JPH11217268A - Silicon carbide sintered compact for plasma apparatus and its production - Google Patents

Silicon carbide sintered compact for plasma apparatus and its production

Info

Publication number
JPH11217268A
JPH11217268A JP10032253A JP3225398A JPH11217268A JP H11217268 A JPH11217268 A JP H11217268A JP 10032253 A JP10032253 A JP 10032253A JP 3225398 A JP3225398 A JP 3225398A JP H11217268 A JPH11217268 A JP H11217268A
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
sintered body
aluminum
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10032253A
Other languages
Japanese (ja)
Inventor
Kazutaka Majima
一隆 馬嶋
Toshikazu Amino
俊和 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP10032253A priority Critical patent/JPH11217268A/en
Publication of JPH11217268A publication Critical patent/JPH11217268A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve plasma resistance and prevent occurrence of particle contamination due to falling off of particles by baking fine silicon carbide powder containing Al, B, C, etc., in a specific amount to provide SiC sintered compact having specific density, crystal particle diameter, heat conductivity and electric resistivity. SOLUTION: SiC powder such as a type, β type or amorphous SiC powder having <=2.0 μm average particle diameter and $0.01 wt.% unavoidable impurity content in an amount of 100 pts.wt. is mixed with 0.3-20 pts.wt. one or more kinds of Al, AlB2 , Al4 C3 , AlN, Al2 O3 , B, BC, BN, B2 O3 and C and the mixture is formed and baked at 2,000-2,400 to provide the objective SiC sintered compact for plasma apparatus having >=2.7 g/cm<3> density, >=20 μm average crystalline particle diameter, >=80 W/mK, preferably about 100-300 W/mK heat conductivity and 10<-2> to 10<2> Ωcm electric resistivity. The SiC sintered compact preferably contains 0.15-1.0 wt.% B or 0.5-10 wt.% Al, 0.5 10 wt.% free carbon and <=0.01 wt.% unavoidable impurity other than the above components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ装置用炭化珪
素焼結体に関し、特に耐プラズマ性に優れ、粒子脱落に
よるパーティクル汚染の少ないプラズマ装置用炭化珪素
焼結体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide sintered body for a plasma device, and more particularly to a silicon carbide sintered body for a plasma device having excellent plasma resistance and less particle contamination due to falling off of particles, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、電極、シールドリング、緩衝板等
のプラズマ装置用素材としては、アルマイト処理された
アルミニウム金属、ガラス状カーボン、シリコン単結晶
等が知られている。
2. Description of the Related Art Conventionally, as a material for a plasma device such as an electrode, a shield ring, and a buffer plate, anodized aluminum metal, glassy carbon, silicon single crystal, and the like are known.

【0003】しかしながら、これらの材料のうち、アル
ミニウム金属、ガラス状カーボンはいずれも、プラズマ
処理中にプラズマ装置用素材から粒子が脱落することに
起因するパーティクル汚染が発生し易いという問題点を
有しており、またシリコン単結晶はプラズマ装置内に供
給されるガスと反応し、耐久性に乏しいという問題点を
有している。
However, among these materials, aluminum metal and glassy carbon all have a problem that particles are easily contaminated due to particles falling off from the material for plasma devices during plasma processing. In addition, the silicon single crystal has a problem that it reacts with a gas supplied into the plasma apparatus and has poor durability.

【0004】[0004]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、上述のごとき問題点を解決することのでき
る耐プラズマ性に優れたプラズマ装置用素材、即ち粒子
脱落によるパーティクル汚染の発生が少なく、耐久性に
優れたプラズマ装置用炭化珪素焼結体及びプラズマ装置
用炭化珪素焼結体の製造方法を提供することである。
The problem to be solved by the present invention is that a material for a plasma apparatus having excellent plasma resistance capable of solving the above-mentioned problems, that is, the generation of particle contamination due to falling off of particles. An object of the present invention is to provide a method for producing a silicon carbide sintered body for a plasma device and a silicon carbide sintered body for a plasma device, which is excellent in durability.

【0005】[0005]

【課題を解決するための手段】上述のごとき課題は、密
度が2.7g/cm3 以上、好ましくは3.0g/cm
3 以上、結晶粒径の平均値が20μm以上、熱伝導率が
80W/mK以上、電気抵抗率が10-2〜102 Ωcm
であることを特徴とするプラズマ装置用炭化珪素焼結体
を使用することにより解決することができ、なかでもホ
ウ素を0.15〜1.0重量%、またはアルミニウムを
0.5〜10重量%、さらに遊離炭素を0.5〜10重
量%含有してなるプラズマ装置用炭化珪素焼結体により
好適に解決することができる。ここで結晶粒径とは、焼
結体の任意の切断面において観察される結晶粒の長手方
向寸法をaとし、長手方向に対し垂直方向をbとした場
合、(a+b)/2なる式で表される値である。
Means for Solving the Problems] such problems described above, the density of 2.7 g / cm 3 or higher, preferably 3.0 g / cm
3 or more, average crystal grain size is 20 μm or more, thermal conductivity is 80 W / mK or more, and electric resistivity is 10 −2 to 10 2 Ωcm.
It can be solved by using a silicon carbide sintered body for a plasma device, wherein boron is 0.15 to 1.0% by weight or aluminum is 0.5 to 10% by weight. Further, the problem can be suitably solved by a silicon carbide sintered body for a plasma device further containing 0.5 to 10% by weight of free carbon. Here, the crystal grain size is expressed by (a + b) / 2, where a is a longitudinal dimension of a crystal grain observed on an arbitrary cut surface of the sintered body, and b is a direction perpendicular to the longitudinal direction. The value to be represented.

【0006】[0006]

【作用】次に本発明を詳細に説明する。本発明の炭化珪
素焼結体は、密度が2.7g/cm3 以上、さらに好ま
しくは3.0g/cm3 以上、結晶粒径の平均値が20
μm以上、熱伝導率が80W/mK以上、電気抵抗率が
10-2〜102 Ωcmであることが必要である。
Next, the present invention will be described in detail. The silicon carbide sintered body of the present invention has a density of 2.7 g / cm 3 or more, more preferably 3.0 g / cm 3 or more, and an average crystal grain size of 20 g / cm 3 or more.
It is necessary that the thermal conductivity is not less than μm, the thermal conductivity is not less than 80 W / mK, and the electric resistivity is 10 −2 to 10 2 Ωcm.

【0007】炭化珪素焼結体の密度が2.7g/cm3
以上であることが必要である理由は、密度が2.7g/
cm3 より低い焼結体は結晶粒子間の結合が弱いため、
耐プラズマ性に劣るからである。特に密度が3.0g/
cm3 以上の炭化珪素焼結体は、焼結体内の気孔が極め
て少なく、粒子間結合が強固であるため耐プラズマ製に
優れている。
The density of the silicon carbide sintered body is 2.7 g / cm 3
The reason why it is necessary that the density be 2.7 g /
Since the sintered body lower than 3 cm3 has weak bonding between crystal grains,
This is because it has poor plasma resistance. In particular, the density is 3.0 g /
A silicon carbide sintered body of cm 3 or more has very few pores in the sintered body and strong bonding between particles, so that it is excellent in plasma resistance.

【0008】炭化珪素焼結体の結晶粒径の平均値が20
μm以上であることが必要である理由は、結晶粒径の平
均値が20μmより小さいと結晶粒ごとに電荷がチャー
ジされるためプラズマによるアタックを受けやすく粒子
が脱落し易いからである。
The average value of the crystal grain size of the silicon carbide sintered body is 20
The reason why it is necessary to be not less than μm is that if the average value of the crystal grain size is smaller than 20 μm, the charge is charged for each crystal grain, so that the particles are easily attacked by the plasma and the particles are easily dropped.

【0009】炭化珪素焼結体の熱伝導率が80W/mK
以上であることが必要である理由は、炭化珪素焼結体の
熱伝導率が80W/mKより低いと炭化珪素焼結体内で
温度のばらつきが生じ易くプラズマ電荷の均一性が損な
われ、装置の熱的定常状態を得にくいからであり、10
0〜300W/mKの範囲の炭化珪素焼結体が好適であ
る。なお、プラズマ装置用の炭化珪素としては熱伝導率
は高ければ高い程好ましく、300W/mKより高いも
のとしては単結晶炭化珪素が知られているが、これは工
業的な材料にはなっていない。
The thermal conductivity of the silicon carbide sintered body is 80 W / mK
The reason for the above requirement is that if the thermal conductivity of the silicon carbide sintered body is lower than 80 W / mK, temperature variation easily occurs in the silicon carbide sintered body, and the uniformity of the plasma charge is impaired. This is because it is difficult to obtain a thermal steady state.
A silicon carbide sintered body in the range of 0 to 300 W / mK is suitable. In addition, as silicon carbide for a plasma device, the higher the thermal conductivity is, the more preferable it is. As a material higher than 300 W / mK, single crystal silicon carbide is known, but this is not an industrial material. .

【0010】電気抵抗率は、10-2〜102 Ωcmの範
囲であることが好ましい。その理由は、電気抵抗率が1
2 Ωcmより高いと局部的に電荷がチャージされるた
めプラズマによりアタックを受けやすくプラズマにより
粒子が脱落し易いからであり、一方10-2Ωcmより低
い炭化珪素焼結体は、電荷の局部的なチャージを防ぐ上
からはなるべく低いほうが好ましく、炭化珪素焼結体の
電気抵抗率を低くする手段としては、炭化珪素の粒界に
導電材を多く入れる手段が考えられるが、この手段で
は、不純物増加により粒界が弱くなるという問題点があ
る。
The electric resistivity is preferably in the range of 10 -2 to 10 2 Ωcm. The reason is that the electrical resistivity is 1
If it is higher than 0 2 Ωcm, the electric charge is locally charged, so that it is easily attacked by the plasma and the particles are easily dropped off by the plasma. On the other hand, the silicon carbide sintered body lower than 10 −2 Ωcm has a low local electric charge. It is preferable to lower the electrical resistivity of the silicon carbide sintered body as much as possible from the viewpoint of preventing excessive charge. As a means for lowering the electrical resistivity of the silicon carbide sintered body, a means of adding a large amount of a conductive material to a grain boundary of silicon carbide can be considered. There is a problem that the grain boundary is weakened by the increase.

【0011】本発明の結晶粒径が大きく、熱伝導性およ
び電気伝導性の高い炭化珪素焼結体がプラズマ装置用と
して優れている理由は、耐プラズマ性においてプラズマ
にエッチングされ粒子が脱落し易いというウィークポイ
ントが、粒界を減らすために結晶粒径を大きく制御する
と同時に、プラズマ装置のプラズマ均一性を確保するた
めである。
The reason that the silicon carbide sintered body of the present invention having a large crystal grain size and high thermal conductivity and electric conductivity is excellent for a plasma device is that the particles are easily etched by plasma in plasma resistance and fall off easily. The weak point is to control the crystal grain size to a large extent in order to reduce the grain boundaries, and at the same time, to secure the plasma uniformity of the plasma device.

【0012】本発明の炭化珪素焼結体によれば、ホウ素
を0.15〜1.0重量%、またはアルミニウムを0.
5〜10重量%、さらに遊離炭素を0.5〜10重量%
含有していることにより、粒成長を促進させ、粒界が少
なくすることにより、緻密なプラズマ装置用炭化珪素焼
結体を得ることができる。
According to the silicon carbide sintered body of the present invention, 0.15 to 1.0% by weight of boron or 0.1% by weight of aluminum is used.
5 to 10% by weight, further free carbon is 0.5 to 10% by weight
The inclusion promotes grain growth and reduces the number of grain boundaries, so that a dense silicon carbide sintered body for a plasma device can be obtained.

【0013】また、上記組成の炭化珪素焼結体は、本発
明によれば以下の工程により得ることができる。 第1工程 平均粒径が2.0μm以下の炭化珪素であ
って、この粉末はα型、β型および/または非晶質炭化
珪素と不可避的不純物とからなる炭化珪素粉末である出
発原料であって、この粉末100重量部に対し、アルミ
ニウム、二ホウ化アルミニウム、炭化アルミニウム、窒
化アルミニウム、酸化アルミニウム、ホウ素、炭化ホウ
素、窒化ホウ素、酸化ホウ素、炭素のなかから選ばれる
いずれか1種または2種以上を0.3〜20重量部を均
一に混合する工程; 第2工程 前記第1工程により得られた混合物を成形
する工程;および 第3工程 前記第2工程により得られた成形体を20
00〜2400℃の温度範囲内で焼成する工程。
According to the present invention, a silicon carbide sintered body having the above composition can be obtained by the following steps. First Step Silicon carbide having an average particle size of 2.0 μm or less, and this powder is a starting material that is a silicon carbide powder composed of α-type, β-type and / or amorphous silicon carbide and unavoidable impurities. And with respect to 100 parts by weight of this powder, any one or two selected from aluminum, aluminum diboride, aluminum carbide, aluminum nitride, aluminum oxide, boron, boron carbide, boron nitride, boron oxide, and carbon A step of uniformly mixing 0.3 to 20 parts by weight of the above; a second step, a step of molding the mixture obtained in the first step; and a third step, the molding obtained in the second step is 20
Baking in the temperature range of 00 to 2400 ° C.

【0014】上記工程で出発原料の炭化珪素粉末の平均
粒径が2.0μm以上であると、焼結用助剤を添加して
も炭化珪素焼結体の緻密質化は起き難く,成長粒子の間
に気孔が残り、そこからプラズマのアタックを受けやす
いからである。また、焼成温度は2000〜2400℃
が好適であり、該焼成温度が2000℃より低いと構成
粒子の粒径を、20μmより大きくすることは困難であ
るばかりでなく気孔も残る。また、2400℃より高い
と、炭化珪素の分解が発生し構造体としての最低必要な
強度の劣化が発生するという問題点がある。
If the average particle size of the silicon carbide powder as the starting material in the above step is 2.0 μm or more, the densification of the silicon carbide sintered body hardly occurs even when a sintering aid is added, and This is because pores remain between them and plasma attack is apt to occur therefrom. The firing temperature is 2000-2400 ° C.
If the firing temperature is lower than 2000 ° C., it is difficult not only to make the particle diameter of the constituent particles larger than 20 μm, but also pores remain. On the other hand, when the temperature is higher than 2400 ° C., there is a problem that silicon carbide is decomposed and the minimum required strength of the structure is deteriorated.

【0015】[0015]

【発明の実施の形態】次に本発明を実施例および比較例
について説明する。
Next, the present invention will be described with reference to examples and comparative examples.

【0016】実施例1 出発原料として使用した炭化珪素微粉末には94.6重
量%がβ型結晶よりなるイビデン株式会社製ベ−タラン
ダム、1.5重量%のホウ素、3.6重量%の遊離炭素
を主として含有し、1.3μmの平均粒径を有してい
た。
Example 1 A silicon carbide fine powder used as a starting material was composed of 94.6% by weight of beta-type crystals, beta random, manufactured by Ibiden Co., Ltd., 1.5% by weight of boron, 3.6% by weight. Of free carbon, and had an average particle size of 1.3 μm.

【0017】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、顆粒化した後金属製押し型を用
いて50kg/cm2 の圧力で成形した。この生成形体
の密度は1.2g/cm3 であった。前記生成形体を外
気を遮断することのできる黒鉛製ルツボに装入し、タン
マン型焼成炉を使用して1気圧のアルゴンガス雰囲気中
で焼成した。なお、焼成は10℃/分で2300℃まで
昇温し、最高温度2300℃で2時間保持した。得られ
た焼結体の結晶構造は、結晶粒径の平均値(a+b)/
2が50μmの板状結晶が多方向に絡み合った三次元構
造を有しており、結晶粒径の平均値が20〜80μmの
板状結晶の含有率は全重量の62%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was collected, granulated, and then molded at a pressure of 50 kg / cm 2 using a metal mold. The density of this green compact was 1.2 g / cm 3 . The green compact was placed in a graphite crucible capable of shutting off outside air, and was fired in a 1-atmosphere argon gas atmosphere using a Tamman-type firing furnace. In the firing, the temperature was raised to 2300 ° C. at a rate of 10 ° C./min and kept at a maximum temperature of 2300 ° C. for 2 hours. The crystal structure of the obtained sintered body is represented by the average value of the crystal grain size (a + b) /
2 had a three-dimensional structure in which plate crystals of 50 μm were entangled in multiple directions, and the content of the plate crystals having an average crystal grain size of 20 to 80 μm was 62% of the total weight.

【0018】また、得られた焼結体の密度を測定したと
ころ、3.1g/cm2 であり、熱伝導率は150W/
mK、電気抵抗率は60Ωcmであった。焼結体に含有
されるホウ素は0.4重量%、遊離炭素は1.8重量%
であった。得られた焼結体表面をラップ研磨した後,超
純水にて洗浄乾燥され、パーティクルカウンターにて
0.5μm以上のパーティクルが0個/cm2 であるこ
とが確認された単結晶シリコンウエハー上に乗せ,30
0Wのアルゴンプラズマ装置にてアルゴンガス::酸素
ガス:フッ化炭素ガス=1:0.6:0.35の混合プ
ラズマガスを12時間焼結体に照射した。その後、シリ
コンウエハー上の0.5μm以上のパーティクルをカウ
ンターにて測定したところ0.3個/cm2 であった。
When the density of the obtained sintered body was measured, it was 3.1 g / cm 2 and the thermal conductivity was 150 W / cm 2.
mK and electric resistivity were 60 Ωcm. 0.4% by weight of boron contained in the sintered body and 1.8% by weight of free carbon
Met. The surface of the obtained sintered body was lapped and polished, washed and dried with ultrapure water, and measured on a single crystal silicon wafer having a particle counter of 0.5 μm or more particles of 0 / cm 2. And put on 30
The sintered body was irradiated with a mixed plasma gas of argon gas :: oxygen gas: carbon fluoride gas = 1: 0.6: 0.35 for 12 hours using a 0 W argon plasma apparatus. Thereafter, when particles of 0.5 μm or more on the silicon wafer were measured by a counter, it was 0.3 particles / cm 2 .

【0019】実施例2 出発原料として使用した炭化珪素微粉末は94.6重量
%がβ型結晶よりなり、10重量%のアルミニウム、
5.5重量%の遊離炭素を主として含有し、0.4μm
の平均粒径を有していた。
Example 2 The silicon carbide fine powder used as a starting material was composed of 94.6% by weight of β-type crystal, 10% by weight of aluminum,
Containing mainly 5.5% by weight of free carbon,
Average particle size.

【0020】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、実施例1と同様の方法で生成形
し、該生成形体を黒鉛製ルツボに装入し、タンマン型焼
成炉を使用して1気圧のアルゴンガス雰囲気中で焼成し
た。なお、焼成は15 ℃/分で2200℃まで昇温
し、最高温度2200℃で5時間保持した。得られた焼
結体の結晶構造は、結晶粒径の平均値(a+b)/2が
50μmの板状結晶が多方向に絡み合った三次元構造を
有しており、結晶粒径の平均値が20〜80μmの板状
結晶の含有率は全重量の78%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was sampled, formed in the same manner as in Example 1, charged into a graphite crucible, and fired in a 1-atmosphere argon gas atmosphere using a tanman type firing furnace. . In the firing, the temperature was raised to 2200 ° C. at a rate of 15 ° C./min and maintained at a maximum temperature of 2200 ° C. for 5 hours. The crystal structure of the obtained sintered body has a three-dimensional structure in which plate-like crystals having an average value of crystal grain size (a + b) / 2 of 50 μm are entangled in multiple directions. The content of the plate-like crystals of 20 to 80 μm was 78% of the total weight.

【0021】また、得られた焼結体の密度を測定したと
ころ、3.1g/cm2 であり、熱伝導率は170W/
mK、電気抵抗率は0.1Ωcmであった。焼結体に含
有されるアルミニウムは2.6重量%、遊離炭素は3.
2 重量%であった。さらに得られた焼結体を実施例1
と同様に研磨し,同様に、300Wのアルゴンプラズマ
装置にて混合プラズマガスを12時間焼結体に照射し
た。その後、シリコンウエハー上の0.5μm以上のパ
ーティクルをカウンターにて測定したところ0.2個/
cm2 であった。
When the density of the obtained sintered body was measured, it was 3.1 g / cm 2 and the thermal conductivity was 170 W / cm 2.
mK and electrical resistivity were 0.1 Ωcm. 2.6% by weight of aluminum contained in the sintered body and 3.
2% by weight. Further, the obtained sintered body was used in Example 1
Similarly, the sintered body was irradiated with a mixed plasma gas for 12 hours using a 300 W argon plasma apparatus. After that, particles having a size of 0.5 μm or more on the silicon wafer were measured by a counter to find that 0.2 particles /
cm 2 .

【0022】比較例1 出発原料として使用した炭化珪素微粉末は94.6重量
%がβ型結晶よりなり、0.1重量%のホウ素、1.2
重量%の遊離炭素を主として含有し、2.7μmの平均
粒径を有していた。
Comparative Example 1 The silicon carbide fine powder used as a starting material was composed of 94.6% by weight of β-type crystal, 0.1% by weight of boron and 1.2% by weight.
It mainly contained free carbon by weight and had an average particle size of 2.7 μm.

【0023】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、実施例1と同様の方法で生成形
し、該生成形体を黒鉛製ルツボに装入し、タンマン型焼
成炉を使用して1気圧のアルゴンガス雰囲気中で焼成し
た。なお、焼成は5℃/分で2100℃まで昇温し、最
高温度2300℃で5時間保持した。得られた焼結体の
結晶構造は、結晶粒径の平均値(a+b)/2が50μ
mの板状結晶が多方向に絡み合った三次元構造を有して
おり、結晶粒径の平均値が20〜80μmの板状結晶の
含有率は全重量の25%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was sampled, formed in the same manner as in Example 1, charged into a graphite crucible, and fired in a 1-atmosphere argon gas atmosphere using a tanman type firing furnace. . In the firing, the temperature was raised to 2100 ° C. at a rate of 5 ° C./min and maintained at a maximum temperature of 2300 ° C. for 5 hours. The crystal structure of the obtained sintered body is such that the average (a + b) / 2 of the crystal grain size is 50 μm.
m had a three-dimensional structure in which plate-shaped crystals were intertwined in multiple directions, and the content of plate-shaped crystals having an average crystal grain size of 20 to 80 μm was 25% of the total weight.

【0024】また、得られた焼結体の密度を測定したと
ころ、2.3g/cm2 であり、熱伝導率は35W/m
K、電気抵抗率は42000Ωcmであった。焼結体に
含有されるホウ素は0.05重量%、遊離炭素は1.0
重量%であった。さらに得られた焼結体を実施例1と同
様に研磨し,同様に、300Wのアルゴンプラズマ装置
にて混合プラズマガスを12時間焼結体に照射した。そ
の後、シリコンウエハー上の0.5μm以上のパーティ
クルをカウンターにて測定したところ61.8個/cm
2 であった。
When the density of the obtained sintered body was measured, it was 2.3 g / cm 2 and the thermal conductivity was 35 W / m 2.
K, the electrical resistivity was 42000 Ωcm. The sintered body contains 0.05% by weight of boron and 1.0% of free carbon.
% By weight. Further, the obtained sintered body was polished in the same manner as in Example 1, and similarly, the sintered body was irradiated with a mixed plasma gas for 12 hours using a 300 W argon plasma apparatus. Thereafter, when particles of 0.5 μm or more on the silicon wafer were measured by a counter, it was 61.8 particles / cm.
Was 2 .

【0025】比較例2 出発原料として使用した炭化珪素微粉末は94.6重量
%がβ型結晶よりなり、0.3重量%のアルミニウム、
3.0重量%の遊離炭素を主として含有し、1.7μm
の平均粒径を有していた。
Comparative Example 2 The silicon carbide fine powder used as a starting material was composed of 94.6% by weight of β-type crystal, 0.3% by weight of aluminum,
Mainly containing 3.0% by weight of free carbon, 1.7 μm
Average particle size.

【0026】前記炭化珪素微粉末100重量部に対し、
ポリビニルアルコ−ル5重量部、水300重量部を配合
し、ボ−ルミル中で5時間混合した後乾燥した。この乾
燥混合物を適量採取し、実施例1と同様の方法で生成形
し、該生成形体を黒鉛製ルツボに装入し、タンマン型焼
成炉を使用して1気圧のアルゴンガス雰囲気中で焼成し
た。なお、焼成は20℃/分で1800℃まで昇温し、
最高温度1800℃で1時間保持した。得られた焼結体
の結晶構造は、結晶粒径の平均値(a+b)/2が50
μmの板状結晶が多方向に絡み合った三次元構造を有し
ており、結晶粒径の平均値が20〜80μmの板状結晶
の含有率は全重量の30%であった。
With respect to 100 parts by weight of the silicon carbide fine powder,
5 parts by weight of polyvinyl alcohol and 300 parts by weight of water were mixed, mixed in a ball mill for 5 hours, and dried. An appropriate amount of the dried mixture was sampled, formed in the same manner as in Example 1, charged into a graphite crucible, and fired in a 1-atmosphere argon gas atmosphere using a tanman type firing furnace. . In addition, baking raises temperature to 1800 degreeC at 20 degreeC / min,
The temperature was kept at a maximum temperature of 1800 ° C. for 1 hour. The crystal structure of the obtained sintered body is such that the average value of the crystal grain size (a + b) / 2 is 50.
It had a three-dimensional structure in which plate-like crystals of μm were entangled in multiple directions, and the content of plate-like crystals having an average crystal grain size of 20 to 80 μm was 30% of the total weight.

【0027】また、得られた焼結体の密度を測定したと
ころ、2.0g/cm2 であり、熱伝導率は30W/m
K、電気抵抗率は18000 Ωcmであった。焼結体
に含有されるアルミニウムは0.09重量%、遊離炭素
は2.8重量%であった。さらに得られた焼結体を実施
例1と同様に研磨し、300Wのアルゴンガスプラズマ
装置にて混合プラズマガスを12時間焼結体に照射し
た。その後、シリコンウエハー上の0.5μm以上のパ
ーティクルをカウンターにて測定したところ29.8個
/cm2 であった。実施例1及び2、比較例1及び2の
実施条件及び結果を表1に示す。
When the density of the obtained sintered body was measured, it was 2.0 g / cm 2 and the thermal conductivity was 30 W / m 2.
K, the electrical resistivity was 18000 Ωcm. Aluminum contained in the sintered body was 0.09% by weight, and free carbon was 2.8% by weight. Further, the obtained sintered body was polished in the same manner as in Example 1, and the sintered body was irradiated with a mixed plasma gas for 12 hours using a 300 W argon gas plasma apparatus. After that, particles of 0.5 μm or more on the silicon wafer were measured by a counter to find that they were 29.8 particles / cm 2 . Table 1 shows the conditions and results of Examples 1 and 2 and Comparative Examples 1 and 2.

【0028】実施例3〜7 実施例1と同様であるが、表1に示した如き出発原料お
よび焼温速度でもって炭化珪素焼結体を製造した。な
お、実施例3及び実施例5において用いたα型炭化珪素
粉末には屋久島電工(株)製OY15を使用した。
Examples 3 to 7 The procedure of Example 1 was repeated, except that a sintered silicon carbide body was produced using the starting materials and the sintering temperature shown in Table 1. In addition, OY15 manufactured by Yakushima Electric Works, Ltd. was used for the α-type silicon carbide powder used in Examples 3 and 5.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】以上説明したように本発明のプラズマ装
置用炭化珪素焼結体及びプラズマ装置用炭化珪素焼結体
の製造方法によれば、密度が2.7g/cm3 以上、結
晶粒径の平均値が20μm以上、熱伝導率が80w/m
K以上、電気抵抗率が10-2〜102 Ωcmであるた
め、耐プラズマ性に優れた、即ち粒子脱落によるパーテ
ィクル汚染の発生が少なく、耐久性に優れたプラズマ装
置用炭化珪素焼結体を得ることができる。
As described above, according to the silicon carbide sintered body for a plasma apparatus and the method for manufacturing a silicon carbide sintered body for a plasma apparatus of the present invention, the density is 2.7 g / cm 3 or more and the crystal grain size is Has an average value of 20 μm or more and a thermal conductivity of 80 w / m.
K or more, the electrical resistivity is 10 −2 to 10 2 Ωcm, so that a silicon carbide sintered body for a plasma device having excellent plasma resistance, that is, less occurrence of particle contamination due to particle detachment, and excellent durability can be obtained. Obtainable.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密度が2.7g/cm3 以上、結晶粒径
の平均値が20μm以上、熱伝導率が80w/mK以
上、電気抵抗率が10-2〜102 Ωcmであることを特
徴とするプラズマ装置用炭化珪素焼結体。
1. A material having a density of 2.7 g / cm 3 or more, an average crystal grain size of 20 μm or more, a thermal conductivity of 80 w / mK or more, and an electric resistivity of 10 −2 to 10 2 Ωcm. A silicon carbide sintered body for a plasma device.
【請求項2】 ホウ素を0.15〜1.0重量%、遊離
炭素を0.5〜10重量%含有してなる請求項1記載の
プラズマ装置用炭化珪素焼結体。
2. The silicon carbide sintered body for a plasma device according to claim 1, comprising 0.15 to 1.0% by weight of boron and 0.5 to 10% by weight of free carbon.
【請求項3】 アルミニウムを0.5〜10重量%、遊
離炭素を0.5〜10重量%含有してなる請求項1記載
のプラズマ装置用炭化珪素焼結体。
3. The silicon carbide sintered body for a plasma device according to claim 1, comprising 0.5 to 10% by weight of aluminum and 0.5 to 10% by weight of free carbon.
【請求項4】 ホウ素、アルミニウム、遊離炭素以外の
不純物含有率が0.01重量%以下である請求項1記載
のプラズマ装置用炭化珪素焼結体。
4. The silicon carbide sintered body for a plasma device according to claim 1, wherein the content of impurities other than boron, aluminum and free carbon is 0.01% by weight or less.
【請求項5】 下記の第1工程〜第3工程のシ−ケンス
からなる密度が2.7g/cm3 以上、結晶粒径の平均
値が20μm以上、熱伝導率が80w/mK以上、電気
抵抗率が10-2〜102 Ωcmであるプラズマ装置用炭
化珪素焼結体の製造方法。 第1工程 平均粒径が2.0μm以下の炭化珪素であ
って、この粉末はα型、β型および/または非晶質炭化
珪素であって不可避的不純物の含有量が0.01重量%
以下の炭化珪素粉末100重量部に対し、アルミニウ
ム、二ホウ化アルミニウム、炭化アルミニウム、窒化ア
ルミニウム、酸化アルミニウム、ホウ素、炭化ホウ素、
窒化ホウ素、酸化ホウ素、炭素のなかから選ばれるいず
れか1種または2種以上を0.3〜20重量部を均一に
混合する工程; 第2工程 前記第1工程により得られた混合物を成形
する工程;および 第3工程 前記第2工程により得られた成形体を20
00〜2400℃の温度範囲内で焼成する工程。
5. The following first to third steps have a density of 2.7 g / cm 3 or more, an average crystal grain size of 20 μm or more, a thermal conductivity of 80 w / mK or more, A method for producing a silicon carbide sintered body for a plasma device having a resistivity of 10 -2 to 10 2 Ωcm. First Step: Silicon carbide having an average particle size of 2.0 μm or less, and this powder is α-type, β-type and / or amorphous silicon carbide, and has an unavoidable impurity content of 0.01% by weight.
For the following silicon carbide powder 100 parts by weight, aluminum, aluminum diboride, aluminum carbide, aluminum nitride, aluminum oxide, boron, boron carbide,
A step of uniformly mixing 0.3 to 20 parts by weight of one or more selected from boron nitride, boron oxide, and carbon; second step; molding the mixture obtained in the first step. And a third step. The molded body obtained in the second step is
Baking in the temperature range of 00 to 2400 ° C.
JP10032253A 1998-01-28 1998-01-28 Silicon carbide sintered compact for plasma apparatus and its production Pending JPH11217268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10032253A JPH11217268A (en) 1998-01-28 1998-01-28 Silicon carbide sintered compact for plasma apparatus and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10032253A JPH11217268A (en) 1998-01-28 1998-01-28 Silicon carbide sintered compact for plasma apparatus and its production

Publications (1)

Publication Number Publication Date
JPH11217268A true JPH11217268A (en) 1999-08-10

Family

ID=12353863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10032253A Pending JPH11217268A (en) 1998-01-28 1998-01-28 Silicon carbide sintered compact for plasma apparatus and its production

Country Status (1)

Country Link
JP (1) JPH11217268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280121B2 (en) 2015-03-31 2019-05-07 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus
KR102124766B1 (en) * 2019-12-31 2020-06-19 (주)삼양컴텍 Plasma processing apparatus and manufacturing method of the same
US11264214B2 (en) 2016-09-27 2022-03-01 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus, and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280121B2 (en) 2015-03-31 2019-05-07 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus
US11264214B2 (en) 2016-09-27 2022-03-01 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus, and production method therefor
KR102124766B1 (en) * 2019-12-31 2020-06-19 (주)삼양컴텍 Plasma processing apparatus and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
US7989380B2 (en) High resistivity SiC material with B, N and O as the only additions
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JPWO2019235594A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
KR101178234B1 (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
JP4493264B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
JP6982000B2 (en) Oriented AlN sintered body and its manufacturing method
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
KR101681184B1 (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
JPH11217268A (en) Silicon carbide sintered compact for plasma apparatus and its production
WO2019163710A1 (en) Composite sintered body, component of semiconductor manufacturing device and method for manufacturing composite sintered body
TWI385138B (en) Ceramic components and corrosion resistance components
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2006347802A (en) Low-thermal expansion/high-specific rigidity ceramic, its production method, and electrostatic chuck
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP5602820B2 (en) Manufacturing method of ZnO sintered body
JP2587854B2 (en) Method for producing aluminum nitride sintered body with improved thermal conductivity
JPH05178657A (en) Alumina group composite sintered body and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041105

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041126