JPH10158735A - Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production - Google Patents

Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production

Info

Publication number
JPH10158735A
JPH10158735A JP33138096A JP33138096A JPH10158735A JP H10158735 A JPH10158735 A JP H10158735A JP 33138096 A JP33138096 A JP 33138096A JP 33138096 A JP33138096 A JP 33138096A JP H10158735 A JPH10158735 A JP H10158735A
Authority
JP
Japan
Prior art keywords
weight
steel sheet
less
hot
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33138096A
Other languages
Japanese (ja)
Inventor
Osamu Kono
治 河野
Yuzo Takahashi
雄三 高橋
Junichi Wakita
淳一 脇田
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33138096A priority Critical patent/JPH10158735A/en
Priority to KR1019997004657A priority patent/KR100318213B1/en
Priority to EP10181458A priority patent/EP2314730B1/en
Priority to EP97913471.5A priority patent/EP0952235B2/en
Priority to PCT/JP1997/004359 priority patent/WO1998023785A1/en
Priority to US09/308,986 priority patent/US6319338B1/en
Priority to CN97180921A priority patent/CN1078623C/en
Priority to AU50679/98A priority patent/AU711873B2/en
Priority to CA002273334A priority patent/CA2273334C/en
Priority to TW086117962A priority patent/TW384313B/en
Publication of JPH10158735A publication Critical patent/JPH10158735A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To improve collision resistant safety and formability by specifying the space factor and the work-hardening index of retained austenite in a micro- structure after a 5% forming of a steel plate. SOLUTION: In the micro-structure of the thin steel plate, it is an essential condition of this method that the space factor of the retained austenite after the 5% forming should be >=3%. Thus, since the retained of austenite is transformed into a very hard martensite by receiving strain at the time of deforming, an action to increase a work-hardening index is executed. On the other hand, a value of this work-hardening index no less than 0.130 is required of improving the collision resistant safety and the formability. Further, when the space factor of the retained austenite before forming is made to >=5%, and the C concn. to >=1% and the average circular equivalent diameter to <=5μm, the increasing action on the work-hardening index at the time of transforming into the martensite is extended to all over the steel plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は主に自動車の構造部材や
補強材に使用することを企図した優れた耐衝突安全性と
成形性を兼備した自動車用熱延高強度薄鋼板及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled high-strength thin steel sheet for automobiles, which is intended to be used mainly as a structural member or reinforcing material for automobiles and has both excellent collision safety and formability. It is about.

【0002】[0002]

【従来の技術】自動車の燃費規制を背景とした車体軽量
化を目的に、高強度薄鋼板の適用が拡大してきたが、直
近では自動車事故を想定した耐衝突安全性に関する法規
制が急速に拡大・強化されつつあり、高強度薄鋼板への
期待がますます高まっている。しかし、従来の高強度薄
鋼板は成形性の向上を主眼として開発されたものであ
り、耐衝突安全性の観点では適用が疑問視されている。
耐衝撃性に優れた自動車用薄鋼板及びその製造方法に係
わる従来技術としては、特開平7−18372で耐衝突
安全性の指標として薄鋼板の高歪速度下において降伏強
度を高めることが提案されているが、鋼板を自動車用部
材に成形加工する際又は、自動車用部材が衝突変形する
際に受ける歪による加工硬化分を降伏強度に加味されて
なく、実用的な耐衝撃性の指標としては不十分である。
2. Description of the Related Art The application of high-strength thin steel sheets has been expanding in order to reduce the weight of vehicles due to the regulations on fuel efficiency of automobiles.・ It is being strengthened, and expectations for high-strength thin steel sheets are increasing. However, conventional high-strength thin steel sheets have been developed with an emphasis on improving formability, and their application has been questioned from the viewpoint of collision resistance.
As a prior art relating to a thin steel sheet for automobiles having excellent impact resistance and a method of manufacturing the same, it has been proposed in Japanese Patent Application Laid-Open No. 7-18372 to increase the yield strength under a high strain rate of the thin steel sheet as an index of crash safety. However, when forming a steel sheet into an automobile member or when the automotive member undergoes collision deformation, the work hardening due to the strain received is not taken into account in the yield strength, and as a practical impact resistance index Not enough.

【0003】[0003]

【発明が解決しようとする課題】本発明は、優れた耐衝
突安全性と成形性を兼備した自動車用熱延高強度薄鋼板
及びその製造方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hot-rolled high-strength steel sheet for automobiles having both excellent crash resistance and formability, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を達成
するためになされたものであり、その手段は以下の通り
である。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and its means are as follows.

【0005】(1)鋼板の5%成形加工後のミクロ組織
において、残留オ−ステナイトの占積率が3%以上であ
り、鋼板特性として加工硬化指数が0.130以上であ
ることを特徴とする耐衝突安全性及び成形性に優れた自
動車用熱延高強度薄鋼板。
(1) In the microstructure of a steel sheet after 5% forming, the occupation ratio of retained austenite is 3% or more and the work hardening index is 0.130 or more as a characteristic of the steel sheet. Hot-rolled high-strength thin steel sheets for automobiles with excellent collision safety and formability.

【0006】(2)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部がFe及び不可避的成分からなり、鋼
板の5%成形加工後のミクロ組織において、残留オ−ス
テナイトの占積率が3%以上であり、鋼板特性として加
工硬化指数が0.130以上であることを特徴とする耐
衝突安全性及び成形性に優れた自動車用熱延高強度薄鋼
板。
(2) C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
Of 0.5% to 4.0% by weight, with the balance being Fe and unavoidable components. A hot-rolled high-strength steel sheet for automobiles excellent in collision resistance and formability, having an occupation ratio of 3% or more and a work hardening index of 0.130 or more as a characteristic of the steel sheet.

【0007】(3)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部はFe及び不可避的成分からなり、鋼
板の成形加工前のミクロ組織において、Cを1.0重量
%以上含有し、かつ平均円相当径が5μm以下である残
留オ−ステナイトの占積率が5%以上であり、鋼板の5
%成形加工後のミクロ組織において、残留オ−ステナイ
トの占積率が3%以上であり、鋼板特性として加工硬化
指数が0.130以上であることを特徴とする耐衝突安
全性及び成形性に優れた自動車用熱延高強度薄鋼板。
(3) C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
Of at least one of the above, from 0.5% by weight to 4.0% by weight, with the balance being Fe and unavoidable components, and in the microstructure before forming of the steel sheet, C is 1.0% by weight. And the space factor of the retained austenite having an average equivalent circle diameter of 5 μm or less is 5% or more.
In the microstructure after forming, the space factor of residual austenite is 3% or more, and the work hardening index is 0.130 or more as a characteristic of the steel sheet. Excellent hot rolled high strength steel sheet for automobiles.

【0008】(4)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部はFe及び不可避的成分からなり、鋼
板の成形加工前のミクロ組織において、Cを1.0重量
%以上含有し、かつ平均円相当径が5μm以下である残
留オ−ステナイトの占積率が5%以上であり、平均円相
当径が10μm以下であるフェライトの占積率が50%
以上、残部組織の平均円相当径が10μm以下であり、
鋼板の5%成形加工後のミクロ組織において、残留オ−
ステナイトの占積率が3%以上であり、鋼板特性として
加工硬化指数が0.130以上、降伏強さ×加工硬化指
数が70以上であることを特徴とする耐衝突安全性及び
成形性に優れた自動車用熱延高強度薄鋼板。
(4) C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
Of at least one of the above, from 0.5% by weight to 4.0% by weight, with the balance being Fe and unavoidable components, and in the microstructure before forming of the steel sheet, C is 1.0% by weight. The occupation rate of the retained austenite having an average equivalent circle diameter of 5 μm or less is 5% or more, and the occupation rate of the ferrite having an average equivalent circle diameter of 10 μm or less is 50%.
As described above, the average equivalent circle diameter of the remaining tissue is 10 μm or less,
In the microstructure after 5% forming of the steel sheet,
Excellent in collision safety and formability, characterized in that the space factor of the stainite is 3% or more, the work hardening index is 0.130 or more, and the yield strength × work hardening index is 70 or more as the properties of the steel sheet. Hot-rolled high-strength steel sheets for automobiles.

【0009】(5)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部がFe及び不可避的成分からなり、鋼
板の成形加工前のミクロ組織において、Cを1.0重量
%以上含有し、かつ平均円相当径が5μm以下である残
留オ−ステナイトの占積率が5%以上であり、平均円相
当径が10μm以下であるフェライトの占積率が50%
以上、残部組織の平均円相当径が10μm以下であり、
鋼板の5%成形加工後のミクロ組織において、残留オ−
ステナイトの占積率が3%以上であり、鋼板特性として
加工硬化指数が0.130以上、降伏強さ×加工硬化指
数が70以上、降伏比が85%以下であることを特徴と
する耐衝突安全性及び成形性に優れた自動車用熱延高強
度薄鋼板。
(5) C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
And 0.5% to 4.0% by weight of at least one of the above, and the balance consists of Fe and unavoidable components. In the microstructure before forming of the steel sheet, C is 1.0% by weight. The occupation rate of the retained austenite having an average equivalent circle diameter of 5 μm or less is 5% or more, and the occupation rate of the ferrite having an average equivalent circle diameter of 10 μm or less is 50%.
As described above, the average equivalent circle diameter of the remaining tissue is 10 μm or less,
In the microstructure after 5% forming of the steel sheet,
Collision resistance characterized in that the space factor of the stainite is 3% or more, the work hardening index is 0.130 or more, the yield strength × work hardening index is 70 or more, and the yield ratio is 85% or less as the properties of the steel sheet. Hot-rolled high-strength steel sheet for automobiles with excellent safety and formability.

【0010】(6)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部がFe及び不可避的成分からなり、鋼
板の成形加工前のミクロ組織において、Cを1.0重量
%以上含有し、かつ平均円相当径が5μm以下である残
留オ−ステナイトの占積率が5%以上であり、平均円相
当径が10μm以下であるフェライトの占積率が50%
以上、平均円相当径が10μm以下であるマルテンサイ
トの占積率が3%以上、残部組織の平均円相当径が10
μm以下であり、鋼板特性として加工硬化指数が0.1
60以上、降伏強さ×加工硬化指数が80以上、降伏比
が75(%)以下であることを特徴とする耐衝突安全性
及び成形性に優れた自動車用熱延高強度薄鋼板。
(6) C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
And 0.5% to 4.0% by weight of at least one of the above, and the balance consists of Fe and unavoidable components. In the microstructure before forming of the steel sheet, C is 1.0% by weight. The occupation rate of the retained austenite having an average equivalent circle diameter of 5 μm or less is 5% or more, and the occupation rate of the ferrite having an average equivalent circle diameter of 10 μm or less is 50%.
As described above, the space factor of martensite having an average equivalent circle diameter of 10 μm or less is 3% or more, and the average equivalent circle diameter of the remaining structure is 10%.
μm or less, and a work hardening index of 0.1
A hot-rolled high-strength thin steel sheet for automobiles excellent in crash resistance and formability, having a yield strength × work hardening index of 80 or more and a yield ratio of 75% or less.

【0011】(7)さらに、Ca:0.0005〜0.
01重量%又はREM:0.005〜0.05重量%を
含むことを特徴とする請求項1〜請求項5の内のいずれ
か1つに記載の耐衝突安全性及び成形性に優れた熱延高
強度薄鋼板。
(7) Ca: 0.0005-0.5.
6. The heat according to any one of claims 1 to 5, wherein the heat is 0.1% by weight or REM: 0.005 to 0.05% by weight. Rolled high strength steel sheet.

【0012】(8)さらに、Ca:0.0005〜0.
01重量%又はREM:0.005〜0.05重量%を
含むことを特徴とする請求項6記載の耐衝突安全性及び
成形性に優れた熱延高強度薄鋼板。
(8) Further, Ca: 0.0005-0.5.
7. The hot-rolled high-strength thin steel sheet according to claim 6, comprising 0.01% by weight or REM: 0.005 to 0.05% by weight.

【0013】(9)化学成分としてC:0.05〜0.
20重量%、Mn:0.5〜2.0重量%、Si、Al
の内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部がFe及び不可避的成分からなる鋼片
を初期鋼片厚が25mm以上、仕上温度が760℃〜9
20℃、最終パス圧延速度が500mpm以上で熱間圧
延を行い、その後、ランアウトテーブルにおける700
℃以下の平均冷却速度が25℃/秒以上で冷却を行い、
さらに、500℃以下で巻取を行うことを特徴とする請
求項1〜5及び7の内のいずれか1つにに記載の耐衝突
安全性及び成形性に優れた自動車用熱延高強度薄鋼板の
製造方法。
(9) As a chemical component, C: 0.05-0.
20% by weight, Mn: 0.5 to 2.0% by weight, Si, Al
Of 0.5% to 4.0% by weight of at least one of the above, and the balance consisting of Fe and unavoidable components is a slab having an initial slab thickness of 25 mm or more and a finishing temperature of 760 ° C to 9%.
Hot rolling was performed at 20 ° C. and a final pass rolling speed of 500 mpm or more, and then 700 mm in the run-out table.
Cooling is performed at an average cooling rate of 25 ° C / sec or less,
The hot-rolled high-strength thin sheet for automobiles according to any one of claims 1 to 5, wherein the coiling is performed at 500 ° C or lower. Steel plate manufacturing method.

【0014】(10)化学成分としてC:0.05〜
0.20重量%、Mn:0.5〜2.0重量%、Si、
Alの内の少なくとも1種以上を0.5重量%〜4.0
重量%、を含み、残部がFe及び不可避的成分からなる
鋼片を初期鋼片厚が25mm以上、仕上温度が760℃
〜920℃、最終パス圧延速度が500mpm以上で熱
間圧延を行い、その後、ランアウトテーブルにおける7
00℃以下の平均冷却速度が25℃/秒以上で冷却を行
い、さらに、350℃以下で巻取を行うことを特徴とす
る請求項6または8に記載の耐衝突安全性及び成形性に
優れた自動車用熱延高強度薄鋼板の製造方法。
(10) As a chemical component, C: 0.05 to
0.20% by weight, Mn: 0.5 to 2.0% by weight, Si,
0.5% by weight to 4.0% of at least one of Al.
% Of steel, the balance being Fe and unavoidable components. The initial slab thickness is 25 mm or more, and the finishing temperature is 760 ° C.
Hot rolling was performed at 9920 ° C. and a final pass rolling speed of 500 mpm or more.
9. Cooling at an average cooling rate of 25 ° C./sec or more at 00 ° C. or less and winding at 350 ° C. or less are excellent in collision resistance and formability according to claim 6 or 8. Of manufacturing hot-rolled high-strength thin steel sheets for automobiles.

【0015】[0015]

【発明の実施の形態】本発明者らは、実験により種々の
熱延高強度鋼板について、試験片の衝撃圧壊特性と静的
引張特性値の関連を検討した結果、耐衝突安全性の向上
としては、薄鋼板の加工硬化指数を高めること(0.1
30以上、好ましくは0.160以上)、降伏強さ×加
工硬化指数を高めること(≧70、好ましくは≧80)
が必要であること、耐衝突安全用部材の成形性として
は、降伏比の低下(≦85(%)、好ましくは≦75
(%))と引張強さ×全伸び(≧20000(MPa・
%))の向上が必要であることの知見を得て、さらに薄
鋼板のミクロ組織の制御によりこれらの特性を同時に兼
ね備える鋼板を得ることができ、本発明に到ったのであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors examined the relationship between the impact crushing characteristics of test specimens and the static tensile characteristics of various hot-rolled high-strength steel plates by experiments, and found that the improvement in collision resistance was achieved. Is to increase the work hardening index of thin steel sheets (0.1
30 or more, preferably 0.160 or more), to increase the yield strength × work hardening index (≧ 70, preferably ≧ 80)
Is required, and the formability of the member for crash safety is such that the yield ratio decreases (≦ 85 (%), preferably ≦ 75
(%)) And tensile strength × total elongation (≧ 20,000 (MPa ·
%)), It was possible to obtain a steel sheet having both of these properties simultaneously by controlling the microstructure of the thin steel sheet, and the present invention was reached.

【0016】以下にその要旨を述べる。The summary is described below.

【0017】図1及び図2は自動車用部材の耐衝突安全
性の指標となる動的エネルギー吸収量と、薄鋼板の加工
硬化指数及び降伏強さ×加工硬化指数の関係を示すもの
である。薄鋼板の加工硬化指数、降伏強さ×加工硬化指
数の増大により自動車用部材の耐衝突安全性(動的エネ
ルギー吸収量)が向上しており、自動車用部材の耐衝突
安全性の指標として、同一降伏強度クラスであれば薄鋼
板の加工硬化指数、降伏強度クラスが異なれば薄鋼板の
降伏強さ×加工硬化指数が妥当であることを示してい
る。
FIG. 1 and FIG. 2 show the relationship between the amount of dynamic energy absorption, which is an index of the collision safety of an automobile member, and the work hardening index and yield strength × work hardening index of a thin steel sheet. By increasing the work hardening index and yield strength x work hardening index of thin steel sheets, the collision safety (dynamic energy absorption) of automotive components has been improved. If the yield strength class is the same, the work hardening index of the thin steel sheet is shown, and if the yield strength class is different, the yield strength × work hardening index of the thin steel sheet is appropriate.

【0018】なお、部材が成形加工時に平均的に5%程
度の歪を受けることを考慮して、加工硬化指数は歪5%
〜10%のn値で表現したが、本質的には成形加工後の
加工硬化指数が高いことに特徴を有するものである。ま
た、成形加工時の形状凍結性等を高め、プレス成形性を
より良好とする観点から成形加工前の加工硬化指数は低
いことが望ましく、歪0%〜5%のn値で表現した場
合、低n値が好ましい。図3にその実例を示す。
Considering that the member is subjected to an average strain of about 5% during the forming process, the work hardening index is 5%.
Although represented by an n value of 〜1010%, it is essentially characterized by a high work hardening index after molding. Further, it is desirable that the work hardening index before the forming process is low from the viewpoint of enhancing the shape freezing property at the time of the forming process and improving the press formability, and when the strain is expressed by an n value of 0% to 5%, Low n values are preferred. FIG. 3 shows an example.

【0019】一方、加工硬化指数が増加することによ
り、薄鋼板のくびれが抑制され、引張強さ×全伸びで表
現される成形性が向上する。その一例を図4に示す。
On the other hand, the increase in the work hardening index suppresses the constriction of the thin steel sheet, and improves the formability expressed by tensile strength × total elongation. An example is shown in FIG.

【0020】用いた薄鋼板は板厚1.2mmの熱延材で
あり、C:0.05〜0.20重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
Mn:0.5〜2.0重量%を含み、残部はFe及び不
可避的成分からなるものである。
The thin steel sheet used is a hot-rolled material having a thickness of 1.2 mm, C: 0.05 to 0.20% by weight, and at least one of Si and Al at 0.5% to 4%. 0.0% by weight,
Mn: 0.5 to 2.0% by weight, with the balance being Fe and unavoidable components.

【0021】自動車用部材の動的エネルギー吸収量は、
衝撃圧壊試験法により次のようにして求めた。すなわ
ち、薄鋼板を図6に示すような試験片形状に成形し、先
端径5.5mmの電極によりチリ発生電流の0.9倍の
電流で35mmピッチでスポット溶接3をし、図5に示
す2つの天板1間に試験片2を配設した部品(ハット型
モデル)とし、さらに170℃×20分の焼付塗装処理
を行った後、図7に示すように約150kgの落錘4を
約10mの高さから落下させ、ストッパー6を設けた架
台を上の部品を長手方向に圧壊し、その際の荷重変位線
図の面積から変位=0〜150mmの変形仕事を算出し
て、動的エネルギー吸収量とした。
The dynamic energy absorption of an automobile member is:
It was determined as follows by the impact crush test method. That is, a thin steel plate is formed into a test piece shape as shown in FIG. 6, and spot welding 3 is performed at a pitch of 35 mm with an electrode having a tip diameter of 5.5 mm at a current 0.9 times the dust generation current, as shown in FIG. After making a part (hat type model) in which the test piece 2 is disposed between the two top plates 1 and further performing a baking coating process at 170 ° C. for 20 minutes, as shown in FIG. Drop it from a height of about 10 m, crush the upper part of the pedestal provided with the stopper 6 in the longitudinal direction, calculate the deformation work of displacement = 0 to 150 mm from the area of the load displacement diagram at that time, Energy absorption.

【0022】薄鋼板の加工硬化指数、降伏強さ×加工硬
化指数は次のようにして求めた。すなわち、薄鋼板をJ
IS−5号試験片(標点距離50mm、平行部幅25m
m)に加工し、引張速度10mm/分で引張試験し、降
伏強さと加工硬化指数(歪5%〜10%のn値)を求め
た。
The work hardening index and the yield strength × work hardening index of a thin steel sheet were determined as follows. That is, the thin steel plate
IS-5 test piece (gauge length 50 mm, parallel part width 25 m
m) and subjected to a tensile test at a tensile speed of 10 mm / min to determine the yield strength and the work hardening index (strain 5% to 10% n value).

【0023】次に、本発明の薄鋼板のミクロ組織につい
て詳述する。
Next, the microstructure of the steel sheet of the present invention will be described in detail.

【0024】残留オ−ステナイトは5%成形加工後にお
けるその占積率を3%以上とすることが必須要件であ
る。残留γは変形時に歪を受けることにより非常に硬い
マルテンサイトへ変態するため、加工硬化指数を高める
作用を有しているが、5%成形加工後の占積率が3%未
満では成形後の部材が衝突変形を受けた際に優れた加工
硬化能(加工硬化指数≧0.130)を発揮することが
できず、変形荷重が低いレベルに留まり変形仕事量が小
さくなるため、動的エネルギー吸収量が低く、耐衝突安
全性の向上が達成できない。
It is essential that the residual austenite has a space factor of 3% or more after 5% forming. Residual γ has the effect of increasing the work hardening index because it transforms to very hard martensite by receiving strain during deformation, but if the space factor after 5% forming is less than 3%, the The member cannot exhibit excellent work hardening ability (work hardening index ≧ 0.130) when subjected to impact deformation, and the deformation load stays at a low level and the deformation work becomes small, so dynamic energy absorption The amount is low, and improvement in collision resistance cannot be achieved.

【0025】好ましくは成形加工前の残留オ−ステナイ
ト占積率を5%以上、そのC濃度を1%以上、その平均
円相当径を5μm以下(好ましくは3μm以下)とす
る。上記制限を満足することにより、変形に対する残留
オ−ステナイトの安定性が向上し、変形歪5%以下の成
形加工ではマルテンサイトへ変態し難くなり、5%成形
加工後の残留オ−ステナイト占積率を高めることに対し
有効となるとともに、マルテンサイトへ変態した際の加
工硬化指数向上作用と引張強さ×全伸び向上作用が局所
的な影響に留まらず薄鋼板全体に及ぶ様、有効に作用す
る。
Preferably, the residual austenite space factor before forming is 5% or more, its C concentration is 1% or more, and its average equivalent circle diameter is 5 μm or less (preferably 3 μm or less). By satisfying the above restrictions, the stability of the retained austenite against deformation is improved, it is difficult to transform into martensite in the forming process with a deformation strain of 5% or less, and the occupation of the retained austenite after the 5% forming process This effect is effective in increasing the rate of workability, and also works effectively so that the work hardening index improving effect and the tensile strength x total elongation improving effect at the time of transformation to martensite are not limited to local effects but extend to the entire thin steel sheet. I do.

【0026】なお、残留オ−ステナイトの存在位置に関
しては、軟質なフェライトが主に変形時の歪を受けるた
め、フェライトに隣接していない残留γは歪を受け難
く、その結果5〜10%程度の変形ではマルテンサイト
へ変態し難くなり、その効果が薄れるため、残留γはフ
ェライトに隣接することが好ましい。
Regarding the location of the retained austenite, since soft ferrite is mainly subjected to strain during deformation, the residual γ not adjacent to the ferrite is hardly subjected to strain, and as a result, about 5 to 10% Is less likely to transform into martensite and its effect is diminished, so that the residual γ is preferably adjacent to ferrite.

【0027】フェライトはその占積率が50%以上でか
つその平均円相当径が10μm以下とする。
The ferrite has a space factor of 50% or more and an average equivalent circle diameter of 10 μm or less.

【0028】フェライトは構成組織の中で最も軟質な組
織であるため、降伏強さ×加工硬化指数及び降伏比を決
定する重要な因子である。上記規制値を外れるとフェラ
イト以外の硬質相の悪影響が強まることに主に起因し
て、降伏強さ×加工硬化指数≧70かつ降伏比≦85%
を達成することができず、耐衝突安全性及び成形性の点
から不適となる。さらにフェライトの占積率増と細粒化
により、未変態オ−ステナイトのC濃度が増加し微細分
散化するため、未変態オ−ステナイトから生成するマル
テンサイト及び残部組織の微細化と残留γの占積率増・
微細化に有効に作用し、耐衝突安全性及び成形性の向上
に寄与する。好ましくはフェライト占積率が70%以上
でかつその円相当径が6μm以下が望ましい。
Since ferrite is the softest structure among the constituent structures, it is an important factor that determines the yield strength × work hardening index and the yield ratio. If the value is outside the above-mentioned regulation value, the adverse effect of the hard phase other than ferrite is mainly increased, so that the yield strength × work hardening index ≧ 70 and the yield ratio ≦ 85%.
Cannot be achieved, which is unsuitable in terms of collision safety and moldability. Further, by increasing the space factor of the ferrite and refining, the C concentration of the untransformed austenite is increased and finely dispersed, so that the martensite generated from the untransformed austenite and the remaining structure are refined and the residual γ is reduced. Increase of space factor
It effectively acts on miniaturization and contributes to the improvement of collision safety and moldability. Preferably, the ferrite space factor is 70% or more and the equivalent circle diameter is 6 μm or less.

【0029】マルテンサイトはその占積率が3%以上で
かつその平均円相当径が10μm以下(好ましくは6μ
m以下)とする。マルテンサイトは主に周囲のフェライ
トに可動転位を発生させることにより降伏比の低減、加
工効果指数の向上に寄与するため、上記規制を満たすこ
とにより、耐衝突安全性及び成形性をより一層向上さ
せ、より好ましい特性レベルである降伏強さ×加工硬化
指数≧80かつ降伏比≦75(%)を確実に達成するこ
とができる。
Martensite has a space factor of 3% or more and an average equivalent circle diameter of 10 μm or less (preferably 6 μm).
m or less). Martensite mainly contributes to the reduction of the yield ratio and the improvement of the working effect index by generating mobile dislocations in the surrounding ferrite, so that by meeting the above regulations, the collision resistance and formability are further improved. It is possible to reliably achieve the more preferable characteristic levels of yield strength × work hardening index ≧ 80 and yield ratio ≦ 75 (%).

【0030】マルテンサイトの占積率と平均円相当径は
占積率が少なくても平均円相当径が大きくてもその作用
が局所的な影響に留まり、上記特性を満たすことができ
なくなる。その存在位置に関しては、マルテンサイトが
フェライトに隣接していない場合、マルテンサイトの可
動転位等の影響はフェライトに及び難いため、その効果
が薄れる。従って、マルテンサイトはフェライトに隣接
することが好ましい。
Regarding the space factor of martensite and the average equivalent circle diameter, even if the space factor is small or the average equivalent circle diameter is large, the effect is limited to local effects, and the above characteristics cannot be satisfied. Regarding the existence position, when martensite is not adjacent to ferrite, the effect of mobile dislocation or the like of martensite hardly reaches ferrite, and the effect is weakened. Therefore, it is preferable that martensite is adjacent to ferrite.

【0031】残部組織はその平均円相当径が10μm超
となると上記残留γやマルテンサイトによる特性向上効
果を阻害するため、10μm以下(好ましくは6μm以
下)とする。残部組織の種類はパーライト、ベイナイト
等の1種あるいは2種以上の組合せでよいが、穴拡げ特
性が要求される場合はベイナイトのみとすることが望ま
しい。
If the average equivalent circle diameter of the remaining structure exceeds 10 μm, the effect of improving the characteristics by the residual γ and martensite is impaired, so that it is 10 μm or less (preferably 6 μm or less). The type of the residual structure may be one or a combination of two or more such as pearlite and bainite. However, when hole expanding characteristics are required, it is preferable to use only bainite.

【0032】次に、化学成分の規制値とその制限理由を
説明する。
Next, the regulated values of the chemical components and the reasons for the restrictions will be described.

【0033】Cは残留γの確保のために、0.05重量
%以上添加するが、スポット溶接性不良による耐衝突安
全性劣化を防止する観点から、その添加上限を0.20
重量%以下とする。すなわち、耐衝突安全用の部材にお
いてはスポット溶接が使用されることが多いが、0.2
0重量%を越えるCを含有している場合、衝突時に接合
部が容易に剥離を起こし、耐衝突安全用部材として用を
なさなくなるためである。
C is added in an amount of 0.05% by weight or more in order to secure residual γ, but from the viewpoint of preventing deterioration of collision safety due to poor spot weldability, the upper limit of addition is 0.20%.
% By weight or less. That is, spot welding is often used for members for collision safety.
This is because, when C is contained in an amount exceeding 0% by weight, the joint easily peels off at the time of a collision, so that it cannot be used as a collision-resistant safety member.

【0034】Si、Alはオ−ステナイトを残留させる
ための必須元素であり、フェライトの生成を促進し、炭
化物の生成を抑制することにより、残留γを確保する作
用があると同時に脱酸元素・強化元素としても作用す
る。上記観点から、Si+Alの添加下限量は0.5重
量%以上とする必要がある。ただし、Si、Alを過度
に添加しても上記効果は飽和し、かえって鋼を脆化させ
るため、Si+Alの添加上限量は4.0重量%以下と
する。また、特に優れた表面性状が要求される場合は、
Si<0.1重量%とすることにより、Siスケ−ルを
回避するか、逆にSi≧1.0重量%とすることによ
り、Siスケ−ルを全面に発生させ目立たなくすること
が望ましい。
Si and Al are essential elements for retaining austenite, and promote the formation of ferrite and suppress the formation of carbides. Also acts as a strengthening element. From the above viewpoint, the lower limit of addition of Si + Al needs to be 0.5% by weight or more. However, even if Si and Al are excessively added, the above-mentioned effect is saturated, and the steel is rather embrittled. Also, when particularly excellent surface properties are required,
It is desirable to avoid Si scale by setting Si <0.1% by weight or to make Si ≧ 1.0% by weight to generate Si scale over the entire surface and make it inconspicuous. .

【0035】Mnはオーステナイトを安定化して残留γ
を確保する作用があるとともに強化元素である。上記観
点から、Mnの添加下限量は0.5重量%以上とする必
要がある。ただし、Mnを過度に添加しても上記効果は
飽和し、かえってフェライト変態抑制等の悪影響を生ず
るため、Mnの添加上限量は2.0重量%以下とする。
Mn stabilizes austenite to form residual γ
And has the effect of ensuring that it is a strengthening element. From the above viewpoint, the lower limit of the addition of Mn needs to be 0.5% by weight or more. However, even if Mn is excessively added, the above effect is saturated and adverse effects such as suppression of ferrite transformation are caused. Therefore, the upper limit of Mn addition is set to 2.0% by weight or less.

【0036】Caは硫化物系介在物の形状制御(球状
化)により、成形性(特に穴拡げ比)をより向上させる
ために0.0005重量%以上添加するが、効果の飽和
さらには介在物の増加による逆効果(穴拡げ比の劣化)
の点からその上限を0.01重量%とする。また、RE
Mも同様の理由からその添加量を0.005〜0.05
重量%とする。
Ca is added in an amount of 0.0005% by weight or more in order to further improve the formability (particularly the hole expansion ratio) by controlling the shape (spheroidization) of the sulfide-based inclusions. Effect due to the increase in the diameter (deterioration of the hole expansion ratio)
In view of the above, the upper limit is set to 0.01% by weight. Also, RE
M is also added in an amount of 0.005 to 0.05 for the same reason.
% By weight.

【0037】以上が本発明における成分の添加理由であ
るが、強度確保、細粒化を目的にNb、Ti,Cr,C
u,Ni,V,B、Moを1種または2種以上添加して
もよい。ただし、その添加量が合計で0.2%を越える
と本発明のミクロ組織を得ることが困難となるとともに
コストが増大するため、上限を0.2%とする。
The reasons for the addition of the components in the present invention have been described above. Nb, Ti, Cr, C
One, two or more of u, Ni, V, B and Mo may be added. However, if the total amount exceeds 0.2%, it becomes difficult to obtain the microstructure of the present invention and the cost increases, so the upper limit is made 0.2%.

【0038】なお、不可避的不純物に関してはPは残留
γの確保に効果があるが、2次加工性、靭性、スポット
溶接性、リサイクル性の劣化防止の観点から、Sは硫化
物系介在物による成形性(特に穴拡げ比)、スポット溶
接性の劣化防止の観点から忌避すべき元素であり、その
混入量はP≦0.02%(好ましくは≦0.01%)、
S≦0.01%(好ましくは≦0.003%)が望まし
い。
As for unavoidable impurities, P is effective in securing residual γ, but from the viewpoint of preventing deterioration in secondary workability, toughness, spot weldability and recyclability, S is caused by sulfide-based inclusions. It is an element that should be avoided from the viewpoints of moldability (especially hole expansion ratio) and prevention of deterioration of spot weldability, and its mixing amount is P ≦ 0.02% (preferably ≦ 0.01%).
It is desirable that S ≦ 0.01% (preferably, ≦ 0.003%).

【0039】次に、熱延条件の規制値とその制限理由を
説明する。
Next, the regulated values of the hot rolling conditions and the reasons for the restrictions will be described.

【0040】第一に、熱間圧延における仕上温度は76
0℃〜920℃とする。760℃未満では加工フェライ
トが生成し、引張強さ×全伸びを劣化させる。920℃
超ではフェライト占積率の低下や薄鋼板ミクロ組織の平
均円相当径の粗大化が起こる。図8は耐衝突安全性の指
標である加工硬化指数に及ぼす仕上温度の影響を示した
ものである。仕上温度の低下により加工硬化指数が向上
しており、760℃〜920℃の範囲ではより低い温度
が好ましい。
First, the finishing temperature in hot rolling is 76
0 ° C to 920 ° C. If the temperature is lower than 760 ° C., processed ferrite is generated, and the tensile strength × total elongation is deteriorated. 920 ° C
If it is excessive, the ferrite space factor will decrease and the average equivalent circle diameter of the microstructure of the thin steel sheet will increase. FIG. 8 shows the effect of the finishing temperature on the work hardening index, which is an index of crash safety. The work hardening index is improved by lowering the finishing temperature, and a lower temperature is preferable in the range of 760 ° C to 920 ° C.

【0041】第二に、熱間圧延における初期鋼片厚は2
5mm以上とする。なお、鋼片の製造に際しては一般的
な連続鋳造のみならず、いわゆる薄肉連続鋳造の適用も
可能である。また、熱延連続化技術(いわゆるエンドレ
ス圧延)の適用も可能である。25mm未満ではフェラ
イト占積率の低下や薄鋼板ミクロ組織の平均円相当径の
粗大化が起こる。
Second, the initial slab thickness in hot rolling is 2
5 mm or more. In the production of billets, not only general continuous casting but also so-called thin continuous casting can be applied. In addition, application of a hot rolling continuous technology (so-called endless rolling) is also possible. If it is less than 25 mm, the ferrite space factor will decrease and the average equivalent circle diameter of the microstructure of the thin steel sheet will increase.

【0042】第三に、熱間圧延における最終パス圧延速
度は500mpm以上(好ましくは600mpm以上)
とする。500mpm未満ではフェライト占積率の低下
や薄鋼板ミクロ組織の平均円相当径の粗大化が起こる。
Third, the final pass rolling speed in hot rolling is 500 mpm or more (preferably 600 mpm or more).
And If it is less than 500 mpm, a decrease in the space factor of ferrite and an increase in the average equivalent circle diameter of the microstructure of the thin steel sheet occur.

【0043】第四に、ランアウトテーブルにおける冷却
は700℃以下の平均冷却速度を25℃/秒以上とす
る。25℃/秒未満では残留γ占積率の低下が起こる。
700℃超の冷却については特に規定しないが、薄鋼板
ミクロ組織の微細化やフェライト占積率の増大を狙っ
て、「仕上温度〜750℃の平均冷却速度を25℃/
秒以上とする」、「750℃〜700℃の平均冷却速
度を25℃/秒未満とする」を単独ないしは複合して行
うことが好ましい。
Fourthly, in the run-out table, the average cooling rate at 700 ° C. or less is 25 ° C./sec or more. If it is less than 25 ° C./sec, the residual γ space factor will decrease.
The cooling over 700 ° C. is not particularly defined, but the average cooling rate from the finishing temperature to 750 ° C. is set to 25 ° C./75° C. in order to refine the microstructure of the thin steel sheet and increase the ferrite space factor.
Or more "and" the average cooling rate of 750 ° C to 700 ° C is less than 25 ° C / sec ”are preferably used alone or in combination.

【0044】第五に、巻取温度は500℃以下とする。
500℃超では残留γ占積率の低下が起こる。マルテン
サイトを得たい場合は350℃以下とする。図9は耐衝
突安全性の指標である加工硬化指数に及ぼす巻取温度の
影響を示したものである。巻取温度の低下により加工硬
化指数が向上しており、500℃以下ではより低い温度
が好ましい。
Fifth, the winding temperature is set to 500 ° C. or less.
If it exceeds 500 ° C., the residual γ space factor will decrease. When obtaining martensite, the temperature is set to 350 ° C. or lower. FIG. 9 shows the effect of the winding temperature on the work hardening index, which is an index of crash safety. The work hardening index is improved by lowering the winding temperature, and a lower temperature is preferable at 500 ° C. or lower.

【0045】[0045]

【実施例】表1に示す化学成分を有する鋼を鋳造して得
た鋼片を用いて、表2に示す熱間仕上圧延、冷却、巻取
処理を行い、薄鋼板を得た。得られた薄鋼板の板厚は鋼
番1〜4が=1.8mm、鋼番5〜6が=1.4mm、
鋼番7〜10が=2.2mm、鋼番11〜15が=1.
2mmである。薄鋼板ミクロ組織を表3に、薄鋼板の耐
衝突安全性及び成形性を表4に示す。本発明例が鋼番1
〜7,鋼番11〜12及び鋼番15であり、比較例が鋼
番8〜10及び鋼番13〜14である。
EXAMPLES Using steel slabs obtained by casting steels having the chemical components shown in Table 1, hot finish rolling, cooling and winding treatment shown in Table 2 were carried out to obtain thin steel sheets. As for the thickness of the obtained thin steel sheet, steel numbers 1-4 are 1.8 mm, steel numbers 5-6 are 1.4 mm,
Steel numbers 7 to 10 are 2.2 mm, steel numbers 11 to 15 are 1.
2 mm. Table 3 shows the microstructure of the thin steel sheet, and Table 4 shows the collision safety and the formability of the thin steel sheet. Example of the present invention is steel number 1
7, steel numbers 11 to 12 and steel number 15; comparative examples are steel numbers 8 to 10 and steel numbers 13 to 14.

【0046】本発明例では比較例を格段に越える優れた
耐衝突安全性(加工硬化指数≧0.130、降伏強さ×
加工硬化指数≧70)及び成形性(降伏比≦85
(%)、引張強さ×全伸び≧20000(MPa・
%)、穴拡げ比≧1.25)を兼備した自動車用熱延高
強度薄鋼板が得られている。なお、本発明例はスポット
溶接性もたがね試験において剥離破断がなく、良好であ
った。
In the examples of the present invention, excellent collision safety (work hardening index ≧ 0.130, yield strength ×
Work hardening index ≧ 70) and formability (yield ratio ≦ 85)
(%), Tensile strength × total elongation ≧ 20,000 (MPa ·
%), And a hot-rolled high-strength steel sheet for automobiles having both a hole expansion ratio of ≧ 1.25). In addition, the example of this invention did not have peeling fracture | rupture in the spot test also in spot welding property, and was favorable.

【0047】ミクロ組織は以下の方法で評価した。The microstructure was evaluated by the following method.

【0048】フェライト、マルテンサイト及び残部組織
の同定、存在位置の観察、及び平均円相当径と占積率の
測定はナイタ−ル試薬及び特開昭59−219473に
開示された試薬により薄鋼板圧延方向断面を腐食した倍
率1000倍の光学顕微鏡写真により行った。
The identification of ferrite, martensite and the remaining structure, the observation of the location thereof, and the measurement of the average equivalent circle diameter and the space factor were performed by rolling a thin steel sheet with a nitral reagent and a reagent disclosed in JP-A-59-219473. The cross section in the direction was corroded by an optical microscope photograph of 1000 times magnification.

【0049】残留γの平均円相当径は特願平3−351
209で開示された試薬により圧延方向断面を腐食し、
倍率1000倍の光学顕微鏡写真より求めた。また、同
写真によりその存在位置を観察した。
The average equivalent circle diameter of the residual γ is disclosed in Japanese Patent Application No. 3-351.
209 corrodes the cross section in the rolling direction by the reagent disclosed in 209,
It was determined from an optical microscope photograph at a magnification of 1000 times. In addition, the existence position was observed by the same photograph.

【0050】残留γ占積率(Vγ:単位は%)はMo−
Kα線によるX線解析で次式に従い、算出した。
The residual γ space factor (Vγ: unit is%) is Mo-
It was calculated by X-ray analysis using Kα radiation according to the following equation.

【0051】Vγ=(2/3){100/(0.7×α
(211)/γ(220)+1)}+(1/3){10
0/(0.78×α(211)/γ(311)+1)} 但し、α(211)、γ(220)、α(211)、γ
(311)は面強度を示す。
Vγ = (2/3) {100 / (0.7 × α)
(211) / γ (220) +1)} + (1 /) {10
0 / (0.78 × α (211) / γ (311) +1)} where α (211), γ (220), α (211), γ
(311) indicates the surface strength.

【0052】残留γのC濃度(Cγ:単位は%)はCu
−Kα線によるX線解析でオ−ステナイトの(200)
面、(220)面、(311)面の反射角から格子定数
(単位はオングストロ−ム)を求め、次式に従い、算出
した。
The C concentration (Cγ: unit is%) of the residual γ is Cu
X-ray analysis by Kα-ray revealed austenitic (200)
A lattice constant (in Angstroms) was determined from the reflection angles of the (220) and (311) planes, and was calculated according to the following equation.

【0053】 Cγ=(格子定数−3.572)/0.033 特性評価は以下の方法で実施した。Cγ = (lattice constant−3.572) /0.033 The characteristic evaluation was performed by the following method.

【0054】引張試験はJIS5号(標点距離50m
m、平行部幅25mm)を用い引張速度10mm/分で
実施し、引張強さ(TS)、降伏強さ(YS)、全伸び
(T.El)、一様伸び(U.El)、局部伸び(L.
El)、加工硬化指数(歪5%〜10%のn値)を求
め、YS×加工硬化指数、降伏比(YR=YS/TS×
100)、TS×T.Elを計算した。
The tensile test was carried out according to JIS No. 5 (gauge length 50 m).
m, parallel part width 25 mm) at a tensile speed of 10 mm / min, tensile strength (TS), yield strength (YS), total elongation (T.El), uniform elongation (U.El), local Elongation (L.
El) and work hardening index (n value of strain 5% to 10%) were obtained, and YS × work hardening index, yield ratio (YR = YS / TS ×
100), TS × T. El was calculated.

【0055】伸びフランジ性は20mmの打ち抜き穴を
バリのない面から30度円錐ポンチで押し拡げ、クラッ
クが板厚を貫通した時点での穴径(d)と初期穴径(d
o、20mm)との穴拡げ比(d/do)を求めた。
The stretch flangeability was determined by expanding a punched hole of 20 mm from a burr-free surface with a 30-degree conical punch, and when the crack penetrated the plate thickness (d) and the initial hole diameter (d).
o, 20 mm) with the hole expansion ratio (d / do).

【0056】スポット溶接性は薄鋼板板厚の平方根の5
倍の先端径を有する電極によりチリ発生電流の0.9倍
の電流で接合したスポット溶接試験片をたがねで破断さ
せた時にいわゆる剥離破断を生じたら不適とした。
The spot weldability is 5 times the square root of the thickness of the thin steel plate.
When a spot welding test piece joined by an electrode having twice the tip diameter at a current 0.9 times the dust generation current was broken with a chisel, a so-called peeling fracture was determined to be inappropriate.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【表4】 [Table 4]

【0061】[0061]

【発明の効果】本発明により従来にない優れた耐衝突安
全性及び成形性を兼備した自動車用熱延高強度薄鋼板を
低コストかつ安定的に提供することが可能となったた
め、熱延高強度薄鋼板の使用用途・使用条件が格段に広
がり、工業上、経済上の効果は非常に大きい。
According to the present invention, a hot-rolled high-strength thin steel sheet for automobiles having both unprecedented excellent crash safety and formability can be stably provided at low cost. The uses and conditions of use of high-strength thin steel sheets are greatly expanded, and the industrial and economic effects are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 薄鋼板の加工硬化指数と動的エネルギー吸収
量との関係を示す図である。
FIG. 1 is a view showing a relationship between a work hardening index of a thin steel sheet and a dynamic energy absorption amount.

【図2】 薄鋼板の降伏強さ×加工硬化指数と動的エネ
ルギー吸収量(J)との関係を示す図である。
FIG. 2 is a diagram showing a relationship between yield strength × work hardening index of a thin steel sheet and dynamic energy absorption (J).

【図3】 降伏強さが500MPaである薄鋼板の変形
歪み(%)とn値との関係を示す図。
FIG. 3 is a view showing a relationship between deformation strain (%) and n value of a thin steel sheet having a yield strength of 500 MPa.

【図4】 加工硬化指数と引張強さ(TS)×全伸び
(T.El)(MPa・%)との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a work hardening index and a tensile strength (TS) × total elongation (T.El) (MPa ·%).

【図5】 衝撃圧壊試験方法に用いられる部品(ハット
モデル)の概観図である。
FIG. 5 is a schematic view of a part (hat model) used in the impact crush test method.

【図6】 試験片形状の断面図である。FIG. 6 is a sectional view of a test piece shape.

【図7】 衝撃圧壊試験方法の模式図である。FIG. 7 is a schematic view of an impact crush test method.

【図8】 巻取温度:450(℃)の時の仕上温度
(℃)と加工硬化指数との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a finishing temperature (° C.) and a work hardening index at a winding temperature of 450 (° C.).

【図9】 仕上温度:880(℃)の時の巻取温度
(℃)と加工硬化指数との関係を示す図である。
FIG. 9 is a diagram showing the relationship between the winding temperature (° C.) and the work hardening index when the finishing temperature is 880 (° C.).

【符号の説明】[Explanation of symbols]

1 天板 2 試験片 3 スポット溶接 4 落錘 5 架台 6 ストッパー DESCRIPTION OF SYMBOLS 1 Top plate 2 Test piece 3 Spot welding 4 Drop weight 5 Mounting base 6 Stopper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 間渕 秀里 大分市大字西ノ洲1番地 新日本製鐵株式 会社大分製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidesato Mabuchi 1 Oshino, Oita, Oita City Nippon Steel Corporation Oita Works

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の5%成形加工後のミクロ組織にお
いて、残留オ−ステナイトの占積率が3%以上であり、
鋼板特性として加工硬化指数が0.130以上であるこ
とを特徴とする耐衝突安全性及び成形性に優れた自動車
用熱延高強度薄鋼板。
1. A microstructure after 5% forming of a steel sheet, wherein the space factor of retained austenite is 3% or more;
A hot-rolled high-strength steel sheet for automobiles excellent in crash resistance and formability, which has a work hardening index of 0.130 or more as a property of the steel sheet.
【請求項2】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部がFe及び不可避的成分からなり、鋼板の
5%成形加工後のミクロ組織において、残留オ−ステナ
イトの占積率が3%以上であり、鋼板特性として加工硬
化指数が0.130以上であることを特徴とする耐衝突
安全性及び成形性に優れた自動車用熱延高強度薄鋼板。
2. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
And the balance consists of Fe and inevitable components. In the microstructure of the steel sheet after 5% forming, the space factor of the retained austenite is 3% or more, and the work hardening index is 0.130 as the steel sheet characteristic. A hot-rolled high-strength steel sheet for automobiles having excellent crash resistance and formability, characterized by the above.
【請求項3】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部はFe及び不可避的成分からなり、鋼板の
成形加工前のミクロ組織において、Cを1.0重量%以
上含有し、かつ平均円相当径が5μm以下である残留オ
−ステナイトの占積率が5%以上であり、鋼板の5%成
形加工後のミクロ組織において、残留オ−ステナイトの
占積率が3%以上であり、鋼板特性として加工硬化指数
が0.130以上であることを特徴とする耐衝突安全性
及び成形性に優れた自動車用熱延高強度薄鋼板。
3. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
The balance consists of Fe and unavoidable components. In the microstructure of the steel sheet before forming, the occupancy of retained austenite containing 1.0% by weight or more of C and having an average equivalent circle diameter of 5 μm or less is included. The space factor is 5% or more, and the space factor of residual austenite is 3% or more, and the work hardening index is 0.130 or more as a characteristic of the steel sheet in the microstructure of the steel sheet after 5% forming. A hot-rolled high-strength thin steel sheet for automobiles, which is characterized by excellent collision safety and formability.
【請求項4】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部はFe及び不可避的成分からなり、鋼板の
成形加工前のミクロ組織において、Cを1.0重量%以
上含有し、かつ平均円相当径が5μm以下である残留オ
−ステナイトの占積率が5%以上であり、平均円相当径
が10μm以下であるフェライトの占積率が50%以
上、残部組織の平均円相当径が10μm以下であり、鋼
板の5%成形加工後のミクロ組織において、残留オ−ス
テナイトの占積率が3%以上であり、鋼板特性として加
工硬化指数が0.130以上、降伏強さ×加工硬化指数
が70以上であることを特徴とする耐衝突安全性及び成
形性に優れた自動車用熱延高強度薄鋼板。
4. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
The balance consists of Fe and unavoidable components. In the microstructure of the steel sheet before forming, the occupancy of retained austenite containing 1.0% by weight or more of C and having an average equivalent circle diameter of 5 μm or less is included. The space factor of ferrite having an area factor of 5% or more and an average equivalent circle diameter of 10 μm or less is 50% or more, the average equivalent circle diameter of the remaining structure is 10 μm or less, and the microstructure of a steel sheet after forming by 5%. The structure is characterized in that the space factor of the retained austenite is 3% or more in the structure, the work hardening index is 0.130 or more, and the yield strength × work hardening index is 70 or more. Hot-rolled high-strength steel sheet for automobiles with excellent formability and formability.
【請求項5】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部がFe及び不可避的成分からなり、鋼板の
成形加工前のミクロ組織において、Cを1.0重量%以
上含有し、かつ平均円相当径が5μm以下である残留オ
−ステナイトの占積率が5%以上であり、平均円相当径
が10μm以下であるフェライトの占積率が50%以
上、残部組織の平均円相当径が10μm以下であり、鋼
板の5%成形加工後のミクロ組織において、残留オ−ス
テナイトの占積率が3%以上であり、鋼板特性として加
工硬化指数が0.130以上、降伏強さ×加工硬化指数
が70以上、降伏比が85%以下であることを特徴とす
る耐衝突安全性及び成形性に優れた自動車用熱延高強度
薄鋼板。
5. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
And the balance is Fe and unavoidable components. In the microstructure of the steel sheet before forming, the occupation of retained austenite containing 1.0% by weight or more of C and having an average equivalent circle diameter of 5 μm or less is included. The space factor of ferrite having an area factor of 5% or more and an average equivalent circle diameter of 10 μm or less is 50% or more, the average equivalent circle diameter of the remaining structure is 10 μm or less, and the microstructure of a steel sheet after forming by 5%. In the structure, the space factor of the retained austenite is 3% or more, the work hardening index is 0.130 or more, the yield strength × work hardening index is 70 or more, and the yield ratio is 85% or less. A hot-rolled high-strength thin steel sheet for automobiles, which is characterized by excellent collision safety and formability.
【請求項6】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部がFe及び不可避的成分からなり、鋼板の
成形加工前のミクロ組織において、Cを1.0重量%以
上含有し、かつ平均円相当径が5μm以下である残留オ
−ステナイトの占積率が5%以上であり、平均円相当径
が10μm以下であるフェライトの占積率が50%以
上、平均円相当径が10μm以下であるマルテンサイト
の占積率が3%以上、残部組織の平均円相当径が10μ
m以下であり、鋼板特性として加工硬化指数が0.16
0以上、降伏強さ×加工硬化指数が80以上、降伏比が
75(%)以下であることを特徴とする耐衝突安全性及
び成形性に優れた自動車用熱延高強度薄鋼板。
6. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
And the balance is Fe and unavoidable components. In the microstructure of the steel sheet before forming, the occupation of retained austenite containing 1.0% by weight or more of C and having an average equivalent circle diameter of 5 μm or less is included. The space factor of ferrite having an area equivalent of 5% or more and the average equivalent circle diameter of 10 μm or less is 50% or more, the area of the martensite having an average equivalent circle diameter of 10 μm or less is 3% or more, and the remaining structure Average equivalent circle diameter of 10μ
m and a work hardening index of 0.16
A hot-rolled high-strength steel sheet for automobiles having excellent crash safety and formability, characterized by having a yield strength × work hardening index of 80 or more and a yield ratio of 75 (%) or less.
【請求項7】 さらに、Ca:0.0005〜0.01
重量%又はREM:0.005〜0.05重量%を含む
ことを特徴とする請求項1〜請求項5の内のいずれか1
つに記載の耐衝突安全性及び成形性に優れた熱延高強度
薄鋼板。
7. Ca: 0.0005 to 0.01
6. The composition according to claim 1, wherein the composition contains 0.005 to 0.05% by weight or REM.
A hot-rolled high-strength thin steel sheet excellent in crash resistance and formability described in (1).
【請求項8】 さらに、Ca:0.0005〜0.01
重量%又はREM:0.005〜0.05重量%を含む
ことを特徴とする請求項6記載の耐衝突安全性及び成形
性に優れた熱延高強度薄鋼板。
8. Ca: 0.0005 to 0.01
7. The hot-rolled high-strength thin steel sheet according to claim 6, which comprises 0.005 to 0.05% by weight or REM: 0.005 to 0.05% by weight.
【請求項9】 化学成分としてC:0.05〜0.20
重量%、Mn:0.5〜2.0重量%、Si、Alの内
の少なくとも1種以上を0.5重量%〜4.0重量%、
を含み、残部がFe及び不可避的成分からなる鋼片を初
期鋼片厚が25mm以上、仕上温度が760℃〜920
℃、最終パス圧延速度が500mpm以上で熱間圧延を
行い、その後、ランアウトテーブルにおける700℃以
下の平均冷却速度が25℃/秒以上で冷却を行い、さら
に、500℃以下で巻取を行うことを特徴とする請求項
1〜5及び7の内のいずれか1つに記載の耐衝突安全性
及び成形性に優れた自動車用熱延高強度薄鋼板の製造方
法。
9. C: 0.05 to 0.20 as a chemical component
% By weight, Mn: 0.5 to 2.0% by weight, at least one of Si and Al is 0.5% to 4.0% by weight,
, A balance consisting of Fe and an unavoidable component was prepared using a slab having an initial slab thickness of 25 mm or more and a finishing temperature of 760 ° C.
Hot rolling at a final pass rolling speed of 500 mpm or more at 500C, then cooling at an average cooling speed of 700C or less at a runout table of 25C / sec or more, and further winding at 500C or less. The method for producing a hot-rolled high-strength thin steel sheet for automobiles according to any one of claims 1 to 5 and 7, which is excellent in crash resistance and formability.
【請求項10】 化学成分としてC:0.05〜0.2
0重量%、Mn:0.5〜2.0重量%、Si、Alの
内の少なくとも1種以上を0.5重量%〜4.0重量
%、を含み、残部がFe及び不可避的成分からなる鋼片
を初期鋼片厚が25mm以上、仕上温度が760℃〜9
20℃、最終パス圧延速度が500mpm以上で熱間圧
延を行い、その後、ランアウトテーブルにおける700
℃以下の平均冷却速度が25℃/秒以上で冷却を行い、
さらに、350℃以下で巻取を行うことを特徴とする請
求項6または8に記載の耐衝突安全性及び成形性に優れ
た自動車用熱延高強度薄鋼板の製造方法。
10. C: 0.05 to 0.2 as a chemical component
0% by weight, Mn: 0.5 to 2.0% by weight, 0.5% to 4.0% by weight of at least one of Si and Al, the balance being Fe and unavoidable components. The initial slab thickness is 25 mm or more, and the finishing temperature is 760 ° C. to 9
Hot rolling was performed at 20 ° C. and a final pass rolling speed of 500 mpm or more, and then 700 mm in the run-out table.
Cooling is performed at an average cooling rate of 25 ° C / sec or less,
The method for producing a hot-rolled high-strength thin steel sheet for automobiles according to claim 6 or 8, further comprising winding at 350 ° C or lower.
JP33138096A 1996-11-28 1996-11-28 Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production Pending JPH10158735A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP33138096A JPH10158735A (en) 1996-11-28 1996-11-28 Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production
KR1019997004657A KR100318213B1 (en) 1996-11-28 1997-11-28 High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
EP10181458A EP2314730B1 (en) 1996-11-28 1997-11-28 High-strength steels having high impact energy absorption properties.
EP97913471.5A EP0952235B2 (en) 1996-11-28 1997-11-28 Method for producing high-strength steels having high impact energy absorption properties
PCT/JP1997/004359 WO1998023785A1 (en) 1996-11-28 1997-11-28 High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
US09/308,986 US6319338B1 (en) 1996-11-28 1997-11-28 High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
CN97180921A CN1078623C (en) 1996-11-28 1997-11-28 High-strength steel having high impact energy absorption power and method for mfg. same
AU50679/98A AU711873B2 (en) 1996-11-28 1997-11-28 High-strength steels having high impact energy absorption properties and a method for producing the same
CA002273334A CA2273334C (en) 1996-11-28 1997-11-28 High strength steels having high impact energy absorption properties and a method for producing the same
TW086117962A TW384313B (en) 1996-11-28 1997-11-28 High strength steels having high impact energy absorption properties and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33138096A JPH10158735A (en) 1996-11-28 1996-11-28 Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production

Publications (1)

Publication Number Publication Date
JPH10158735A true JPH10158735A (en) 1998-06-16

Family

ID=18243048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33138096A Pending JPH10158735A (en) 1996-11-28 1996-11-28 Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production

Country Status (1)

Country Link
JP (1) JPH10158735A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086088A1 (en) * 2006-01-26 2007-08-02 Giovanni Arvedi Hot rolled dual phase steel strip having features of a cold rolled strip
EP2060646A1 (en) * 2006-12-27 2009-05-20 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for structural members excellent in impact -absorbing characteristics
WO2018179387A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
CN110431064A (en) * 2017-03-02 2019-11-08 杰富意钢铁株式会社 Vehicle body structural body
CN113383096A (en) * 2019-03-06 2021-09-10 日本制铁株式会社 Hot rolled steel plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086088A1 (en) * 2006-01-26 2007-08-02 Giovanni Arvedi Hot rolled dual phase steel strip having features of a cold rolled strip
EP2060646A1 (en) * 2006-12-27 2009-05-20 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel sheet for structural members excellent in impact -absorbing characteristics
EP2060646A4 (en) * 2006-12-27 2014-01-01 Nippon Steel & Sumikin Sst Stainless steel sheet for structural members excellent in impact -absorbing characteristics
CN110431064A (en) * 2017-03-02 2019-11-08 杰富意钢铁株式会社 Vehicle body structural body
CN110431064B (en) * 2017-03-02 2021-11-12 杰富意钢铁株式会社 Vehicle body structure
WO2018179387A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Hot-rolled steel sheet
KR20190135505A (en) 2017-03-31 2019-12-06 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet
US10894996B2 (en) 2017-03-31 2021-01-19 Nippon Steel Corporation Hot rolled steel sheet
CN113383096A (en) * 2019-03-06 2021-09-10 日本制铁株式会社 Hot rolled steel plate
CN113383096B (en) * 2019-03-06 2022-10-04 日本制铁株式会社 Hot rolled steel plate

Similar Documents

Publication Publication Date Title
JP4411221B2 (en) Low yield ratio high-strength cold-rolled steel sheet and plated steel sheet excellent in elongation and stretch flangeability, and manufacturing method thereof
KR100318213B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
WO1998032889A1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
JP2001207235A (en) High tensile strength hot dip galvanized steel plate and producing method therefor
JP2000282175A (en) Superhigh strength hot-rolled steel sheet excellent in workability, and its production
JP3551064B2 (en) Ultra fine grain hot rolled steel sheet excellent in impact resistance and method for producing the same
JP2004002969A (en) High tension hot-rolled steel plate excellent in stretch characteristics and stretch flange formability, and its producing method
JPH1161326A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
JP2010168651A (en) High strength hot-rolled steel plate and manufacturing method therefor
JPH07252592A (en) Hot rolled high strength steel sheet excellent in formability, low temperature toughness and fatigue property
JPH08188847A (en) Steel plate with composite structure, excellent in fatigue characteristic, and its production
JP6628561B2 (en) Stainless steel sheet for structural member excellent in workability and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JPH10259448A (en) High strength steel sheet excellent in static absorbed energy and impact resistance and its production
JPH10273752A (en) Automotive high strength steel sheet excellent in collision resisting safety and formability and its production
JPH10158735A (en) Hot-rolled high strength steel sheet for automobile excellent in collision resistant safety and formability and its production
JP3577987B2 (en) Hot-rolled steel sheet for press forming and method for producing the same
JP7192819B2 (en) High-strength steel plate and its manufacturing method
JP7192818B2 (en) High-strength steel plate and its manufacturing method
JP3954411B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture