JPH11199218A - Production of fine spherical silica for insulating material - Google Patents

Production of fine spherical silica for insulating material

Info

Publication number
JPH11199218A
JPH11199218A JP1346598A JP1346598A JPH11199218A JP H11199218 A JPH11199218 A JP H11199218A JP 1346598 A JP1346598 A JP 1346598A JP 1346598 A JP1346598 A JP 1346598A JP H11199218 A JPH11199218 A JP H11199218A
Authority
JP
Japan
Prior art keywords
silica
fine spherical
ppm
spherical silica
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1346598A
Other languages
Japanese (ja)
Other versions
JP3965536B2 (en
Inventor
Tatsuro Hirano
達郎 平野
Nobukazu Suzuki
伸和 鈴木
Toshio Shiobara
利夫 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATSUMORI KK
Shin Etsu Chemical Co Ltd
Original Assignee
TATSUMORI KK
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TATSUMORI KK, Shin Etsu Chemical Co Ltd filed Critical TATSUMORI KK
Priority to JP01346598A priority Critical patent/JP3965536B2/en
Publication of JPH11199218A publication Critical patent/JPH11199218A/en
Application granted granted Critical
Publication of JP3965536B2 publication Critical patent/JP3965536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely and highly purify fine spherical crude silica produced as a byproduct in large quantities at the time of heat-treating natural resources at a high temp., e.g. at the time of producing metallic silicon and to obtain high purity fine spherical silica at a low cost. SOLUTION: Fine spherical crude silica stock having <=2 μm average particle diameter and >=50 ppm amt. of alkali metallic elements at the time of extraction with pure water at 95 deg.C for 20 hr is heat-treated at a high temp. of >=500 deg.C in the presence of oxygen and then washed with an aq. mineral acid soln. to obtain the objective fine spherical silica containing <=20 ppm amt. of alkali metallic elements at the time of extraction with pure water at 95 deg.C for 20 hr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に金属珪素製造
時や火力発電所などの石炭等の燃料を熱処理させる際に
副生する微細球状粗シリカを高純度化して絶縁材料用と
して有効に使用されるシリカを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying fine spherical coarse silica, which is a by-product of heat treatment of coal and other fuels, particularly in the production of silicon metal or in a thermal power plant, for use as an insulating material. To a method for producing silica.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
微細な球状シリカはプラスチックフィルムのアンチブロ
ッキング材、塗料などの充填材、半導体用封止材の充填
材、エポキシポッティング材の充填材などに多量に使用
されている。しかし、1ミクロン前後の純度のよい微細
な球状シリカは簡単に製造することができないため、金
属珪素を高温で燃焼させて製造したり、球状シリカを製
造する際の副生物を使用しているのが現状である。その
ため量的な限界や価格の問題があり、多量に使用する用
途には対応できない。
2. Description of the Related Art
Fine spherical silica is used in a large amount as an antiblocking material for plastic films, a filler such as paint, a filler for semiconductor encapsulants, and a filler for epoxy potting materials. However, fine spherical silica with a purity of about 1 micron cannot be easily produced, so it is produced by burning metallic silicon at a high temperature or using by-products when producing spherical silica. Is the current situation. Therefore, there is a problem of a quantity limit and a price, and it cannot cope with an application used in large quantities.

【0003】また、微細球状シリカとしては、金属珪素
等を製造する際に大量に副生するシリカフラワーやフラ
イアッシュと呼ばれている微細球状シリカが存在する
が、これは純度が悪く、絶縁材料の充填材としては使用
できないものである。
[0003] As the fine spherical silica, there is a fine spherical silica called a silica flower or fly ash which is produced as a by-product in a large amount when producing metal silicon or the like. It cannot be used as a filler.

【0004】本発明は上記事情に鑑みなされたもので、
上記のような副生シリカ等の粗シリカより絶縁材料用と
して使用される高純度の微細球状シリカを安定してしか
も低コストで製造する方法を提供することを目的とす
る。
[0004] The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a method for producing high-purity fine spherical silica, which is used as an insulating material more stably than coarse silica such as by-product silica as described above, at a low cost.

【0005】[0005]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、シリカフラワーやフライアッシュと呼ばれている微
細球状シリカを500℃以上の高温で空気中などのよう
な酸素の存在下で熱処理した後、鉱酸水溶液で洗浄する
ことにより、95℃で20時間純水で抽出したときのア
ルカリ金属元素量が20ppm以下という高純度の微細
球状シリカが得られ、このシリカが絶縁材料用として各
種充填材に有効に使用されること、そして上記方法によ
り高純度微細球状シリカの供給の安定化と低コスト化の
両立が計られることを見出し、本発明を完成するに至っ
たものである。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, have obtained fine spherical silica called silica flour or fly ash of 500 ° C. or more. After high-temperature heat treatment in the presence of oxygen such as in the air, and then washed with a mineral acid aqueous solution, the amount of alkali metal elements when extracted with pure water at 95 ° C. for 20 hours is 20 ppm or less. Fine spherical silica is obtained, this silica is effectively used for various fillers for insulating materials, and the above-mentioned method is intended to achieve both stable supply of high-purity fine spherical silica and low cost. This has led to the completion of the present invention.

【0006】即ち、本発明は、平均粒径が2μm以下で
あり、95℃で20時間純水で抽出したときのアルカリ
金属元素量が50ppm以上である微細球状粗シリカ原
料を500℃以上の高温で酸素存在下で熱処理した後、
鉱酸水溶液で洗浄することを特徴とする、95℃で20
時間純水抽出したときのアルカリ金属元素量が20pp
m以下である絶縁材料用微細球状シリカの製造方法を提
供する。
That is, the present invention provides a method for producing a fine spherical coarse silica raw material having an average particle size of 2 μm or less and an alkali metal element content of 50 ppm or more when extracted with pure water at 95 ° C. for 20 hours. After heat treatment in the presence of oxygen at
Washing at 95 ° C., characterized by washing with aqueous mineral acid
20 pp of alkali metal when extracted with pure water for 20 hours
m is provided.

【0007】以下、本発明につき更に詳しく説明する。
本発明の絶縁材料用微細球状シリカを得るための原料
は、平均粒径が2μm以下、特に0.2〜1μm程度で
あり、95℃で20時間純水で抽出したときのアルカリ
金属元素量が50ppm以上、特に100ppm以上で
あり、またカーボン付着量が特に0.1〜5重量%、と
りわけ0.1〜0.5重量%の微細球状粗シリカであ
る。
Hereinafter, the present invention will be described in more detail.
The raw material for obtaining the fine spherical silica for an insulating material of the present invention has an average particle diameter of 2 μm or less, particularly about 0.2 to 1 μm, and has an alkali metal element amount when extracted with pure water at 95 ° C. for 20 hours. Fine spherical coarse silica having 50 ppm or more, particularly 100 ppm or more, and having a carbon adhesion amount of 0.1 to 5% by weight, particularly 0.1 to 0.5% by weight.

【0008】なお、本発明において、上記アルカリ金属
元素量は、具体的には、試料10gを250ccのプラ
スチック容器に入れ、純水100ccを加え、30分間
振盪後、95℃の恒温槽で20時間放置し、次いで試料
を分離した後の抽出水中のアルカリ金属イオン量をイオ
ンクロマトグラフィーにより測定した値である。
In the present invention, the amount of the alkali metal element is specifically determined by placing 10 g of a sample in a 250 cc plastic container, adding 100 cc of pure water, shaking for 30 minutes, and then in a thermostat at 95 ° C. for 20 hours. This is a value obtained by measuring the amount of alkali metal ions in the extraction water after leaving the sample to stand and then separating the sample by ion chromatography.

【0009】上記の粗シリカとしては、シリカフラワー
やフライアッシュとも呼ばれる金属珪素製造時や火力発
電所などの石炭等の燃料を熱処理させる際等に大量に副
生するものが好適に用いられる。これは、粒度としては
平均粒径が0.7μmで、ほとんどの粒子が20μm以
下のものである。また、比表面積は20m2/gと大き
く、ほとんど全ての粒子が真球状のシリカからなってい
るものである。なお、この平均粒径は例えばレーザー光
回折などの手法による粒度分布計による重量平均値等と
して求めることができ、また比表面積はBET吸着法に
より求めることができる。このシリカフラワーは、表面
が灰黒色で、95℃で20時間純水で抽出すると50〜
200ppm程度のアルカリ金属元素が存在し、電気伝
導度も200〜400μs/cm程度と純度が非常に悪
いため、電気絶縁用や半導体用には使用できないもので
ある。
[0009] As the above-mentioned coarse silica, those which are by-produced in a large amount when producing metal silicon, also called silica flour or fly ash, or when heat-treating fuel such as coal in a thermal power plant are preferably used. This means that the average particle size is 0.7 μm, and most of the particles are 20 μm or less. The specific surface area is as large as 20 m 2 / g, and almost all the particles are made of true spherical silica. The average particle size can be obtained as a weight average value by a particle size distribution analyzer using a method such as laser light diffraction, and the specific surface area can be obtained by a BET adsorption method. This silica flower has a gray-black surface, and when extracted with pure water at 95 ° C. for 20 hours, 50-
Since about 200 ppm of an alkali metal element is present and its electric conductivity is very poor, about 200 to 400 μs / cm, it cannot be used for electrical insulation or semiconductors.

【0010】本発明においては、上記のような粗シリカ
原料を500℃で空気を通すなどの酸素の存在下で熱処
理し、次いで鉱酸水溶液で洗浄するものである。
In the present invention, the above crude silica raw material is heat-treated at 500 ° C. in the presence of oxygen, such as by passing air through, and then washed with a mineral acid aqueous solution.

【0011】即ち、上記のようなシリカ表面は金属珪素
製造時の還元処理に使用する還元剤であるカーボンで薄
く覆われている。このカーボンを除去するため種々の温
度条件と空気の流量を調整し、熱処理した結果、熱処理
温度は500℃以上で、空気流量としては1L/分あれ
ば容易に表面に付着したカーボンを除去できることがわ
かった。熱処理時間としては、熱処理温度にもよるが、
30分〜10時間あれば十分である。特に、熱処理温度
が800℃以上であれば5時間以下でよい。熱処理温度
としては500℃以上あれば問題はないが、より望まし
くは800℃以上である。また空気の流量も望ましくは
5L/分以上がよい。500℃より低温で、空気流量が
0.5L/分未満の条件では完全にシリカ表面のカーボ
ンを除去できず、この種のシリカを使用した電気絶縁材
料の電気絶縁性が不足し、性能の低下となってしまう。
That is, the silica surface as described above is thinly covered with carbon, which is a reducing agent used in a reduction treatment in the production of metallic silicon. As a result of adjusting various temperature conditions and the flow rate of air in order to remove this carbon, and performing a heat treatment, the carbon deposited on the surface can be easily removed if the heat treatment temperature is 500 ° C. or more and the air flow rate is 1 L / min. all right. The heat treatment time depends on the heat treatment temperature,
30 minutes to 10 hours is sufficient. In particular, if the heat treatment temperature is 800 ° C. or more, it may be 5 hours or less. There is no problem if the heat treatment temperature is 500 ° C. or higher, but more preferably 800 ° C. or higher. The flow rate of air is desirably 5 L / min or more. If the temperature is lower than 500 ° C. and the air flow rate is less than 0.5 L / min, the carbon on the silica surface cannot be completely removed, and the electrical insulating material using this type of silica has insufficient electrical insulation, resulting in reduced performance. Will be.

【0012】本発明においては、上記のように粗シリカ
を熱処理し、シリカ表面に付着したカーボンを除去し、
その後鉱酸で洗浄処理することで、アルカリ金属元素を
除去するものである。
In the present invention, the coarse silica is heat-treated as described above to remove carbon adhering to the silica surface,
Thereafter, a washing treatment with a mineral acid is performed to remove the alkali metal element.

【0013】即ち、通常、アルカリ金属元素は塩酸、硫
酸、硝酸等の水溶液で洗浄すれば容易に除去できると思
われるが、本発明で使用するシリカフラワーと呼ばれて
いる微細球状シリカの場合、洗浄のみではほとんど除去
できないことがわかった。この原因について種々調査し
た結果、シリカ表面にカーボンの皮膜が付着しているこ
とから洗浄してもカーボン皮膜の内側に存在するアルカ
リ金属元素を除去できてなかったものである。従って以
上の検討より、本発明では鉱酸処理前に予め500℃以
上の温度で熱処理することが必要なものである。
That is, usually, it is thought that the alkali metal element can be easily removed by washing with an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid or the like. In the case of fine spherical silica called silica flour used in the present invention, It was found that it could hardly be removed only by washing. As a result of various investigations as to the cause, it was found that the alkali metal element existing inside the carbon film could not be removed even after washing because the carbon film adhered to the silica surface. Therefore, from the above examination, in the present invention, it is necessary to perform a heat treatment at a temperature of 500 ° C. or more before the mineral acid treatment.

【0014】ここで、洗浄する際の鉱酸の濃度としては
1%(重量%、以下同じ)以上の水溶液、望ましくは1
0%以上の水溶液である。鉱酸としては後処理等も考慮
した場合、塩酸、硝酸、硫酸が好適であり、特に塩酸が
望ましい。洗浄は熱処理したシリカ1kgに対し500
g〜5kgの鉱酸水溶液で撹拌混合するだけでよい。撹
拌時間は30分以上あれば十分である。またその際の温
度は作業性やコストの面より室温〜90℃程度あればよ
く、特に温度については限定されるものではない。
Here, the concentration of the mineral acid at the time of washing is 1% (% by weight, the same applies hereinafter) or more, preferably 1% or more.
It is an aqueous solution of 0% or more. In view of the post treatment and the like, the mineral acid is preferably hydrochloric acid, nitric acid, or sulfuric acid, and particularly preferably hydrochloric acid. Washing is 500 per kg of heat-treated silica.
All that is required is to stir and mix with g-5 kg of the mineral acid aqueous solution. A stirring time of at least 30 minutes is sufficient. The temperature at that time may be about room temperature to about 90 ° C. from the viewpoint of workability and cost, and the temperature is not particularly limited.

【0015】洗浄後、シリカを遠心分離や濾過で鉱酸水
溶液と分離する。その後、付着した鉱酸を除去するため
純水で洗浄し、洗浄後のpHが中性になるまで繰り返し
洗浄する。洗浄後、シリカを乾燥させる。乾燥させる際
に、生成したシリカ凝集物は粉砕器で粉砕しスクリーン
で篩うことで凝集物をなくすことができる。
After washing, the silica is separated from the aqueous mineral acid solution by centrifugation or filtration. Thereafter, the substrate is washed with pure water to remove the attached mineral acid, and washed repeatedly until the pH after washing becomes neutral. After washing, the silica is dried. At the time of drying, the formed silica aggregates can be eliminated by crushing with a crusher and sieving with a screen.

【0016】以上のような処理により、アルカリ金属元
素の少ない高純度の微細球状シリカを製造することがで
きる。即ち、得られたシリカは95℃で20時間純水で
抽出した際のアルカリ金属元素量が合計で20ppm以
下、好ましくは15ppm以下、特には0.01〜13
pmを有するものである。この場合、同抽出条件におけ
る抽出水の電気伝導度が10μs/cm以下、特に7μ
s/cm以下、とりわけ0.1〜6μs/cmであるこ
とが好ましい。
By the above-mentioned treatment, high-purity fine spherical silica containing less alkali metal elements can be produced. That is, when the obtained silica is extracted with pure water at 95 ° C. for 20 hours, the total amount of alkali metal elements is 20 ppm or less, preferably 15 ppm or less, particularly 0.01 to 13 ppm.
pm. In this case, the electric conductivity of the extraction water under the same extraction conditions is 10 μs / cm or less, particularly 7 μs / cm.
It is preferably s / cm or less, particularly preferably 0.1 to 6 μs / cm.

【0017】ここで得られた微細球状シリカは電気絶縁
材料、半導体封止材、塗料の充填材、或いは液晶用のス
ペーサーなどに利用可能である。
The fine spherical silica obtained here can be used as an electric insulating material, a semiconductor sealing material, a filler for paint, a spacer for liquid crystal, and the like.

【0018】[0018]

【発明の効果】本発明によれば、金属珪素の製造時等、
天然資源を高温で熱処理する際に多量に副生する微細球
状粗シリカを確実に高純度化することができ、本発明に
より低コストで純度のよい微細な球状シリカを得ること
ができるものである。
According to the present invention, when producing metallic silicon, etc.
It is possible to reliably purify fine spherical coarse silica, which is produced as a large amount when heat-treating natural resources at high temperatures, and to obtain fine spherical silica with good purity at low cost according to the present invention. .

【0019】[0019]

【実施例】以下、実施例と比較例を示し、本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。なお、下記例において、抽出水純度は下記
のようにして測定した。
EXAMPLES The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples. In the following examples, the purity of the extracted water was measured as follows.

【0020】〔抽出水純度〕 抽出水電気伝導度、pH、イオン性不純物:試料10g
を250ccのポリ瓶にとり、純水100ccを加え3
0分間振盪した後、95℃の恒温槽で20時間処理し抽
出した。その後、抽出液を分離し、純度測定を行った。
この場合、イオン性不純物はダイオネックス製DX10
0イオンクロマトで分析した。抽出水電気伝導度は東亜
電波工業のCM−50ATで、pHは同社製HM−50
ATで測定を行った。
[Extraction Water Purity] Extraction water electric conductivity, pH, ionic impurities: 10 g sample
In a 250 cc plastic bottle, add 100 cc of pure water and add
After shaking for 0 minutes, the mixture was extracted in a 95 ° C. constant temperature bath for 20 hours. Thereafter, the extract was separated and the purity was measured.
In this case, the ionic impurities are DX10 manufactured by Dionex.
Analysis was performed by zero ion chromatography. The electric conductivity of the extracted water is CM-50AT of Toa Denpa Kogyo, and the pH is HM-50 manufactured by the company.
The measurement was performed at AT.

【0021】〔実施例1〜4、比較例1〜5〕マイクロ
シリカ971(エルケム社製)20gを表1に示す条件
で熱処理した後、10%の塩酸水溶液100mlで室温
下30分撹拌しながら洗浄した。洗浄後、pHが中性に
なるまで純水で更に洗浄し、120℃で2時間乾燥し、
高純度シリカを得た。なお、処理前のマイクロシリカの
表面カーボン付着量は0.22重量%、95℃で20時
間抽出した際のナトリウムイオンとカリウムイオンは8
2ppmと148ppmであった。また、その平均粒径
は、0.6μmであった。
[Examples 1 to 4, Comparative Examples 1 to 5] After heat-treating 20 g of Microsilica 971 (manufactured by Elchem) under the conditions shown in Table 1, stirring was carried out at room temperature for 30 minutes with 100 ml of a 10% hydrochloric acid aqueous solution. Washed. After the washing, further washing with pure water until the pH becomes neutral, and drying at 120 ° C. for 2 hours,
High purity silica was obtained. The surface carbon deposition amount of the microsilica before the treatment was 0.22% by weight, and sodium ions and potassium ions when extracted at 95 ° C. for 20 hours were 8%.
They were 2 ppm and 148 ppm. The average particle size was 0.6 μm.

【0022】[0022]

【表1】 [Table 1]

【0023】〔実施例5〜8、比較例6,7〕実施例2
の条件で熱処理したマイクロシリカ971を用い、表2
に示す条件で鉱酸洗浄を行い、アルカリ金属元素の除去
を行った。
[Examples 5 to 8, Comparative Examples 6 and 7] Example 2
Table 2 using micro silica 971 heat treated under the conditions of
Under the conditions shown in (1), mineral acid cleaning was performed to remove alkali metal elements.

【0024】[0024]

【表2】 [Table 2]

【0025】〔参考例〕実施例5の条件で洗浄処理した
マイクロシリカと通常市販されている溶融球状シリカを
1:9の割合で混合したシリカ400重量部、エポキシ
クレゾールノボラック樹脂66重量部、硬化剤としてフ
ェノールノボラック樹脂32重量部、臭素化エポキシ樹
脂2重量部、離型剤としてカルナバワックス1重量部、
三酸化アンチモン10重量部、触媒としてトリフェニル
ホスフィン0.7重量部、更にカップリング剤としてγ
−グリシドキシトリメトキシシラン1重量部を配合し、
高速で撹拌混合した後、加熱二本ロールで5分間混練す
ることで、半導体封止用エポキシ樹脂組成物(1)を得
た。また、比較のため従来から知られている微細球状シ
リカ(SO25R:アドマテックス製)を市販されてい
る上記と同じ溶融球状シリカに実施例と同様に添加し、
実施例と同じ配合で半導体封止用エポキシ樹脂組成物
(2)を得た。更に、全く微細球状シリカを含有しない
溶融球状シリカを充填材としたほかはエポキシ樹脂組成
物(1)と全く同じ配合でエポキシ樹脂組成物を得た。
なお、上記微細球状シリカ(SO25R)の平均粒径は
0.5μm、95℃で25時間抽出した際のナトリウム
イオンとカリウムイオンは1ppmと2ppmであっ
た。
REFERENCE EXAMPLE 400 parts by weight of silica obtained by mixing micro silica washed under the conditions of Example 5 and a commercially available fused spherical silica at a ratio of 1: 9, 66 parts by weight of epoxy cresol novolak resin, and curing 32 parts by weight of phenol novolak resin, 2 parts by weight of brominated epoxy resin, 1 part by weight of carnauba wax as a release agent,
10 parts by weight of antimony trioxide, 0.7 parts by weight of triphenylphosphine as a catalyst, and γ as a coupling agent
Blending 1 part by weight of glycidoxytrimethoxysilane,
After stirring and mixing at high speed, the mixture was kneaded with a heated two-roll for 5 minutes to obtain an epoxy resin composition for semiconductor encapsulation (1). For comparison, a conventionally known fine spherical silica (SO25R: manufactured by Admatechs) was added to the same commercially available fused spherical silica as described above,
An epoxy resin composition for semiconductor encapsulation (2) was obtained with the same composition as in the example. Furthermore, an epoxy resin composition was obtained with exactly the same composition as the epoxy resin composition (1), except that a fused spherical silica containing no fine spherical silica was used as a filler.
The fine spherical silica (SO25R) had an average particle size of 0.5 μm, and sodium and potassium ions were 1 ppm and 2 ppm when extracted at 95 ° C. for 25 hours.

【0026】次に、ここで得られたエポキシ樹脂組成物
のスパイラルフロー、ゲル化時間、バリ特性を下記方法
で調べた。その結果を表3に示す。 (イ)スパイラルフロー EMMI規格に準じた金型を使用して175℃、70k
g/cm2、成形時間120秒の条件で測定した。 (ロ)ゲル化時間 組成物のゲル化時間を175℃の熱板上で測定した。 (ハ)バリ特性 175℃、70kg/cm2の成形圧力で成形した際、
それぞれの溝に流出した樹脂の長さを測定しバリ長さと
した。
Next, the epoxy resin composition thus obtained was examined for spiral flow, gel time, and burr characteristics by the following methods. Table 3 shows the results. (A) Spiral flow 175 ° C, 70k using a mold conforming to EMMI standard
g / cm 2 and molding time 120 seconds. (B) Gelation time The gelation time of the composition was measured on a hot plate at 175 ° C. (C) Burr characteristics When molded at 175 ° C. and a molding pressure of 70 kg / cm 2 ,
The length of the resin flowing into each groove was measured and defined as the burr length.

【0027】[0027]

【表3】 [Table 3]

【0028】表3の結果から、本発明の高純度化した微
細球状シリカは従来のものと同等の性能を有しているこ
とが明らかである。
From the results shown in Table 3, it is clear that the highly purified fine spherical silica of the present invention has the same performance as the conventional one.

【0029】また、耐湿信頼性測定用テスト素子を20
ピンSOJフレームに接着し、エポキシ樹脂組成物
(1)と(2)で175℃、2分で成形した後、180
℃で4時間ポストキュアーした。これを121℃のプレ
ッシャークッカー中に1000時間放置した後のアルミ
ニウム配線の腐食による断線不良率を測定した。結果は
いずれの樹脂組成物で封止したデバイスとも全く不良は
発生していなかった。従って、本発明で得られたシリカ
は耐湿信頼性の上でも良好であることが認められた。
Also, the test element for measuring the humidity resistance reliability is 20
After bonding to a pin SOJ frame and molding at 175 ° C. for 2 minutes with epoxy resin compositions (1) and (2), 180
Post-cured at 4 ° C. for 4 hours. After leaving it in a pressure cooker at 121 ° C. for 1000 hours, the disconnection defect rate due to corrosion of the aluminum wiring was measured. As a result, no defect occurred in any of the devices sealed with any of the resin compositions. Therefore, it was recognized that the silica obtained in the present invention was excellent in moisture resistance reliability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩原 利夫 群馬県碓氷郡松井田町大字人見1番地10 信越化学工業株式会社シリコーン電子材料 技術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshio Shiohara 1-10 Hitomi, Matsuida-cho, Usui-gun, Gunma Prefecture, Japan Silicone Electronic Materials Technology Laboratory, Shin-Etsu Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が2μm以下であり、95℃で
20時間純水で抽出したときのアルカリ金属元素量が5
0ppm以上である微細球状粗シリカ原料を500℃以
上の高温で酸素存在下で熱処理した後、鉱酸水溶液で洗
浄することを特徴とする、95℃で20時間純水抽出し
たときのアルカリ金属元素量が20ppm以下である絶
縁材料用微細球状シリカの製造方法。
An average particle size is 2 μm or less, and the amount of an alkali metal element when extracted with pure water at 95 ° C. for 20 hours is 5 μm.
An alkali metal element when extracted with pure water at 95 ° C. for 20 hours, after heat-treating a fine spherical coarse silica raw material having 0 ppm or more at a high temperature of 500 ° C. or more in the presence of oxygen and then washing with a mineral acid aqueous solution. A method for producing fine spherical silica for an insulating material having an amount of 20 ppm or less.
【請求項2】 上記粗シリカ原料が金属珪素の製造時に
副生するシリカである請求項1記載の製造方法。
2. The method according to claim 1, wherein the crude silica raw material is silica by-produced during the production of metallic silicon.
JP01346598A 1998-01-07 1998-01-07 Method for producing fine spherical silica for insulating material Expired - Lifetime JP3965536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01346598A JP3965536B2 (en) 1998-01-07 1998-01-07 Method for producing fine spherical silica for insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01346598A JP3965536B2 (en) 1998-01-07 1998-01-07 Method for producing fine spherical silica for insulating material

Publications (2)

Publication Number Publication Date
JPH11199218A true JPH11199218A (en) 1999-07-27
JP3965536B2 JP3965536B2 (en) 2007-08-29

Family

ID=11833902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01346598A Expired - Lifetime JP3965536B2 (en) 1998-01-07 1998-01-07 Method for producing fine spherical silica for insulating material

Country Status (1)

Country Link
JP (1) JP3965536B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098803A1 (en) * 2003-05-08 2004-11-18 Nitto Denko Corporation Fly ash powder, method for producing the same, and resin composition for sealing semiconductor using the same, and semiconductor device
JP2007099548A (en) * 2005-10-03 2007-04-19 Shikoku Res Inst Inc Method of manufacturing silica powder and silica powder obtained by the same
JP2007211252A (en) * 2007-04-23 2007-08-23 Nitto Denko Corp Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same
JP2008257977A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating composition for voltage equipment
JP2008257978A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating composition for high voltage equipment
JP2009099333A (en) * 2007-10-16 2009-05-07 Meidensha Corp Insulating composition for high-voltage device
WO2019050008A1 (en) * 2017-09-07 2019-03-14 日産化学株式会社 Silica-containing insulating composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098803A1 (en) * 2003-05-08 2004-11-18 Nitto Denko Corporation Fly ash powder, method for producing the same, and resin composition for sealing semiconductor using the same, and semiconductor device
EP1627694A4 (en) * 2003-05-08 2009-01-07 Nitto Denko Corp Fly ash powder, method for producing the same, and resin composition for sealing semiconductor using the same, and semiconductor device
JP2007099548A (en) * 2005-10-03 2007-04-19 Shikoku Res Inst Inc Method of manufacturing silica powder and silica powder obtained by the same
JP2008257977A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating composition for voltage equipment
JP2008257978A (en) * 2007-04-04 2008-10-23 Meidensha Corp Insulating composition for high voltage equipment
JP2007211252A (en) * 2007-04-23 2007-08-23 Nitto Denko Corp Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same
JP2009099333A (en) * 2007-10-16 2009-05-07 Meidensha Corp Insulating composition for high-voltage device
WO2019050008A1 (en) * 2017-09-07 2019-03-14 日産化学株式会社 Silica-containing insulating composition
KR20200051645A (en) * 2017-09-07 2020-05-13 닛산 가가쿠 가부시키가이샤 Silica-containing insulating composition
JPWO2019050008A1 (en) * 2017-09-07 2020-11-05 日産化学株式会社 Silica-containing insulating composition
US11961636B2 (en) 2017-09-07 2024-04-16 Nissan Chemical Corporation Silica-containing insulating composition

Also Published As

Publication number Publication date
JP3965536B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JPS627212B2 (en)
JPH11199218A (en) Production of fine spherical silica for insulating material
KR20090104000A (en) Amorphous silica powder, method for production thereof, and semiconductor sealing material
JP2005281063A (en) High purity spherical alumina powder, method for manufacturing the same and composition
JPWO2009017170A1 (en) Alumina powder, method for producing the same, and composition using the same
JPS6119625A (en) Epoxy resin composition for sealing semiconductor
JPH08245214A (en) Silica fine powder, its production, and epoxy resin composition for sealing semiconductor
JPS6173725A (en) Epoxy resin composition
JP2007211252A (en) Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same
JPS58174434A (en) Epoxy resin molding material
JP3367947B2 (en) Epoxy resin-based black titanium oxide masterbatch and method for producing the same
JP3985028B2 (en) Production method of fly ash powder
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JPH0496929A (en) Epoxy resin composition and semiconductor device
JP2000003982A (en) Liquid sealing material fused spherical silica and liquid sealing resin composition
JP3261845B2 (en) Semiconductor device
JP2649054B2 (en) Particulate inorganic composite and method for producing the same
JP2002060589A (en) Epoxy resin composition for sealing semiconducor and semiconductor device
JP2000248153A (en) Epoxy resin composition and ferroelectric memory device
JPH11293089A (en) Epoxy resin composition and ferroelectrics memory device
JPS63248712A (en) Inorganic filler and production thereof
JPH0841294A (en) Insulating resin paste and semiconductor apparatus
JPH11158354A (en) Resin composition for sealing and resin-sealed semiconductor device
JP2655833B2 (en) Semiconductor device
JPH0362845A (en) Semiconductor-sealing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term