JP2009099333A - Insulating composition for high-voltage device - Google Patents

Insulating composition for high-voltage device Download PDF

Info

Publication number
JP2009099333A
JP2009099333A JP2007268481A JP2007268481A JP2009099333A JP 2009099333 A JP2009099333 A JP 2009099333A JP 2007268481 A JP2007268481 A JP 2007268481A JP 2007268481 A JP2007268481 A JP 2007268481A JP 2009099333 A JP2009099333 A JP 2009099333A
Authority
JP
Japan
Prior art keywords
coal ash
epoxy resin
insulating
insulating composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007268481A
Other languages
Japanese (ja)
Other versions
JP5110689B2 (en
Inventor
Yasuyuki Kurata
保幸 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2007268481A priority Critical patent/JP5110689B2/en
Publication of JP2009099333A publication Critical patent/JP2009099333A/en
Application granted granted Critical
Publication of JP5110689B2 publication Critical patent/JP5110689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To give an electrical physical property as well as contribution to global environment conservation in an insulative composition using an insulative material made of epoxy resin, coal ash or the like; to also give a sufficient mechanical physical property as an insulative composition; and to also raise manufacturing efficiency of the insulative composition. <P>SOLUTION: The insulative composition for a high-voltage device is used for an insulated structure of the high-voltage device obtained by heating and hardening an insulating material made of a mixture of at least the epoxy resin (epoxidized linseed oil or the like), the coal ash (fly ash or the like), and a curing agent. The coal ash is surface-processed by a heat-vaporized surface finishing agent (a silane coupling agent or the like) for improving compatibility between the epoxy resin and the coal ash under a heating and decompressed atmosphere, and is mixed (for example, a mixture of 100 phr epoxy resin and 500 to 550 phr coal ash) after preheating (for example, preheating at 150 to 180°C). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高電圧機器用絶縁性組成物に関するものであって、例えば筐体内に遮断器や断路器等の開閉機器を備えた高電圧機器(重電機器等)の絶縁構成に用いられるものである。   The present invention relates to an insulating composition for high-voltage equipment, and is used for an insulating configuration of a high-voltage equipment (such as heavy electrical equipment) provided with a switchgear such as a circuit breaker or disconnector in a housing. It is.

筐体内に遮断器や断路器等の開閉機器を備えた高電圧機器(重電機器等)の絶縁構成(例えば、絶縁性を要する部位)に適用(例えば、屋外に直接暴露して適用)されるものとしては、化石原料(石油等)由来のエポキシ樹脂等の熱硬化性樹脂(石油等を出発物質とした樹脂)をマトリックスとし硬化剤,充填剤(例えば、多量のエネルギーを消費して精錬されたシリカ,アルミナ等の無機充填剤)等の各種添加剤を適宜混合して得た絶縁材料を加熱硬化した組成物(以下、絶縁性組成物と称する)、例えば該絶縁材料を注型して成る絶縁性組成物により構成された製品(モールド注型品;以下、絶縁性製品と称する)が、従来から広く知られている(例えば、特許文献1)。なお、絶縁材料の各成分においては、混合工程の前に適宜予熱することにより、該混合性を良好(例えば、混合物の粘度の低減)にしたり、その後段の硬化工程に係る硬化時間等の短縮化を図ることができ、製造効率が向上することが知られている。   Applicable to high voltage equipment (heavy electrical equipment, etc.) with insulation equipment (such as heavy electrical equipment) equipped with switching devices such as circuit breakers and disconnectors in the housing (for example, directly exposed to the outdoors) As a material, a thermosetting resin such as an epoxy resin derived from a fossil raw material (petroleum, etc.) (a resin starting from petroleum, etc.) is used as a matrix, and a hardener and filler (for example, a large amount of energy is consumed for refining). A composition obtained by heat-curing an insulating material obtained by appropriately mixing various additives such as silica, alumina and the like (hereinafter referred to as an insulating composition), for example, casting the insulating material. A product (mold cast product; hereinafter referred to as an insulating product) made of an insulating composition is widely known (for example, Patent Document 1). In addition, each component of the insulating material is appropriately preheated before the mixing step to improve the mixing property (for example, reduce the viscosity of the mixture) or shorten the curing time and the like related to the subsequent curing step. It is known that the production efficiency can be improved.

また、社会の高度化・集中化に伴って、高電圧機器等の大容量化,小型化や高い物性(例えば、電気的物性(絶縁破壊電界特性等),機械的物性(曲げ強度等))等が強く要求されると共に、前記の絶縁性製品に対しても種々の特性の向上が要求されてきた。例えば、絶縁性製品の物性を左右する熱硬化性樹脂として、化石原料由来物質(限りある資源)が多く利用されてきたことから、地球環境保全(省エネルギー化,CO2排出抑制による温暖化防止等)を考慮して、処分対象である絶縁性製品(例えば、寿命,故障等によって処分される製品)を回収し再利用(リサイクル)する試みが行われている。 In addition, with the sophistication and concentration of society, the capacity, size, and high physical properties of high-voltage devices (for example, electrical properties (dielectric breakdown field properties, etc.), mechanical properties (bending strength, etc.)) Etc. have been strongly demanded, and improvement of various characteristics has been demanded for the insulating products. For example, because fossil raw material-derived materials (limited resources) have been widely used as thermosetting resins that influence the physical properties of insulating products, global environmental conservation (energy saving, prevention of global warming by reducing CO 2 emissions, etc.) In view of the above, an attempt has been made to collect and reuse (recycle) an insulating product to be disposed of (for example, a product to be disposed of due to lifetime, failure, etc.).

しかしながら、その再利用方法は確立されておらず殆ど行われていない。例外的に、品質が比較的均一な部材(絶縁性製品に用いられているPEケーブル被覆部材)のみを回収しサーマルエネルギーとして利用されているが、このサーマルエネルギーは燃焼処理工程を要するため、地球環境を害する恐れがある。また、焼却処理する場合においても、種々の有害物質やCO2を大量に排出するため、前記同様に地球環境を害する恐れがある。 However, the reuse method has not been established and is hardly performed. Exceptionally, only members with relatively uniform quality (PE cable covering members used in insulating products) are recovered and used as thermal energy. However, since this thermal energy requires a combustion treatment process, May harm the environment. Also, in the case of incineration, since various toxic substances and CO 2 are discharged in large quantities, there is a risk of harming the global environment as described above.

絶縁性組成物の各成分において少しでも非化石原料由来物質を適用(例えば、充填剤として、無機充填剤と木質資源等の有機充填剤とを併用)する試みが知られているが(例えば、特許文献2)、絶縁性組成物全体での適用割合としは僅かであり、大半は化石原料由来物質に依存した成分によって占められているものである。   Attempts to apply a non-fossil raw material-derived substance (for example, a combination of an inorganic filler and an organic filler such as a wood resource as a filler) in each component of the insulating composition are known (for example, Patent Document 2), the application ratio of the entire insulating composition is very small, and most of it is occupied by components depending on the fossil raw material-derived material.

また、絶縁性組成物の必須成分のうちの一つである熱硬化性樹脂として生分解性樹脂(例えば、ポリ乳酸系樹脂)を適用する試みが知られているが(例えば、特許文献3)、該生分解性樹脂は、比較的溶融(例えば、100℃程度の温度で溶融)し易い物質であるため、高電圧機器(使用中に100℃程度に温度上昇し得る高電圧機器)への適用は危険視されている。   In addition, an attempt to apply a biodegradable resin (for example, polylactic acid resin) as a thermosetting resin that is one of the essential components of the insulating composition is known (for example, Patent Document 3). Since the biodegradable resin is a substance that is relatively easy to melt (for example, melt at a temperature of about 100 ° C.), the biodegradable resin can be applied to a high-voltage device (a high-voltage device that can rise to about 100 ° C. during use). Application is considered dangerous.

さらに、生物由来物質を用いた架橋組成物を適用する試みも知られているが(例えば、特許文献4)、硬化剤としてアルデヒド類を用いたものであり、常温程度の温度雰囲気下(例えば、印刷配線ボードにおける温度環境)では高い機械的物性を有するものの、高温雰囲気下(例えば、高電圧機器等の使用環境)では十分な機械的物性が得られ難い。   Furthermore, although an attempt to apply a crosslinked composition using a biological material is also known (for example, Patent Document 4), an aldehyde is used as a curing agent, and a temperature atmosphere of about room temperature (for example, Although it has high mechanical properties in the temperature environment (in the printed wiring board), it is difficult to obtain sufficient mechanical properties in a high-temperature atmosphere (for example, the use environment of high-voltage equipment or the like).

ここで、一般的にエポキシ樹脂と称される熱硬化性樹脂が適用された絶縁性組成物においては、体積比,重量比で最も多く配合されている成分は充填剤である。このことから、該エポキシ樹脂の充填剤として、火力発電所等の副産物として生成される石炭灰を適用(JIS A6201−1999のフライアッシュI種,II種,III種等の石炭灰を再利用;例えば、非特許文献1)する試みが行われ始めている。絶縁性製品中に内装されるインサートの線膨張率や放熱特性等を考慮する場合には、前記の石炭灰を例えば少なくとも40vol%以上(必要に応じて70vol%以上)程度の範囲で適用することが考えられる。このようにエポキシ樹脂に対する充填剤として石炭灰を適用することにより、該充填剤においては新たな製造エネルギーが消費されることはなく、二酸化炭素の発生も伴わないことから、十分な電気的物性,機械的物性を有する絶縁性組成物を安全に適用できると共に、地球環境保全に貢献できる可能性があるものとされていた。
特許第3359410号公報 特開2004−171799号公報 特開2002−358829号公報 特開2002−53699号公報 「資源として広く活用されているCOAL ASH」,パンフレット,日本フライアッシュ協会,平成16年4月。
Here, in an insulating composition to which a thermosetting resin generally referred to as an epoxy resin is applied, the most compounded component by volume ratio and weight ratio is a filler. From this, coal ash produced as a by-product of a thermal power plant or the like is applied as a filler for the epoxy resin (reuse of coal ash such as fly ash type I, type II, type III of JIS A6201-1999; For example, an attempt to non-patent document 1) has begun. When considering the linear expansion coefficient and heat dissipation characteristics of the inserts embedded in the insulating product, the coal ash should be applied in a range of at least about 40 vol% or more (70 vol% or more if necessary). Can be considered. By applying coal ash as a filler for the epoxy resin in this way, no new production energy is consumed in the filler, and no carbon dioxide is generated. Insulating compositions having mechanical properties can be safely applied and have the potential to contribute to global environmental conservation.
Japanese Patent No. 3359410 JP 2004-171799 A JP 2002-358829 A JP 2002-53699 A “COAL ASH widely used as a resource”, pamphlet, Japan Fly Ash Association, April 2004.

しかし、前記のように製造効率を考慮して高温(例えば、130℃以上の温度)で予熱された石炭灰を用いると、該石炭灰(少なくとも一部)においてポラゾン反応によるブロック状に固化する現象が起こり、エポキシ樹脂に対して石炭灰を均一分散できなくなり、機械的物性が低くなってしまう。   However, when coal ash preheated at a high temperature (for example, a temperature of 130 ° C. or higher) is used in consideration of production efficiency as described above, the coal ash (at least partially) is solidified into a block shape due to a polazone reaction. As a result, coal ash cannot be uniformly dispersed in the epoxy resin, and the mechanical properties are lowered.

なお、前記の均一分散を考慮して、前記の低温(例えば130℃未満)で予熱された石炭灰を用いると、前記の混合時の粘度が高過ぎたり、その後段の硬化工程に係る作業時間の長くなってしまい、製造効率が悪化してしまう。また、絶縁材料中の石炭灰の配合割合を少なくすると、絶縁性組成物自体の線膨張率が高くなってしまい、例えばインサート(絶縁性製品中に内装される金属インサート等)を用いる場合には、該インサートと絶縁性組成物との線膨張率の差により熱応力が大きくなってしまうことから、機械的物性が低くなってしまう。   In consideration of the uniform dispersion, if the coal ash preheated at the low temperature (for example, less than 130 ° C.) is used, the viscosity at the time of mixing is too high, or the working time for the subsequent curing process As a result, the production efficiency deteriorates. Moreover, if the blending ratio of coal ash in the insulating material is reduced, the linear expansion coefficient of the insulating composition itself is increased. For example, when using an insert (such as a metal insert incorporated in an insulating product). Since the thermal stress increases due to the difference in coefficient of linear expansion between the insert and the insulating composition, the mechanical properties are lowered.

以上示したようなことから、エポキシ樹脂,石炭灰等から成る絶縁材料を用いた絶縁性組成物において、単に電気的物性を付与すると共に地球環境保全に貢献するだけでなく、絶縁性組成物として十分な機械的物性を付与すると共に、その絶縁性組成物の製造効率を高めることが求められている。   As described above, in an insulating composition using an insulating material made of epoxy resin, coal ash, etc., not only simply imparting electrical properties and contributing to global environmental conservation, but also as an insulating composition. There is a demand for imparting sufficient mechanical properties and enhancing the production efficiency of the insulating composition.

本発明は、前記の課題の解決を図るためのものであって、エポキシ樹脂,石炭灰等から成る絶縁材料を用い、良好な製造効率で十分な機械的物性を付与できる高電圧機器用絶縁性組成物を提供することにある。   The present invention is intended to solve the above-mentioned problems, and uses an insulating material made of epoxy resin, coal ash, etc., and can provide sufficient mechanical properties with good manufacturing efficiency. It is to provide a composition.

具体的に、請求項1記載の発明は、少なくともエポキシ樹脂,石炭灰,硬化剤を混合して成る絶縁材料を加熱硬化して得られ、高電圧機器の絶縁構成に用いられる高電圧機器用絶縁性組成物であって、
前記の石炭灰は、エポキシ樹脂と石炭灰との相溶性を高める加熱気化した表面処理剤により、加熱減圧雰囲気下で表面処理され、予熱後に混合されたことを特徴とする。
Specifically, the invention according to claim 1 is an insulation for high voltage equipment obtained by heat curing an insulating material formed by mixing at least an epoxy resin, coal ash, and a curing agent, and used for an insulation configuration of a high voltage equipment. A sex composition,
The coal ash is characterized in that it is surface-treated in a heated and reduced-pressure atmosphere with a heat-treated surface treatment agent that enhances the compatibility between the epoxy resin and the coal ash, and is mixed after preheating.

請求項2記載の発明は、請求項1記載の発明において、前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the epoxy resin is epoxidized linseed oil.

請求項3記載の発明は、請求項1または2記載の発明において、前記の石炭灰は、フライアッシュであることを特徴とする。   The invention according to claim 3 is the invention according to claim 1 or 2, characterized in that the coal ash is fly ash.

請求項4記載の発明は、請求項1〜3記載の発明において、前記の表面処理剤は、シランカップリング剤であることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the surface treatment agent is a silane coupling agent.

請求項5記載の発明は、請求項1〜4記載の発明において、前記の表面処理は、加熱減圧炉中に前記の表面処理剤,石炭灰を配置し、その表面処理剤を加熱真空により気化し石炭灰と接触させたことを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, in the surface treatment, the surface treatment agent and coal ash are disposed in a heating and decompression furnace, and the surface treatment agent is removed by heating vacuum. It is characterized by being contacted with coal ash.

請求項6記載の発明は、請求項1〜5記載の発明において、前記の予熱の温度は、150℃〜180℃であることを特徴とする。   A sixth aspect of the invention is characterized in that, in the first to fifth aspects of the invention, the preheating temperature is 150 ° C. to 180 ° C.

請求項7記載の発明は、請求項1〜6記載の発明において、前記の石炭灰は、エポキシ樹脂100phrに対し500phr〜550phr用いたことを特徴とする。   A seventh aspect of the invention is characterized in that, in the first to sixth aspects of the invention, the coal ash is used in an amount of 500 phr to 550 phr with respect to 100 phr of the epoxy resin.

請求項1〜7記載の発明のように表面処理された石炭灰を用いることにより、ポラゾン反応によるブロック状に固化する現象が惹起されないようになる。このため、該石炭灰の予熱温度を低温(例えば、130℃未満の温度)に設定したり配合割合を少なくする必要は無く、該石炭灰をエポキシ樹脂に対して均一分散し易くなる。また、インサート(絶縁性製品中に内装される金属インサート等)を用いた場合には、該インサートと絶縁性組成物との線膨張率の差が小さくなる。   By using the surface-treated coal ash as in the first to seventh aspects of the invention, the phenomenon of solidifying into a block shape due to the polazone reaction is not induced. For this reason, it is not necessary to set the preheating temperature of the coal ash to a low temperature (for example, a temperature of less than 130 ° C.) or to reduce the blending ratio, and the coal ash is easily dispersed uniformly in the epoxy resin. In addition, when an insert (such as a metal insert incorporated in an insulating product) is used, the difference in linear expansion coefficient between the insert and the insulating composition is reduced.

請求項2記載の発明においては、非化石原料由来物質の配合割合が増加する。   In invention of Claim 2, the mixture ratio of the non-fossil raw material origin substance increases.

以上、請求項1〜7記載の発明によれば、電気的物性を付与すると共に地球環境保全に貢献するだけでなく、絶縁性組成物として十分な機械的物性を付与すると共に、その絶縁性組成物の製造効率を高めることが可能となる。また、請求項2記載の発明においては、前記の地球環境保全により貢献することが可能となる。   As mentioned above, according to invention of Claims 1-7, while providing an electrical property and contributing to global environmental conservation, while providing sufficient mechanical property as an insulating composition, its insulating composition It becomes possible to improve the manufacturing efficiency of a thing. Moreover, in invention of Claim 2, it becomes possible to contribute by the said global environment conservation.

以下、本発明の実施の形態における高電圧機器用絶縁性組成物を詳細に説明する。   Hereinafter, the insulating composition for high voltage equipment in the embodiment of the present invention will be described in detail.

本実施の形態は、少なくともエポキシ樹脂,石炭灰,硬化剤を混合して成る絶縁材料を加熱硬化して得られ高電圧機器の絶縁構成に用いられる高電圧機器用絶縁性組成物であって、前記の絶縁材料において単に混合前予熱された石炭灰を用いるのではなく、エポキシ樹脂と石炭灰との相溶性を高める表面処理剤による表面処理、および予熱された石炭灰を用いる。前記表面処理は、加熱気化された表面処理剤を加熱減圧雰囲気下にて石炭灰と接触させて行われる。   This embodiment is an insulating composition for high-voltage equipment obtained by heating and curing an insulating material formed by mixing at least epoxy resin, coal ash, and a curing agent, and used for an insulation configuration of a high-voltage equipment, Rather than simply using preheated coal ash in the insulating material, surface treatment with a surface treatment agent that enhances the compatibility between the epoxy resin and coal ash, and preheated coal ash are used. The surface treatment is performed by bringing the surface treatment agent that has been vaporized by heating into contact with coal ash in a heated and reduced pressure atmosphere.

表面処理方法としては、例えばインテグラルブレンド法,湿式法,スプレードライヤ法等が一般的に知られているが、これら各方法は比較的大掛かりな専用設備を要したり処理時間が長く掛かってしまう等の理由により、例えば製造コストが高くなってしまう可能性がある。一方、加熱減圧炉等を用いて、前記のように加熱気化した表面処理剤を用い加熱減圧雰囲気下で表面処理する方法によれば、前記のような大掛かりな専用設備は不要であり、低コスト化を実現できる可能性がある。具体例としては、ロータリーポンプに接続された加熱減圧炉中に対し、表面処理剤,石炭灰をそれぞれ別々に配置(例えば、各々の所定形状の容器(SUS缶等)に入れ、それら容器を所定距離隔てて配置)し、所定時間(例えば、炉内温度,到達減圧度,石炭灰量,容器表面積に応じた時間)放置することにより、加熱真空により気化した表面処理剤を石炭灰と接触させる方法(以下、加熱減圧法と称する)が挙げられる。   As surface treatment methods, for example, an integral blend method, a wet method, a spray dryer method, etc. are generally known, but each of these methods requires a relatively large dedicated equipment or takes a long processing time. For example, the manufacturing cost may increase. On the other hand, according to the method of surface treatment in a heated and reduced pressure atmosphere using the surface treatment agent heated and vaporized as described above by using a heating and decompressing furnace or the like, the large-scale dedicated equipment as described above is unnecessary, and the cost is low. May be realized. As a specific example, a surface treatment agent and coal ash are separately arranged in a heating and decompression furnace connected to a rotary pump (for example, each container is placed in a predetermined shape (such as a SUS can)), and the containers are predetermined. The surface treatment agent vaporized by heating vacuum is brought into contact with the coal ash by leaving it for a predetermined time (for example, a time corresponding to the temperature in the furnace, the degree of ultimate pressure reduction, the amount of coal ash, and the surface area of the vessel). A method (hereinafter referred to as a heating and decompressing method).

エポキシ樹脂としては、一般的な高電圧機器に適用されているものが挙げられ、例えばエポキシ化亜麻仁油,エポキシ化大豆油等の植物由来(非化石原料由来)のものも挙げられる。また、不飽和脂肪酸である動植物油から成るエポキシ化物においても、非化石原料由来物質として適用することが可能である。   Examples of the epoxy resin include those applied to general high-voltage equipment, and examples include those derived from plants (derived from non-fossil raw materials) such as epoxidized linseed oil and epoxidized soybean oil. In addition, epoxidized products composed of animal and vegetable oils that are unsaturated fatty acids can also be applied as non-fossil raw material-derived substances.

充填剤である石炭灰としては、例えば火力発電所等の副産物として生成される石炭灰を適用(石炭灰を再利用)でき、具体的には非特許文献1に示すようなフライアッシュ(例えば、I種,II種,III種)が挙げられる。フライアッシュの種類の違いによって、目的とする高電圧機器用絶縁性組成物の物性において多少の差異はあるが、それぞれ環境性,経済性等が優れている点で共通している。なお、充填剤の配合割合は、目的とする高分子組成物に応じて適宜設定すれば良いが、多過ぎる場合には混合・注型性を損なう恐れがある。   As coal ash which is a filler, for example, coal ash produced as a by-product of a thermal power plant or the like can be applied (recycle coal ash). Specifically, fly ash as shown in Non-Patent Document 1 (for example, Type I, type II, type III). Depending on the type of fly ash, there are some differences in the physical properties of the intended insulating composition for high-voltage equipment, but they are common in that they are excellent in environmental performance and economy. The blending ratio of the filler may be appropriately set according to the target polymer composition, but if it is too large, the mixing / casting property may be impaired.

表面処理剤としては、エポキシ樹脂と石炭灰との相溶性を高めるものを適用し、例えばシランカップリング剤等が挙げられる。   As the surface treatment agent, one that enhances the compatibility between the epoxy resin and coal ash is applied, and examples thereof include a silane coupling agent.

硬化剤としては、例えばエポキシ樹脂と反応し得るアミン類,酸無水物類,フェノール類,イミダゾール類等の種々のものが適用でき、ヒマシ油系ポリオール等の植物由来のものも適用できる。   As a hardening | curing agent, various things, such as amines, acid anhydrides, phenols, imidazoles, etc. which can react with an epoxy resin, for example, can apply the thing derived from plants, such as a castor oil-type polyol.

前記の硬化剤の配合量は、例えばエポキシ樹脂のエポキシ当量を算出し、そのエポキシ当量に基づいた化学量論量を添加(例えば、化学量論比に対し1.0として添加)する。このような硬化剤の配合割合は、例えば目的とする高分子製品に要求される物性の優先順位によって適宜設定され得るものである。   The amount of the curing agent is calculated by, for example, calculating the epoxy equivalent of the epoxy resin and adding a stoichiometric amount based on the epoxy equivalent (for example, adding 1.0 as the stoichiometric ratio). The blending ratio of such a curing agent can be appropriately set depending on, for example, the priority order of physical properties required for the target polymer product.

前記のエポキシ樹脂,石炭灰,硬化剤の他に、例えば作業性の向上(例えば、作業時間の短縮等),成形性,Tg特性,機械的・物理的物性,電気的物性等の改善を図る目的で、種々の添加剤を適宜用いることができ、例えば硬化促進剤(硬化剤の硬化の起点;例えば有機過酸化物,アミン類,イミダゾール類等),反応抑制剤,反応助剤(反応(Tg特性)を制御する目的;パーオキサイド等)等を適宜併用することが可能である。   In addition to the epoxy resin, coal ash, and curing agent, for example, workability is improved (for example, shortening of work time, etc.), moldability, Tg characteristics, mechanical / physical properties, electrical properties, and the like are improved. For the purpose, various additives can be appropriately used. For example, curing accelerators (starting point of curing of the curing agent; for example, organic peroxides, amines, imidazoles, etc.), reaction inhibitors, reaction aids (reaction ( The purpose of controlling (Tg characteristics); peroxide, etc.) can be used in combination as appropriate.

なお、高分子成分等にパーオキサイドを添加して混合すると、その混合物は時間経過と共に粘度が上昇し、生産性が低下(例えば、混合性,成形性が低下)する恐れがあるものの、可使時間(ポットライフ)が例えば60分以上であれば良好な生産性を有するものとみなすことができる。   When peroxide is added to a polymer component, etc., the mixture increases in viscosity over time, and the productivity may decrease (for example, the mixability and moldability may decrease). If the time (pot life) is, for example, 60 minutes or more, it can be regarded as having good productivity.

本実施形態の絶縁性組成物における架橋は、本質的に硬化剤によるものであって、硬化条件や前記の硬化促進剤,反応抑制剤,反応助剤等の有無によって架橋構造が影響を受けることはない。   Crosslinking in the insulating composition of the present embodiment is essentially due to the curing agent, and the crosslinking structure is affected by the curing conditions and the presence or absence of the curing accelerator, reaction inhibitor, reaction aid, etc. There is no.

例えば、硬化条件(温度,時間等)は、目的とする絶縁性組成物の物性を得るために適宜設定(例えば、硬化促進剤の種類や配合量等に応じて適宜設定)されるものであり、該硬化条件が異なっても該物性自体に大きな差が生じることはない。また、反応促進剤,反応抑制剤は、反応性を高めたり安全(抑制)にして作業性や生産性等を改善する目的で適宜適用されるものであり、該反応促進剤,反応抑制剤の種類や配合割合が異なっても該物性自体に大きな差が生じることはない。さらに、反応助剤は、前記の反応促進剤,反応抑制剤と同様に反応性を調整(例えば、パーオキサイドの場合は、Tg特性の調整)するために適宜適用(例えば、硬化条件や硬化促進剤等の種類,配合量に応じて適宜適用)されるものであり、該反応助剤の種類や配合量が異なっても該物性自体に大きな差が生じることはない。   For example, the curing conditions (temperature, time, etc.) are appropriately set (for example, appropriately set according to the type and blending amount of the curing accelerator) in order to obtain the desired physical properties of the insulating composition. Even if the curing conditions are different, there is no great difference in the physical properties themselves. Moreover, the reaction accelerator and reaction inhibitor are appropriately applied for the purpose of improving the workability and productivity by increasing the reactivity or making it safe (suppressed). Even if the kind and the blending ratio are different, there is no great difference in the physical properties themselves. Further, the reaction aid is appropriately applied to adjust the reactivity (for example, adjustment of Tg characteristics in the case of peroxide) in the same manner as the reaction accelerator and reaction inhibitor (for example, curing conditions and acceleration of curing). This is applied as appropriate according to the type and blending amount of the agent and the like, and even if the kind and blending amount of the reaction aid is different, there is no significant difference in the physical properties themselves.

[実施例]
次に、本実施の形態における高電圧機器用絶縁性組成物の実施例を説明する。
[Example]
Next, examples of the insulating composition for high voltage equipment in the present embodiment will be described.

まず、下記表1に示すように、エポキシ樹脂として非化石原料由来物質であるエポキシ化亜麻仁油(ダイセル化学社製のダイマックL−500)100phr,硬化剤としてフェノール樹脂(住友ベークライト社製のPR−HF−3)化学量論量(本実施例ではエポキシ樹脂100phrに対し61phr),無機充填剤である石炭灰としてフライアッシュ(東電環境エンジニアリング社製のフライアッシュII種(JIS A6201−1999))300phr〜550phr,硬化促進剤としてイミダゾール(四国化成社製の2E4MZ)1phrを混合して種々の絶縁材料S1〜S4,P1〜P7を得た。   First, as shown in Table 1 below, 100 phr of epoxidized linseed oil (Daimac L-500, manufactured by Daicel Chemical), which is a non-fossil raw material-derived material, is used as an epoxy resin, and phenol resin (PR-, manufactured by Sumitomo Bakelite Co., Ltd.) as a curing agent. HF-3) Stoichiometric amount (61 phr with respect to 100 phr of epoxy resin in this example), fly ash as coal ash which is an inorganic filler (fly ash type II (JIS A6201-1999) manufactured by TEPCO Environmental Engineering Co., Ltd.)) 300 phr ˜550 phr, 1 phr of imidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was mixed to obtain various insulating materials S1 to S4 and P1 to P7.

なお、各絶縁材料S1〜S4,P1〜P7に用いたエポキシ樹脂,硬化剤は、前記の混合工程前において、それぞれ150℃の温度で予熱し、フライアッシュはそれぞれ以下に示す方法により表面処理,予熱したものとする。   The epoxy resins and curing agents used for the insulating materials S1 to S4 and P1 to P7 are preheated at a temperature of 150 ° C., respectively, before the mixing step, and fly ash is surface-treated by the following methods, respectively. It shall be preheated.

まず、絶縁材料S1〜S4の場合、フライアッシュ2kg,シランカップリング剤(信越化学社製のKBM−403)200gをそれぞれ5リットルSUS缶,500デシリットルSUS缶に入れ、ロータリーポンプに接続された加熱減圧炉中に対し前記の各SUS缶を所定距離隔てて配置し、その炉内が100℃・1kPaに達してから1時間放置することにより表面処理した。また、表面処理後、該炉内温度を150℃または180℃に昇温させて2時間放置することにより予熱した。   First, in the case of insulating materials S1 to S4, 2 kg of fly ash and 200 g of a silane coupling agent (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.) are placed in a 5-liter SUS can and a 500 deciliter SUS can, respectively, and heating connected to a rotary pump Each of the SUS cans was placed at a predetermined distance from the vacuum furnace, and the furnace was surface-treated by allowing it to stand for 1 hour after reaching 100 ° C. · 1 kPa. Further, after the surface treatment, the furnace was preheated by raising the temperature in the furnace to 150 ° C. or 180 ° C. and leaving it for 2 hours.

試料P1〜P7の場合、インテグラルブレンド法によりシランカップリング剤でフライアッシュを表面処理した後、100℃,130℃,150℃の何れかの温度で予熱した。   In the case of Samples P1 to P7, fly ash was surface-treated with a silane coupling agent by an integral blend method, and then preheated at any temperature of 100 ° C, 130 ° C, and 150 ° C.

Figure 2009099333
Figure 2009099333

そして、前記のように作製した各絶縁材料S1〜S4,P1〜P7の混合・注型性(相対評価),粘度(P・s)をそれぞれ測定し、その結果を下記表2に示した。また、前記の絶縁材料S1〜S4,P1〜P7をそれぞれ金型注型し温度150℃,20時間の熱処理(三次元架橋)を行うことにより、種々の絶縁性組成物の試料(10mm×5mm×200mmの試料)を作製し、三点曲げ法による室温雰囲気下の曲げ強度(MPa),TMAによる線膨張率(E−06)をそれぞれ測定し、その結果を下記表2に示した。なお、下記表2の混合・注型性の欄において、記号「◎」は優れた結果の場合、記号「○」は十分な結果の場合、記号「×」は不十分な結果の場合、を示すものとする。   The mixing / casting properties (relative evaluation) and viscosity (P · s) of each of the insulating materials S1 to S4 and P1 to P7 produced as described above were measured, and the results are shown in Table 2 below. In addition, samples of various insulating compositions (10 mm × 5 mm) were obtained by casting the insulating materials S1 to S4 and P1 to P7, respectively, and performing heat treatment (three-dimensional crosslinking) at a temperature of 150 ° C. for 20 hours. A 200 mm sample) was prepared, the bending strength (MPa) in a room temperature atmosphere by a three-point bending method, and the linear expansion coefficient (E-06) by TMA were measured, and the results are shown in Table 2 below. In the mixing / castability column of Table 2 below, the symbol “◎” indicates an excellent result, the symbol “○” indicates a sufficient result, and the symbol “×” indicates an insufficient result. Shall be shown.

Figure 2009099333
Figure 2009099333

<インテグラルブレンド法を適用した場合>
表2に示す結果から、インテグラルブレンド法により表面処理した絶縁材料の場合、絶縁材料P7のようにフライアッシュの予熱温度が比較的高温であると、その予熱によってフライアッシュが固化してしまい、混合性が低下し注型ができなくなることを読み取れる。
<When the integral blend method is applied>
From the results shown in Table 2, in the case of the insulating material surface-treated by the integral blend method, if the preheating temperature of the fly ash is relatively high like the insulating material P7, the fly ash is solidified by the preheating, It can be read that the mixing property is lowered and casting becomes impossible.

また、絶縁材料P1〜P6のようにフライアッシュの予熱温度が比較的低温であると、前記のようなフライアッシュの固化は起こらず、該フライアッシュの配合割合を比較的少量にした場合には、該絶縁材料自体の粘度が抑えられ混合・注型性が良好となるものの、十分な曲げ強度が得られず、線膨張率が比較的高く(一般的な絶縁性製品中に内装されるインサート(鉄:銅:アルミニウム=12:17:22の割合のインサート)の線膨張率と比較して高く)なってしまうことを読み取れる(例えば、線膨張率33×10-6では大き過ぎる)。 Further, when the preheat temperature of fly ash is relatively low like the insulating materials P1 to P6, the fly ash is not solidified as described above, and the fly ash is mixed in a relatively small amount. Although the viscosity of the insulating material itself is suppressed and mixing / casting properties are improved, sufficient bending strength cannot be obtained, and the linear expansion coefficient is relatively high (inserts incorporated in general insulating products) (It is higher than the linear expansion coefficient of iron: copper: aluminum = 12: 17: 22 insert) (for example, the linear expansion coefficient of 33 × 10 −6 is too large).

さらに、絶縁材料P1〜P6のようにフライアッシュの予熱温度が比較的低温の場合、該フライアッシュの配合割合の増加に伴って絶縁性組成物の曲げ強度が上昇し線膨張率が低減される傾向が観られるものの、該絶縁材料自体の粘度が上昇し混合・注型性が不十分となることを読み取れる。   Further, when the preheat temperature of fly ash is relatively low as in the insulating materials P1 to P6, the bending strength of the insulating composition increases and the linear expansion coefficient decreases as the blending ratio of the fly ash increases. Although a tendency is observed, it can be read that the viscosity of the insulating material itself increases and mixing / casting properties become insufficient.

すなわち、インテグラルブレンド法を適用した場合には、フライアッシュの予熱温度を比較的低温に設定したり該配合割合を減らさなければ、絶縁性組成物の作製が困難あるいは製造効率が低下し、たとえ該絶縁性組成物を作製できたとしても機械的物性等が低いものとなることを判明した。   That is, when the integral blend method is applied, unless the pre-heating temperature of fly ash is set to a relatively low temperature or the blending ratio is not reduced, it is difficult to produce an insulating composition or the production efficiency is lowered. It has been found that even if the insulating composition can be produced, the mechanical properties and the like are low.

<加熱減圧法を適用した絶縁材料S1〜S4>
一方、加熱減圧法により表面処理した絶縁材料の場合、絶縁材料S1〜S4のように予熱温度が比較的高温に設定されても、該フライアッシュが固化することはなく、該絶縁材料自体の粘度が抑えられ混合・注型性が良好となることを読み取れる。また、絶縁性組成物の曲げ強度が十分であり、線膨張率も比較的低いことが読み取れる。
<Insulating materials S1 to S4 to which the heating and decompression method is applied>
On the other hand, in the case of an insulating material that has been surface-treated by a heating and decompression method, the fly ash does not solidify even when the preheating temperature is set to a relatively high temperature as in the insulating materials S1 to S4, and the viscosity of the insulating material itself. It can be read that mixing and casting properties are improved. Moreover, it can be read that the bending strength of the insulating composition is sufficient and the linear expansion coefficient is relatively low.

すなわち、加熱減圧法を適用した場合には、フライアッシュの予熱温度を比較的低温に設定したり該配合割合を減らさなくとも、例えば前記のインテグラルブレンド法を適用した場合と比較して、十分な機械的物性等を有する絶縁性組成物を効率良く作製できることを判明した。   That is, when the heating and depressurization method is applied, the fly ash preheating temperature is set to a relatively low temperature or the mixing ratio is not reduced, for example, as compared with the case where the above-mentioned integral blend method is applied. It has been found that it is possible to efficiently produce an insulating composition having excellent mechanical properties.

ここで、前記の絶縁材料S2,S4,P5を用いて、それぞれM16(50mm長)の鉄ボルトをモールドすることにより円筒状の絶縁性製品(Φ50mm×150mm)を各々10個作製し、それら絶縁性製品を−40℃まで冷却したクラック発生の有無を調べ、その結果を下記表3に示した。   Here, each of the insulating materials S2, S4, and P5 is used to mold each of M16 (50 mm long) iron bolts to produce 10 cylindrical insulating products (Φ50 mm × 150 mm) each. The presence or absence of cracks generated by cooling the product to −40 ° C. was examined, and the results are shown in Table 3 below.

Figure 2009099333
Figure 2009099333

表3に示す結果から、インテグラルブレンド法を適用した絶縁材料を用いた場合には、殆どの絶縁性製品においてクラックが発生してしまったことを読み取れる。   From the results shown in Table 3, it can be seen that when an insulating material to which the integral blend method is applied is used, cracks have occurred in most insulating products.

一方、加圧減圧法を適用した絶縁材料を用いた場合には、全ての絶縁性製品においてクラックが発生しなかったことから、例えば前記のインテグラルブレンド法を適用した場合と比較して、インサートと絶縁性組成物との線膨張率の差が小さく、熱応力が抑えられること読み取れる。   On the other hand, when using an insulating material to which the pressure reduction method was applied, cracks did not occur in all insulating products, so for example, compared to the case where the integral blend method was applied, the insert It can be read that the difference in the coefficient of linear expansion between the insulating composition and the insulating composition is small and the thermal stress is suppressed.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、絶縁材料の混合条件や硬化条件は、エポキシ樹脂,充填剤やその他の各種添加剤等の種類や配合量に応じて適宜設定されるものであり、本実施例で示した内容に限定されるものではない。また、前記のエポキシ樹脂,充填剤等の他に、目的とする絶縁性組成物の特性を損わない程度の範囲で種々の添加剤(例えば、実施例以外の添加剤)を適宜配合した場合においても、本実施例に示したものと同様の作用効果が得られることは明らかである。   For example, the mixing condition and curing condition of the insulating material are appropriately set according to the type and blending amount of the epoxy resin, filler, and other various additives, and are limited to the contents shown in this embodiment. It is not something. In addition to the above-mentioned epoxy resin, filler, etc., various additives (for example, additives other than Examples) are appropriately blended within a range that does not impair the properties of the target insulating composition. In this case, it is obvious that the same effects as those shown in the present embodiment can be obtained.

Claims (7)

少なくともエポキシ樹脂,石炭灰,硬化剤を混合して成る絶縁材料を加熱硬化して得られ、高電圧機器の絶縁構成に用いられる高電圧機器用絶縁性組成物であって、
前記の石炭灰は、エポキシ樹脂と石炭灰との相溶性を高める加熱気化した表面処理剤により、加熱減圧雰囲気下で表面処理され、予熱後に混合されたことを特徴とする高電圧機器用絶縁性組成物。
An insulating composition for high voltage equipment, obtained by heating and curing an insulating material comprising at least an epoxy resin, coal ash, and a curing agent, and used for an insulation configuration of a high voltage equipment,
The above-mentioned coal ash is surface-treated in a heat-depressurized atmosphere with a heat-vaporized surface treatment agent that enhances the compatibility between the epoxy resin and the coal ash, and is mixed after preheating. Composition.
前記のエポキシ樹脂は、エポキシ化亜麻仁油であることを特徴とする請求項1記載の高電圧機器用絶縁性組成物。   The insulating composition for high-voltage equipment according to claim 1, wherein the epoxy resin is epoxidized linseed oil. 前記の石炭灰は、フライアッシュであることを特徴とする請求項1または2記載の高電圧機器用絶縁性組成物。   The insulating composition for high-voltage equipment according to claim 1, wherein the coal ash is fly ash. 前記の表面処理剤は、シランカップリング剤であることを特徴とする請求項1〜3の何れかに記載の高電圧機器用絶縁性組成物。   The said surface treating agent is a silane coupling agent, The insulating composition for high voltage apparatuses in any one of Claims 1-3 characterized by the above-mentioned. 前記の表面処理は、加熱減圧炉中に前記の表面処理剤,石炭灰を配置し、その表面処理剤を加熱真空により気化し石炭灰と接触させたことを特徴とする請求項1〜4の何れかに記載の高電圧機器用絶縁性組成物。   5. The surface treatment according to claim 1, wherein the surface treatment agent and coal ash are disposed in a heating and decompressing furnace, and the surface treatment agent is vaporized by heating vacuum and brought into contact with coal ash. The insulating composition for high voltage equipment according to any one of the above. 前記の予熱の温度は、150℃〜180℃であることを特徴とする請求項1〜5の何れかに記載の高電圧機器用絶縁性組成物。   The insulating composition for high-voltage equipment according to any one of claims 1 to 5, wherein the preheating temperature is 150C to 180C. 前記の石炭灰は、エポキシ樹脂100phrに対し500phr〜550phr用いたことを特徴とする請求項1〜6の何れかに記載の高電圧機器用絶縁性組成物。   The insulating composition for high-voltage equipment according to any one of claims 1 to 6, wherein the coal ash is used in an amount of 500 phr to 550 phr with respect to 100 phr of an epoxy resin.
JP2007268481A 2007-10-16 2007-10-16 Insulating composition for high voltage equipment Expired - Fee Related JP5110689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007268481A JP5110689B2 (en) 2007-10-16 2007-10-16 Insulating composition for high voltage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007268481A JP5110689B2 (en) 2007-10-16 2007-10-16 Insulating composition for high voltage equipment

Publications (2)

Publication Number Publication Date
JP2009099333A true JP2009099333A (en) 2009-05-07
JP5110689B2 JP5110689B2 (en) 2012-12-26

Family

ID=40702164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007268481A Expired - Fee Related JP5110689B2 (en) 2007-10-16 2007-10-16 Insulating composition for high voltage equipment

Country Status (1)

Country Link
JP (1) JP5110689B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102850825A (en) * 2012-09-11 2013-01-02 安徽理工大学 Method and application for carrying out fly ash floating bead surface modification by using compound coupling agent
CN103204647A (en) * 2013-04-23 2013-07-17 陕西理工学院 Preparation method of light coal ash insulating decorative plate
JP2020138998A (en) * 2019-02-27 2020-09-03 株式会社東光高岳 Epoxy resin composition, insulation molded article, and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143320A (en) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of silica filler, composition for filler and its production
JPH11199218A (en) * 1998-01-07 1999-07-27 Tatsumori:Kk Production of fine spherical silica for insulating material
JP2004331840A (en) * 2003-05-08 2004-11-25 Nitto Denko Corp Fly ash powder, manufacturing method therefor and semiconductor encapsulating resin composition,
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator
JP2007051189A (en) * 2005-08-17 2007-03-01 Meidensha Corp Cured cast resin and method for producing the same
JP2007211252A (en) * 2007-04-23 2007-08-23 Nitto Denko Corp Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143320A (en) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of silica filler, composition for filler and its production
JPH11199218A (en) * 1998-01-07 1999-07-27 Tatsumori:Kk Production of fine spherical silica for insulating material
JP2004331840A (en) * 2003-05-08 2004-11-25 Nitto Denko Corp Fly ash powder, manufacturing method therefor and semiconductor encapsulating resin composition,
JP2007035337A (en) * 2005-07-25 2007-02-08 Meidensha Corp Insulating polymer material composition and insulator
JP2007051189A (en) * 2005-08-17 2007-03-01 Meidensha Corp Cured cast resin and method for producing the same
JP2007211252A (en) * 2007-04-23 2007-08-23 Nitto Denko Corp Semiconductor encapsulating epoxy resin composition using fly ash powder and semiconductor device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102850825A (en) * 2012-09-11 2013-01-02 安徽理工大学 Method and application for carrying out fly ash floating bead surface modification by using compound coupling agent
CN103204647A (en) * 2013-04-23 2013-07-17 陕西理工学院 Preparation method of light coal ash insulating decorative plate
JP2020138998A (en) * 2019-02-27 2020-09-03 株式会社東光高岳 Epoxy resin composition, insulation molded article, and production method thereof
JP7221079B2 (en) 2019-02-27 2023-02-13 株式会社東光高岳 EPOXY RESIN COMPOSITION, INSULATING MOLDED PRODUCT AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
JP5110689B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4961692B2 (en) insulator
JP5315606B2 (en) Insulating polymer material composition
TW201311756A (en) Insulation formulations
JP2009013213A (en) Epoxy resin molding material for sealing motor and molded article
JP5585982B2 (en) Insulating polymer material composition
JP5110689B2 (en) Insulating composition for high voltage equipment
JP5359008B2 (en) Method for producing insulating polymer material composition
US20090318632A1 (en) Insulating polymer material composition
JP5229787B2 (en) Insulating polymer material composition
JP2006066237A (en) Insulating polymeric material composition
JP5532562B2 (en) Insulating polymer material composition
JP5366208B2 (en) Insulating polymer material composition and method for producing the same
JP5499863B2 (en) Insulating polymer material composition and method for producing the same
JP5322220B2 (en) Insulating polymer material composition
JP2008257978A (en) Insulating composition for high voltage equipment
JP5303840B2 (en) Insulating polymer material composition
JP4540997B2 (en) Two-component casting epoxy resin composition and electrical / electronic component equipment
JP2008257977A (en) Insulating composition for voltage equipment
JP2008222824A (en) Motor sealing epoxy resin molding material and molded article
JP7221079B2 (en) EPOXY RESIN COMPOSITION, INSULATING MOLDED PRODUCT AND METHOD FOR MANUFACTURING SAME
JP2008037923A (en) Insulative high polymer material composition
JP2016166350A (en) Epoxy resin composition and insulative molding
JP2010100727A (en) Non-conductive polymer material composition
WO2017104727A1 (en) Electrical insulation resin composition
JP2008037924A (en) Insulative high polymer material composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees