 Osram Opto Semiconductors Gmbh Light-emitting-diode chip comprising a sequence of gan-based epitaxial layers which emit radiation, and a method for producing the same
CN100411205C (en) * 2000-05-26 2008-08-13 奥斯兰姆奥普托半导体有限责任公司 Light-emitting-diode chip comprising sequence of gan-based epitaxial layers which emit radiation, and method for producing same
US7265392B2 (en) 2000-05-26 2007-09-04 Osram Gmbh Light-emitting-diode chip comprising a sequence of GaN-based epitaxial layers which emit radiation and a method for producing the same
CN100426544C (en) * 2000-05-26 2008-10-15 奥斯兰姆奥普托半导体有限责任公司 Light-emitting-diode chip comprising a sequence of gan-based epitaxial layer which emit radiation, and a method for producing the same
JP2002026392A (en) * 2000-06-30 2002-01-25 Toshiba Corp Semiconductor light emitting device and its manufacturing method and semiconductor light emitting equipment
US7355212B2 (en) 2000-06-30 2008-04-08 Kabushiki Kaisha Toshiba Light emitting element
US7026659B2 (en) 2001-02-01 2006-04-11 Cree, Inc. Light emitting diodes including pedestals
US7420222B2 (en) 2001-02-01 2008-09-02 Cree, Inc. Light emitting diodes including transparent oxide layers
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
US6794684B2 (en) 2001-02-01 2004-09-21 Cree, Inc. Reflective ohmic contacts for silicon carbide including a layer consisting essentially of nickel, methods of fabricating same, and light emitting devices including the same
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US7611915B2 (en) 2001-07-23 2009-11-03 Cree, Inc. Methods of manufacturing light emitting diodes including barrier layers/sublayers
CN1330008C (en) * 2001-07-23 2007-08-01 克里公司 Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
US7037742B2 (en) 2001-07-23 2006-05-02 Cree, Inc. Methods of fabricating light emitting devices using mesa regions and passivation layers
KR101028965B1 (en) 2001-07-23 2011-04-12 크리 인코포레이티드 Light emitting diode including barrier layers and manufacturing methods therefor
US8907366B2 (en) 2001-07-23 2014-12-09 Cree, Inc. Light emitting diodes including current spreading layer and barrier sublayers
US6740906B2 (en) 2001-07-23 2004-05-25 Cree, Inc. Light emitting diodes including modifications for submount bonding
US7211833B2 (en) 2001-07-23 2007-05-01 Cree, Inc. Light emitting diodes including barrier layers/sublayers
WO2003010817A3 (en) * 2001-07-23 2003-07-10 Cree Inc Light emitting diodes including modifications for submount bonding and manufacturing methods therefor
JP2005005727A (en) * 2001-11-19 2005-01-06 Sanyo Electric Co Ltd Compound semiconductor light emitting device
US6956245B2 (en) 2002-05-31 2005-10-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor light-emitting element
CN100347866C (en) * 2002-07-22 2007-11-07 克里公司 Light emitting diodes including barrier layers/sublayers and manufacturing methods therefor
EP2287930A1 (en) * 2002-07-22 2011-02-23 Cree, Inc. Light emitting diode including barrier layers and manufacturing method therefore
WO2004010509A3 (en) * 2002-07-22 2004-09-23 Cree Inc Light emitting diode including barrier layers and manufacturing methods therefor
WO2004030108A3 (en) * 2002-09-23 2004-12-29 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component
US7115907B2 (en) 2002-09-23 2006-10-03 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component
JP2004274061A (en) * 2003-03-07 2004-09-30 Lg Electron Inc Method of manufacturing compound semiconductor light emitting element
US7049160B2 (en) 2003-09-16 2006-05-23 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device and method of manufacturing the same
US7193247B2 (en) 2003-09-16 2007-03-20 Stanley Electric Co., Ltd. Gallium nitride compound semiconductor device
JP2005117035A (en) * 2003-09-19 2005-04-28 Showa Denko Kk Flip-chip gallium-nitride-based semiconductor light-emitting element and method of fabricating same
US7193249B2 (en) 2003-10-16 2007-03-20 Samsung Electronics Co., Ltd. Nitride-based light emitting device and method of manufacturing the same
US7615868B2 (en) 2003-12-08 2009-11-10 Nec Corporation Electrode, method for producing same and semiconductor device using same
US7323783B2 (en) 2003-12-08 2008-01-29 Nec Corporation Electrode, method for producing same and semiconductor device using same
KR100978234B1 (en) 2004-01-06 2010-08-26 삼성엘이디 주식회사 A low-resistance electrode of compound semiconductor light emitting device and a compound semiconductor light emitting device using the electrode
JP2007518260A (en) * 2004-01-15 2007-07-05 ソウル オプト−デバイス シーオー エル ティー ディー Gallium nitride III-V compound semiconductor device and method for manufacturing the same
US8323999B2 (en) 2004-01-15 2012-12-04 Seoul Opto Device Co., Ltd. Gallium nitride-based III-V group compound semiconductor device and method of manufacturing the same
CN100438101C (en) * 2004-02-24 2008-11-26 昭和电工株式会社 Gallium nitride-based compound semiconductor light-emitting device
WO2005081328A1 (en) * 2004-02-24 2005-09-01 Showa Denko K.K. Gallium nitride-based compound semiconductor light-emitting device
JP2005277403A (en) * 2004-02-24 2005-10-06 Showa Denko Kk Gallium nitride-based compound semiconductor light-emitting device
KR100831957B1 (en) 2004-02-24 2008-05-23 쇼와 덴코 가부시키가이샤 Gallium nitride-based compound semiconductor light-emitting device
JP2006135293A (en) * 2004-11-08 2006-05-25 Samsung Electro Mech Co Ltd Method of forming electrode for compound semiconductor device
TWI382563B (en) * 2005-05-19 2013-01-11 Nichia Corp Nitride semiconductor device
US8981420B2 (en) 2005-05-19 2015-03-17 Nichia Corporation Nitride semiconductor device

Similar Documents

Publication Publication Date Title
JPH11220168A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP4782022B2 (en) Electrode formation method
JP3344257B2 (en) Gallium nitride based compound semiconductor and device manufacturing method
US6521999B1 (en) Transparent electrode film and group III nitride semiconductor device
JP3394488B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
US20090263922A1 (en) Reflective Positive Electrode And Gallium Nitride-Based Compound Semiconductor Light-Emitting Device Using The Same
JP3612985B2 (en) Gallium nitride compound semiconductor device and manufacturing method thereof
JP3509514B2 (en) Method of manufacturing gallium nitride based compound semiconductor
JP3557791B2 (en) Group III nitride semiconductor electrode and device having the electrode
JP3303711B2 (en) ELEMENT ELECTRODE AND ITS MANUFACTURING METHOD
JP5287837B2 (en) Gallium nitride compound semiconductor light emitting device and negative electrode thereof
JP3836245B2 (en) Gallium nitride compound semiconductor device
JP3703975B2 (en) Gallium nitride compound semiconductor light emitting device
JP4807983B2 (en) Positive electrode for compound semiconductor light emitting device, light emitting device and lamp using the positive electrode
US7452740B2 (en) Gallium nitride-based compound semiconductor light-emitting device and negative electrode thereof
JP3555419B2 (en) Gallium nitride based compound semiconductor electrode forming method and device manufacturing method
JPH10303458A (en) Gallium nitride compound semiconductor element
JPH11176758A (en) Semiconductor element
JP3303718B2 (en) Gallium nitride based compound semiconductor device
JP2005203765A (en) Semiconductor light emitting element of gallium nitride compound and its negative electrode
JP2000091630A (en) Gallium nitride-based compound semiconductor light emitting element
JP2006041498A (en) Reflective positive electrode and gallium nitride compound semiconductor light emitting device using the same
JP2000091631A (en) Gallium nitride-based compound semiconductor light emitting element
JP2003051613A (en) Gallium nitride based compound semiconductor and manufacturing method for element
JPH10270758A (en) Gallium nitride compound semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051019

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051209