JPH11193439A - Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production - Google Patents

Steel plate combining good workability with high strength and having high dynamic deformation resistance, and its production

Info

Publication number
JPH11193439A
JPH11193439A JP36126997A JP36126997A JPH11193439A JP H11193439 A JPH11193439 A JP H11193439A JP 36126997 A JP36126997 A JP 36126997A JP 36126997 A JP36126997 A JP 36126997A JP H11193439 A JPH11193439 A JP H11193439A
Authority
JP
Japan
Prior art keywords
less
deformation
strain
steel sheet
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36126997A
Other languages
Japanese (ja)
Other versions
JP3492176B2 (en
Inventor
Manabu Takahashi
学 高橋
Osamu Kono
治 河野
Akihiro Uenishi
朗弘 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36126997A priority Critical patent/JP3492176B2/en
Publication of JPH11193439A publication Critical patent/JPH11193439A/en
Application granted granted Critical
Publication of JP3492176B2 publication Critical patent/JP3492176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel plate, which is a steel product used after being formed into parts, such as front side member, bearing impact energy absorption at the time of collision and exhibits high impact energy absorptivity, and its production. SOLUTION: The microstructure of the steel plate as a final product contains ferrite and/or bainite and where either of them is used as a principal phase and they form a conjugated structure together with a third phase containing retained austenite by 3-50% by volume fraction. Further, the difference σd-σs between the quasistatic deformation strength σs at the time when predeformation of >0-10% equivalent strain is applied and then deformation is applied at 5×10<-4> to 5×10<-3> (1/s) strain rate and the dynamic deformation strength σd at the time when deformation is applied at 5×10<2> to 5×10<3> (1/s) after the above predeformation is applied is regulated to >=60 MPa. Moreover, work hardening exponent at 5-10% strain is regulated to >=0.130.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車部材等に使
用され、衝突時の衝撃エネルギーを効率よく吸収するこ
とによって乗員の安全性確保に寄与することのできる高
い動的変形抵抗を有する良加工性高強度熱延鋼板および
冷延鋼板とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-quality machining which is used for automobile parts and the like and has high dynamic deformation resistance which can contribute to ensuring the safety of occupants by efficiently absorbing the impact energy at the time of a collision. TECHNICAL FIELD The present invention relates to a high strength hot-rolled steel sheet and a cold-rolled steel sheet and a method for producing the same.

【0002】[0002]

【従来の技術】近年、自動車衝突時の乗員保護が自動車
の最重要性能として認識され、それに対応するための高
い高速変形抵抗を示す材料への期待が高まっている。例
えば、乗用車の前面衝突においては、フロントサイドメ
ンバーと呼ばれる部材にこのような材料を適用すれば、
前述の部材が圧潰することで衝撃のエネルギーが吸収さ
れ、乗員にかかる衝撃を緩和することができる。
2. Description of the Related Art In recent years, occupant protection in the event of an automobile collision has been recognized as the most important performance of an automobile, and there has been an increasing expectation for a material exhibiting high high-speed deformation resistance in order to cope with it. For example, in a frontal collision of a passenger car, if such a material is applied to a member called a front side member,
The energy of the impact is absorbed by the crushing of the above-described member, and the impact on the occupant can be reduced.

【0003】自動車の衝突時に各部位が受ける変形の歪
み速度は103 (1/s)程度まで達するため、材料の
衝撃吸収性能を考える場合には、このような高歪み速度
領域での動的変形特性の解明が必要である。また、同時
に省エネルギー、CO2 排出削減を目指して自動車車体
の軽量化を同時に達成することが必須と考えられ、この
ために有効な高強度鋼板のニーズが高まっている。
[0003] Since the strain rate of deformation applied to each part at the time of collision of an automobile reaches up to about 10 3 (1 / s), when considering the shock absorbing performance of a material, dynamic deformation in such a high strain rate region is considered. It is necessary to clarify the deformation characteristics. At the same time, it is considered essential to simultaneously reduce the weight of an automobile body with the aim of conserving energy and reducing CO 2 emissions. Therefore, there is a growing need for effective high-strength steel sheets.

【0004】例えば、本発明者らは、CAMP−ISI
J Vol.9(1996)pp.1112〜1115
に、高強度薄鋼板の高速変形特性と衝撃エネルギー吸収
能について報告し、その中で、103 (1/s)程度の
高歪み速度領域での動的強度は、10-3(1/s)の低
歪み速度での静的強度と比較して大きく上昇すること、
材料の強化機構によって変形抵抗の歪み速度依存性が変
化すること、この中で、TRIP(変態誘起塑性)型の
鋼やDP(フェライト/マルテンサイト2相)型の鋼が
他の高強度鋼板に比べて優れた成形性と衝撃吸収能を兼
ね備えていることを報告している。
[0004] For example, the present inventors have proposed CAMP-ISI
J Vol. 9 (1996) pp. 1111-2115
In the following, the high-speed deformation characteristics and impact energy absorbing capacity of a high-strength thin steel plate are reported. Among them, the dynamic strength in the high strain rate region of about 10 3 (1 / s) is 10 −3 (1 / s). ) Significantly increased compared to the static strength at low strain rates,
The strain rate dependence of deformation resistance changes depending on the strengthening mechanism of the material. Among them, TRIP (Transformation Induced Plasticity) type steel and DP (Ferrite / Martensite 2-Phase) type steel are used in other high-strength steel sheets. It reports that it has both excellent moldability and shock absorbing ability.

【0005】また、残留オーステナイトを含む耐衝撃特
性に優れた高強度鋼板とその製造方法を提供するものと
して特開平7−18372号公報には、衝撃吸収能を変
形速度の上昇に伴う降伏応力の上昇のみで解決すること
を開示しているが、衝撃吸収能を向上させるために、残
留オーステナイトの量以外に残留オーステナイトの性質
をどのように制御すべきかは明確にされていない。
Japanese Patent Application Laid-Open No. 7-18372 discloses a high-strength steel sheet having excellent impact resistance including retained austenite and a method of manufacturing the same. Although it is disclosed that the problem is solved only by raising, it is not clarified how to control the properties of the retained austenite other than the amount of the retained austenite in order to improve the shock absorbing ability.

【0006】[0006]

【発明が解決しようとする課題】このように、自動車衝
突時の衝撃エネルギーの吸収に及ぼす部材構成材料の動
的変形特性はすこしづつ解明されつつあるものの、衝撃
エネルギー吸収能に優れた自動車部品用鋼材としてどの
ような特性に注目し、どのような基準に従って材料選定
を行うべきかは未だ明らかにされていない。また、自動
車用部品用鋼材はプレス成形によって要求された部品形
状に成形され、その後、一般的には塗装焼き付けされた
後に自動車に組み込まれ、実際の衝突現象に直面する。
しかしながら、このような予変形+焼き付け処理を行っ
た後の鋼材の衝突時の衝撃エネルギー吸収能の向上にど
のような鋼材強化機構が適しているかも未だ明らかには
されていない。
As described above, although the dynamic deformation characteristics of the constituent materials affecting the absorption of the impact energy at the time of the collision of the automobile are being elucidated little by little, they are used for automobile parts excellent in the impact energy absorption capacity. It has not yet been clarified what properties to focus on and what criteria should be used for material selection as steel. In addition, the steel material for automotive parts is formed into a required part shape by press molding, and then, after being generally painted and baked, incorporated into an automobile, and faces an actual collision phenomenon.
However, it has not yet been clarified what steel material strengthening mechanism is suitable for improving the impact energy absorbing ability at the time of collision of the steel material after performing such pre-deformation and baking treatment.

【0007】[0007]

【課題を解決するための手段】本発明は、フロントサイ
ドメンバー等の衝突時の衝撃エネルギー吸収を担う部品
に成形加工されて使用される鋼材で、高い衝撃エネルギ
ー吸収能を示す高強度鋼板とその製造方法を提供するこ
とを目的としている。先ず、本発明による高い衝撃エネ
ルギー吸収能を示す高強度鋼板は、 (1)最終的に得られる鋼板のミクロ組織がフェライト
および/またはベイナイトを含み、このいずれかを主相
とし、体積分率で3〜50%の残留オーステナイトを含
む第3相との複合組織であり、かつ相当歪みで0%超1
0%以下の予変形を与えた後、5×10-4〜5×10-3
(1/s)の歪み速度範囲で変形した時の準静的変形強
度σsと、前記予変形を加えた後、5×102 〜5×1
3 (1/s)の歪み速度で変形した時の動的変形強度
σdとの差:σd−σsが60MPa以上であり、かつ
歪み5〜10%の加工硬化指数が0.130以上を満足
することを特徴とする高い動的変形抵抗を有する良加工
性高強度鋼板であり、 (2)最終的に得られる鋼板のミクロ組織がフェライト
および/またはベイナイトを含み、このいずれかを主相
とし、体積分率で3〜50%の残留オーステナイトを含
む第3相との複合組織であり、かつ相当歪みで0%超1
0%以下の予変形を与えた後、5×10-4〜5×10-3
(1/s)の歪み速度範囲で変形した時の準静的変形強
度σsと、前記予変形を加えた後、5×102 〜5×1
3 (1/s)の歪み速度で変形した時の動的変形強度
σdとの差:σd−σsが60MPa以上であり、か
つ、5×102 〜5×103 (1/s)の歪み速度範囲
で変形した時の3〜10%の相当歪み範囲における変形
応力の平均値σdyn(MPa)と5×10-4〜5×10
-3(1/s)の歪み速度範囲で変形した時の3〜10%
の相当歪み範囲における変形応力の平均値σst(MPa
)の差が5×10-4〜5×10-3(1/s)の歪み速
度範囲で測定された静的な引張り試験における最大応力
TS(MPa )によって表現される式(σdyn−σs
t)≧−0.272×TS+300を満足し、かつ歪み
5〜10%の加工硬化指数が0.130以上を満足する
ことを特徴とする高い動的変形抵抗を有する良加工性高
強度鋼板である。また、 (3)最終的に得られる鋼板のミクロ組織がフェライト
および/またはベイナイトを含み、このいずれかを主相
とし、体積分率で3〜50%の残留オーステナイトを含
む第3相との複合組織であり、かつ相当歪みで0%超1
0%以下の予変形を与えた後、5×10-4〜5×10-3
(1/s)の歪み速度範囲で変形した時の準静的変形強
度σsと、前記予変形を加えた後、5×102 〜5×1
3 (1/s)の歪み速度で変形した時の動的変形強度
σdとの差:σd−σsが60MPa以上であり、か
つ、5×102 〜5×103 (1/s)の歪み速度範囲
で変形した時の3〜10%の相当歪み範囲における変形
応力の平均値σdyn(MPa)と5×10-4〜5×10
-3(1/s)の歪み速度範囲で変形した時の3〜10%
の相当歪み範囲における変形応力の平均値σst(MPa
)の差が5×10-4〜5×10-3(1/s)の歪み速
度範囲で測定された静的な引張り試験における最大応力
TS(MPa )によって表現される式(σdyn−σs
t)≧−0.272×TS+300を満足し、更に、前
記残留オーステナイト中の固溶〔C〕と鋼材の平均Mn
等量{Mn eq =Mn+(Ni+Cr+Cu+Mo)/
2}よって決まる値(M)が、M=678−428×
〔C〕−33Mn eq が−140以上70未満を満足
し、かつ、相当歪みで0%超10%以下の予変形を与え
た後の鋼材の残留オーステナイト体積分率が2.5%以
上であり、かつ、残留オーステナイトの初期体積分率V
(0)と、相当歪みにして10%の予変形を加えた時の
残留オーステナイトの体積分率V(10)との比、V
(10)/V(0)が0.3以上を満足し、かつ歪み5
〜10%の加工硬化指数が0.130以上を満足するこ
とを特徴とする高い動的変形抵抗を有する良加工性高強
度鋼板である。
SUMMARY OF THE INVENTION The present invention relates to a high-strength steel sheet having high impact energy absorbing ability, which is a steel material formed into a part for absorbing impact energy at the time of collision such as a front side member and used. It is intended to provide a manufacturing method. First, the high-strength steel sheet exhibiting high impact energy absorption capacity according to the present invention is as follows: (1) The microstructure of the finally obtained steel sheet contains ferrite and / or bainite, and any one of these microstructures is used as a main phase and expressed in volume fraction. A composite structure with a third phase containing 3 to 50% of retained austenite, and more than 0% 1 with a substantial strain
After giving a pre-deformation of 0% or less, 5 × 10 -4 to 5 × 10 -3
A quasi-static deformation strength σs when deformed in a strain rate range of (1 / s) and 5 × 10 2 to 5 × 1 after adding the pre-deformation.
Difference from dynamic deformation strength σd when deformed at a strain rate of 0 3 (1 / s): σd-σs is 60 MPa or more, and work hardening index of strain 5 to 10% satisfies 0.130 or more. (2) The microstructure of the finally obtained steel sheet contains ferrite and / or bainite, and any one of which is used as a main phase. A composite structure with a third phase containing retained austenite in a volume fraction of 3 to 50%, and an equivalent strain of more than 0% 1
After giving a pre-deformation of 0% or less, 5 × 10 -4 to 5 × 10 -3
A quasi-static deformation strength σs when deformed in a strain rate range of (1 / s) and 5 × 10 2 to 5 × 1 after adding the pre-deformation.
Difference from dynamic deformation strength σd when deformed at a strain rate of 0 3 (1 / s): σd−σs is 60 MPa or more, and 5 × 10 2 to 5 × 10 3 (1 / s). The average value σdyn (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range and 5 × 10 −4 to 5 × 10
-3 (1 / s) 3-10% when deformed in strain rate range
Average value of deformation stress σst (MPa
) Is expressed by a maximum stress TS (MPa) in a static tensile test measured in a strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s) (σdyn−σs).
t) A good workability high strength steel sheet having high dynamic deformation resistance, satisfying ≧ −0.272 × TS + 300 and satisfying a work hardening index of 5 to 10% of strain of 0.130 or more. is there. (3) The microstructure of the finally obtained steel sheet contains ferrite and / or bainite, and any one of these has a main phase, and a composite with a third phase containing 3 to 50% by volume of retained austenite. It is a tissue and more than 0% with equivalent strain 1
After giving a pre-deformation of 0% or less, 5 × 10 -4 to 5 × 10 -3
A quasi-static deformation strength σs when deformed in a strain rate range of (1 / s) and 5 × 10 2 to 5 × 1 after adding the pre-deformation.
Difference from dynamic deformation strength σd when deformed at a strain rate of 0 3 (1 / s): σd−σs is 60 MPa or more, and 5 × 10 2 to 5 × 10 3 (1 / s). The average value σdyn (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range and 5 × 10 −4 to 5 × 10
-3 (1 / s) 3-10% when deformed in strain rate range
Average value of deformation stress σst (MPa
) Is expressed by a maximum stress TS (MPa) in a static tensile test measured in a strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s) (σdyn−σs).
t) satisfies ≧ −0.272 × TS + 300, and furthermore, the solid solution [C] in the retained austenite and the average Mn of the steel material
Equivalent ΔM eq = Mn + (Ni + Cr + Cu + Mo) /
The value (M) determined by 2} is M = 678-428 ×
[C] -33 Meq satisfies −140 or more and less than 70, and the residual austenite volume fraction of the steel material after giving a predeformation of more than 0% and 10% or less with a substantial strain is 2.5% or more. And the initial volume fraction V of retained austenite
The ratio of (0) to the volume fraction V (10) of retained austenite when a 10% pre-deformation is applied as a substantial strain, V
(10) / V (0) is not less than 0.3 and distortion 5
A good workability high strength steel sheet having high dynamic deformation resistance characterized in that a work hardening index of 10% to 10% satisfies 0.130 or more.

【0008】(4)また、前記(1)〜(3)の何れか
において、前記残留オーステナイトの平均結晶粒径が5
μm以下であること、前記残留オーステナイトの平均結
晶粒径と、主相であるフェライトもしくはベイナイトの
平均結晶粒径の比が、0.6以下で、主相の平均粒径が
10μm以下、好ましくは6μm以下であること、マル
テンサイトの占積率が3〜30%、前記マルテンサイト
の平均結晶粒径が10μm以下、好ましくは5μm以下
であること、フェライトの体積分率が40%以上、引張
強さ×全伸びの値が20,000以上であること、の何
れかを満足する高い動的変形抵抗を有する高強度鋼板で
ある。
(4) In any one of the above (1) to (3), the average grain size of the retained austenite is 5
μm or less, the ratio of the average grain size of the retained austenite and the average grain size of the main phase ferrite or bainite is 0.6 or less, and the average grain size of the main phase is 10 μm or less, preferably 6 µm or less, the martensite space factor is 3 to 30%, the average crystal grain size of the martensite is 10 µm or less, preferably 5 µm or less, the volume fraction of ferrite is 40% or more, and the tensile strength. It is a high-strength steel sheet having a high dynamic deformation resistance that satisfies any one of a value of (a) x a total elongation of 20,000 or more.

【0009】(5)また、本発明高強度鋼板は、重量%
で、C:0.03%以上0.3%以下、SiとAlの一
方または双方を合計で0.5%以上3.0%以下、必要
に応じてMn,Ni,Cr,Cu,Moの1種または2
種以上を合計で0.5%以上3.5%以下含み、残部が
Feを主成分とする高強度鋼板であるか、この高強度鋼
板に更に必要に応じて、Nb,Ti,V,P,B,C
a,REMの1種または2種以上を、Nb,Ti,Vに
おいては、それらの1種または2種以上を合計で0.3
%以下、Pにおいては0.3%以下、Bにおいては0.
01%以下、Caにおいては0.0005%以上0.0
1%以下、REM:0.005以上0.05%以下を含
有し、残部がFeを主成分とする高い動的変形抵抗を有
する高強度鋼板である。
(5) The high-strength steel sheet of the present invention is
C: 0.03% or more and 0.3% or less, one or both of Si and Al in a total of 0.5% or more and 3.0% or less, and Mn, Ni, Cr, Cu, and Mo as needed. One or two
The steel is a high-strength steel sheet containing at least 0.5% and 3.5% or less in total, and the balance is Fe, or Nb, Ti, V, P , B, C
a, one or more of REM, and Nb, Ti, V, one or more of them in total of 0.3
% Or less, 0.3% or less for P, and 0.3% for B.
01% or less, and 0.0005% or more and 0.0
This is a high-strength steel sheet containing 1% or less and REM: 0.005 or more and 0.05% or less, with the balance being Fe-based and having high dynamic deformation resistance.

【0010】(6)本発明における高い動的変形抵抗を
有する高強度熱延鋼板の製造方法としては、前記(5)
の成分組成を有する連続鋳造スラブを、鋳造ままで熱延
工程へ直送し、もしくは一旦冷却した後に再度加熱した
後、熱延し、Ar3 −50℃〜Ar3 +120℃の温度
の仕上げ温度で熱延を終了し、熱延に引き続く冷却過程
での平均冷却速度を5℃/秒以上で冷却後、500℃以
下の温度で巻き取ることを特徴とする熱延鋼板のミクロ
組織がフェライトおよび/またはベイナイトを含み、こ
のいずれかを主相とし、体積分率で3〜50%の残留オ
ーステナイトを含む第3相との複合組織であり、かつ相
当歪みで0%超10%以下の予変形を与えた後、5×1
-4〜5×10-3(1/s)の歪み速度範囲で変形した
時の準静的変形強度σsと、前記予変形を加えた後、5
×102 〜5×103 (1/s)の歪み速度で変形した
時の動的変形強度σdとの差:σd−σsが60MPa
以上であり、かつ、5×102 〜5×103 (1/s)
の歪み速度範囲で変形した時の3〜10%の相当歪み範
囲における変形応力の平均値σdyn(MPa )と5×1
-4〜5×10-3(1/s)の歪み速度範囲で変形した
時の3〜10%の相当歪み範囲における変形応力の平均
値σst(MPa )の差が5×10-4〜5×10-3(1/
s)の歪み速度範囲で測定された静的な引張り試験にお
ける最大応力TS(MPa )によって表現される式(σd
yn−σst)≧−0.272×TS+300を満足
し、かつ歪み5〜10%の加工硬化指数が0.130以
上を満足することを特徴とする高い動的変形抵抗を有す
る良加工性高強度熱延鋼板である。
(6) The method for producing a high-strength hot-rolled steel sheet having high dynamic deformation resistance according to the present invention is described in (5) above.
The continuous cast slab having the component composition is directly sent to a hot rolling process as cast, or once cooled and then heated again, hot rolled, and finished at a temperature of Ar 3 -50 ° C. to Ar 3 + 120 ° C. The microstructure of the hot-rolled steel sheet is characterized in that the hot-rolled steel sheet is cooled at an average cooling rate of 5 ° C./sec or more in the cooling process following the hot-rolling and then wound at a temperature of 500 ° C. or less. Or a composite structure with a third phase containing bainite and having any one of them as a main phase and having a volume fraction of 3 to 50% of retained austenite, and having a predeformation of more than 0% and 10% or less at a substantial strain. 5 × 1 after giving
A quasi-static deformation strength σs when deformed in a strain rate range of 0 −4 to 5 × 10 −3 (1 / s), and 5% after adding the pre-deformation.
Difference from dynamic deformation strength σd when deformed at a strain rate of × 10 2 to 5 × 10 3 (1 / s): σd−σs is 60 MPa
5 × 10 2 to 5 × 10 3 (1 / s)
The average value of the deformation stress σdyn (MPa) in the equivalent strain range of 3 to 10% when deformed in the strain speed range of 5 × 1
The difference in the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 0 -4 to 5 × 10 -3 (1 / s) is 5 × 10 -4 to 5 × 10 -3 (1 /
s) The equation (σd) expressed by the maximum stress TS (MPa) in the static tensile test measured in the strain rate range of
yn-σst) ≧ −0.272 × TS + 300 and a work hardening index with a strain of 5 to 10% that satisfies 0.130 or more. It is a hot rolled steel sheet.

【0011】(7)更に、前記(6)において、熱延の
仕上げ温度がAr3 −50℃〜Ar 3 +120℃の温度
範囲において、メタラジーパラメーター:Aが、(1)
式および(2)式を満たすような熱間圧延を行い、その
後、ランアウトテーブルにおける平均冷却速度を5℃/
秒以上とし、更に前記メタラジーパラメーター:Aと巻
き取り温度(CT)との関係が(3)式を満たすような
条件で巻き取る高い動的変形抵抗を有する高強度熱延鋼
板の製造方法、である。
(7) Further, in the above (6),
Finish temperature is ArThree-50 ° C to Ar Three+ 120 ° C temperature
In the range, the metallurgical parameter: A is (1)
Hot rolling that satisfies the formula (2)
Thereafter, the average cooling rate in the run-out table was set to 5 ° C /
Seconds or more, and the above-mentioned metallurgical parameter: A and winding
The relationship with the wiping temperature (CT) satisfies the expression (3).
-Strength hot-rolled steel with high dynamic deformation resistance wound up under conditions
A method of manufacturing a plate.

【0012】 9≦logA≦18 ……………… (1) ΔT≦21×logA−178 ……………… (2) 6×logA+312≦CT≦6×logA+392 ……………… (3) (8)更に、本発明における高い動的変形抵抗を有する
高強度冷延鋼板の製造方法としては、前記(5)の成分
組成を有する連続鋳造スラブを、鋳造ままで熱延工程へ
直送し、もしくは一旦冷却した後に再度加熱した後、熱
延し、熱延後巻き取った熱延鋼板を酸洗後冷延し、連続
焼鈍工程で焼鈍して最終的な製品とする際に、0.1×
(Ac3 −Ac1 )+Ac1 ℃以上Ac3 +50℃以下
の温度で10秒〜3分焼鈍した後に、1〜10℃/秒の
一次冷却速度で550〜720℃の範囲の一次冷却停止
温度まで冷却し、引き続いて10〜200℃/秒の二次
冷却速度で200〜450℃の二次冷却停止温度まで冷
却した後、200〜500℃の温度範囲で15秒〜20
分保持し、室温まで冷却することを特徴とする冷延鋼板
のミクロ組織がフェライトおよび/またはベイナイトを
含み、このいずれかを主相とし、体積分率で3〜50%
の残留オーステナイトを含む第3相との複合組織であ
り、かつ相当歪みで0%超10%以下の予変形を与えた
後、5×10-4〜5×10-3(1/s)の歪み速度範囲
で変形した時の準静的変形強度σsと、前記予変形を加
えた後、5×102 〜5×103 (1/s)の歪み速度
で変形した時の動的変形強度σdとの差:σd−σsが
60MPa以上であり、かつ、5×102 〜5×103
(1/s)の歪み速度範囲で変形した時の3〜10%の
相当歪み範囲における変形応力の平均値σdyn(MPa
)と5×10-4〜5×10 -3(1/s)の歪み速度範
囲で変形した時の3〜10%の相当歪み範囲における変
形応力の平均値σst(MPa )の差が5×10-4〜5×
10-3(1/s)の歪み速度範囲で測定された静的な引
張り試験における最大応力TS(MPa )によって表現さ
れる式(σdyn−σst)≧−0.272×TS+3
00を満足し、かつ歪み5〜10%の加工硬化指数が
0.130以上を満足することを特徴とする高い動的変
形抵抗を有する良加工性高強度冷延鋼板であり、 (9)更に前記(8)において、前記連続焼鈍工程で焼
鈍して最終的な製品とするに際し、0.1×(Ac3
Ac1 )+Ac1 ℃以上Ac3 +50℃以下の温度で1
0秒〜3分焼鈍した後に、1〜10℃/秒の一次冷却速
度で550〜720℃の範囲の二次冷却開始温度Tqま
で冷却し、引き続いて10〜200℃/秒の二次冷却速
度で成分と焼鈍温度Toで決まる温度Tem以上、50
0℃以下の二次冷却数量温度Teまで冷却した後、Te
−50℃以上500℃以下の温度Toaで15秒〜20
分保持し、室温まで冷却することを特徴とする冷延鋼板
のミクロ組織がフェライトおよび/またはベイナイトを
含み、このいずれかを主相とし、体積分率で3〜50%
の残留オーステナイトを含む第3相との複合組織であ
り、相当歪みで0%超10%以下の予変形を与えた後、
5×10-4〜5×10 -3(1/s)の歪み速度範囲で変
形した時の準静的変形強度σsと、前記予変形を加えた
後、5×102 〜5×103 (1/s)の歪み速度で変
形した時の動的変形強度σdとの差:σd−σsが60
MPa以上であり、かつ、5×102 〜5×103 (1
/s)の歪み速度範囲で変形した時の3〜10%の相当
歪み範囲における変形応力の平均値σdyn(MPa )と
5×10-4〜5×10-3(1/s)の歪み速度範囲で変
形した時の3〜10%の相当歪み範囲における変形応力
の平均値σst(MPa )の差が5×10-4〜5×10-3
(1/s)の歪み速度範囲で測定された静的な引張り試
験における最大応力TS(MPa )によって表現される式
(σdyn−σst)≧−0.272×TS+300を
満足し、かつ歪み5〜10%の加工硬化指数が0.13
0以上を満足することを特徴とする高い動的変形抵抗を
有する良加工性高強度冷延鋼板、である。
9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA-178 (2) 6 × logA + 312 ≦ CT ≦ 6 × logA + 392 (3) (8) Furthermore, the present invention has a high dynamic deformation resistance.
As a method for producing a high-strength cold-rolled steel sheet, the component (5)
Continuous casting slab having composition
After sending directly, or after once cooling and then heating again,
Rolled hot rolled steel sheet after pickling, cold rolled after pickling, continuous
When annealing in the annealing process to make the final product, 0.1 ×
(AcThree-Ac1) + Ac1Over ℃ AcThree+ 50 ° C or less
After annealing for 10 seconds to 3 minutes at a temperature of 1 to 10 ° C./second
Primary cooling stop in the range of 550-720 ° C at primary cooling rate
Cool to temperature, followed by secondary at 10-200 ° C / sec
Cool at a cooling rate to the secondary cooling stop temperature of 200 to 450 ° C
After the cooling, the temperature range of 200 to 500 ° C is 15 seconds to 20 seconds.
Cold rolled steel sheet characterized by holding for a minute and cooling to room temperature
Microstructure of ferrite and / or bainite
Containing any of these as the main phase and having a volume fraction of 3 to 50%
Composite structure with the third phase containing residual austenite
And a pre-deformation of more than 0% and 10% or less with considerable strain
After 5 × 10-Four~ 5 × 10-3(1 / s) strain rate range
The quasi-static deformation strength σs when deformed at
5 × 10Two~ 5 × 10Three(1 / s) strain rate
Difference from the dynamic deformation strength σd when deformed at
60 MPa or more and 5 × 10Two~ 5 × 10Three
3 to 10% when deformed in the strain rate range of (1 / s)
Average value of deformation stress σdyn (MPa
 ) And 5 × 10-Four~ 5 × 10 -3(1 / s) strain rate range
3 to 10% equivalent deformation range when deformed
Difference in average value of shape stress σst (MPa) is 5 × 10-Four~ 5x
10-3Static pull measured in strain rate range of (1 / s)
Expressed by the maximum stress TS (MPa) in the tension test
Equation (σdyn-σst) ≧ −0.272 × TS + 3
00 and a work hardening index of 5 to 10% strain.
High dynamic variation characterized by satisfying 0.130 or more
It is a good workability high strength cold rolled steel sheet having a shape resistance. (9) In (8), further,
0.1 × (AcThree
Ac1) + Ac1Over ℃ AcThree1 at temperatures below + 50 ° C
After annealing for 0 seconds to 3 minutes, primary cooling rate of 1 to 10 ° C / second
To the secondary cooling start temperature Tq in the range of 550 to 720 ° C.
And then a secondary cooling rate of 10 to 200 ° C./sec.
Is higher than the temperature Tem determined by the component and the annealing temperature To in degrees, 50
After cooling to the secondary cooling quantity temperature Te of 0 ° C. or less, Te
15 seconds to 20 at a temperature Toa between -50 ° C and 500 ° C
Cold rolled steel sheet characterized by holding for a minute and cooling to room temperature
Microstructure of ferrite and / or bainite
Containing any of these as the main phase and having a volume fraction of 3 to 50%
Composite structure with the third phase containing residual austenite
After giving a pre-deformation of more than 0% and 10% or less with considerable strain,
5 × 10-Four~ 5 × 10 -3(1 / s)
The quasi-static deformation strength σs at the time of shaping and the pre-deformation
After 5 × 10Two~ 5 × 10ThreeVariable at (1 / s) strain rate
Difference from dynamic deformation strength σd when formed: σd-σs is 60
MPa or more and 5 × 10Two~ 5 × 10Three(1
/ S) equivalent to 3 to 10% when deformed in the strain rate range of
The average value of deformation stress σdyn (MPa) in the strain range and
5 × 10-Four~ 5 × 10-3(1 / s)
Deformation stress in the equivalent strain range of 3 to 10% when shaped
The difference of the average value σst (MPa) is 5 × 10-Four~ 5 × 10-3
Static tensile test measured in (1 / s) strain rate range
Expression expressed by the maximum stress TS (MPa) in the test
(Σdyn-σst) ≧ −0.272 × TS + 300
Satisfaction and work hardening index of 0.13 for 5-10% strain
High dynamic deformation resistance characterized by satisfying 0 or more
High-strength cold-rolled steel sheet having good workability.

【0013】[0013]

【発明の実施の形態】自動車等のフロントサイドメンバ
ー等の衝突時の衝撃吸収用部材は、鋼板に曲げ加工やプ
レス成形加工を施すことによって製造される。自動車の
衝突時の衝撃は、このようにして加工された後に一般的
には塗装焼き付けされた後に加えられる。従って、この
ように部材への加工・塗装焼き付け処理が行われた後に
高い衝撃エネルギーの吸収能を示す鋼板が必要となる。
しかしながら、現在までのところ、成形による変形応力
の上昇と歪み速度上昇による変形応力の上昇とを同時に
考慮して実部材として衝撃吸収特性に優れた鋼板を得る
試みはなされていない。
BEST MODE FOR CARRYING OUT THE INVENTION A member for absorbing a shock such as a front side member of an automobile or the like at the time of a collision is manufactured by bending or pressing a steel plate. The impact of a car collision is applied after processing in this way, typically after paint baking. Therefore, it is necessary to provide a steel sheet having a high impact energy absorbing ability after the member is processed and painted and baked.
However, to date, no attempt has been made to obtain a steel sheet having excellent shock absorption properties as an actual member by simultaneously considering the increase in deformation stress due to forming and the increase in deformation stress due to increase in strain rate.

【0014】本発明者らは、前記要求を満足する衝撃吸
収用部材としての高強度鋼板について長年の研究の結
果、このような成形加工された実部材において、鋼板に
適量の残留オーステナイトを含むことが優れた衝撃吸収
特性を示す高強度鋼板に適していることを見いだした。
すなわち、最適なミクロ組織は、種々の置換型元素によ
って容易に固溶強化されるフェライトおよび/またはベ
イナイトを含み、このいずれかを主相とし、変形中に硬
質のマルテンサイトに変態する残留オーステナイトを体
積分率で3〜50%含む第3相との複合組織である場合
に高い動的変形抵抗を示すことが判明した。また、初期
ミクロ組織の第3相にマルテンサイトを含む複合組織で
ある場合にも、或る特定の条件が満足されると高い動的
変形抵抗を有する良加工性高強度鋼板が得られることが
判明した。
The present inventors have conducted long-term studies on high-strength steel sheets as shock-absorbing members satisfying the above-mentioned requirements. As a result of such research, it has been found that in such formed actual members, the steel sheets contain an appropriate amount of retained austenite. Was found to be suitable for high-strength steel sheets exhibiting excellent shock absorption properties.
In other words, the optimal microstructure includes ferrite and / or bainite which are easily solid-solution strengthened by various substitutional elements, and has any one of them as a main phase, and forms residual austenite which transforms into hard martensite during deformation. It has been found that a composite structure with a third phase containing 3 to 50% by volume fraction exhibits high dynamic deformation resistance. In addition, even in the case of a composite structure containing martensite in the third phase of the initial microstructure, a good workability high strength steel sheet having high dynamic deformation resistance can be obtained if certain conditions are satisfied. found.

【0015】次に、本発明者らは、上記知見に基づき実
験・検討を進めた結果、フロントサイドメンバー等の衝
撃吸収用部材の成形加工に相当する予変形の量は、部位
によっては最大20%以上に達する場合もあるが、相当
歪みとして0%超10%以下の部位が大半であり、従っ
て、この範囲の予変形の効果を把握することで、部材全
体としての予変形後の挙動を推定することが可能である
ことを見いだした。従って、本発明においては、部材へ
の加工時に与えられる予変形量として相当歪みにして0
%超10%以下の変形を選択した。
Next, the inventors of the present invention have conducted experiments and studies based on the above findings. As a result, the amount of pre-deformation corresponding to the forming of a shock absorbing member such as a front side member can be up to 20 parts depending on the part. % Or more, but most of the parts have an equivalent strain of more than 0% and 10% or less. Therefore, by grasping the effect of the pre-deformation in this range, the behavior of the member as a whole after the pre-deformation can be obtained. It has been found that it is possible to estimate. Therefore, in the present invention, the equivalent deformation as the pre-deformation amount given at the time of processing into the member is set to 0.
% And less than 10%.

【0016】図1は、後述する各鋼材について衝突時に
おける成形部材の吸収エネルギーEabと、素材強度S
(TS)との関係を示したものである。部材吸収エネル
ギーEabは、図2に示すような成形部材の長さ方向
(矢印方向)に、質量400Kgの重錘を速度15m/
秒で衝突させ、その時の圧潰量100mmまでの吸収エ
ネルギーである。なお、図2の成形部材は、厚さ2.0
mmの鋼板を成形したハット型部1に同じ厚さの同一鋼
種の鋼板2をスポット溶接により接合したものであり、
ハット型部1のコーナー半径は2mmである。3はスポ
ット溶接部である。図1から、部材吸収エネルギーEa
bは、通常の引張試験で得られる素材強度(TS)の高
いものほど高くなる傾向が見られるが、バラツキの大き
いことが分かる。この図1に示す各素材について、相当
歪みにして0%超〜10%以下の予変形を加えた後、5
×10-4〜5×10-3(1/s)の歪み速度で変形した
時の準静的変形強度σsと、5×102 〜5×10
3 (1/s)の歪み速度で 変形した時の動的変形強度
σdを測定した。
FIG. 1 shows the absorption energy Eab of the formed member at the time of collision and the material strength S of each steel material described later.
(TS). The member absorption energy Eab is obtained by moving a weight having a mass of 400 Kg at a speed of 15 m /
The collision energy is absorbed energy up to 100 mm at that time. In addition, the molded member of FIG.
A steel plate 2 of the same steel type having the same thickness is joined by spot welding to a hat-shaped part 1 formed of a steel plate having a thickness of 2 mm.
The corner radius of the hat-shaped part 1 is 2 mm. 3 is a spot weld. From FIG. 1, the member absorption energy Ea
b tends to increase as the material strength (TS) obtained by a normal tensile test increases, but it can be seen that the variation is large. After subjecting each material shown in FIG.
Quasi-static deformation strength σs when deformed at a strain rate of × 10 -4 to 5 × 10 -3 (1 / s) and 5 × 10 2 to 5 × 10
The dynamic deformation strength σd when deformed at a strain rate of 3 (1 / s) was measured.

【0017】その結果、(σd−σs)によって層別す
ることができた。図1の各プロットの記号で、○は0%
超〜10%以下の範囲の何れかの予変形量で(σd−σ
s)<60MPaとなるもの、●は、前記範囲の全ての
予変形量で60MPa≦(σd−σs)であり、かつ予
変形量が5%の時、60MPa≦(σd−σs)<80
MPaであるもの、■は、前記範囲の全ての予変形量で
60MPa≧(σd−σs)であり、かつ予変形量が5
%の時、80MPa≦(σd−σs)<100MPaで
あるもの、▲は、前記範囲の全ての予変形量で60MP
a≦(σd−σs)であり、かつ予変形量が5%の時、
100MPa≦(σd−σs)であるもの、である。
As a result, stratification could be performed by (σd-σs). In the symbol of each plot in FIG.
(Σd-σ)
s) <60MPa, ● is 60MPa ≦ (σd−σs) for all the pre-deformation amounts in the above range, and 60MPa ≦ (σd-σs) <80 when the pre-deformation amount is 5%.
MPa, ■ is 60 MPa ≧ (σd−σs) for all the pre-deformation amounts in the above range, and the pre-deformation amount is 5
%, 80MPa ≦ (σd−σs) <100MPa, ▲ indicates 60MP at all the pre-deformation amounts in the above range.
When a ≦ (σd−σs) and the pre-deformation amount is 5%,
100 MPa ≦ (σd−σs).

【0018】そして、0%超〜10%以下の範囲の全て
の予変形量において60MPa≦(σd−σs)である
ものは、衝突時の部材吸収エネルギーEabが、素材強
度S(TS)から予測される値以上であり、衝突時の衝
撃吸収用部材として優れた動的変形特性を有する鋼板で
あった。前記予測される値は図1の曲線で示す値であ
り、Eab=0.062S0.8 で示される。従って、本
発明においては(σd−σs)を60MPa以上とし
た。
In the case of 60 MPa ≦ (σd−σs) in all the pre-deformation amounts in the range of more than 0% to 10% or less, the member absorption energy Eab at the time of collision is predicted from the material strength S (TS). This is a steel plate having excellent dynamic deformation characteristics as a member for absorbing impact upon collision. The predicted value is the value indicated by the curve in FIG. 1 and is indicated by Eab = 0.062S 0.8 . Therefore, in the present invention, (σd−σs) is set to 60 MPa or more.

【0019】また、動的変形強度は静的変形強度(T
S)の累乗の形で表されることが知られており、静的変
形強度(TS)が高くなるにつれて動的変形強度と静的
変形強度の差は小さくなる。しかし、材料の高強度化に
よる軽量化を考えた場合、動的変形強度と静的変形強度
(TS)の差が小さくなると材料置換による衝撃吸収能
の向上が大きくは期待できず、軽量化の達成が困難にな
る。
The dynamic deformation strength is the static deformation strength (T
It is known to be expressed as a power of S), and the difference between the dynamic deformation strength and the static deformation strength decreases as the static deformation strength (TS) increases. However, when considering the weight reduction by increasing the strength of the material, when the difference between the dynamic deformation strength and the static deformation strength (TS) becomes small, the improvement of the shock absorption capacity by replacing the material cannot be expected to be large, and the Difficult to achieve.

【0020】また、フロントサイドメンバー等の衝撃吸
収用部材は、特徴的にハット型の断面形状を有してお
り、このような部材の高速での衝突圧潰時の変形を本発
明者らが解析した結果、最大では40%以上の高い歪み
まで変形が進んでいるものの、吸収エネルギー全体の7
0%以上が、高速の応力−歪み線図の10%以下の歪み
範囲で吸収されていることを見いだした。従って、高速
での衝突エネルギーの吸収能の指標として、10%以下
での高速変形時の動的変形抵抗を採用した。特に、歪み
量として3〜10%の範囲が最も重要であることから、
高速引張り変形5×102 〜5×103 (1/s)の歪
み速度範囲で変形した時の相当歪みで3〜10%の範囲
の平均応力σdynを以て衝撃エネルギー吸収能の指標
とした。
The shock absorbing member such as the front side member has a characteristic hat-shaped cross-section, and the present inventors analyze the deformation of such a member at the time of high-speed collision crush. As a result, although the deformation has progressed to a high strain of 40% or more at the maximum, 7% of the total absorbed energy
It was found that 0% or more was absorbed in the strain range of 10% or less in the high-speed stress-strain diagram. Therefore, the dynamic deformation resistance at the time of high-speed deformation of 10% or less was adopted as an index of the absorption capacity of the collision energy at high speed. In particular, since the range of 3 to 10% is most important as the amount of distortion,
High-speed tensile deformation was used as an index of impact energy absorbing ability using an equivalent strain of 3 to 10% with an equivalent strain when deformed in a strain rate range of 5 × 10 2 to 5 × 10 3 (1 / s).

【0021】この高速変形時の3〜10%の平均応力σ
dynは、予変形や焼き付け処理が行われる前の鋼材の
静的な引張り強度{5×10-4〜5×10-3(1/s)
の歪み速度範囲で測定された静的な引張り試験における
最大応力:TS(MPa)}の上昇に伴って大きくなること
が一般的である。従って、鋼材の静的な引張り強度(T
S)を増加させることは部材の衝撃エネルギー吸収能の
向上に直接寄与する。しかしながら、鋼材の強度が上昇
すると部材への成形性が劣化し、必要な部材形状を得る
ことが困難になる。従って、同一の引張り強度(TS)
で、高いσdynを持つ鋼材が望ましい。特に、部材へ
の加工時の歪みレベルが主に10%以下であることか
ら、部材への成形時の形状凍結性等の成形性の指標とな
る低歪み領域での応力が低いことが成形性向上のために
は重要である。従って、σdyn(MPa)と5×10
-4〜5×10-3(1/s)の歪み速度範囲で変形した時
の3〜10%の相当歪み範囲における変形応力の平均値
σst(MPa)の差が大きいほど静的には成形性に優
れ、動的には高い衝撃エネルギーの吸収能を持つと言え
る。この関係で、図5に示すように、特に(σdyn−
σst)≧−0.272×TS+300の関係を満足す
る鋼材は、実部材としての衝撃吸収エネルギー吸収能が
他の鋼材に比べて高く、部材の総重量を増加させること
なく衝撃吸収エネルギー吸収能を向上させ、高い動的変
形抵抗を有する高強度鋼板を提供することができること
を見いだした。次に、本発明者らは、耐衝突安全性を向
上させるためには、鋼の成形加工後の加工硬化指数を高
め、σd−σsを高めることも知見した。すなわち、上
記のように鋼材のミクロ組織を制御されると鋼の歪み5
〜10%の加工硬化指数が0.13以上、好ましくは
0.16以上とすることで前述の耐衝突安全性を高める
ことができる。すなわち、図3に示すように、自動車用
部材の耐衝突安全性の指標となる動的エネルギー吸収量
と、鋼板の加工硬化指数の関係でみると、これらの値が
増大すると動的エネルギー吸収量が向上していることが
分かり、自動車用部材の耐衝突安全性の指標として、同
一降伏強度レベルであれば鋼板の加工硬化指数で評価す
ることが妥当であると考える。また図6に示すように加
工硬化指数が高くなるということは、鋼板のくびれが抑
制され、引張強さ×全伸びで表わされる成形性が向上す
る。
The average stress σ of 3 to 10% during the high-speed deformation
dyn is the static tensile strength of the steel material before the pre-deformation or baking treatment is performed {5 × 10 −4 to 5 × 10 −3 (1 / s)
In general, the maximum stress in a static tensile test measured in the range of the strain rate is increased as TS (MPa)} increases. Therefore, the static tensile strength (T
Increasing S) directly contributes to improving the impact energy absorbing ability of the member. However, when the strength of the steel material increases, the formability of the member deteriorates, and it becomes difficult to obtain a required member shape. Therefore, the same tensile strength (TS)
Therefore, a steel material having a high σdyn is desirable. In particular, since the strain level during processing into a member is mainly 10% or less, low stress in a low strain region which is an index of formability such as shape freezing during forming into a member is low. It is important for improvement. Therefore, σdyn (MPa) and 5 × 10
The larger the difference in the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of -4 to 5 × 10 -3 (1 / s), the more statically the molding is performed. It can be said that it has excellent properties and has a high ability to absorb impact energy dynamically. In this relation, as shown in FIG.
σst) ≧ −0.272 × TS + 300 steel material has a higher shock absorbing energy absorbing capacity as a real member than other steel materials, and has a higher shock absorbing energy absorbing capability without increasing the total weight of the member. It has been found that a high-strength steel sheet having improved dynamic deformation resistance can be provided. Next, the present inventors have also found that, in order to improve the collision resistance, the work hardening index after the forming process of steel is increased, and σd−σs is increased. That is, when the microstructure of the steel material is controlled as described above, the distortion of the steel 5
When the work hardening index of 10% to 10% is 0.13 or more, preferably 0.16 or more, the above-described collision safety can be enhanced. That is, as shown in FIG. 3, the relationship between the dynamic energy absorption amount, which is an index of the collision safety of the automobile member, and the work hardening index of the steel sheet indicates that when these values increase, the dynamic energy absorption amount increases. It is considered that it is appropriate to evaluate the work hardening index of the steel sheet at the same yield strength level as an index of the collision safety of the member for an automobile, as an index of the collision safety of the member for an automobile. Also, as shown in FIG. 6, an increase in the work hardening index means that the constriction of the steel sheet is suppressed, and the formability represented by tensile strength × total elongation is improved.

【0022】図3の動的エネルギー吸収量は、衝撃圧壊
試験法により次のようにして求めた。すなわち、鋼板を
図4bに示すような試験片形状に成形し、先端径5.5
mmの電極によりチリ発生電流の0.9倍の電流で35
mmピッチでスポット溶接3をし、図4aに示す2つの
天板1間に試験片2を配設した部品(ハット型モデル)
とし、さらに170℃×20分の焼き付け塗装処理を行
った後、図4cに示すように約150Kgの落錘4を約
10mの高さから落下させ、ストッパー6を設けた架台
5上の部品を長手方向に圧壊し、その際の荷重変位線図
の面積から変位=0〜150mmの変形仕事を算出して
動的エネルギー吸収量とした。
The dynamic energy absorption shown in FIG. 3 was determined by the impact crush test as follows. That is, a steel plate is formed into a test piece shape as shown in FIG.
35 mm with a current 0.9 times the current generated by dust
A part in which spot welding 3 is performed at a pitch of mm and a test piece 2 is arranged between two top plates 1 shown in FIG. 4A (hat type model).
After further performing a baking coating process at 170 ° C. for 20 minutes, a falling weight 4 of about 150 kg is dropped from a height of about 10 m as shown in FIG. 4C, and the parts on the gantry 5 provided with the stopper 6 are removed. It was crushed in the longitudinal direction, and the deformation work with a displacement of 0 to 150 mm was calculated from the area of the load displacement diagram at that time, and the work was taken as the dynamic energy absorption.

【0023】なお、鋼板の加工硬化指数は、鋼板をJI
S−5号試験片(標点距離50mm、平行部幅25m
m)に加工し、歪み速度0.001/sで引張試験し、
加工硬化指数(歪み5〜10%のn値)を求めることが
できる。以下本発明における鋼材のミクロ組織について
説明する。鋼板に適量の残留オーステナイトが存在する
と、変形時(成形時)に歪みを受けることにより非常に
硬いマルテンサイトに変態するため、加工硬化指数を高
める作用やくびれを抑制して成形性を高める作用を有し
ている。前述した適量の残留オーステナイト量とは3%
〜50%であることが好ましい。すなわち、残留オース
テナイトの体積分率が3%未満では成形後の部材が衝突
変形を受けた際に優れた加工硬化能を発揮することがで
きず、変形荷重が低いレベルに止まり変形仕事量が小さ
くなるため、動的エネルギー吸収量が低く、耐衝突安全
性向上が達成できないと共に、くびれ抑制効果が不足し
て高い引張強さ×全伸びを得ることができない。一方、
残留オーステナイトの体積分率が50%超では僅かな成
形加工歪みにより連鎖的な加工誘起マルテンサイト変態
が起こり、引張強さ×全伸び向上が期待できず、逆に打
ち抜き時の顕著な硬化に起因する穴拡げ比の劣化をもた
らし、更に部材成形が可能であったとしても成形後の部
材が衝突変形を受けた際に優れた加工硬化能を発揮する
ことができないという観点から前述の残留オーステナイ
ト量が決定されるものである。
The work hardening index of a steel sheet is determined by the
S-5 test piece (gauge length 50 mm, parallel part width 25 m
m) and subjected to a tensile test at a strain rate of 0.001 / s,
The work hardening index (n value of strain 5 to 10%) can be obtained. Hereinafter, the microstructure of the steel material in the present invention will be described. If an appropriate amount of retained austenite is present in the steel sheet, it is transformed into very hard martensite by being distorted during deformation (at the time of forming). Therefore, it has the effect of increasing the work hardening index and the effect of suppressing constriction and improving formability. Have. The appropriate amount of retained austenite mentioned above is 3%
It is preferably about 50%. That is, if the volume fraction of retained austenite is less than 3%, the member after molding cannot exhibit excellent work hardening ability when subjected to collision deformation, the deformation load remains at a low level, and the deformation work amount is small. Therefore, the amount of dynamic energy absorption is low, so that it is not possible to achieve an improvement in collision safety, and it is not possible to obtain a high tensile strength × total elongation due to an insufficient necking suppressing effect. on the other hand,
If the volume fraction of retained austenite is more than 50%, a slight deformation of the forming process causes a chain-induced martensitic transformation, which cannot be expected to improve tensile strength x total elongation, and conversely is caused by remarkable hardening during punching. The amount of retained austenite mentioned above from the viewpoint that, even if the member can be molded, even if the member can be molded, it cannot exhibit excellent work hardening ability when subjected to impact deformation. Is to be determined.

【0024】また、前述の残留オーステナイトの体積分
率が3%〜50%という条件に加え、この残留オーステ
ナイトの平均結晶粒径が5μm以下、好ましくは3μm
以下とすることが望ましい条件となる。仮に、残留オー
ステナイトの体積分率が3%〜50%を満たしていて
も、その平均結晶粒径が5μm超になると、鋼中に残留
オーステナイトを微細分散させることができないため、
この残留オーステナイトのもつ固有特性の向上作用が局
所的に止まるのみで好ましくない。また、好ましくは、
前述した残留オーステナイトの平均結晶粒径と、主相で
あるフェライトもしくはベイナイトの平均粒径の比が
0.6以下で、主相の平均粒径が10μm以下、好まし
くは6μm以下であるようなミクロ組織を有している場
合に優れた耐衝突安全性と成形性を示すことが明らかに
なった。
Further, in addition to the condition that the volume fraction of the retained austenite is 3% to 50%, the average crystal grain size of the retained austenite is 5 μm or less, preferably 3 μm.
The following conditions are desirable conditions. Even if the volume fraction of retained austenite satisfies 3% to 50%, if the average crystal grain size exceeds 5 μm, the retained austenite cannot be finely dispersed in the steel.
The action of improving the intrinsic properties of the retained austenite is only stopped locally, which is not preferable. Also, preferably,
The ratio of the average crystal grain size of the retained austenite to the average grain size of the main phase of ferrite or bainite is 0.6 or less, and the average grain size of the main phase is 10 μm or less, preferably 6 μm or less. It was revealed that when having a structure, it shows excellent collision safety and formability.

【0025】更に、本発明者らは、同一レベルの引張強
度(TS:MPa )に対して、前述した相当歪みで3%〜
10%の範囲での平均応力の差:σdyn−σstは部
材への加工が行われる以前の鋼板中に含まれる残留オー
ステナイト中の固溶炭素量:〔C〕で表記、(重量%)
と鋼材の平均Mn等量(Mn eq )が、Mn eq =Mn
+(Ni+Cr+Cu+Mo)/2、によって変化する
ことが見いだされた。残留オーステナイト中の炭素濃度
は、X線解析やメスバウアー分光により実験的に求める
ことができ、例えば、MoのKα線を用いたX線解析に
よりフェライトの(200)面、(211)面およびオ
ーステナイトの(200)面、(220)面、(31
1)面の積分反射強度を用いて、Journal of The Iron
and SteelInstitute, 206(1968), p60 に示された方法
にて算出できる。本発明者らが行った実験結果から、こ
のようにして得られた残留オーステナイト中の固溶炭素
量〔C〕と鋼材に添加されている置換型合金元素から求
められるMn eq を用いて計算される値:Mが、M=6
78−428×〔C〕−33×Mn eq が−140以上
70未満の場合で、かつ相当歪みで0%超10%以下の
予変形を与えた後の鋼材の残留オーステナイト体積分率
が2.5%以上であり、かつ、残留オーステナイトの初
期体積分率V(0)と、相当歪みにして10%の予変形
を加えた時の残留オーステナイトの体積分率V(10)
との比、V(10)/V(0)が0.3以上を満足する
場合に同一の静的引張強度(TS)に対して大きな(σ
dyn−σst)を示すことが同時に見いだされた。こ
の場合において、M>70では残留オーステナイトが低
歪み領域で硬質のマルテンサイトに変態するから、成形
性を支配する低歪み領域での静的な応力をも上昇させて
しまい、形状凍結性等の成形性を劣化させるのみなら
ず、(σdyn−σst)の値を小さくすることから、
良好な成形性と高い成形性と高い衝撃エネルギー吸収能
の両立が得られないためMを70未満とした。また、M
が−140未満の場合には、残留オーステナイトの変態
が高い歪み領域に限定されるために、良好な成形性は得
られるものの、(σdyn−σst)を増大させる効果
がなくなることからMの下限を−140とした。
Further, the present inventors have found that, for the same level of tensile strength (TS: MPa), the above-mentioned equivalent strain is 3% to 3%.
The difference in average stress in the range of 10%: σdyn-σst is the amount of dissolved carbon in the retained austenite contained in the steel sheet before the member is processed: expressed in [C], (% by weight)
And the average Mn equivalent (Mn eq) of the steel material is Mn eq = Mn
+ (Ni + Cr + Cu + Mo) / 2. The carbon concentration in the retained austenite can be experimentally determined by X-ray analysis or Mossbauer spectroscopy. For example, the (200) plane, (211) plane, and austenite of ferrite are determined by X-ray analysis using Mo Kα ray. (200), (220), and (31)
1) Using the integrated reflection intensity of the surface, the Journal of The Iron
and Steel Institute, 206 (1968), p60. From the experimental results performed by the present inventors, it was calculated using the amount of solute carbon [C] in the retained austenite obtained in this way and Mn eq obtained from the substitutional alloy element added to the steel material. Value: M is M = 6
78-428 × [C] −33 × Mn eq is −140 or more and less than 70, and the residual austenite volume fraction of the steel material after giving a predeformation of more than 0% and 10% or less with a substantial strain is 2. 5% or more, and the initial volume fraction V (0) of the retained austenite, and the volume fraction V (10) of the retained austenite when a 10% pre-deformation is applied with a considerable strain.
When the ratio V (10) / V (0) satisfies 0.3 or more, a large (σ) is obtained for the same static tensile strength (TS).
dyn-σst). In this case, when M> 70, the retained austenite is transformed into hard martensite in the low strain region, so that the static stress in the low strain region that governs the formability also increases, and the shape freezing property and the like are increased. Not only does the moldability deteriorate, but the value of (σdyn-σst) is reduced,
Since good moldability, high moldability, and high impact energy absorption cannot be achieved at the same time, M was set to less than 70. Also, M
Is less than -140, the transformation of retained austenite is limited to a high strain region, and although good formability is obtained, the effect of increasing (σdyn-σst) is lost. -140.

【0026】また、残留オーステナイトの存在位置に関
しては、軟質なフェライトが主に変形時の歪みを受ける
ため、フェライトに隣接していない残留γ(オーステナ
イト)は歪みを受け難く、その結果5〜10%程度の変
形ではマルテンサイトへ変態し難くなり、その効果が薄
れるため残留オーステナイトはフェライトに隣接するこ
とが好ましい。そのため、フェライトは、その体積分率
が40%以上、好ましくは60%以上であることが好ま
しい。前述したように、フェライトは構成組織の中で最
も軟質な組織であるため、成形性を決定する重要な因子
である。そのため、上記体積分率の規制値内とすること
が好ましい。更に、フェライトの体積分率増と細粒化に
より、未変態オーステナイトの炭素濃度が増加して微細
分散化するため残留オーステナイトの占積率増・微細化
に有効に作用し、耐衝突安全性および成形性の向上に寄
与する。
Regarding the location of the retained austenite, since soft ferrite is mainly subjected to distortion during deformation, residual γ (austenite) not adjacent to the ferrite is hardly subjected to distortion, and as a result, 5 to 10% Transformation into martensite becomes difficult with a certain degree of deformation, and the effect is diminished, so that retained austenite is preferably adjacent to ferrite. Therefore, ferrite preferably has a volume fraction of 40% or more, preferably 60% or more. As described above, since ferrite is the softest structure among the constituent structures, it is an important factor that determines formability. Therefore, it is preferable to set the volume fraction within the regulation value. Furthermore, by increasing the volume fraction of ferrite and refining it, the carbon concentration of untransformed austenite increases and it becomes finely dispersed, effectively acting to increase the space factor of retained austenite and making it finer. It contributes to improvement of moldability.

【0027】上述したミクロ組織および諸特性を創出す
る高強度鋼板の化学成分とその含有規制値について説明
する。本発明で使用される高強度鋼板は、重量%で、
C:0.03%以上0.3%以下、SiとAlの一方ま
たは双方を合計で0.5%以上3.0%以下、必要に応
じてMn,Ni,Cr,Cu,Moの1種または2種以
上を合計で0.5%以上3.5%以下含み、残部がFe
を主成分とする高強度鋼板であるか、この高強度鋼板に
更に必要に応じて、Nb,Ti,V,P,B,Caまた
はREMの1種または2種以上を、Nb,Ti,Vにお
いては、それらの1種または2種以上を合計で0.3%
以下、Pにおいては0.3%以下、Bにおいては0.0
1%以下、Caにおいては0.0005%以上0.01
%以下、REM:0.005以上0.05%以下を含有
し、残部がFeを主成分とする高い動的変形抵抗を有す
る高強度鋼板である。これらの化学成分とその含有量
(何れも重量%)について詳述する。
The chemical composition of the high-strength steel sheet that creates the above-mentioned microstructure and various characteristics and the regulated value of the content will be described. The high-strength steel sheet used in the present invention is expressed in terms of% by weight,
C: 0.03% or more and 0.3% or less, one or both of Si and Al in a total of 0.5% or more and 3.0% or less, and if necessary, one of Mn, Ni, Cr, Cu and Mo Or 0.5% or more and 3.5% or less in total of two or more, with the balance being Fe
Or a high-strength steel sheet containing Nb, Ti, V, P, B, Ca or REM as necessary, if necessary. , One or two or more of them in total of 0.3%
Hereinafter, 0.3% or less in P and 0.0% in B
1% or less, 0.0005% to 0.01% for Ca
%, REM: 0.005 or more and 0.05% or less, and the balance is Fe-based high strength steel sheet having high dynamic deformation resistance. The chemical components and their contents (all by weight) will be described in detail.

【0028】C:Cは、オーステナイトを室温で安定化
させて残留させるために必要なオーステナイトの安定化
に貢献する最も安価な元素であるために、本発明におい
て最も重要な元素と言える。鋼材の平均C量は、室温で
確保できる残留オーステナイト体積分率に影響を及ぼす
のみならず、製造の加工熱処理中に未変態オーステナイ
ト中に濃化することで、残留オーステナイトの加工に対
する安定性を向上させることができる。しかしながら、
この添加量が0.03%未満の場合には、最終的に残留
オーステナイト体積分率を3%以上を確保することがで
きないので0.03%を下限とした。一方、鋼材の平均
C量が増加するに従って確保可能な残留オーステナイト
体積分率は増加し、残留オーステナイト体積分率を確保
しつつ残留オーステナイトの安定性を確保することが可
能となる。しかしながら、鋼材のC添加量が過大になる
と、必要以上に鋼材の強度を上昇させ、プレス加工等の
成形性を阻害するのみならず、静的な強度上昇に比して
動的な応力上昇が阻害されると共に、溶接性を劣化させ
ることによって部品としての鋼材の利用が制限されるよ
うになるためにC量の上限を0.3%とした。
C: C is the most important element in the present invention because it is the cheapest element that contributes to the stabilization of austenite necessary for stabilizing and retaining austenite at room temperature. The average C content of the steel material not only affects the retained austenite volume fraction that can be secured at room temperature, but also increases the stability of the retained austenite to processing by enriching in untransformed austenite during the thermomechanical heat treatment during production. Can be done. However,
If the addition amount is less than 0.03%, the lower limit of 0.03% is set because the final retained austenite volume fraction cannot be 3% or more. On the other hand, the residual austenite volume fraction that can be secured increases as the average C content of the steel material increases, and it becomes possible to secure the stability of the retained austenite while securing the retained austenite volume fraction. However, when the amount of C added to the steel material is excessive, the strength of the steel material is increased more than necessary, not only impairing the formability such as press working, but also increasing the dynamic stress as compared with the static strength increase. In addition to being hindered, the use of steel as a part is restricted by deteriorating the weldability, so the upper limit of the C content is set to 0.3%.

【0029】Si、Al:Si、Alは共にフェライト
の安定化元素であり、フェライト体積分率を増加させる
ことによって鋼材の加工性を向上させる働きがある。ま
た、Si、Al共にセメンタイトの生成を抑制し、効果
的にオーステナイト中へCを濃化させることを可能とす
ることから、室温で適当な体積分率のオーステナイトを
残留させるためには不可欠な添加元素である。このよう
なセメンタイト生成抑制機能を持つ添加元素としては、
Si、Al以外にPやCu、Cr、Mo等が挙げられ、
このような元素を適切に添加することも同様な効果が期
待される。しかしながら、SiとAlの1種もしくは双
方の合計が0.5%未満の場合には、セメンタイト生成
抑制の効果が十分でなく、オーステナイトの安定化に最
も効果的な添加されたCの多くが炭化物の形で浪費さ
れ、本発明に必要な残留オーステナイト体積分率を確保
することができないか、もしくは残留オーステナイトの
確保に必要な製造条件が大量生産工程の条件に適しない
ため下限を0.5%とした。また、SiとAlの1種も
しくは双方の合計が3.0%を超える場合には、母相で
あるフェライトもしくはベイナイトの硬質化や脆化を招
き、歪み速度上昇による変形抵抗の増加を阻害するばか
りでなく、鋼材の加工性の低下、靱性の低下、更には鋼
材コストの上昇を招き、また、化成処理等の表面処理特
性が著しく劣化するために3.0%を上限とした。ま
た、特に優れた表面性状が要求される場合には、Si≦
0.1%とすることによりSiスケールを回避するか、
逆にSi≧1.0%とすることによりSiスケールを全
面に発生させて目立たせなくすることも考えられる。
Si, Al: Si and Al are both elements for stabilizing ferrite, and have a function of improving the workability of steel by increasing the volume fraction of ferrite. In addition, since Si and Al both suppress the generation of cementite and allow C to be effectively concentrated in austenite, it is indispensable to leave austenite with an appropriate volume fraction at room temperature. Element. As such an additive element having the function of suppressing the formation of cementite,
In addition to Si and Al, P, Cu, Cr, Mo and the like are listed,
Similar effects can be expected by appropriately adding such elements. However, when one or both of Si and Al are less than 0.5%, the effect of suppressing the formation of cementite is not sufficient, and most of the added C most effective for stabilizing austenite is carbide. And the lower limit is 0.5% because the retained austenite volume fraction required for the present invention cannot be secured or the production conditions required for securing the retained austenite are not suitable for the conditions of the mass production process. And If the sum of one or both of Si and Al exceeds 3.0%, hardening or embrittlement of ferrite or bainite as a parent phase is caused, and increase in deformation resistance due to an increase in strain rate is hindered. Not only that, the workability and toughness of the steel material are reduced, and the cost of the steel material is increased, and the surface treatment characteristics such as chemical conversion treatment are significantly deteriorated. When particularly excellent surface properties are required, Si ≦
By avoiding Si scale by setting it to 0.1%,
Conversely, by setting Si ≧ 1.0%, it is conceivable that Si scale is generated on the entire surface to make it inconspicuous.

【0030】Mn、Ni、Cr、Cu、Mo:Mn、N
i、Cr、Cu、Moは全てオーステナイト安定化元素
であり、室温でオーステナイトを安定化させるためには
有効な元素である。特に、溶接性の観点からCの添加量
が制限される場合には、このようなオーステナイト安定
化元素を適量添加することによって効果的にオーステナ
イトを残留させることが可能となる。また、これらの元
素はAlやSiほどではないがセメンタイトの生成を抑
制する効果があり、オーステナイトへのCの濃化を助け
る働きもする。更に、これらの元素は、Al、Siと共
にマトリックスであるフェライトやベイナイトを固溶強
化させることによって、高速での動的変形抵抗を高める
働きも持つ。しかし、これらの元素の1種または2種以
上の添加の合計が0.5%未満の場合には、必要な残留
オーステナイトの確保ができなくなると共に、鋼材の強
度が低くなり、有効な車体軽量化が達成できなくなるこ
とから、下限を0.5%とした。一方、これらの合計が
3.5%を超える場合には、母相であるフェライトもし
くはベイナイトの硬質化を招き、歪み速度上昇による変
形抵抗の増加を阻害するばかりでなく、鋼材の加工性の
低下、靱性の低下、更には鋼材コストの上昇を招くため
に上限を3.5%とした。
Mn, Ni, Cr, Cu, Mo: Mn, N
i, Cr, Cu, and Mo are all austenite stabilizing elements, and are effective elements for stabilizing austenite at room temperature. In particular, when the addition amount of C is limited from the viewpoint of weldability, it is possible to effectively retain austenite by adding an appropriate amount of such an austenite stabilizing element. In addition, these elements have the effect of suppressing the formation of cementite, albeit to a lesser extent than Al and Si, and also work to help enrich C in austenite. Furthermore, these elements also have the function of increasing the dynamic deformation resistance at high speed by solid-solution strengthening the matrix ferrite and bainite together with Al and Si. However, when the addition of one or more of these elements is less than 0.5%, it is not possible to secure the necessary retained austenite, and the strength of the steel material is reduced, thereby effectively reducing the weight of the vehicle body. Cannot be achieved, so the lower limit was set to 0.5%. On the other hand, when the sum of them exceeds 3.5%, not only the ferrite or bainite, which is the parent phase, becomes hardened, but the increase in the deformation resistance due to the increase in the strain rate is impaired, and the workability of the steel material is reduced. The upper limit is set to 3.5% in order to cause a decrease in toughness and an increase in steel material cost.

【0031】必要に応じて添加されるNb,Ti、V
は、炭化物、窒化物、もしくは炭窒化物を形成すること
によって鋼材を高強度化することができるが、その合計
が0.3%を超える場合には母相であるフェライトやベ
イナイト粒内もしくは粒界に多量の炭化物、窒化物、も
しくは炭窒化物として析出し、高速変形時の可動転位発
生源となって高い動的変形抵抗を得ることができなくな
る。また、炭化物の生成は、本発明にとって最も重要な
残留オーステナイト中へのCの濃化を阻害し、Cを浪費
することから上限を0.3%とした。
Nb, Ti, V added if necessary
Can increase the strength of steel by forming carbides, nitrides, or carbonitrides, but if the total exceeds 0.3%, ferrite or bainite grains in the matrix A large amount of carbides, nitrides, or carbonitrides precipitates in the field and becomes a movable dislocation generating source during high-speed deformation, so that high dynamic deformation resistance cannot be obtained. In addition, the formation of carbides inhibits the enrichment of C in retained austenite, which is the most important for the present invention, and wastes C, so the upper limit is set to 0.3%.

【0032】また、必要に応じてB或いはPが添加され
る。Bは、粒界の強化や鋼材の高強度化に有効である
が、その添加量が0.01%を超えるとその効果が飽和
すると共に必要以上に鋼板強度を上昇させ、高速変形時
の変形抵抗の上昇を阻害すると共に、部品への加工性も
低下させることになるので、その上限を0.01%とし
た。また、Pは、鋼材の高強度化や残留オーステナイト
の確保に有効であるが、0.2%を超えて添加された場
合には鋼材コストの上昇を招くばかりでなく、主相であ
るフェライト、ベイナイトの変形抵抗を必要以上に高
め、高速変形時の変形抵抗の上昇を阻害したり、耐置き
割れ性の劣化や疲労特性、靱性の劣化を招くことから
0.2%を上限とした。なお、二次加工性、靱性、スポ
ット溶接性、リサイクル性の劣化防止の観点から0.0
2%以下とすることが望ましい。また、不可避的不純物
として含まれるSについては、硫化物系介在物による成
形性(特に穴拡げ比)、スポット溶接性の劣化防止の観
点から0.01%以下とすることが望ましい。
Further, B or P is added as required. B is effective for strengthening grain boundaries and increasing the strength of steel materials. However, if the added amount exceeds 0.01%, the effect is saturated and the strength of the steel sheet is unnecessarily increased. Since the increase in resistance is hindered and the workability of the parts is also reduced, the upper limit is set to 0.01%. Further, P is effective in increasing the strength of the steel material and securing retained austenite, but when added in excess of 0.2%, not only causes an increase in the cost of the steel material, but also increases the ferrite, which is the main phase. The upper limit was set to 0.2% because the deformation resistance of bainite was unnecessarily increased, the increase in deformation resistance during high-speed deformation was inhibited, and the deterioration of standing crack resistance, fatigue properties, and toughness were deteriorated. In addition, from the viewpoint of preventing deterioration in secondary workability, toughness, spot weldability, and recyclability, 0.0
It is desirable that the content be 2% or less. In addition, the content of S contained as an inevitable impurity is desirably 0.01% or less from the viewpoint of the formability (particularly the hole expansion ratio) by the sulfide-based inclusion and the prevention of deterioration of the spot weldability.

【0033】更に、Caは、硫化物系介在物の形態制御
(球状化)により、成形性(特に穴拡げ比)を向上させ
るために0.0005%以上添加するが、その効果の飽
和、前記介在物増加による逆の効果(穴拡げ比劣化)の
点から上限を0.01%とした。また、REMもCaと
同様の効果があるためその添加量を0.005%〜0.
05%とした。
Further, Ca is added in an amount of 0.0005% or more in order to improve the formability (particularly the hole expansion ratio) by controlling the form (spheroidization) of the sulfide-based inclusions. The upper limit was set to 0.01% from the viewpoint of the opposite effect (deterioration of hole expansion ratio) due to the increase in inclusions. Since REM has the same effect as Ca, the amount of REM added is 0.005% to 0.1%.
05%.

【0034】次に、本発明による高強度鋼板を得るため
の製造方法について熱延鋼板および冷延鋼板のそれぞれ
の製造方法を詳述する。本発明における高い動的変形抵
抗を有する高強度熱延鋼板および冷延鋼板とも、その製
造方法としては、前述した成分組成を有する連続鋳造ス
ラブを、鋳造ままで熱間圧延工程へ直送し、もしくは一
旦冷却した後に再度加熱した後、熱間圧延を行う。この
熱延においては、通常の連続鋳造に加え、薄肉連続鋳造
および熱延連続化技術(エンドレス圧延)の適用も可能
であるが、フェライト体積分率の低下、薄鋼板ミクロ組
織の平均結晶粒径の粗大化を考慮すると仕上げ熱延入側
における鋼片厚(初期鋼片厚)は25mm以上とするこ
とが好ましい。また、この熱間圧延においては、最終パ
ス圧延速度は上記の問題から500mpm以上、好まし
くは600mpm以上で熱延を行うことが好ましい。
Next, a method for producing a high-strength steel sheet according to the present invention will be described in detail with respect to a method for producing each of a hot-rolled steel sheet and a cold-rolled steel sheet. Both the high-strength hot-rolled steel sheet and the cold-rolled steel sheet having high dynamic deformation resistance in the present invention, as a production method thereof, a continuous cast slab having the above-described component composition, directly sent to the hot rolling step as cast, or After cooling once and heating again, hot rolling is performed. In this hot rolling, in addition to ordinary continuous casting, thin-wall continuous casting and continuous hot rolling technology (endless rolling) can be applied, but the ferrite volume fraction is reduced and the average grain size of the microstructure of the thin steel plate is reduced. Considering the coarsening of steel, the thickness of the slab (initial slab thickness) on the finishing hot rolling side is preferably 25 mm or more. Further, in this hot rolling, it is preferable to perform hot rolling at a final pass rolling speed of 500 mpm or more, preferably 600 mpm or more from the above problem.

【0035】特に、高強度熱延鋼板の製造において、上
記熱間圧延における仕上げ温度は、鋼材の化学成分によ
って決まるAr3 −50℃〜Ar3 +120℃の温度範
囲で行うことが好ましい。Ar3 −50℃未満では加工
フェライトが生成し、σd−σs、σdyn−σst、
5〜10%の加工硬化能、成形性を劣化させる。Ar 3
+120℃超では鋼板ミクロ組織の粗大化等からσd−
σs、σdyn−σst、5〜10%の加工硬化能等を
劣化させると共にスケール疵の観点から好ましくない。
前述のようにして熱間圧延された鋼板は巻き取り工程に
入るが、その前にランアウトテーブル上で冷却される。
この際の平均冷却速度は5℃/sec以上である。冷却
速度については残留オーステナイト占積率の確保の観点
から決定される。なお、この冷却方法は一定の冷却速度
で行っても、途中で低冷却速度の領域を含むような複数
種類の冷却速度の組み合わせであってもよい。
In particular, in the production of high-strength hot-rolled steel sheets,
The finishing temperature in hot rolling depends on the chemical composition of the steel.
Ar determinedThree-50 ° C to ArThree+ 120 ° C temperature range
It is preferable to carry out the operation in an enclosed manner. ArThreeProcessing below -50 ° C
Ferrite is formed, σd-σs, σdyn-σst,
Deteriorates work hardening ability and moldability by 5 to 10%. Ar Three
If it exceeds + 120 ° C, σd-
σs, σdyn-σst, 5-10% work hardening ability, etc.
It is not preferable from the viewpoint of deterioration and scale flaws.
The hot-rolled steel sheet is used in the winding process as described above.
Before entering, it is cooled on the run-out table.
The average cooling rate at this time is 5 ° C./sec or more. cooling
As for speed, the viewpoint of securing the retained austenite space factor
Is determined from This cooling method has a constant cooling rate
Even if it is performed in the
A combination of different cooling rates may be used.

【0036】次に、熱間圧延された鋼板は巻き取り工程
に入り、500℃以下の巻き取り温度で巻き取られる。
この巻き取り温度が500℃を超えると残留オーステナ
イト体積分率の低下が起こる。なお、後述するように更
に冷延し、焼鈍に付される冷延鋼板の使用に供される材
料については特に巻き取り温度の制限はなく通常の巻き
取り条件で差し支えない。
Next, the hot-rolled steel sheet enters a winding step, and is wound at a winding temperature of 500 ° C. or less.
If the winding temperature exceeds 500 ° C., the volume fraction of retained austenite decreases. As will be described later, the material used for the cold rolled steel sheet which is further cold rolled and annealed is not particularly limited in the winding temperature, and ordinary winding conditions may be used.

【0037】特に、本発明においては熱延工程における
仕上げ温度、仕上げ入側温度および巻き取り温度との間
には相関関係があることを見いだした。すなわち、図7
および図8に示すように前記仕上げ温度、仕上げ入側温
度と巻き取り温度との間には一義的に決まる特定の条件
がある。すまわち、熱延の仕上げ温度がAr3 −50℃
〜Ar3 +120℃の温度範囲において、メタラジーパ
ラメーター:Aが、(1)式および(2)式を満たすよ
うな熱間圧延を行う。ただし、前記メタラジーパラメー
ター:Aとは以下のように表わすことができる。
In particular, in the present invention, it has been found that there is a correlation between the finishing temperature, the finishing inlet temperature and the winding temperature in the hot rolling process. That is, FIG.
As shown in FIG. 8 and FIG. 8, there is a specific condition which is uniquely determined between the finishing temperature, the finishing entry side temperature and the winding temperature. That is, the finishing temperature of hot rolling is Ar 3 -50 ° C.
In the temperature range of to Ar 3 + 120 ° C., metallurgy parameter: A may perform hot rolling, such as to satisfy the equations (1) and (2) below. However, the metallurgical parameter: A can be represented as follows.

【0038】A=ε* × exp{(75282 −42745 ×
Ceq) /〔1.978 × (FT + 273) 〕} ただし、FT :仕上げ温度(℃) Ceq:炭素当量=C + Mneq/6(%) Mneq:マンガン当量=Mn+(Ni+Cr+Cu+M
o)/2(%) ε* :最終パス歪み速度(s-1
A = ε * × exp {(75282−42745 ×
C eq ) / [1.978 × (FT + 273)]} where FT: finishing temperature (° C.) Ceq: carbon equivalent = C + Mn eq / 6 (%) Mn eq : manganese equivalent = Mn + (Ni + Cr + Cu + M)
o) / 2 (%) ε * : final pass strain rate (s −1 )

【0039】[0039]

【数1】 (Equation 1)

【0040】h1 :最終パス入側板厚 h2 :最終パス出側板厚 r :(h1 −h2 )/h1 R :ロール径 v :最終パス出側速度 ΔT: 仕上げ温度(仕上最終パス出側温度)−仕上げ
入側温度(仕上げ第一パス入側温度) Ar3 :901−325C%+33Si%−92Mneq その後、ランアウトテーブルにおける平均冷却速度を5
℃/秒以上とし、更に前記メタラジーパラメーター:A
と巻き取り温度(CT)との関係が(3)式を満たすよ
うな条件で巻き取ることが好ましい。
H 1 : Thickness of final pass entrance side h 2 : Thickness of final pass exit side r: (h 1 -h 2 ) / h 1 R: Roll diameter v: Final pass exit side speed ΔT: Finishing temperature (final final pass delivery temperature) - finishing entry temperature (finishing first pass inlet side temperature) Ar 3: 901-325C% + 33Si % -92Mn eq Thereafter, the average cooling rate in the run-out table 5
° C / sec or more, and the metallurgy parameter: A
It is preferable that the winding is performed under such a condition that the relationship between the temperature and the winding temperature (CT) satisfies the expression (3).

【0041】 9≦logA≦18 ……………… (1) ΔT≦21×logA−178 ……………… (2) 6×logA+312≦CT≦6×logA+392 ……………… (3) 上記(1)式において、logAが9未満では残留γの
生成、ミクロ組織微細化の観点から不十分となり、σd
−σs,σdyn−σst、5〜10%の加工硬化能等
を劣化させる。
9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA-178 (2) 6 × logA + 312 ≦ CT ≦ 6 × logA + 392 (3) In the above formula (1), if logA is less than 9, it becomes insufficient from the viewpoint of generation of residual γ and miniaturization of microstructure.
-[Sigma] s, [sigma] dyn- [sigma] st, the work hardening ability of 5 to 10% is deteriorated.

【0042】また、logAが18超ではそれを達成す
るための設備が過大となる。(2)式を満たさない場合
には残留γが過度に不安定となり、残留γが硬いマルテ
ンサイトに低歪領域で変態してしまい、成形性やσd−
σs,σdyn−σst、5〜10%の加工硬化能等を
劣化させる。なお、(2)式に示したようにΔTの上限
はlogAの増大により緩和される。
If the logA is more than 18, the equipment for achieving the logA becomes excessive. If the formula (2) is not satisfied, the residual γ becomes excessively unstable, and the residual γ is transformed into hard martensite in a low strain region, and formability and σd−
σs, σdyn-σst, work hardening ability of 5 to 10% is deteriorated. Note that, as shown in equation (2), the upper limit of ΔT is relaxed by increasing logA.

【0043】巻取り温度が(3)式の上限を満たさない
と、残留γ量の減少を招く等の悪影響がでる。また、
(3)式の下限を満たさないと、残留γが過度に不安定
となり、残留γが硬いマルテンサイトに低歪領域で変態
してしまい、成形性やσd−σs、σdyn−σst、
5〜10%の加工硬化能等を劣化させる。なお、巻取り
温度の上下限はlogAの増大により緩和される。
If the winding temperature does not satisfy the upper limit of the expression (3), adverse effects such as a decrease in the amount of residual γ will occur. Also,
If the lower limit of the expression (3) is not satisfied, the residual γ becomes excessively unstable, and the residual γ is transformed into hard martensite in a low strain region, and the formability, σd-σs, σdyn-σst,
Deteriorates work hardening ability of 5 to 10%. The upper and lower limits of the winding temperature are alleviated by an increase in logA.

【0044】次に、本発明による冷延鋼板は、熱延、巻
き取り後の各工程を経た鋼板を、圧下率40%以上で冷
間圧延に付され、次いで前記冷間圧延を経た鋼板は焼鈍
に付される。この焼鈍は、図9に示すような焼鈍サイク
ルを有する連続焼鈍が最適であり、この連続焼鈍工程で
焼鈍して最終的な製品とする際に、0.1×(Ac3
Ac1 )+Ac1 ℃以上Ac3 +50℃以下の温度で1
0秒〜3分焼鈍した後に、1〜10℃/秒の一次冷却速
度で550〜720℃の範囲の一次冷却停止温度まで冷
却し、引き続いて10〜200℃/秒の二次冷却速度で
200〜450℃の二次冷却停止温度まで冷却した後、
200〜500℃の温度範囲で15秒〜20分保持し、
室温まで冷却する。前記焼鈍温度は、鋼材の化学成分に
よって決まる温度Ac1 およびAc3 温度(例えば、
「鉄鋼材料学」:W. C. Leslie著、丸善.p 273.)で表
される0.1×(Ac3 −Ac1 )+Ac1 ℃未満の場
合には、焼鈍温度で得られるオーステナイト量が少ない
ので、最終的な鋼板中に安定して残留オーステナイトを
残すことが出来ないため0.1×(Ac3 −Ac1 )+
Ac1 ℃を下限とした。また、焼鈍温度がAc3 +50
℃を超えても何ら鋼板の特性を改善できず、しかもコス
ト上昇を招くために焼鈍温度の上限をAc3 +50℃と
した。この温度での焼鈍時間は、鋼板の温度均一化とオ
ーステナイト量の確保のために最低10秒以上必要であ
るが、3分を超えると前記効果が飽和し、コスト上昇の
原因となる。
Next, the cold-rolled steel sheet according to the present invention is subjected to cold rolling at a rolling reduction of 40% or more after the hot rolling and winding steps, and then the cold-rolled steel sheet is subjected to the following steps. It is subjected to annealing. For this annealing, continuous annealing having an annealing cycle as shown in FIG. 9 is optimal. When annealing in this continuous annealing step to obtain a final product, 0.1 × (Ac 3
Ac 1 ) + Ac 1 at a temperature not less than 1 ° C. and Ac 3 + 50 ° C.
After annealing for 0 seconds to 3 minutes, it is cooled at a primary cooling rate of 1 to 10 ° C./sec to a primary cooling stop temperature in the range of 550 to 720 ° C., and subsequently cooled at a secondary cooling rate of 10 to 200 ° C./sec. After cooling to the secondary cooling stop temperature of ~ 450 ° C,
Hold in a temperature range of 200 to 500 ° C. for 15 seconds to 20 minutes,
Cool to room temperature. The annealing temperature is a temperature Ac 1 and an Ac 3 temperature determined by the chemical composition of the steel material (for example,
"Steel Materials Science": WC Leslie, Maruzen. When the temperature is less than 0.1 × (Ac 3 −Ac 1 ) + Ac 1 ° C. represented by p 273.), the amount of austenite obtained at the annealing temperature is small, so that the retained austenite is stably contained in the final steel sheet. 0.1 × (Ac 3 −Ac 1 ) +
Ac 1 ° C was the lower limit. Further, the annealing temperature is Ac 3 +50
If the temperature exceeds 100 ° C., the characteristics of the steel sheet cannot be improved at all, and the upper limit of the annealing temperature is set to Ac 3 + 50 ° C. to increase the cost. The annealing time at this temperature is required to be at least 10 seconds or more in order to equalize the temperature of the steel sheet and to secure the amount of austenite. However, if it exceeds 3 minutes, the above effect is saturated and causes an increase in cost.

【0045】前記一次冷却は、オーステナイトからフェ
ライトへの変態を促し未変態のオーステナイト中にCを
濃化させてオーステナイトの安定化を図るために重要で
ある。この冷却速度が1℃/秒未満にすると、長大な生
産ラインが必要になること、生産性が悪化する等の点か
ら1℃/秒が下限となる。一方、冷却速度が10℃/秒
超になるとフェライト変態が十分起こらず、最終的な鋼
板中の残留オーステナイト確保が困難になるため10℃
/秒を上限とした。この一次冷却が550℃未満まで行
なわれると、冷却中にパーライトが生成し、オーステナ
イト安定化元素であるCの浪費が起こり、最終的に十分
な量の残留オーステナイトが得られなくなる。また、前
記冷却が720℃超までしか行われなかった場合にはフ
ェライト変態の進行が十分でなくなる。
The primary cooling is important for promoting transformation from austenite to ferrite and enriching C in untransformed austenite to stabilize austenite. If the cooling rate is less than 1 ° C./sec, the lower limit is 1 ° C./sec from the viewpoint that a long production line is required and productivity is deteriorated. On the other hand, if the cooling rate exceeds 10 ° C./sec, the ferrite transformation does not sufficiently occur, and it becomes difficult to secure the retained austenite in the final steel sheet.
/ S as the upper limit. If the primary cooling is performed to a temperature lower than 550 ° C., pearlite is generated during the cooling, and C as an austenite stabilizing element is wasted, so that a sufficient amount of residual austenite cannot be finally obtained. Further, when the cooling is performed only up to more than 720 ° C., the progress of ferrite transformation becomes insufficient.

【0046】引き続き行われる二次冷却の急速冷却は、
冷却中にパーライト変態や鉄炭化物の析出が起こらない
ような冷却速度として最低10℃/秒以上が必要になる
が、200℃/秒超にすると設備能力上困難となる。ま
た、この二次冷却の冷却停止温度が200℃未満の場合
には、冷却前に残っていたオーステナイトのほぼ全てが
マルテンサイトに変態して最終的に残留オーステナイト
を確保できなくなる。また、この冷却停止温度が450
℃超になると最終的に得られるσd−σs、σdyn−
σstが低下する。
The rapid cooling of the subsequent secondary cooling is as follows:
A cooling rate of at least 10 ° C./sec is required so that pearlite transformation and precipitation of iron carbide do not occur during cooling, but if it exceeds 200 ° C./sec, it becomes difficult in terms of equipment capacity. Further, when the cooling stop temperature of the secondary cooling is lower than 200 ° C., almost all of the austenite remaining before cooling is transformed into martensite, and finally it becomes impossible to secure the retained austenite. When the cooling stop temperature is 450
℃ d-σs, σdyn-
σst decreases.

【0047】鋼板中に残留しているオーステナイトを室
温で安定化させるためには、その一部をベイナイトに変
態させることでオーステナイト中の炭素濃度を更に高め
ることが好ましい。二次冷却停止温度がベイナイト変態
処理のために保持される温度より低温である場合には保
持温度まで加熱される。この時の加熱速度は5℃/秒〜
50℃/秒の範囲であれば鋼板の最終的な特性を劣化さ
せることはない。また、逆に二次冷却停止温度がベイナ
イト処理温度よりも高温の場合は、ベイナイト処理温度
まで5℃/秒〜200℃/秒の冷却速度で強制的に冷却
しても、予め目標温度が設定された加熱ゾーンに直接搬
送されても、鋼板の最終的な特性を劣化させることはな
い。一方、鋼板が200℃未満で保持された場合にも、
また500℃超に保持された場合にも、十分な量の残留
オーステナイトを確保できないことから、保持温度の範
囲を200℃〜500℃とした。この時、200℃〜5
00℃の保持が15秒未満ではベイナイト変態の進行が
十分でないことから最終的に必要な量の残留オーステナ
イトを得ることができず、また20分超ではベイナイト
変態後に鉄炭化物の析出やパーライト変態が起こり、残
留オーステナイト生成に不可欠なCを浪費してしまい、
必要な量の残留オーステナイトを得ることができなくな
るために、保持時間を15秒〜20分の範囲とした。ベ
イナイト変態を促進させるために行う200℃〜500
℃の保持は、等温での保持であっても、または、この温
度範囲であれば意識的な温度変化を与えても最終的な鋼
板の特性を劣化させることはない。
In order to stabilize the austenite remaining in the steel sheet at room temperature, it is preferable to further increase the carbon concentration in the austenite by transforming a part thereof into bainite. If the secondary cooling stop temperature is lower than the temperature maintained for the bainite transformation process, the heating is performed to the maintained temperature. The heating rate at this time is 5 ° C./sec.
If it is in the range of 50 ° C./sec, the final properties of the steel sheet will not be deteriorated. Conversely, if the secondary cooling stop temperature is higher than the bainite processing temperature, the target temperature is set in advance even if the secondary cooling stop temperature is forcibly cooled to the bainite processing temperature at a cooling rate of 5 ° C./sec to 200 ° C./sec. Even if the steel sheet is directly conveyed to the heated zone, the final properties of the steel sheet are not deteriorated. On the other hand, even when the steel sheet is held at less than 200 ° C,
Further, even when the temperature is maintained at more than 500 ° C., a sufficient amount of retained austenite cannot be secured, so the range of the holding temperature was set to 200 ° C. to 500 ° C. At this time, 200 ° C ~ 5
If the holding time at 00 ° C. is less than 15 seconds, the required amount of retained austenite cannot be finally obtained because the progress of bainite transformation is not sufficient, and if over 20 minutes, precipitation of iron carbide or pearlite transformation occurs after bainite transformation. Occurs and wastes C, which is essential for the formation of retained austenite,
The holding time was set in the range of 15 seconds to 20 minutes so that a required amount of retained austenite could not be obtained. 200 ° C. to 500 to promote bainite transformation
The maintenance of ° C. is performed at an isothermal temperature, or within this temperature range, even if a conscious temperature change is given, the characteristics of the final steel sheet are not deteriorated.

【0048】更に、本発明における焼鈍後の好ましい冷
却条件としては、0.1×(Ac3−Ac1 )+Ac1
℃以上Ac3 +50℃以下の温度で10秒〜3分焼鈍し
た後に、1〜10℃/秒の一次冷却速度で550〜72
0℃の範囲の二次冷却開始温度Tqまで冷却し、引き続
いて10〜200℃/秒の二次冷却速度で成分と焼鈍温
度Toで決まる温度Tem以上、500℃以下の二次冷
却数量温度Teまで冷却した後、Te−50℃以上50
0℃以下の温度Toaで15秒〜20分保持し、室温ま
で冷却する方法である。これは、図10に示すような連
続焼鈍サイクルにおける急冷終点温度Teを成分と焼鈍
温度Toとの関数として表し、ある限界値以上で冷却す
る方法であり、更に過時効温度Toaの範囲を前記急冷
終点温度Teとの関係で規定したものである。
Further, the preferable cooling condition after annealing in the present invention is 0.1 × (Ac 3 −Ac 1 ) + Ac 1
After annealing for 10 seconds to 3 minutes at a temperature of not lower than Ac 3 + 50 ° C. and 550 to 72 at a primary cooling rate of 1 to 10 ° C./sec.
The temperature is cooled to a secondary cooling start temperature Tq in the range of 0 ° C., and subsequently, at a secondary cooling rate of 10 to 200 ° C./sec, a secondary cooling quantity temperature Te not lower than the temperature Tem determined by the components and the annealing temperature To and not higher than 500 ° C. After cooling to -50 ° C
This is a method of holding at a temperature Toa of 0 ° C. or less for 15 seconds to 20 minutes and cooling to room temperature. This is a method in which the quenching end point temperature Te in the continuous annealing cycle as shown in FIG. 10 is expressed as a function of the component and the annealing temperature To, and the cooling is performed at a certain limit or more. This is defined in relation to the end point temperature Te.

【0049】ここで、Temとは、急冷開始時点Tqで
残留しているオーステナイトのマルテンサイト変態開始
温度である。すなわち、Temは、オーステナイト中の
C濃度の影響を除外した値(T1)とC濃度の影響を示
す値(T2)の差:Tem=T1−T2である。ここ
で、T1とは、C以外の固溶元素濃度によって計算され
る温度であり、また、T2は鋼板の成分で決まるAc1
とAc3 および焼鈍温度Toによって決まるTqでの残
留オーステナイト中のC濃度から計算される温度であ
る。また、Ceq* は、前記焼鈍温度Toで残留してい
るオーステナイト中の炭素当量である。
Here, Tem is the martensitic transformation start temperature of austenite remaining at the quenching start time Tq. That is, Tem is the difference between the value (T1) excluding the effect of the C concentration in austenite and the value (T2) indicating the effect of the C concentration: Tem = T1-T2. Here, T1 is the temperature calculated by the concentration of the solid solution element other than C, and T2 is Ac 1 determined by the composition of the steel sheet.
And a temperature calculated from the C concentration in the retained austenite at Tq determined by Ac 3 and the annealing temperature To. Ceq * is the carbon equivalent in austenite remaining at the annealing temperature To.

【0050】T1=561−33×{Mn%+(Ni+
Cr+Cu+Mo)/2}とT2との差であり、T2
は、Ac1 =723−0.7×Mn%−16.9×Ni
%+29.1×Si%+16.9×Cr%、および、A
c3 =910−203×(C%)1/2 −15.2×Ni
%+44.7×Si%+104×V%+31.5×Mo
%−30×Mn%−11×Cr%−20×Cu%+70
0×P%+400×Al%+400×Ti%、と焼鈍温
度Toにより表現され、Ceq* =(Ac3−Ac1 )×
C/(To−Ac1 )+(Mn+Si/4+Ni/7+
Cr+Cu+1.5Mo)/6が、0.6超の場合に
は、T2=474×(Ac3−Ac1 )×C/(To−A
1)、0.6以下の場合には、T2=474×(Ac3
−Ac1 )×C/{3×(Ac3−Ac1 )×C+〔(M
n+Si/4+Ni/7+Cr+Cu+1.5Mo)/
2−0.85〕×(To−Ac1 )}、により表現され
る。
T1 = 561-33 × {Mn% + (Ni +
(Cr + Cu + Mo) / 2} and T2.
Is Ac 1 = 723-0.7 × Mn% −16.9 × Ni
% + 29.1 × Si% + 16.9 × Cr% and A
c 3 = 910−203 × (C%) 1/2 −15.2 × Ni
% + 44.7 × Si% + 104 × V% + 31.5 × Mo
% -30 * Mn% -11 * Cr% -20 * Cu% + 70
0 × P% + 400 × Al% + 400 × Ti% and the annealing temperature To, Ceq * = (Ac 3 −Ac 1 ) ×
C / (To-Ac 1 ) + (Mn + Si / 4 + Ni / 7 +
When Cr + Cu + 1.5Mo) / 6 exceeds 0.6, T2 = 474 × (Ac 3 −Ac 1 ) × C / (To-A)
c 1 ), in the case of 0.6 or less, T2 = 474 × (Ac 3
−Ac 1 ) × C / {3 × (Ac 3 −Ac 1 ) × C + [(M
n + Si / 4 + Ni / 7 + Cr + Cu + 1.5Mo) /
2−0.85] × (To-Ac 1 )}.

【0051】すなわち、TeがTem未満の場合には、
必要以上に多量のマルテンサイトが生成し、十分な量の
残留オーステナイトを確保できないと同時に、σd−σ
s、(σdyn−σst)の値を小さくすることから、
これをTeの下限とした。また、Teが500℃以上で
はパーライトもしくは鉄炭化物が生成し、残留オーステ
ナイト生成に不可欠なCを浪費してしまい、必要な量の
残留オーステナイトが得られなくなる。また、Toaが
Te−50℃未満の場合には、付加的な冷却設備が必要
であったり、連続焼鈍炉の炉温と鋼板の温度差に起因し
た材質のバラツキが大きくなることから、この温度を下
限とした。更に、Toaが500℃以上では、パーライ
トもしくは鉄炭化物が生成し、残留オーステナイト生成
に不可欠なCを浪費してしまい、必要な量の残留オース
テナイトが得られなくなる。また、Toaでの保持が1
5秒未満ではベイナイト変態の進行が十分でなく、最終
的に得られる残留オーステナイトの量および性質が本発
明の目的に合致しなくなる。
That is, when Te is less than Te,
Unnecessarily large amount of martensite is generated, and a sufficient amount of retained austenite cannot be secured.
Since the value of s, (σdyn-σst) is reduced,
This was the lower limit of Te. Further, if Te is 500 ° C. or higher, pearlite or iron carbide is generated, C which is indispensable for generation of retained austenite is wasted, and a required amount of retained austenite cannot be obtained. If Toa is less than Te-50 ° C., additional cooling equipment is required, or the variation in the material due to the difference between the furnace temperature of the continuous annealing furnace and the temperature of the steel sheet increases. Was set as the lower limit. Further, when Toa is 500 ° C. or higher, pearlite or iron carbide is generated, C which is indispensable for generation of retained austenite is wasted, and a required amount of retained austenite cannot be obtained. In addition, the retention in Toa is 1
If the time is less than 5 seconds, the bainite transformation does not proceed sufficiently, and the amount and properties of the finally obtained retained austenite do not meet the purpose of the present invention.

【0052】以上述べたような鋼板組成と製造方法を採
用することにより、鋼板のミクロ組織がフェライトおよ
び/またはベイナイトを含み、このいずれかを主相と
し、体積分率で3〜50%の残留オーステナイトを含む
第3相との複合組織であり、かつ相当歪みで0%超10
%以下の予変形を与えた後、5×10-4〜5×10
-3(1/s)の歪み速度範囲で変形した時の準静的変形
強度σsと、前記予変形を加えた後、5×102 〜5×
103 (1/s)の歪み速度で変形した時の動的変形強
度σdとの差:σd−σsが60MPa以上であり、か
つ、5×102 〜5×103 (1/s)の歪み速度範囲
で変形した時の3〜10%の相当歪み範囲における変形
応力の平均値σdyn(MPa )と5×10-4〜5×10
-3(1/s)の歪み速度範囲で変形した時の3〜10%
の相当歪み範囲における変形応力の平均値σst(MPa
)の差が5×10-4〜5×10-3(1/s)の歪み速
度範囲で測定された静的な引張り試験における最大応力
TS(MPa )によって表現される式(σdyn−σs
t)≧−0.272×TS+300を満足し、かつ歪み
5〜10%の加工硬化指数が0.130以上を満足する
ことを特徴とする高い動的変形抵抗を有する良加工性高
強度鋼板の製造が可能となる。
By adopting the steel sheet composition and the manufacturing method as described above, the microstructure of the steel sheet contains ferrite and / or bainite, any one of which is a main phase, and a residual volume fraction of 3 to 50%. A composite structure with the third phase containing austenite, and with a considerable strain of more than 0%
% After giving a pre-deformation of not more than 5 × 10 -4 to 5 × 10
-3 (1 / s) quasi-static deformation strength σs when deformed in the strain rate range, and 5 × 10 2 to 5 ×
Difference from dynamic deformation strength σd when deformed at a strain rate of 10 3 (1 / s): σd−σs is 60 MPa or more and 5 × 10 2 to 5 × 10 3 (1 / s). The average value of deformation stress σdyn (MPa) in the equivalent strain range of 3 to 10% when deformed in the strain rate range and 5 × 10 −4 to 5 × 10
-3 (1 / s) 3-10% when deformed in strain rate range
Average value of deformation stress σst (MPa
) Is expressed by a maximum stress TS (MPa) in a static tensile test measured in a strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s) (σdyn−σs).
t) A high-workability, high-strength steel sheet having high dynamic deformation resistance, satisfying ≧ −0.272 × TS + 300 and satisfying a work hardening index of 5 to 10% of strain of 0.130 or more. Manufacturing becomes possible.

【0053】なお、本発明による良加工性高強度鋼板
は、焼鈍、調質圧延、電気メッキ等を施して所望の製品
とすることもできる。ミクロ組織は以下の方法で評価し
た。フェライト、ベイナイト及び残部組織の同定、存在
位置の観察、及び平均円相当径と占積率の測定はナイタ
ール試薬及び特開昭59−219473に開示された試
薬により薄鋼板圧延方向断面を腐食した倍率1000倍
の光学顕微鏡写真により行った。
The good workability high-strength steel sheet according to the present invention can be subjected to annealing, temper rolling, electroplating, etc. to obtain a desired product. The microstructure was evaluated by the following method. The identification of ferrite, bainite and the remaining structure, the observation of the existing position, and the measurement of the average equivalent circle diameter and the space factor were carried out by the nital reagent and the reagent disclosed in JP-A-59-219473. The measurement was performed using a 1000 times optical microscope photograph.

【0054】残留γの平均円相当径は特願平3−351
209で開示された試薬により圧延方向断面を腐食し、
倍率1000倍の光学顕微鏡写真より求めた。また、同
写真によりその存在位置を観察した。残留γ体積分率
(Vγ:単位は%)はMo−Kα線によるX線解析で次
式に従い、算出した。
The average equivalent circle diameter of the residual γ is disclosed in Japanese Patent Application No. 3-351.
209 corrodes the cross section in the rolling direction by the reagent disclosed in 209,
It was determined from an optical microscope photograph at a magnification of 1000 times. In addition, the existence position was observed by the same photograph. The residual γ volume fraction (Vγ: unit is%) was calculated by X-ray analysis using Mo-Kα radiation according to the following equation.

【0055】Vγ=(2/3){100/(0.7×α
(211)/γ(220)+1)}+(1/3){10
0/(0.78×α(211)/γ(311)+1)} 但し、α(211)、γ(220)、α(211)、γ
(311)は面強度を示す。残留γのC濃度(Cγ:単
位は%)はCu−Kα線によるX線解析でオーステナイ
トの(200)面、(220)面、(311)面の反射
角から格子定数(単位はオングストローム)を求め、次
式に従い、算出した。
Vγ = (2/3) {100 / (0.7 × α)
(211) / γ (220) +1)} + (1 /) {10
0 / (0.78 × α (211) / γ (311) +1)} where α (211), γ (220), α (211), γ
(311) indicates the surface strength. The C concentration (Cγ: unit is%) of the residual γ is obtained by calculating the lattice constant (unit: angstrom) from the reflection angles of the (200), (220), and (311) planes of austenite by X-ray analysis using Cu-Kα radiation. It was calculated according to the following equation.

【0056】 Cγ=(格子定数−3.572)/0.033 特性評価は以下の方法で実施した。引張試験はJIS5
号(標点距離50mm、平行部幅25mm)を用い歪み
速度0.001/sで実施し、引張強さ(TS)、全伸
び(T.El)、加工硬化指数(歪5%〜10%のn
値)を求め、TS×T.Elを計算した。
Cγ = (lattice constant−3.572) /0.033 The characteristic evaluation was performed by the following method. Tensile test is JIS5
No. (gauge distance 50 mm, parallel part width 25 mm) at a strain rate of 0.001 / s, tensile strength (TS), total elongation (T.El), work hardening index (strain 5% to 10%) N
Value), TS × T. El was calculated.

【0057】伸びフランジ性は20mmの打ち抜き穴を
バリのない面から30度円錐ポンチで押し拡げ、クラッ
クが板厚を貫通した時点での穴径(d)と初期穴径(d
o、20mm)との穴拡げ比(d/do)を求めた。ス
ポット溶接性は鋼板板厚の平方根の5倍の先端径を有す
る電極によりチリ発生電流の0.9倍の電流で接合した
スポット溶接試験片をたがねで破断させた時にいわゆる
剥離破断を生じたら不適とした。
The stretch flangeability was determined by expanding a punched hole of 20 mm from a burr-free surface by a 30-degree conical punch, and when the crack penetrated the plate thickness (d) and the initial hole diameter (d).
o, 20 mm) with the hole expansion ratio (d / do). The spot weldability causes so-called peeling rupture when a spot welded test piece joined with an electrode having a tip diameter 5 times the square root of the steel sheet thickness with a current 0.9 times the dust generation current is broken with a chisel. It was unsuitable.

【0058】[0058]

【実施例】次に本発明を実施例に基づいて説明する。 <実施例1>表1に示す15種類の鋼材を1050〜1
250℃に加熱し、表2に示す製造条件にて、熱間圧
延、冷却、巻取を行い、熱延鋼板を製造した。本発明に
よる成分条件と製造条件を満足する鋼板は、表3に示す
ように残留オーステナイト中の固溶〔C〕と鋼材の平均
Mneqで決まるM値が−140以上70未満である初
期残留オーステナイトを3%以上50%以下、予変形後
の残留オーステナイトを2.5%以上含有しており、さ
らに残留オーステナイトの初期体積分率と10%予変形
後体積分率の比で0.3以上という適度な安定性を有し
ている。本発明による成分条件と製造条件とミクロ組織
を満足する鋼板は、表4に示すように何れもσd−σs
≧60、σdyn−σst≧−0.272×TS+30
0、5〜10%の加工硬化指数≧0.130、TS×
T.El≧20000という優れた耐衝突安全性と成形
性を示すとともにスポット溶接性をも兼備していること
が明らかである。
Next, the present invention will be described based on embodiments. <Example 1> 15 kinds of steel materials shown in Table 1 were used for 1050 to 1
It was heated to 250 ° C., hot rolled, cooled and wound under the production conditions shown in Table 2 to produce a hot rolled steel sheet. As shown in Table 3, the steel sheet satisfying the component conditions and the production conditions according to the present invention has an initial retained austenite in which the M value determined by the solid solution [C] in the retained austenite and the average Mneq of the steel material is −140 or more and less than 70. Suitable for containing 3% or more and 50% or less, pre-deformed residual austenite of 2.5% or more, and a ratio of the initial volume fraction of retained austenite to the volume fraction after 10% pre-deformation of 0.3 or more. It has excellent stability. As shown in Table 4, all of the steel sheets satisfying the component conditions, the manufacturing conditions, and the microstructure according to the present invention have σd−σs.
≧ 60, σdyn−σst ≧ −0.272 × TS + 30
Work hardening index of 0, 5 to 10% ≧ 0.130, TS ×
T. It is evident that it exhibits excellent impact safety and formability of El ≧ 20,000 and also has spot weldability.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 [Table 2]

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

【表4】 [Table 4]

【0063】<実施例2>表5に示す25種類の鋼材を
Ar3以上で熱延を完了し冷却後巻き取り、酸洗後冷延
した。その後、各鋼の成分からAc1,Ac3の各温度
を求め、表6に示すような焼鈍条件で加熱、冷却、保持
を行い、その後室温まで冷却した。本発明による製造条
件と成分条件を満足する各鋼板は、表7および表8に示
すように、残留オーステナイト中の固溶〔C〕と鋼材の
平均Mneqで決まるM値が−140以上70未満で、
何れも歪み5〜10%の加工硬化指数が0.13以上、
予加工後の残留オーステナイト体積分率が2.5%以上
で、V(10)/V(0)が0.3以上、最大応力×全
伸びが20,000以上であり、(σd−σs)≧60
と(σdyn−σst)≧−0.272×TS+300
を同時に満足するという優れた耐衝突安全性と成形性を
示すことが明らかである。
Example 2 Twenty-five kinds of steel materials shown in Table 5 were hot rolled with Ar3 or more, cooled, wound up, pickled, and cold rolled. Thereafter, the respective temperatures of Ac1 and Ac3 were determined from the components of each steel, and heating, cooling, and holding were performed under the annealing conditions shown in Table 6, and then cooled to room temperature. As shown in Tables 7 and 8, each steel sheet satisfying the manufacturing conditions and the component conditions according to the present invention has an M value determined by the solid solution [C] in the retained austenite and the average Mneq of the steel material of not less than -140 and less than 70. ,
In any case, the work hardening index of strain 5 to 10% is 0.13 or more,
The residual austenite volume fraction after pre-processing is 2.5% or more, V (10) / V (0) is 0.3 or more, maximum stress × total elongation is 20,000 or more, and (σd−σs) ≧ 60
And (σdyn-σst) ≧ −0.272 × TS + 300
It is evident that the composition exhibits excellent collision safety and moldability that simultaneously satisfy the following conditions.

【0064】[0064]

【表5】 [Table 5]

【0065】[0065]

【表6】 [Table 6]

【0066】[0066]

【表7】 [Table 7]

【0067】[0067]

【表8】 [Table 8]

【0068】[0068]

【発明の効果】上述したように、本発明は従来にない優
れた耐衝突安全性および成形性を兼ね備えた自動車用高
強度熱延鋼板および冷延鋼板を低コストで、しかも安定
的に提供することが可能になり、高強度鋼板の使用用途
および使用条件が格段に拡大されるものである。
As described above, the present invention stably provides a high-strength hot-rolled steel sheet and a cold-rolled steel sheet for automobiles, which have both unprecedented excellent collision safety and formability at low cost. This makes it possible to use the high-strength steel sheet in a wide variety of applications and conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における部材吸収エネルギーとTSの関
係を示す図。
FIG. 1 is a diagram showing a relationship between a member absorbed energy and a TS in the present invention.

【図2】図1における部材吸収エネルギー測定用の成形
部材を示す図。
FIG. 2 is a view showing a molded member for measuring a member absorbed energy in FIG. 1;

【図3】鋼板の歪み5〜10%の加工硬化指数と動的エ
ネルギー吸収量(J)との関係を示す図。
FIG. 3 is a view showing a relationship between a work hardening index of a steel sheet having a strain of 5 to 10% and a dynamic energy absorption (J).

【図4】aは、図3における動的エネルギー吸収量測定
用の衝撃圧壊試験に用いた部品(ハットモデル)の概観
図、bは、aに用いた試験片の断面図、cは、衝撃圧壊
試験方法の模式図。
4A is a schematic view of a part (hat model) used in an impact crush test for measuring dynamic energy absorption in FIG. 3; FIG. 4B is a cross-sectional view of a test piece used in a; FIG. 3 is a schematic diagram of a crush test method.

【図5】本発明における衝突時の衝撃エネルギー吸収能
の指標である、5×102 〜5×103 (1/s)の歪
み速度範囲で変形した時の3〜10%の相当歪み範囲に
おける変形応力の平均値σdynと、5×10-4〜5×
10-3(1/s)の歪み速度範囲で変形した時の3〜1
0%の相当歪み範囲における変形応力の平均値σstの
差(σdyn−σst)とTSとの関係を示す図。
FIG. 5 is an index of an impact energy absorbing ability at the time of collision in the present invention, and an equivalent strain range of 3 to 10% when deformed at a strain rate range of 5 × 10 2 to 5 × 10 3 (1 / s). Average value of deformation stress σdyn at 5 × 10 −4 to 5 ×
3-1 when deformed in the strain rate range of 10 -3 (1 / s)
The figure which shows the relationship between the difference ((sigma) dyn- (sig) st) of deformation stress average value (sigma) st in the equivalent strain range of 0%, and TS.

【図6】歪み5〜10%の加工硬化指数と引張強さ(T
S)×全伸び(T・El)との関係を示す図。
FIG. 6: Work hardening index and tensile strength (T
The figure which shows the relationship with (S) x total elongation (T * El).

【図7】本発明における熱延工程におけるΔTとメタラ
ジーパラメーターAとの関係を示す図。
FIG. 7 is a diagram showing a relationship between ΔT and a metallurgical parameter A in the hot rolling step in the present invention.

【図8】本発明における熱延工程における巻き取り温度
とメタラジーパラメーターAとの関係を示す図。
FIG. 8 is a diagram showing a relationship between a winding temperature and a metallurgy parameter A in the hot rolling step in the present invention.

【図9】本発明における連続焼鈍工程における焼鈍サイ
クルを示す模式図。
FIG. 9 is a schematic view showing an annealing cycle in a continuous annealing step according to the present invention.

【図10】本発明における連続焼鈍工程における二次冷
却停止温度(Te)とその後の保持温度(Toa)との
関係を示す図。
FIG. 10 is a view showing a relationship between a secondary cooling stop temperature (Te) and a subsequent holding temperature (Toa) in the continuous annealing step in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/58 C22C 38/58

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 最終的に得られる鋼板のミクロ組織がフ
ェライトおよび/またはベイナイトを含み、このいずれ
かを主相とし、体積分率で3〜50%の残留オーステナ
イトを含む第3相との複合組織であり、かつ相当歪みで
0%超10%以下の予変形を与えた後、5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の準静
的変形強度σsと、前記予変形を加えた後、5×102
〜5×103 (1/s)の歪み速度で変形した時の動的
変形強度σdとの差:σd−σsが60MPa以上を満
足し、かつ歪み5〜10%の加工硬化指数が0.130
以上を満足することを特徴とする高い動的変形抵抗を有
する良加工性高強度鋼板。
1. A microstructure of a steel sheet finally obtained contains a ferrite and / or bainite, and a composite with a third phase having any one of them as a main phase and containing 3 to 50% by volume of retained austenite. 5 × 10 −4 to 5 × 10 −4 after giving a pre-deformation of more than 0% and 10% or less with a substantial strain with a substantial strain
A quasi-static deformation strength σs when deformed in a strain rate range of × 10 −3 (1 / s), and 5 × 10 2 after adding the pre-deformation
Difference from dynamic deformation strength σd when deformed at a strain rate of の 5 × 10 3 (1 / s): σd−σs satisfies 60 MPa or more, and a work hardening index of strain 5 to 10% is 0. 130
A high-workability, high-strength steel sheet having high dynamic deformation resistance, characterized by satisfying the above.
【請求項2】 最終的に得られる鋼板のミクロ組織がフ
ェライトおよび/またはベイナイトを含み、このいずれ
かを主相とし、体積分率で3〜50%の残留オーステナ
イトを含む第3相との複合組織であり、かつ相当歪みで
0%超10%以下の予変形を与えた後、5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の準静
的変形強度σsと、前記予変形を加えた後、5×102
〜5×103 (1/s)の歪み速度で変形した時の動的
変形強度σdとの差:σd−σsが60MPa以上であ
り、かつ、5×102 〜5×103 (1/s)の歪み速
度範囲で変形した時の3〜10%の相当歪み範囲におけ
る変形応力の平均値σdyn(MPa )と5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の3〜
10%の相当歪み範囲における変形応力の平均値σst
(MPa )の差が5×10-4〜5×10-3(1/s)の歪
み速度範囲で測定された静的な引張り試験における最大
応力TS(MPa )によって表現される式(σdyn−σ
st)≧−0.272×TS+300を満足し、かつ歪
み5〜10%の加工硬化指数が0.130以上を満足す
るすることを特徴とする高い動的変形抵抗を有する良加
工性高強度鋼板。
2. The microstructure of the finally obtained steel sheet contains a ferrite and / or bainite, and a composite with a third phase containing any one of them as a main phase and containing 3 to 50% by volume of retained austenite. 5 × 10 −4 to 5 × 10 −4 after giving a pre-deformation of more than 0% and 10% or less with a substantial strain with a substantial strain
A quasi-static deformation strength σs when deformed in a strain rate range of × 10 −3 (1 / s), and 5 × 10 2 after adding the pre-deformation
Difference from dynamic deformation strength σd when deformed at a strain rate of 55 × 10 3 (1 / s): σd−σs is 60 MPa or more, and 5 × 10 2 to 5 × 10 3 (1 / s) The average value of deformation stress σdyn (MPa) and 5 × 10 -4 to 5 in the equivalent strain range of 3 to 10% when deformed in the strain rate range of s).
3 to 3 when deformed within the strain rate range of × 10 -3 (1 / s)
Average value σst of deformation stress in the equivalent strain range of 10%
The equation (σdyn-) expressed by the maximum stress TS (MPa) in a static tensile test measured in a strain rate range where the difference in (MPa) is 5 × 10 −4 to 5 × 10 −3 (1 / s). σ
st) Good workability and high strength steel sheet having high dynamic deformation resistance, satisfying ≧ −0.272 × TS + 300 and satisfying a work hardening index of 5 to 10% of strain of 0.130 or more. .
【請求項3】 最終的に得られる鋼板のミクロ組織がフ
ェライトおよび/またはベイナイトを含み、このいずれ
かを主相とし、体積分率で3〜50%の残留オーステナ
イトを含む第3相との複合組織であり、かつ相当歪みで
0%超10%以下の予変形を与えた後、5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の準静
的変形強度σsと、前記予変形を加えた後、5×102
〜5×103 (1/s)の歪み速度で変形した時の動的
変形強度σdとの差:σd−σsが60MPa以上であ
り、かつ、5×102 〜5×103 (1/s)の歪み速
度範囲で変形した時の3〜10%の相当歪み範囲におけ
る変形応力の平均値σdyn(MPa )と5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の3〜
10%の相当歪み範囲における変形応力の平均値σst
(MPa )の差が5×10-4〜5×10-3(1/s)の歪
み速度範囲で測定された静的な引張り試験における最大
応力TS(MPa )によって表現される式(σdyn−σ
st)≧−0.272×TS+300を満足し、更に前
記残留オーステナイト中の固溶〔C〕と、鋼材の平均M
n等量{Mn eq =Mn+(Ni+Cr+Cu+Mo)
/2}よって決まる値(M)が、M=678−428×
〔C〕−33Mn eq が−140以上70未満を満足
し、かつ、相当歪みで0%超10%以下の予変形を与え
た後の鋼材の残留オーステナイト体積分率が2.5%以
上であり、かつ、残留オーステナイトの初期体積分率V
(0)と、相当歪みにして10%の予変形を加えた時の
残留オーステナイトの体積分率V(10)との比、V
(10)/V(0)が0.3以上を満足し、かつ歪み5
〜10%の加工硬化指数が0.130以上を満足するこ
とを特徴とする高い動的変形抵抗を有する良加工性高強
度鋼板。
3. A composite of a finally obtained steel sheet having a microstructure containing ferrite and / or bainite, one of which is a main phase, and a third phase containing 3 to 50% by volume of retained austenite. 5 × 10 −4 to 5 × 10 −4 after giving a pre-deformation of more than 0% and 10% or less with a substantial strain with a substantial strain
A quasi-static deformation strength σs when deformed in a strain rate range of × 10 −3 (1 / s), and 5 × 10 2 after adding the pre-deformation
Difference from dynamic deformation strength σd when deformed at a strain rate of 55 × 10 3 (1 / s): σd−σs is 60 MPa or more, and 5 × 10 2 to 5 × 10 3 (1 / s) The average value of deformation stress σdyn (MPa) and 5 × 10 -4 to 5 in the equivalent strain range of 3 to 10% when deformed in the strain rate range of s).
3 to 3 when deformed within the strain rate range of × 10 -3 (1 / s)
Average value σst of deformation stress in the equivalent strain range of 10%
The equation (σdyn-) expressed by the maximum stress TS (MPa) in a static tensile test measured in a strain rate range where the difference in (MPa) is 5 × 10 −4 to 5 × 10 −3 (1 / s). σ
st) ≧ −0.272 × TS + 300, and furthermore, the solid solution [C] in the retained austenite and the average M of the steel material
n equivalent {Mn eq = Mn + (Ni + Cr + Cu + Mo)
/ 2} is M = 678-428 ×
[C] -33 Meq satisfies −140 or more and less than 70, and the residual austenite volume fraction of the steel material after giving a predeformation of more than 0% and 10% or less with a substantial strain is 2.5% or more. And the initial volume fraction V of retained austenite
The ratio of (0) to the volume fraction V (10) of retained austenite when a 10% pre-deformation is applied as a substantial strain, V
(10) / V (0) is not less than 0.3 and distortion 5
A good workability high-strength steel sheet having high dynamic deformation resistance, wherein a work hardening index of 10% to 10% satisfies 0.130 or more.
【請求項4】 Claim 1〜3の何れかにおいて、
前記残留オーステナイトの平均結晶粒径が5μm以下で
あり、かつ前記残留オーステナイトの平均結晶粒径と、
主相であるフェライトもしくはベイナイトの平均結晶粒
径の比が、0.6以下で、主相の平均粒径が10μm以
下、好ましくは6μm以下であることを特徴とする請求
項1〜3の何れかの項に記載の高い動的変形抵抗を有す
る良加工性高強度鋼板。
4. The method according to any one of claims 1 to 3,
The average grain size of the retained austenite is 5 μm or less, and the average grain size of the retained austenite;
The ratio of the average grain size of ferrite or bainite as the main phase is 0.6 or less, and the average grain size of the main phase is 10 µm or less, preferably 6 µm or less. A high-workability, high-strength steel sheet having high dynamic deformation resistance according to any of the above items.
【請求項5】 前記フェライトの占積率が40%以上で
あることを特徴とする請求項1〜4の何れかの項に記載
の高い動的変形抵抗を有する良加工性高強度鋼板。
5. The high-workability, high-strength steel sheet having high dynamic deformation resistance according to claim 1, wherein a space factor of the ferrite is 40% or more.
【請求項6】 前記引張強さ×全伸びの値が20,00
0以上であることを特徴とする請求項1〜5の何れかの
項に記載の高い動的変形抵抗を有する良加工性高強度鋼
板。
6. The value of tensile strength × total elongation is 20,000.
The high-workability high-strength steel sheet having high dynamic deformation resistance according to any one of claims 1 to 5, which is 0 or more.
【請求項7】 前記鋼板が、重量%で、C:0.03%
以上0.3%以下、SiとAlの一方または双方を合計
で0.5%以上3.0%以下、必要に応じてMn,N
i,Cr,Cu,Moの1種または2種以上を合計で
0.5%以上3.5%以下含み、残部がFeを主成分と
することを特徴とする請求項1〜6の何れかの項に記載
の高い動的変形抵抗を有する良加工性高強度鋼板。
7. The steel sheet contains, by weight%, C: 0.03%
0.3% or less, total of one or both of Si and Al is 0.5% or more and 3.0% or less, and Mn, N
7. A method according to claim 1, wherein one or more of i, Cr, Cu, and Mo are contained in a total amount of 0.5% to 3.5%, and the balance is mainly composed of Fe. Good workability high-strength steel sheet having high dynamic deformation resistance according to the paragraph.
【請求項8】 前記鋼板が、更に必要に応じて、重量%
で、Nb,Ti,V,PまたはBの1種または2種以上
を、Nb,Ti,Vにおいては、それらの1種または2
種以上を合計で0.3%以下、Pにおいては0.3%以
下、Bにおいては0.01%以下を含有することを特徴
とする請求項1〜7の何れかの項に記載の高い動的変形
抵抗を有する良加工性高強度鋼板。
8. The steel sheet may further comprise, if necessary,
And one or more of Nb, Ti, V, P or B, and one or two of Nb, Ti, V
The high content according to any one of claims 1 to 7, wherein 0.3% or less of P or more is contained in total, 0.3% or less of P is contained, and 0.01% or less of B is contained. Good workability high strength steel sheet with dynamic deformation resistance.
【請求項9】 前記鋼板が、更に必要に応じて、重量%
で、Ca:0.0005%以上0.01%以下、RE
M:0.005以上0.05%以下を含有することを特
徴とする請求項1〜8の何れかの項に記載の高い動的変
形抵抗を有する良加工性高強度鋼板。
9. The steel sheet may further comprise, if necessary,
And Ca: 0.0005% or more and 0.01% or less, RE
The good workability high strength steel sheet having high dynamic deformation resistance according to any one of claims 1 to 8, wherein M: 0.005 to 0.05% is contained.
【請求項10】 重量%で、C:0.03%以上0.3
%以下、SiとAlの一方または双方を合計で0.5%
以上3.0%以下、必要に応じてMn,Ni,Cr,C
u,Moの1種または2種以上を合計で0.5%以上
3.5%以下含み、更に必要に応じてNb,Ti,V,
P、B、C、REMの1種または2種以上を、Nb,T
i,Vにおいては、それらの1種または2種以上を合計
で0.3%以下、Pにおいては0.3%以下、Bにおい
ては0.01%以下、Caにおいては0.0005%以
上0.01%以下、REM:0.005以上0.05%
以下を含有し、残部がFeを主成分とする連続鋳造スラ
ブを、鋳造ままで熱延工程へ直送し、もしくは一旦冷却
した後に再度加熱した後、熱延し、Ar3 −50℃〜A
3 +120℃の温度の仕上げ温度で熱延を終了し、熱
延に引き続く冷却過程での平均冷却速度を5℃/秒以上
で冷却後、500℃以下の温度で巻き取ることを特徴と
する熱延鋼板のミクロ組織がフェライトおよび/または
ベイナイトを含み、このいずれかを主相とし、体積分率
で3〜50%の残留オーステナイトを含む第3相との複
合組織であり、かつ相当歪みで0%超10%以下の予変
形を与えた後、5×10-4〜5×10-3(1/s)の歪
み速度範囲で変形した時の準静的変形強度σsと、前記
予変形を加えた後、5×102 〜5×103 (1/s)
の歪み速度で変形した時の動的変形強度σdとの差:σ
d−σsが60MPa以上であり、かつ、5×102
5×103 (1/s)の歪み速度範囲で変形した時の3
〜10%の相当歪み範囲における変形応力の平均値σd
yn(MPa )と5×10-4〜5×10-3(1/s)の歪
み速度範囲で変形した時の3〜10%の相当歪み範囲に
おける変形応力の平均値σst(MPa )の差が5×10
-4〜5×10-3(1/s)の歪み速度範囲で測定された
静的な引張り試験における最大応力TS(MPa )によっ
て表現される式(σdyn−σst)≧−0.272×
TS+300を満足し、かつ歪み5〜10%の加工硬化
指数が0.130以上を満足することを特徴とする高い
動的変形抵抗を有する良加工性高強度熱延鋼板。
10. C: 0.03% to 0.3% by weight.
% Or less, 0.5% in total of one or both of Si and Al
Not less than 3.0% and, if necessary, Mn, Ni, Cr, C
One or more of u and Mo are contained in a total of 0.5% or more and 3.5% or less, and if necessary, Nb, Ti, V,
One or more of P, B, C, and REM are replaced with Nb, T
In i and V, one or more of them are 0.3% or less in total, 0.3% or less in P, 0.01% or less in B, 0.0005% or more in Ca and 0% or less. 0.01% or less, REM: 0.005 or more and 0.05%
A continuous cast slab containing the following, with the balance being Fe as a main component, is directly sent to a hot rolling process as cast, or once cooled and then heated again, hot rolled, and Ar 3 -50 ° C. to A
The hot rolling is completed at a finishing temperature of r 3 + 120 ° C., and after cooling at an average cooling rate of 5 ° C./sec or more in the cooling process following the hot rolling, winding is performed at a temperature of 500 ° C. or less. The microstructure of the hot-rolled steel sheet is a composite structure including a ferrite and / or a bainite, a main phase of which includes any of these, and a third phase including a retained austenite of 3 to 50% by volume, and a considerable strain. A quasi-static deformation strength σs when deformed in a strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s) after giving a pre-deformation of more than 0% and 10% or less, and the pre-deformation After addition of 5 × 10 2 to 5 × 10 3 (1 / s)
Difference from dynamic deformation strength σd when deformed at a strain rate of: σ
d-σs is 60 MPa or more, and 5 × 10 2 to
3 when deformed in the strain rate range of 5 × 10 3 (1 / s)
Average value of deformation stress σd in an equivalent strain range of 〜1010%
yn (MPa) and the difference between the average value σst (MPa) of the deformation stress in the equivalent strain range of 3 to 10% when deformed in the strain rate range of 5 × 10 −4 to 5 × 10 −3 (1 / s). Is 5 × 10
Equation (σdyn-σst) ≧ −0.272 × expressed by the maximum stress TS (MPa) in a static tensile test measured in a strain rate range of −4 to 5 × 10 −3 (1 / s).
A high-workability, high-strength hot-rolled steel sheet having high dynamic deformation resistance, which satisfies TS + 300 and has a work hardening index of 5 to 10% of strain of 0.130 or more.
【請求項11】 前記熱延の仕上げ温度がAr3 −50
℃〜Ar3 +120℃の温度範囲において、メタラジー
パラメーター:Aが、(1)式および(2)式を満たす
ような熱間圧延を行い、その後、ランアウトテーブルに
おける平均冷却速度を5℃/秒以上とし、更に前記メタ
ラジーパラメーター:Aと巻き取り温度(CT)との関
係が(3)式を満たすような条件で巻き取ることを特徴
とする請求項10記載の高い動的変形抵抗を有する良加
工性高強度熱延鋼板。 9≦logA≦18 ……………… (1) ΔT≦21×logA−178 ……………… (2) 6×logA+312≦CT≦6×logA+392 ……………… (3)
11. The finishing temperature of the hot rolling is Ar 3 -50.
In the temperature range of 0 ° C. to Ar 3 + 120 ° C., hot rolling is performed so that the metallurgy parameter A satisfies the formulas (1) and (2), and then the average cooling rate in the run-out table is 5 ° C./sec. The high dynamic deformation resistance according to claim 10, wherein the winding is performed under the condition that the relation between the metallurgical parameter: A and the winding temperature (CT) satisfies the expression (3). Good workability, high strength hot rolled steel sheet. 9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA-178 (2) 6 × logA + 312 ≦ CT ≦ 6 × logA + 392 (3)
【請求項12】 重量%で、C:0.03%以上0.3
%以下、SiとAlの一方または双方を合計で0.5%
以上3.0%以下、必要に応じてMn,Ni,Cr,C
u,Moの1種または2種以上を合計で0.5%以上
3.5%以下含み、更に必要に応じてNb,Ti,V,
P、B、C、REMの1種または2種以上を、Nb,T
i,Vにおいては、それらの1種または2種以上を合計
で0.3%以下、Pにおいては0.3%以下、Bにおい
ては0.01%以下、Caにおいては0.0005%以
上0.01%以下、REM:0.005以上0.05%
以下を含有し、残部がFeを主成分とする連続鋳造スラ
ブを、鋳造ままで熱延工程へ直送し、もしくは一旦冷却
した後に再度加熱した後、熱延し、熱延後巻き取った熱
延鋼板を酸洗後冷延し、連続焼鈍工程で焼鈍して最終的
な製品とする際に、0.1×(Ac3 −Ac1 )+Ac
1 ℃以上Ac3 +50℃以下の温度で10秒〜3分焼鈍
した後に、1〜10℃/秒の一次冷却速度で550〜7
20℃の範囲の一次冷却停止温度まで冷却し、引き続い
て10〜200℃/秒の二次冷却速度で200〜450
℃の二次冷却停止温度まで冷却した後、200〜500
℃の温度範囲で15秒〜20分保持し、室温まで冷却す
ることを特徴とする冷延鋼板のミクロ組織がフェライト
および/またはベイナイトを含み、このいずれかを主相
とし、体積分率で3〜50%の残留オーステナイトを含
む第3相との複合組織であり、かつ相当歪みで0%超1
0%以下の予変形を与えた後、5×10-4〜5×10-3
(1/s)の歪み速度範囲で変形した時の準静的変形強
度σsと、前記予変形を加えた後、5×102 〜5×1
3 (1/s)の歪み速度で変形した時の動的変形強度
σdとの差:σd−σsが60MPa以上であり、か
つ、5×10 2 〜5×103 (1/s)の歪み速度範囲
で変形した時の3〜10%の相当歪み範囲における変形
応力の平均値σdyn(MPa )と5×10-4〜5×10
-3(1/s)の歪み速度範囲で変形した時の3〜10%
の相当歪み範囲における変形応力の平均値σst(MPa
)の差が5×10-4〜5×10-3(1/s)の歪み速
度範囲で測定された静的な引張り試験における最大応力
TS(MPa )によって表現される式(σdyn−σs
t)≧−0.272×TS+300を満足し、かつ歪み
5〜10%の加工硬化指数が0.130以上を満足する
ことを特徴とする高い動的変形抵抗を有する良加工性高
強度冷延鋼板。
12. C: 0.03% to 0.3% by weight.
% Or less, 0.5% in total of one or both of Si and Al
Not less than 3.0% and, if necessary, Mn, Ni, Cr, C
0.5% or more of one or more of u and Mo
3.5% or less, and if necessary, Nb, Ti, V,
One or more of P, B, C, and REM are replaced with Nb, T
In i and V, one or two or more of them are
0.3% or less in P, 0.3% or less in P, B
0.01% or less for Ca, 0.0005% or less for Ca
0.01% or less, REM: 0.005 or more and 0.05%
A continuous casting slurry containing the following, with the balance being Fe
Directly to the hot rolling process as cast, or once cooled
After heating again, hot rolled, and heat rolled after hot rolling
Cold rolled steel sheet after pickling, finally annealed in a continuous annealing process
0.1 × (AcThree-Ac1) + Ac
1Over ℃ AcThreeAnnealing at a temperature of + 50 ° C or less for 10 seconds to 3 minutes
550-7 at a primary cooling rate of 1-10 ° C./sec.
Cool to the primary cooling stop temperature in the range of 20 ° C and continue
At a secondary cooling rate of 10 to 200 ° C./sec.
After cooling to the secondary cooling stop temperature of 200 ° C.
C for 15 seconds to 20 minutes and cool to room temperature
The microstructure of cold rolled steel sheet is characterized by ferrite
And / or bainite, any of which may be
Containing 3 to 50% by volume of retained austenite.
A composite structure with the third phase and with a considerable strain of more than 0% 1
After giving a pre-deformation of 0% or less, 5 × 10-Four~ 5 × 10-3
Quasi-static deformation strength when deformed in the strain rate range of (1 / s)
Degree s and 5 × 10Two~ 5 × 1
0ThreeDynamic deformation strength when deformed at (1 / s) strain rate
Difference from σd: σd-σs is 60 MPa or more,
5 × 10 Two~ 5 × 10Three(1 / s) strain rate range
Deformation in the equivalent strain range of 3 to 10% when deformed at
Average stress σdyn (MPa) and 5 × 10-Four~ 5 × 10
-33 to 10% when deformed in the strain rate range of (1 / s)
Average value of deformation stress σst (MPa
 ) Difference is 5 × 10-Four~ 5 × 10-3(1 / s) strain rate
Stress in a static tensile test measured over a range of degrees
The expression (σdyn-σs) represented by TS (MPa)
t) Satisfies ≧ −0.272 × TS + 300 and distortion
Work hardening index of 5 to 10% satisfies 0.130 or more
High workability with high dynamic deformation resistance
Strength cold rolled steel sheet.
【請求項13】 前記連続焼鈍工程で焼鈍して最終的な
製品とするに際し、0.1×(Ac3 −Ac1 )+Ac
1 ℃以上Ac3 +50℃以下の温度で10秒〜3分焼鈍
した後に、1〜10℃/秒の一次冷却速度で550〜7
20℃の範囲の二次冷却開始温度Tqまで冷却し、引き
続いて10〜200℃/秒の二次冷却速度で成分と焼鈍
温度Toで決まる温度Tem以上、500℃以下の二次
冷却数量温度Teまで冷却した後、Te−50℃以上5
00℃以下の温度Toaで15秒〜20分保持し、室温
まで冷却することを特徴とする冷延鋼板のミクロ組織が
フェライトおよび/またはベイナイトを含み、このいず
れかを主相とし、体積分率で3〜50%の残留オーステ
ナイトを含む第3相との複合組織であり、相当歪みで0
%超10%以下の予変形を与えた後、5×10-4〜5×
10-3(1/s)の歪み速度範囲で変形した時の準静的
変形強度σsと、前記予変形を加えた後、5×102
5×103 (1/s)の歪み速度で変形した時の動的変
形強度σdとの差:σd−σsが60MPa以上であ
り、かつ、5×102 〜5×103 (1/s)の歪み速
度範囲で変形した時の3〜10%の相当歪み範囲におけ
る変形応力の平均値σdyn(MPa )と5×10-4〜5
×10-3(1/s)の歪み速度範囲で変形した時の3〜
10%の相当歪み範囲における変形応力の平均値σst
(MPa )の差が5×10-4〜5×10-3(1/s)の歪
み速度範囲で測定された静的な引張り試験における最大
応力TS(MPa )によって表現される式(σdyn−σ
st)≧−0.272×TS+300を満足し、かつ歪
み5〜10%の加工硬化指数が0.130以上を満足す
ることを特徴とする請求項12記載の高い動的変形抵抗
を有する良加工性高強度冷延鋼板。
13. When annealing in the continuous annealing step to obtain a final product, 0.1 × (Ac 3 −Ac 1 ) + Ac
After annealing at a temperature of 1 ° C. or more and Ac 3 + 50 ° C. or less for 10 seconds to 3 minutes, a primary cooling rate of 1 to 10 ° C./sec.
The temperature is cooled to a secondary cooling start temperature Tq in the range of 20 ° C., and subsequently, at a secondary cooling rate of 10 to 200 ° C./sec, a secondary cooling quantity temperature Te not lower than the temperature Tem determined by the components and the annealing temperature To and not higher than 500 ° C. After cooling to below 50 ℃
The microstructure of the cold-rolled steel sheet is maintained at a temperature Toa of not more than 00 ° C. for 15 seconds to 20 minutes and cooled to room temperature. The microstructure of the cold-rolled steel sheet includes ferrite and / or bainite. Is a composite structure with a third phase containing 3 to 50% of retained austenite, and the equivalent strain is 0%.
% After applying a pre-deformation of more than 10% to 5 × 10 -4 to 5 ×
The quasi-static deformation strength σs when deformed in the strain rate range of 10 −3 (1 / s) and 5 × 10 2 to
Difference from dynamic deformation strength σd when deformed at a strain rate of 5 × 10 3 (1 / s): σd−σs is 60 MPa or more, and 5 × 10 2 to 5 × 10 3 (1 / s) ) And the average value of the deformation stress σdyn (MPa) in the equivalent strain range of 3 to 10% when deformed in the strain speed range of 5 × 10 −4 to 5 × 10 −4.
3 to 3 when deformed within the strain rate range of × 10 -3 (1 / s)
Average value σst of deformation stress in the equivalent strain range of 10%
The equation (σdyn-) expressed by the maximum stress TS (MPa) in a static tensile test measured in a strain rate range where the difference in (MPa) is 5 × 10 −4 to 5 × 10 −3 (1 / s). σ
13. Good working with high dynamic deformation resistance according to claim 12, wherein st) ≧≧ −0.272 × TS + 300 and a work hardening index of 5 to 10% of strain satisfies 0.130 or more. High strength cold rolled steel sheet.
JP36126997A 1997-12-26 1997-12-26 Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same Expired - Fee Related JP3492176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36126997A JP3492176B2 (en) 1997-12-26 1997-12-26 Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36126997A JP3492176B2 (en) 1997-12-26 1997-12-26 Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11193439A true JPH11193439A (en) 1999-07-21
JP3492176B2 JP3492176B2 (en) 2004-02-03

Family

ID=18472884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36126997A Expired - Fee Related JP3492176B2 (en) 1997-12-26 1997-12-26 Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3492176B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080938A (en) * 2000-09-08 2002-03-22 Nkk Corp Rolled shape steel having excellent soil corrosion resistance and earthquake resistance and its production method
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
EP1391526A3 (en) * 2002-08-20 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dual phase steel sheet with good bake-hardening properties
EP1553202A1 (en) * 2004-01-09 2005-07-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
JP2005281787A (en) * 2004-03-30 2005-10-13 Kobe Steel Ltd High strength cold rolled steel sheet having excellent adhesion of coating film and workability
JP2005314798A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk High ductility hot rolled steel sheet having excellent stretch flange property and fatigue property and its production method
JP2005325393A (en) * 2004-05-13 2005-11-24 Jfe Steel Kk High strength cold rolled steel sheet and its manufacturing method
JP2007162078A (en) * 2005-12-14 2007-06-28 Nippon Steel Corp High strength steel sheet and production method
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2011102437A (en) * 2010-12-27 2011-05-26 Kobe Steel Ltd High-strength cold-rolled steel sheet having excellent coating film adhesion and workability, and method for producing the same
WO2012153471A1 (en) 2011-05-12 2012-11-15 Jfeスチール株式会社 Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
JP2014051683A (en) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
JP2014523970A (en) * 2011-07-15 2014-09-18 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Apparatus for producing annealed steel and method for producing said steel
KR20150058423A (en) 2012-11-14 2015-05-28 제이에프이 스틸 가부시키가이샤 Vehicle collision energy absorbing member and method for manufacturing same
EP2738276A4 (en) * 2011-07-29 2015-10-21 Nippon Steel & Sumitomo Metal Corp High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
JP2016003351A (en) * 2014-06-16 2016-01-12 株式会社神戸製鋼所 High strength steel sheet excellent in balance of yield ratio and ductility
EP2881484A4 (en) * 2012-08-06 2016-04-13 Nippon Steel & Sumitomo Metal Corp Cold-rolled steel sheet, method for producing same, and hot-stamp-molded article
JP2019044217A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Hot rolled steel sheet, spline shaft bearing and manufacturing method therefor
JP2020509192A (en) * 2016-12-20 2020-03-26 ポスコPosco High strength hot rolled steel sheet excellent in weldability and ductility and method for producing the same
WO2021181866A1 (en) * 2020-03-11 2021-09-16 株式会社神戸製鋼所 Method for manufacturing steel component having locally softened section
KR20240080209A (en) 2022-11-28 2024-06-07 주식회사 포스코 Hot rolled steel sheet having excellent formability for multi-stage press process, and method for manufacturing the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505966B2 (en) * 2000-09-08 2010-07-21 Jfeスチール株式会社 Rolled section steel excellent in soil corrosion resistance and earthquake resistance and method for producing the same
JP2002080938A (en) * 2000-09-08 2002-03-22 Nkk Corp Rolled shape steel having excellent soil corrosion resistance and earthquake resistance and its production method
JP2002226944A (en) * 2001-02-02 2002-08-14 Kawasaki Steel Corp Hot-rolled, high-tensile steel plate having excellent chemical convertibility and corrosion resistance, and its manufacturing method
JP4534362B2 (en) * 2001-02-02 2010-09-01 Jfeスチール株式会社 Hot-rolled high-tensile steel plate with excellent chemical conversion and corrosion resistance and method for producing the same
EP1391526A3 (en) * 2002-08-20 2004-04-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dual phase steel sheet with good bake-hardening properties
US9194015B2 (en) 2002-08-20 2015-11-24 Kobe Steel, Ltd. Dual phase steel sheet with good bake-hardening properties
EP1553202A1 (en) * 2004-01-09 2005-07-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
JP2005314798A (en) * 2004-03-30 2005-11-10 Jfe Steel Kk High ductility hot rolled steel sheet having excellent stretch flange property and fatigue property and its production method
JP4692015B2 (en) * 2004-03-30 2011-06-01 Jfeスチール株式会社 High ductility hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the same
JP4698968B2 (en) * 2004-03-30 2011-06-08 株式会社神戸製鋼所 High-strength cold-rolled steel sheet with excellent coating film adhesion and workability
JP2005281787A (en) * 2004-03-30 2005-10-13 Kobe Steel Ltd High strength cold rolled steel sheet having excellent adhesion of coating film and workability
JP2005325393A (en) * 2004-05-13 2005-11-24 Jfe Steel Kk High strength cold rolled steel sheet and its manufacturing method
JP2007162078A (en) * 2005-12-14 2007-06-28 Nippon Steel Corp High strength steel sheet and production method
JP2010106343A (en) * 2008-10-31 2010-05-13 Kobe Steel Ltd Steel sheet for automotive member having excellent nut projection weldability and member
JP2011102437A (en) * 2010-12-27 2011-05-26 Kobe Steel Ltd High-strength cold-rolled steel sheet having excellent coating film adhesion and workability, and method for producing the same
WO2012153471A1 (en) 2011-05-12 2012-11-15 Jfeスチール株式会社 Vehicle collision energy absorbing member having high collision energy absorbing power, and method for manufacturing same
US9452792B2 (en) 2011-05-12 2016-09-27 Jfe Steel Corporation Vehicle collision energy absorbing member excellent in energy absorbing performance and manufacturing method therefor
JP2014523970A (en) * 2011-07-15 2014-09-18 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Apparatus for producing annealed steel and method for producing said steel
EP2738276A4 (en) * 2011-07-29 2015-10-21 Nippon Steel & Sumitomo Metal Corp High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
US9896751B2 (en) 2011-07-29 2018-02-20 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same
US10072324B2 (en) 2012-08-06 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and method for manufacturing same, and hot-stamp formed body
EP2881484A4 (en) * 2012-08-06 2016-04-13 Nippon Steel & Sumitomo Metal Corp Cold-rolled steel sheet, method for producing same, and hot-stamp-molded article
JP2014051683A (en) * 2012-08-07 2014-03-20 Nippon Steel & Sumitomo Metal Cold rolled steel sheet and its manufacturing method
KR20150058423A (en) 2012-11-14 2015-05-28 제이에프이 스틸 가부시키가이샤 Vehicle collision energy absorbing member and method for manufacturing same
JP2016003351A (en) * 2014-06-16 2016-01-12 株式会社神戸製鋼所 High strength steel sheet excellent in balance of yield ratio and ductility
JP2020509192A (en) * 2016-12-20 2020-03-26 ポスコPosco High strength hot rolled steel sheet excellent in weldability and ductility and method for producing the same
JP2019044217A (en) * 2017-08-31 2019-03-22 新日鐵住金株式会社 Hot rolled steel sheet, spline shaft bearing and manufacturing method therefor
WO2021181866A1 (en) * 2020-03-11 2021-09-16 株式会社神戸製鋼所 Method for manufacturing steel component having locally softened section
KR20240080209A (en) 2022-11-28 2024-06-07 주식회사 포스코 Hot rolled steel sheet having excellent formability for multi-stage press process, and method for manufacturing the same

Also Published As

Publication number Publication date
JP3492176B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US6544354B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
KR100334949B1 (en) Dual-phase high-strength steel sheet having excellent dynamic deformation properties and process for preparing the same
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
JP3793350B2 (en) Dual-phase high-strength cold-rolled steel sheet with excellent dynamic deformation characteristics and manufacturing method thereof
KR100318213B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
KR101609968B1 (en) Steel sheet for hot pressing use, press-molded article, and method for producing press-molded article
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
US6319338B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JPH1161326A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JPH10273752A (en) Automotive high strength steel sheet excellent in collision resisting safety and formability and its production
JP3530353B2 (en) High-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and manufacturing method thereof
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JPH10158735A (en) Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production
JP3530356B2 (en) Good workability high-strength cold-rolled steel sheet with high dynamic deformation resistance for impact absorption at the time of collision and method for producing the same
JPH10317096A (en) High strength steel sheet for automobile use, excellent in collision-proof stability, and its production
JP4237912B2 (en) High strength cold-rolled steel sheet having high dynamic deformation resistance and good formability and manufacturing method thereof
KR20240052794A (en) Steel plate and its manufacturing method
JP2001335891A (en) High tensile steel sheet excellent in ductility and impact resistance, and its production method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees