JP2000290745A - High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture - Google Patents

High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture

Info

Publication number
JP2000290745A
JP2000290745A JP9935099A JP9935099A JP2000290745A JP 2000290745 A JP2000290745 A JP 2000290745A JP 9935099 A JP9935099 A JP 9935099A JP 9935099 A JP9935099 A JP 9935099A JP 2000290745 A JP2000290745 A JP 2000290745A
Authority
JP
Japan
Prior art keywords
steel sheet
strength steel
ferrite
temperature
volume fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9935099A
Other languages
Japanese (ja)
Inventor
Osamu Kono
治 河野
Junichi Wakita
淳一 脇田
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9935099A priority Critical patent/JP2000290745A/en
Publication of JP2000290745A publication Critical patent/JP2000290745A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet for working, excellent in fatigue characteristic and safety against collision and capable of sufficiently meeting the demands from the viewpoint of stabilization of material quality and reduction of costs, and its manufacturing method. SOLUTION: This steel sheet has, before forming, a microstructure which contains ferrite of >180 Vickers hardness as a principal phase and also contains retained austenite (γ) in an amount of >=3% by volume fraction and in which the volume fraction of the balance (secondary phase) of the structure is regulated to <6% or <3%. Moreover, in the microstructure after 5% forming, remained austenite (γ) is contained in an amount of >=3% by volume fraction, and further, >=0.130 work hardening exponent is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に乗用車、トラ
ック等のボデー、シャーシ関連の構造部材や補強部材に
使用することを念頭においた疲労特性と衝突安全性に優
れた加工用高強度鋼板並びにその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel plate for processing which is excellent in fatigue characteristics and collision safety mainly intended for use in structural members and reinforcing members relating to bodies such as passenger cars and trucks, chassis and the like. And its manufacturing method.

【0002】[0002]

【従来の技術】地球環境の負荷軽減に直結する自動車の
燃費低減を背景にして、乗用車やトラックの車体軽量化
を目的に、板厚に薄い高強度鋼板の適用が急速に拡大し
ている。しかし、板厚を薄くすることにより剛性が低下
するため、長期走行を考慮した場合、耐久性の低下が懸
念されており、耐久性の指標として鋼板の疲労特性を高
めることが必要とされている。また、耐久用部材といえ
ども自動車では優れた加工性が要求されるため、疲労特
性に優れた加工用の高強度鋼板が望まれている。
2. Description of the Related Art With the background of reducing fuel consumption of automobiles, which is directly linked to reduction of the load on the global environment, the use of high-strength steel sheets having a small thickness is rapidly expanding for the purpose of reducing the weight of passenger cars and trucks. However, since the rigidity is reduced by reducing the thickness of the steel sheet, when long-term running is considered, there is a concern that the durability of the steel sheet may be reduced, and it is necessary to enhance the fatigue properties of the steel sheet as an index of durability. . Further, even for a durable member, since excellent workability is required in an automobile, a high-strength steel sheet for processing having excellent fatigue characteristics is desired.

【0003】このような状況に応えるため、本発明者ら
は特開平07−252592号公報にて提案したフェラ
イト、ベイナイト、残留オーステナイト(γ)の3相か
らなる高強度鋼板を開発した。しかしながら、その疲労
限度比は0.45〜0.51と低く、より高いレベルの
疲労限度比を有した加工用高強度鋼板が望まれていた。
また、特開平07−252592号公報では、残留オー
ステナイト(γ)を得るためにフェライト変態とベイナ
イト変態を利用しており、これは当業者によく知られて
いるようにベイナイト変態域の温度制御性を悪化させ、
材質バラツキ、製品歩留の低下(ひいては製品コストの
アップ)といった問題点を抱えており、安定した材質と
低コスト化が望まれていた。
In order to respond to such a situation, the present inventors have developed a high-strength steel sheet comprising three phases of ferrite, bainite and retained austenite (γ) proposed in Japanese Patent Application Laid-Open No. 07-252592. However, the fatigue limit ratio is as low as 0.45 to 0.51, and a high strength steel sheet for processing having a higher level of fatigue limit ratio has been desired.
In Japanese Patent Application Laid-Open No. 07-252592, ferrite transformation and bainite transformation are used to obtain retained austenite (γ), which is well known to those skilled in the art. Worsen,
There are problems such as variations in materials and a decrease in product yield (and an increase in product cost), and stable materials and cost reduction have been desired.

【0004】さらに、直近では、自動車事故時の乗員保
護の視点から衝突安全に関する法規制が急速に拡大・強
化されつつあり、衝突安全性の観点からも高強度鋼への
期待がますます高まっている。
In recent years, laws and regulations relating to collision safety have been rapidly expanding and strengthening from the viewpoint of occupant protection in the event of a car accident, and expectations for high-strength steel have also increased from the viewpoint of collision safety. I have.

【0005】しかし、従来の高強度鋼は成形性の向上を
主眼として開発されてきたものであり、衝突安全性の観
点では、その適用が疑問視されている。
However, conventional high-strength steels have been developed with an emphasis on improving formability, and their application has been questioned from the viewpoint of collision safety.

【0006】衝突安全性に優れた鋼板及びその製造方法
に係る従来技術としては、特開平07−18372号公
報では、衝突安全性の指標として鋼板の高歪速度下にお
ける降伏強度を高めることが提案されているが、自動車
用部材は成形加工時及び衝突変形時に歪を受けるため、
衝突安全性の指標としては、これらの歪による加工硬化
分を降伏強度に加味することが必要であり、加工硬化を
考慮していない上記従来技術では不十分であった。
As a prior art relating to a steel plate excellent in collision safety and a method for manufacturing the same, JP-A-07-18372 proposes to increase the yield strength of a steel plate under a high strain rate as an index of collision safety. However, since automotive parts are strained during molding and collision deformation,
As an index of the collision safety, it is necessary to add the work hardening due to these strains to the yield strength, and the above-mentioned prior art which does not consider the work hardening is insufficient.

【0007】すなわち、実用の観点から、現在、疲労特
性と衝突安全性を兼備した加工用高強度鋼板が開発され
ていないのが実状である。
[0007] That is, from the practical point of view, at present, a high-strength steel sheet for processing having both fatigue characteristics and collision safety has not been developed.

【0008】[0008]

【発明が解決しようとする課題】以上の従来の問題点に
鑑みて、本発明は、材質安定化と低コストの観点からの
要望も充分満足し得る疲労特性と衝突安全性に優れた加
工用高強度鋼板並びにその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides a machining tool having excellent fatigue characteristics and collision safety which can sufficiently satisfy the requirements from the viewpoint of material stabilization and low cost. An object of the present invention is to provide a high-strength steel sheet and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために種々の実験を行い、詳細な検討を重ね
た結果、(1)疲労限度比を向上させるには第2相(フ
ェライトと残留オーステナイト(γ)を除いた残部)を
排しフェライトを強化し、その体積分率を高めることが
重要であること、(2)かかる組織構成において、残留
γは加工性を高め疲労特性にも寄与すること、(3)さ
らにかかる組織構成にすることにより疲労限度比のバラ
ツキをも改善することができること、(4)衝突安全性
の向上には鋼板の加工硬化指数を高め、降伏強さ×加工
硬化指数を高めることが必要であることを見いだし、本
発明に至ったのである。
Means for Solving the Problems The present inventors have conducted various experiments to solve the above-mentioned problems, and have conducted detailed studies. As a result, (1) To improve the fatigue limit ratio, the second phase It is important to remove ferrite and the remaining part except residual austenite (γ) to strengthen ferrite and increase its volume fraction. (2) In such a structure, residual γ enhances workability and increases fatigue. (3) The variation in fatigue limit ratio can be improved by adopting such a structure, and (4) The work hardening index of the steel sheet is increased to improve the collision safety, and the yield is improved. The inventors have found that it is necessary to increase the strength × work hardening index, and have reached the present invention.

【0010】さらに残部組織である第2相を排すること
により、加工性のバラツキ、製品歩留の低下(ひいては
製品コストアップ)といった問題点をも解消し、疲労特
性、衝突安全性、強度、加工性等の特性向上と低コスト
の両立を果たしたのである。
Further, by eliminating the second phase, which is the remaining structure, problems such as variations in workability and a decrease in product yield (and an increase in product cost) are also eliminated, and fatigue characteristics, collision safety, strength, Thus, both improvement in characteristics such as workability and low cost were achieved.

【0011】つまり、本発明の要旨とするところは、以
下の通りである。
That is, the gist of the present invention is as follows.

【0012】(1) 成形加工前のミクロ組織におい
て、ビッカース硬度180超のフェライトを主相とし、
体積分率で3%以上の残留オーステナイト(γ)を含
み、残部組織(第2相)の体積分率が6%未満であり、
5%成形加工後のミクロ組織において、体積分率で3%
以上の残留オーステナイト(γ)を含み、加工硬化指数
が0.130以上であることを特徴とする疲労特性と衝
突安全性に優れた加工用高強度鋼板。
(1) In the microstructure before forming, ferrite having a Vickers hardness of more than 180 is a main phase,
It contains retained austenite (γ) of 3% or more in volume fraction, and the volume fraction of the remaining structure (second phase) is less than 6%;
5% in the microstructure after forming, 3% by volume
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety, characterized by containing the above-mentioned retained austenite (γ) and having a work hardening index of 0.130 or more.

【0013】(2) 成形加工前のミクロ組織におい
て、ビッカース硬度180超のフェライトを主相とし、
体積分率で3%以上の残留オーステナイト(γ)を含
み、残部組織(第2相)の体積分率が3%未満であり、
5%成形加工後のミクロ組織において、体積分率で3%
以上の残留オーステナイト(γ)を含み、加工硬化指数
が0.130以上であることを特徴とする疲労特性と衝
突安全性に優れた加工用高強度鋼板。
(2) In the microstructure before forming, ferrite having a Vickers hardness of more than 180 is a main phase,
Contains at least 3% of retained austenite (γ) in volume fraction, and has a volume fraction of less than 3% in the remaining structure (second phase);
5% in the microstructure after forming, 3% by volume
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety, characterized by containing the above-mentioned retained austenite (γ) and having a work hardening index of 0.130 or more.

【0014】(3) フェライト体積分率(Vf)が8
0%超且つフェライト平均粒径(df)が6μm未満で
あることを特徴とする上記(1)又は上記(2)に記載
の疲労特性と衝突安全性に優れた加工用高強度鋼板。
(3) Ferrite volume fraction (Vf) is 8
The high-strength steel sheet for processing according to the above (1) or (2), which is more than 0% and has an average ferrite grain size (df) of less than 6 μm, and has excellent fatigue characteristics and collision safety.

【0015】(4) フェライト体積分率(Vf)とフ
ェライト平均粒径(df)との比Vf/dfが18以上
であることを特徴とする上記(1)〜(3)の何れか1
つに記載の疲労特性に優れた加工用高強度鋼板。
(4) Any one of the above (1) to (3), wherein the ratio Vf / df of the ferrite volume fraction (Vf) to the average ferrite grain size (df) is 18 or more.
A high-strength steel sheet for processing excellent in fatigue characteristics described in (1).

【0016】(5) 第2相及び残留オーステナイト
(γ)の平均粒径がフェライト平均粒径より小さいこと
を特徴とする上記(1)〜(4)の何れか1つに記載の
疲労特性と衝突安全性に優れた加工用高強度鋼板。
(5) The fatigue properties as described in any one of (1) to (4) above, wherein the average grain size of the second phase and the retained austenite (γ) is smaller than the average grain size of ferrite. High-strength steel plate for processing with excellent collision safety.

【0017】(6) 降伏強さ×加工硬化指数が70以
上であることを特徴とする上記(1)〜(5)の何れか
1つに記載の疲労特性と衝突安全性に優れた加工用高強
度鋼板。
(6) A process excellent in fatigue characteristics and collision safety according to any one of the above (1) to (5), wherein the yield strength × work hardening index is 70 or more. High strength steel plate.

【0018】(7) 化学成分として、C:0.03〜
0.3重量%、SiとAlの内の1種又は2種を合計量
で0.5〜4%、Mn、Ni、Cr、Mo、Cuの内の
1種又は2種以上を合計量で0.5〜4%を含むことを
特徴とする上記(1)〜(6)の何れかに記載の疲労特
性と衝突安全性に優れた加工用高強度鋼板。
(7) As a chemical component, C: 0.03 to
0.3% by weight, 0.5 to 4% in total of one or two of Si and Al, one or two or more of Mn, Ni, Cr, Mo, Cu in total The high strength steel sheet for processing according to any one of the above (1) to (6), which is excellent in fatigue characteristics and collision safety, comprising 0.5 to 4%.

【0019】(8) 化学成分として、Si<0.1%
とすることを特徴とする上記(7)に記載の疲労特性と
衝突安全性に優れた加工用高強度鋼板。
(8) As a chemical component, Si <0.1%
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety according to the above (7), characterized in that:

【0020】(9) 化学成分として、Si:0.1〜
1%とすることを特徴とする上記(7)に記載の疲労特
性と衝突安全性に優れた加工用高強度鋼板。
(9) As a chemical component, Si: 0.1 to
The high-strength steel sheet for processing according to the above (7), which is excellent in fatigue characteristics and collision safety, characterized in that it is set to 1%.

【0021】(10) 化学成分として、Si:1%超
〜4%とすることを特徴とする上記(7)に記載の疲労
特性と衝突安全性に優れた加工用高強度鋼板。
(10) The high-strength steel sheet for processing according to the above (7), wherein Si is used as a chemical component in a proportion of more than 1% to 4%.

【0022】(11) 化学成分として、Al≦0.2
%とすることを特徴とする上記(7)に記載の疲労特性
と衝突安全性に優れた加工用高強度鋼板。
(11) Al ≦ 0.2 as a chemical component
%, A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety according to the above (7).

【0023】(12) フェライト体積分率(Vf)
が、C/(1−0.01×Vf)+0.07×Mn+
0.04×(Ni+Cr+Mo+Cu)≧0.87の関
係式を満たすことを特徴とする上記(7)〜(11)の
何れか1つに記載の疲労特性と衝突安全性に優れた加工
用高強度鋼板。
(12) Ferrite volume fraction (Vf)
Is C / (1−0.01 × Vf) + 0.07 × Mn +
The high strength for processing excellent in fatigue characteristics and collision safety according to any one of the above (7) to (11), characterized by satisfying a relational expression of 0.04 × (Ni + Cr + Mo + Cu) ≧ 0.87. steel sheet.

【0024】(13) 化学成分として、さらにNb、
V、Ti、P、B、Ca、REMの1種又は2種以上
を、Nb、V、Tiについては、それらの1種又は2種
以上を合計量で0.3%以下、Pについては、0.3%
以下、Bについては、0.01%以下、Caについて
は、0.0005〜0.01%REMについては、0.
005〜0.05%を含むことを特徴とする上記(7)
〜(12)の何れか1つに記載の疲労特性と衝突安全性
に優れた加工用高強度鋼板。
(13) Nb,
One or more of V, Ti, P, B, Ca, REM, Nb, V, Ti, one or more of them in a total amount of 0.3% or less; 0.3%
Hereinafter, 0.01% or less for B and 0.0005 to 0.01% for Ca.
(7) characterized by containing 005 to 0.05%.
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety according to any one of the above (12).

【0025】(14) 仕上温度(FT)をAr3〜A
3+180℃とし、さらにパラメータAが(1)式及
び(2)式を満たすように熱間圧延を終了し、熱延に引
き続く冷却テーブルにおける平均冷却速度(CR)を5
℃/秒以上とし、さらにパラメータAが(3)式を満た
すように巻取温度(CT)を調整することを特徴とする
疲労特性と衝突安全性に優れた加工用高強度鋼板の製造
方法。 9≦logA≦18 ・ ・ ・ (1) ΔT≦21×logA−108 ・ ・ ・ (2) CT≦6×logA+296 ・ ・ ・ (3) ただし、パラメータA=ε* ×exp{(75282
−42745×Ceq)/[1.978×(FT+27
3)]} FT:仕上温度(℃) Ceq:炭素当量=C+Mneq/6(%) Mneq:マンガン当量=Mn+(Ni+Cr+Cu)
/2(%) ε* :最終パス歪み速度(S-1) ε* =(v/(R×h10.5)×(1/r0.5)×ln
{1/(1−r)} h1:最終パス入側板厚、h2:最終パス出側板厚、r=
(h1−h2)/h1 R:ロール径、v:最終パス出側速度 ΔT:仕上温度(仕上最終パス出側温度)−仕上入側温
度(仕上第一パス入側温度) Ar3=868−396×C+25×Si−68×Mn
−36×Ni−21×Cu−25×Cr+30×Mo
(14) The finishing temperature (FT) is set to Ar 3 to A
r 3 + 180 ° C., the hot rolling was completed so that the parameter A satisfied the equations (1) and (2), and the average cooling rate (CR) in the cooling table following the hot rolling was 5
A method for producing a high-strength steel sheet for processing excellent in fatigue characteristics and collision safety, characterized in that the winding temperature (CT) is adjusted so as to be not less than ° C./sec and the parameter A satisfies the equation (3). 9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA−108 (2) CT ≦ 6 × logA + 296 (3) where parameter A = ε * × expex (75282)
−42745 × Ceq) / [1.978 × (FT + 27
3)]} FT: Finishing temperature (° C.) Ceq: Carbon equivalent = C + Mneq / 6 (%) Mneq: Manganese equivalent = Mn + (Ni + Cr + Cu)
/ 2 (%) ε *: final pass strain rate (S −1 ) ε * = (v / (R × h 1 ) 0.5 ) × (1 / r 0.5 ) × ln
{1 / (1-r)} h 1 : Thickness of the final pass entrance side, h 2 : Thickness of the final pass exit side, r =
(H 1 -h 2 ) / h 1 R: roll diameter, v: final pass exit speed ΔT: finishing temperature (finish final pass exit temperature) −finish entrance temperature (finish first pass entrance temperature) Ar 3 = 868-396 × C + 25 × Si-68 × Mn
-36 x Ni-21 x Cu-25 x Cr + 30 x Mo

【0026】(15) さらに、熱延鋼板を酸洗後冷延
し、その後、連続焼鈍する際に、焼鈍温度STをAc1
〜Ac3の温度範囲とし、その温度範囲で10秒以上保
持し、その後、平均冷却速度(CR1)1〜10℃/秒
で550〜700℃の範囲内の温度(T1)へ冷却し、
さらに温度(T1)以降は350℃以下の温度(T2)ま
で平均冷却速度(CR2)10℃/秒以上で冷却するこ
とを特徴とする上記(14)に記載の疲労特性と衝突安
全性に優れた加工用高強度鋼板の製造方法。
(15) Further, when the hot-rolled steel sheet is pickled and then cold-rolled, and then subjected to continuous annealing, the annealing temperature ST is set to Ac 1.
~ Ac 3 temperature range, hold at that temperature range for 10 seconds or more, and then cool to a temperature (T 1 ) within the range of 550-700 ° C. at an average cooling rate (CR 1 ) of 1-10 ° C./sec. ,
Further, after the temperature (T 1 ), cooling is performed at an average cooling rate (CR 2 ) of 10 ° C./sec or more to a temperature (T 2 ) of 350 ° C. or less, wherein the fatigue characteristics and collision safety are described in (14). For manufacturing high-strength steel sheets for processing with excellent heat resistance.

【0027】[0027]

【発明の実施の形態】本発明者らは、種々の実験を行
い、詳細な検討を重ねた結果、(1)疲労限度比を向上
させるには第2相(フェライトと残留オーステナイト
(γ)を除いた残部)を排しフェライトを強化し、その
体積分率を高めることが重要であること、(2)かかる
組織構成において、残留γは加工性を高め疲労特性にも
寄与すること、(3)さらにかかる組織構成にすること
により疲労限度比のバラツキをも改善することができる
こと、(4)衝突安全性の向上には鋼板の加工硬化指数
を高め、降伏強さ×加工硬化指数を高めることが必要で
あることを見いだし、本発明に至ったのである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors conducted various experiments and conducted detailed studies. As a result, (1) To improve the fatigue limit ratio, the second phase (ferrite and retained austenite (γ) was It is important that the ferrite be strengthened by removing the remaining part) to increase the volume fraction of the ferrite. (2) In such a structure, the residual γ enhances workability and contributes to fatigue properties. ) Further, the variation in the fatigue limit ratio can be improved by adopting such a structure. (4) To improve the collision safety, the work hardening index of the steel sheet is increased, and the yield strength x the work hardening index is increased. Was found to be necessary, leading to the present invention.

【0028】さらに残部組織である第2相を排すること
により、加工性のバラツキ、製品歩留の低下(ひいては
製品コストアップ)といった問題点をも解消し、疲労特
性、衝突安全性、強度、加工性等の特性向上と低コスト
の両立を果たしたのである。
Further, by eliminating the second phase, which is the remaining structure, problems such as variations in workability and a reduction in product yield (and an increase in product cost) are also eliminated, and fatigue characteristics, collision safety, strength, Thus, both improvement in characteristics such as workability and low cost were achieved.

【0029】以下に本発明の内容についてさらに詳細説
明する。
Hereinafter, the contents of the present invention will be described in more detail.

【0030】まず、本発明の鋼板ミクロ組織について説
明する。
First, the microstructure of the steel sheet of the present invention will be described.

【0031】フェライト及び第2相については、疲労限
度比の向上のために強化したフェライトを増やし第2相
を排することが最大のポイントである。
Regarding ferrite and the second phase, the most important point is to increase the ferrite reinforced to improve the fatigue limit ratio and to eliminate the second phase.

【0032】図1に、疲労限度比に及ぼす第2相体積分
率の影響を示す。第2相体積分率<6%で疲労限度比
0.52以上、第2相体積分率<3%で疲労限度比0.
56以上が得られている。さらに、第2相体積分率<1
%とすることは疲労限度比の向上に好ましい。
FIG. 1 shows the effect of the second phase volume fraction on the fatigue limit ratio. A fatigue limit ratio of 0.52 or more when the second phase volume fraction is less than 6%, and a fatigue limit ratio of 0.2 when the second phase volume fraction is less than 3%.
56 or more are obtained. Furthermore, the second phase volume fraction <1
% Is preferable for improving the fatigue limit ratio.

【0033】図2にはフェライト硬さの疲労限向上への
影響を示したもので、固溶元素の増加を通じたフェライ
ト硬さの増大に伴い疲労限が向上している。また、その
下限値としては、引張強さ、切欠き感受性、フレッチン
グ疲労等の特性確保をも考慮するとフェライト硬さ>1
80が必要である。
FIG. 2 shows the influence of the ferrite hardness on the improvement of the fatigue limit. The fatigue limit is improved with the increase of the ferrite hardness through the increase of the solid solution elements. In addition, the lower limit is set to be ferrite hardness> 1 in consideration of securing properties such as tensile strength, notch sensitivity, and fretting fatigue.
80 is required.

【0034】なお、図1及び図2に記載の疲労特性は、
図3に記載の疲労試験片を用いて求めた。
The fatigue characteristics shown in FIG. 1 and FIG.
It was determined using the fatigue test piece shown in FIG.

【0035】図4及び図5は衝突安全性の指標となる動
的エネルギー吸収量と鋼板の加工硬化指数及び降伏強さ
×加工硬化指数の関係を示すものである。鋼板の加工硬
化指数及び降伏強さ×加工硬化指数の増大により衝突安
全性(動的エネルギー吸収量)が向上しており、衝突安
全性の指標として、同一クラスの降伏強さであれば鋼板
の加工硬化指数(0.13以上)、降伏強さのクラスが
異なれば、鋼板の降伏強さ×加工硬化指数(70以上)
が妥当であることを示している。ただし、降伏強さ×加
工硬化指数が70以上であっても加工硬化指数が0.1
3未満であると降伏強さがいたずらに増大し、プレス成
形性の劣化を招くので、加工硬化指数を高めることが肝
要である。
FIGS. 4 and 5 show the relationship between the amount of dynamic energy absorbed as an index of collision safety and the work hardening index and yield strength × work hardening index of the steel sheet. Collision safety (dynamic energy absorption) has been improved by increasing the work hardening index and yield strength x work hardening index of the steel sheet. If the yield strength of the same class If the work hardening index (0.13 or more) and the yield strength class are different, the yield strength of the steel sheet x the work hardening index (70 or more)
Is valid. However, even if the yield strength × work hardening index is 70 or more, the work hardening index is 0.1
If it is less than 3, the yield strength unnecessarily increases and the press formability deteriorates. Therefore, it is important to increase the work hardening index.

【0036】なお、部材への成形加工時に鋼板が歪を受
けることをを考慮して、加工硬化指数は歪5〜10%の
n値で代表的に表現したが、本質的には成形加工時の加
工硬化指数が高いことに最大の特徴を有するものであ
る。また、プレスの設備能力から成形荷重の増大を抑え
ることが望まれる場合、変形抵抗を低く抑えるべく、歪
0〜5%のn値を低くすることが有効である。逆にプレ
スの設備能力が充分にある場合には、歪0〜5%のn値
も高めることが衝突安全性向上の観点から有効である。
The work hardening index is typically represented by an n value of 5 to 10% of strain in consideration of the fact that the steel sheet is distorted during forming into a member. Is characterized by its high work hardening index. Further, when it is desired to suppress the increase in the forming load from the capacity of the press, it is effective to lower the n value of the strain 0 to 5% in order to suppress the deformation resistance. Conversely, if the press has sufficient equipment capacity, it is effective to increase the n value of strain 0 to 5% from the viewpoint of improving collision safety.

【0037】さらに、加工硬化指数が増大することによ
り、鋼板のくびれが抑制され、降伏強さ×全伸び等で表
現される成形性も向上する。
Further, by increasing the work hardening index, the constriction of the steel sheet is suppressed, and the formability expressed by yield strength × total elongation is also improved.

【0038】なお、図4及び図5に記載の動的エネルギ
ー吸収量は、板厚1.2mmの熱延材を用い、下記の衝
撃圧壊試験法により求めた。すなわち、鋼板を図6〜7
に示すように、コーナーR=5mmのハット型試験片に
成形し(図6)、先端径5.5mmの電極によりチリ発
生電流の0.9倍の電流で35mmピッチでスポット溶
接3をし、2つの天板1間に試験片2を配設した部品と
し、さらに170℃×20分の焼付塗装処理を行った
後、図8の試験方法の模式図に示すように約150kg
の落錘4を約10mの高さから落下させ、ショックアブ
ソーバー6を設けた架台5の上の部品を長手方向に圧壊
し、その際の荷重変位線図の面積から変異=0〜150
mmの変位仕事を算出して、動的エネルギー吸収量とし
た。
The dynamic energy absorption shown in FIGS. 4 and 5 was determined by the following impact crush test using a hot-rolled material having a thickness of 1.2 mm. That is, the steel plates are
As shown in the figure, a hat-shaped test piece having a corner R of 5 mm was formed (FIG. 6), and spot welding 3 was performed at a pitch of 35 mm at a current 0.9 times the dust generation current using an electrode having a tip diameter of 5.5 mm. A part having the test piece 2 disposed between the two top plates 1 was subjected to a baking coating treatment at 170 ° C. for 20 minutes, and then approximately 150 kg as shown in the schematic diagram of the test method in FIG.
Is dropped from a height of about 10 m, and the parts on the gantry 5 provided with the shock absorber 6 are crushed in the longitudinal direction, and the displacement = 0 to 150 from the area of the load displacement diagram at that time.
The work of displacement in mm was calculated and used as the dynamic energy absorption.

【0039】残留オーステナイト(γ)については、そ
の体積分率を3%以上とすることにより加工性を高める
作用を発揮する。また、き裂停留やき裂迂回へのTRI
P(変態誘起塑性)の寄与によると推定される疲労限度
比や切欠き感受性の改善へも寄与する。
The retained austenite (γ) has an effect of improving workability by setting the volume fraction to 3% or more. In addition, TRI to crack stop and crack detour
P (transformation induced plasticity) also contributes to the improvement of the fatigue limit ratio and the notch sensitivity, which are estimated to be due to the contribution of P (transformation induced plasticity).

【0040】さらに5%成形加工後における残留オース
テナイト(γ)の体積分率を3%以上とすることによ
り、成形加工後の衝突時に残留γが硬いマルテンサイト
へ変態して変形荷重を高められ(変形仕事量を高め
る)、その結果、動的エネルギー吸収量を増加でき、衝
突安全性向上に寄与する。
Further, by setting the volume fraction of retained austenite (γ) after 5% forming to 3% or more, the residual γ is transformed into hard martensite at the time of collision after forming, thereby increasing the deformation load ( As a result, the amount of dynamic energy absorption can be increased, contributing to the improvement of collision safety.

【0041】好ましくは成形加工前のミクロ組織におけ
る残留オーステナイト(γ)の炭素濃度(Cγ)を1%
以上とすることにより、成形加工に対する残留オーステ
ナイト(γ)の安定化が向上し5%以下の成形加工で
は、マルテンサイトへ変態し難くなり、成形加工後の衝
突時における加工硬化指数をより高めることに寄与す
る。なお、残留オーステナイト(γ)の存在位置に関し
ては、軟質なフェライトが主に変形時の歪を受けるた
め、フェライトに隣接していない残留オーステナイト
(γ)は歪を受け難く、その結果5〜10&程度の変形
ではマルテンサイトへ変態し難くなり、その効果が薄れ
るため、残留オーステナイト(γ)はフェライトに隣接
することが好ましい。
Preferably, the carbon concentration (Cγ) of the retained austenite (γ) in the microstructure before forming is 1%.
By the above, the stabilization of retained austenite (γ) with respect to the forming process is improved, and in the forming process of 5% or less, transformation to martensite becomes difficult, and the work hardening index at the time of collision after the forming process is further increased. To contribute. Regarding the location of the retained austenite (γ), since soft ferrite is mainly subjected to strain during deformation, the residual austenite (γ) not adjacent to the ferrite is hardly subjected to strain, and as a result, about 5 to 10 &amp; It is difficult to transform into martensite by the deformation of the above, and its effect is weakened. Therefore, the retained austenite (γ) is preferably adjacent to the ferrite.

【0042】上記の疲労特性、衝突安全性、成形性に及
ぼす効果をさらに高めるには、(1)フェライト体積分
率(Vf)を80%超(好ましくは85%超)且つフェ
ライト平均粒径(df)を6μm未満とする、(2)V
f/dfを18以上とする、(3)第2相及び残留オー
ステナイト(γ)の平均粒径をフェライト平均粒径より
小さくすることが、組織微細化、第二相と残留オーステ
ナイト(γ)の分散化、異相界面積変化等の作用を通じ
て効果を発揮し、さらにその効果は鋼板全体に及ぶよう
に作用する。
In order to further enhance the effects on the fatigue characteristics, collision safety, and formability, (1) the ferrite volume fraction (Vf) is more than 80% (preferably more than 85%) and the average ferrite particle size (Vf) is df) is less than 6 μm, (2) V
(3) To make the average grain size of the second phase and the retained austenite (γ) smaller than the average grain size of the ferrite is to make the structure finer and to reduce the second phase and the retained austenite (γ). The effect is exerted through actions such as dispersing and a change in the area of different phases, and the effect acts so as to extend to the entire steel sheet.

【0043】次に、本発明の化学成分について説明す
る。
Next, the chemical components of the present invention will be described.

【0044】Cはオーステナイトを安定化し、残留オー
ステナイト(γ)の確保のために、組織の粗大化を防止
するために、0.03重量%以上添加する。ただし、そ
の上限は衝突時に部材接合部が容易に剥離することを避
け、スポット溶接性不良、第二相体積分率の増大(フェ
ライト体積分率の低下)及びそれに伴うC農化不足や残
留オーステナイト(γ)体積分率低下、粗大ベイナイト
の出現や粗大ベネチックフェライトの出現を避ける観点
から、0.3重量%以下とする。好ましくは0.15重
量%以下、より好ましくは0.1重量%以下とする。
C is added in an amount of 0.03% by weight or more in order to stabilize austenite, to secure retained austenite (γ), and to prevent coarsening of the structure. However, the upper limit is to prevent the member joints from easily peeling off at the time of collision, to have poor spot weldability, to increase the second phase volume fraction (decrease in ferrite volume fraction), and to cause insufficient C agriculture and residual austenite. (Γ) From the viewpoint of avoiding a decrease in volume fraction, the appearance of coarse bainite, and the appearance of coarse Venetic ferrite, the content is 0.3% by weight or less. Preferably it is 0.15% by weight or less, more preferably 0.1% by weight or less.

【0045】Si、Alは残留オーステナイト(γ)を
得るために重要な元素であり、フェライトの生成を促進
し、炭化物の生成を抑制することにより、残留オーステ
ナイト(γ)を確保する作用があると同時に脱酸元素・
フェライト強化元素としても作用する。上記効果を得る
観点から、SiとAlの内の1種もしくは2種の合計添
加量の下限値は0.5重量%とする必要がある。ただ
し、Si、Alを過度に添加しても上記効果は飽和し、
コスト増等の悪影響のため、その合計添加量の上限値は
4重量%とする。また、特に優れた表面性状が要求され
る場合は、Si<0.1重量%(好ましくは0.01重
量%)とすることにより、Siスケールを回避するか、
Si>1重量%(好ましくは1.2重量%)とすること
により、Siスケールを無害化(全面に発生させ目立た
なくする)してもよい。一方、耐火物溶損やノズル閉塞
等の製鋼上デメリットや靱性や集合組織制御等の材質上
の観点を重視する場合、Al≦0.2%(好ましくは
0.1%)とする。なお、フェライト強化作用はSiよ
りAlの方が小さいため、引張強さを低く抑えたい場合
は、Al添加量を増し、Si添加量を減ずることも可能
である。さらにより高い穴拡げ性(d/d0)が必要な
場合も同様である。
Si and Al are important elements for obtaining retained austenite (γ), and have the effect of promoting the formation of ferrite and suppressing the formation of carbides, thereby ensuring the retained austenite (γ). At the same time,
Also acts as a ferrite strengthening element. From the viewpoint of obtaining the above effects, the lower limit of the total amount of one or two of Si and Al needs to be 0.5% by weight. However, even if Si and Al are excessively added, the above effect is saturated,
Due to adverse effects such as cost increase, the upper limit of the total amount is 4% by weight. Further, when particularly excellent surface properties are required, by setting Si <0.1% by weight (preferably 0.01% by weight) to avoid Si scale,
By setting Si> 1% by weight (preferably 1.2% by weight), the Si scale may be rendered harmless (generated on the entire surface and made inconspicuous). On the other hand, when emphasis is placed on the steelmaking disadvantages such as refractory erosion and nozzle blockage, and on the material aspects such as toughness and texture control, Al ≦ 0.2% (preferably 0.1%). Since Al has a smaller ferrite strengthening action than Si, if it is desired to reduce the tensile strength, it is possible to increase the amount of Al added and decrease the amount of Si added. The same applies to the case where even higher hole expandability (d / d 0 ) is required.

【0046】Mn、Ni、Cr、Mo、Cuはオーステ
ナイトを安定化して残留オーステナイト(γ)を確保す
る作用があるとともにフェライト強化元素である。ま
た、組織微細化や第二相分率制御にも寄与する。上記の
効果を得るためには、それらの内の1種もしくは2種以
上の合計添加量の下限値は0.5重量%とする必要があ
る。ただし、コストと効果の兼ね合いから、その合計添
加量の上限値は4重量%とする。
Mn, Ni, Cr, Mo and Cu are elements that stabilize austenite and secure retained austenite (γ) and are ferrite strengthening elements. It also contributes to the refinement of the structure and the control of the second phase fraction. In order to obtain the above effects, the lower limit of the total amount of one or more of them must be 0.5% by weight. However, the upper limit of the total amount is set to 4% by weight in consideration of cost and effect.

【0047】本発明のミクロ組織を得るためには、フェ
ライト変態温度域であるA3変態点近傍でフェライト変
態の抑制作用が小さく、フェライト変態域より低温でオ
ーステナイト安定化作用が大きいことが望まれる。その
観点からMo、Cr(特にMo)の添加が好ましい。一
方、Mnはフェライト変態温度域より低温でのオーステ
ナイト安定化作用は大きいが、A3変態点近傍でのフェ
ライト変態抑制作用も比較的強いため、好ましくは2重
量%以下とする。
In order to obtain the microstructure of the present invention, it is desired that the effect of suppressing the ferrite transformation is small near the A 3 transformation point, which is the ferrite transformation temperature range, and the effect of stabilizing austenite at a lower temperature than the ferrite transformation region is large. . From that viewpoint, addition of Mo and Cr (especially Mo) is preferable. Meanwhile, Mn is large austenite stabilizing effect at a low temperature than the ferrite transformation temperature range, relatively strong ferrite transformation inhibition in the vicinity A 3 transformation point, preferably 2 wt% or less.

【0048】また、好ましくはフェライト変態進行に伴
うC濃縮によるオーステナイトの安定化を考慮して、C
/(1−0.01×Vf)+0.07×Mn+0.04
×(Ni+Cr+Mo+Cu)≧0.87を満たすこと
が望まれる。なお、上式において、Vfはフェライト体
積分率である。左辺の値の増大に伴い、Ms点が低下
し、第二相体積分率の増大を抑え、最終的に本発明での
所望の組織を得るに好ましく作用する。
Preferably, considering the stabilization of austenite by enrichment of carbon accompanying the progress of ferrite transformation,
/(1-0.01×Vf)+0.07×Mn+0.04
× (Ni + Cr + Mo + Cu) ≧ 0.87 is desired to be satisfied. In the above equation, Vf is a ferrite volume fraction. As the value on the left-hand side increases, the Ms point decreases, suppressing an increase in the second phase volume fraction, and finally acts favorably to obtain a desired tissue in the present invention.

【0049】さらに、選択元素として、Nb、V、T
i、P、B、Ca、REMの1種又は2種以上を添加し
てもよい。
Further, Nb, V, T
One or more of i, P, B, Ca, and REM may be added.

【0050】Nb、V、Tiは高強度化に有効な元素で
あるが、効果とコストの兼ね合いから、それらの添加量
は1種又は2種以上を合計量で0.3重量%以下とす
る。
Nb, V, and Ti are effective elements for increasing the strength. However, from the viewpoint of the balance between the effect and the cost, one or more of them are added in an amount of 0.3% by weight or less in total. .

【0051】Pは残留オーステナイトの確保、高強度化
に有効な元素であるが、効果とコストの兼ね合いから、
添加量は0.3重量%以下とする。特に優れた2次加工
性、靱性、スポット溶接性、リサイクル性が要求される
場合はP≦0.05重量%(好ましくは0.02重量
%)とする。一方、Siスケール模様等を避け、優れた
表面性状を得る観点からはP≧0.015重量%が好ま
しい。
P is an element effective for securing retained austenite and increasing the strength, but from the viewpoint of the balance between the effect and the cost,
The addition amount is 0.3% by weight or less. When particularly excellent secondary workability, toughness, spot weldability, and recyclability are required, P is set to 0.05% by weight (preferably 0.02% by weight). On the other hand, from the viewpoint of avoiding an Si scale pattern or the like and obtaining excellent surface properties, P ≧ 0.015% by weight is preferable.

【0052】Bは高強度化に有効な元素であるが、効果
とコストの兼ね合いから、その添加量は0.01重量%
以下とする。
B is an element effective for increasing the strength. However, from the viewpoint of the balance between the effect and the cost, the content of B is 0.01% by weight.
The following is assumed.

【0053】Caは硫化物系介在物の形態制御(球状
化)により、加工性(特に穴拡げ比)をより向上させる
ために0.0005重量%以上添加するが、その効果の
飽和、さらには介在物の増加による逆効果(穴拡げ比の
劣化)の点からその上限を0.01重量%とする。ま
た、REMも同様の理由からその添加量を0.005〜
0.05重量%とする。なお、REMは希土類元素であ
るY、Ce、La等である。
Ca is added in an amount of 0.0005% by weight or more in order to further improve the workability (particularly the hole expansion ratio) by controlling the form of the sulfide-based inclusions (spheroidization). The upper limit is set to 0.01% by weight from the viewpoint of the adverse effect (deterioration of the hole expansion ratio) due to the increase in inclusions. For the same reason, the amount of REM is 0.005 to 0.005.
0.05% by weight. REM is a rare earth element such as Y, Ce, or La.

【0054】さらに好ましくは、Sは硫化物系介在物に
よる加工性(特に穴拡げ比)、スポット溶接性の劣化防
止の観点から、その添加量は、≦0.01重量%(好ま
しくは0.003重量%、より好ましくは10ppm)
とする。
More preferably, S is added in an amount of ≦ 0.01% by weight (preferably 0.1%) from the viewpoints of workability (particularly hole expansion ratio) due to sulfide-based inclusions and prevention of deterioration of spot weldability. 003% by weight, more preferably 10 ppm)
And

【0055】なお、オーステナイトの安定化や高強度化
等を狙って、必要に応じて、N≦0.02重量%添加し
てもよい。
In order to stabilize austenite and increase strength, N ≦ 0.02% by weight may be added as necessary.

【0056】次に以下に本発明の製造方法について説明
する。
Next, the manufacturing method of the present invention will be described.

【0057】まず、熱延高強度鋼板の製造方法について
説明する。
First, a method of manufacturing a hot-rolled high-strength steel sheet will be described.

【0058】第一に、熱間圧延における仕上温度(F
T)は、鋼板の化学成分で決まるAr 3〜Ar3+180
℃とする。Ar3℃未満ではフェライトが歪みを受け、
加工性を劣化させる。Ar3+180℃超では第二相体
積分率の増大(フェライト分率の低下)、オーステナイ
ト(γ)へのC濃化不足、残留オーステナイト(γ)体
積分率の低下や平均粒径の粗大化が起こるとともにスケ
ール疵の発生からも好ましくない。また加工硬化指数を
高めるためには仕上温度は低温側が好ましい。
First, the finishing temperature in hot rolling (F
T) is Ar determined by the chemical composition of the steel sheet. Three~ ArThree+180
° C. ArThreeBelow ℃, the ferrite is strained,
Deteriorate workability. ArThreeAbove + 180 ° C the second phase
Increase in integration rate (decrease in ferrite fraction), austenite
Insufficient C concentration to g (γ), retained austenite (γ)
When the integration ratio decreases and the average particle size becomes coarse,
This is not preferred from the viewpoint of the occurrence of cracks. In addition, the work hardening index
To increase the temperature, the finishing temperature is preferably lower.

【0059】第二に、パラメータAが(1)式及び
(2)式を満たすように熱間圧延を行う。フェライト変
態促進、オーステナイト(γ)へのC濃化促進、残留γ
の確保、加工硬化指数の向上や平均粒径の微細化等を果
たし所望の組織を得るという観点から(1)式の下限と
(2)式の上限を設け、設備の過大化を避けるという観
点から(1)式の上限を設ける。
Second, hot rolling is performed so that the parameter A satisfies the equations (1) and (2). Promotion of ferrite transformation, promotion of C concentration to austenite (γ), residual γ
From the viewpoint of obtaining the desired structure by ensuring the workability, improving the work hardening index, refining the average particle diameter, etc., and setting the lower limit of the formula (1) and the upper limit of the formula (2) to prevent the equipment from becoming excessively large. Therefore, the upper limit of equation (1) is set.

【0060】9≦logA≦18 ・ ・ ・ (1) ΔT≦21×logA−108 ・ ・ ・ (2) ただし、パラメータA=ε* ×exp{(75282
−42745×Ceq)/[1.978×(FT+27
3)]} FT:仕上温度(℃) Ceq:炭素当量=C+ Mneq/6(%) Mneq:マンガン当量=Mn+(Ni+Cr+Cu)
/2(%) ε* :最終パス歪み速度(S-1) ε* =(v/(R×h10.5)×(1/r0.5)×ln
{1/(1−r)} h1:最終パス入側板厚、h2:最終パス出側板厚、r=
(h1−h2)/h1 R:ロール径、v:最終パス出側速度 ΔT:仕上温度(仕上最終パス出側温度)−仕上入側温
度(仕上第一パス入側温度) Ar3=868−396×C+25×Si−68×Mn
−36×Ni−21×Cu−25×Cr+30×Mo
9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA−108 (2) where parameter A = ε * × exp {(75282)
−42745 × Ceq) / [1.978 × (FT + 27
3)]} FT: Finish temperature (° C.) Ceq: Carbon equivalent = C + Mneq / 6 (%) Mneq: Manganese equivalent = Mn + (Ni + Cr + Cu)
/ 2 (%) ε *: final pass strain rate (S −1 ) ε * = (v / (R × h 1 ) 0.5 ) × (1 / r 0.5 ) × ln
{1 / (1-r)} h 1 : thickness of the final pass entrance side, h2: thickness of the final pass exit side, r =
(H 1 -h 2 ) / h 1 R: roll diameter, v: final pass exit speed ΔT: finishing temperature (finish final pass exit temperature) −finish entrance temperature (finish first pass entrance temperature) Ar 3 = 868-396 × C + 25 × Si-68 × Mn
-36 x Ni-21 x Cu-25 x Cr + 30 x Mo

【0061】なお、熱間圧延における初期鋼片厚は25
mm以上が好ましく、鋼片の製造に際しては一般的な連
続鋳造のみならず、いわゆる薄肉連続鋳造の適用も可能
である。また、熱延連続化技術(いわゆるエンドレス圧
延)の適用も可能である。熱間圧延における仕上最終パ
ス出側速度は500mpm以上(より好ましくは600
mpm以上宇)が好ましい。
The initial slab thickness in hot rolling is 25.
mm or more is preferable, and when producing a steel slab, not only general continuous casting but also so-called thin continuous casting can be applied. In addition, application of a hot rolling continuous technology (so-called endless rolling) is also possible. The finish final pass exit speed in hot rolling is 500 mpm or more (more preferably 600 mpm).
mpm or more are preferred.

【0062】第三に、冷却テーブルにおける平均冷却速
度(CR)を5℃/秒以上とする。5℃/秒未満では炭
化物の過剰生成、残留γ体積分率の低下等の悪影響を生
じ、所望の組織・鋼板が得られない。なお、この冷却は
一定の冷却速度で行っても、冷却途中で冷却速度を変更
するゆわゆる多段冷却を行ってもよい。
Third, the average cooling rate (CR) in the cooling table is set to 5 ° C./sec or more. If it is less than 5 ° C./sec, adverse effects such as excessive generation of carbides and a decrease in the residual γ volume fraction occur, and a desired structure and steel sheet cannot be obtained. This cooling may be performed at a constant cooling rate, or may be performed in a so-called multi-stage cooling in which the cooling rate is changed during the cooling.

【0063】第四に、(3)式を満たすような巻取温度
(CT)に調整して巻取を行う。(3)式の上限を越え
ると第二相分率が増大する等の悪影響を生じ所望の組織
・鋼板が得られない。
Fourth, winding is performed by adjusting the winding temperature (CT) so as to satisfy the expression (3). When the value exceeds the upper limit of the expression (3), adverse effects such as an increase in the second phase fraction are caused, and a desired structure and steel sheet cannot be obtained.

【0064】 CT≦6×logA+296 ・ ・ ・ (3) ただし、CT:巻取温度(℃)CT ≦ 6 × logA + 296 (3) where, CT: winding temperature (° C.)

【0065】次に、冷延高強度鋼板の製造方法について
説明する。
Next, a method of manufacturing a cold-rolled high-strength steel sheet will be described.

【0066】冷延高強度鋼板を製造するに際しては、連
続焼鈍条件が最も重要であり、熱間圧延、熱間圧延後の
酸洗、冷間圧延の各条件を規制する必要は特にない。ま
た、焼鈍後に必要に応じ、調質圧延、電気めっき等を施
してもよい。
In producing a cold-rolled high-strength steel sheet, continuous annealing conditions are the most important, and it is not particularly necessary to regulate hot rolling, pickling after hot rolling, and cold rolling. After annealing, if necessary, temper rolling, electroplating, or the like may be performed.

【0067】第一に、焼鈍温度(ST)を鋼板の化学成
分で決まるAc1〜Ac3の温度範囲とし、その温度範囲
で10秒以上保持することが必要である。Ac1未満で
は逆変態オーステナイトが生成しないため、その後、残
留オーステナイトを得ることができず、Ac3超では粗
大なオーステナイト組織となるため、その後、本発明の
所望のミクロ組織を得ることができない。また、10秒
未満では逆変態オーステナイトの生成量が不足するた
め、その後、本発明の所望の組織を得ることができな
い。なお、滞在時間の上限は設備の長大化、ミクロ組織
の粗大化を避ける観点から200秒以下が好ましい。な
お、Ac1及びAc3は次式に基づいて決定する。
First, it is necessary to set the annealing temperature (ST) in a temperature range of Ac 1 to Ac 3 determined by the chemical composition of the steel sheet, and to maintain the temperature range for 10 seconds or more. Since the Ac less than 1 does not generate reverse transformed austenite, then, it is impossible to obtain a residual austenite, since the coarse austenitic structure in the Ac 3 exceeds, then it is impossible to obtain a desired microstructure of the present invention. If the time is less than 10 seconds, the amount of the reverse transformed austenite is insufficient, so that the desired structure of the present invention cannot be obtained thereafter. The upper limit of the staying time is preferably 200 seconds or less from the viewpoint of avoiding lengthening of equipment and coarsening of microstructure. Note that Ac 1 and Ac 3 are determined based on the following equation.

【0068】Ac1=723−10.7×Mn−16.
9× Ni+29.1×Si +16.9×Cr Ac3=910−203×C0.5−15.2× Ni+4
4.7×Si+104×V+31.5×Mo
Ac 1 = 723-10.7 × Mn-16.
9 × Ni + 29.1 × Si + 16.9 × Cr Ac 3 = 910-203 × C 0.5 -15.2 × Ni + 4
4.7 × Si + 104 × V + 31.5 × Mo

【0069】第二に、平均冷却速度(CR1)1〜10
℃/秒で550〜700℃の範囲の温度(T1)まで冷
却を行う。未変態オーステナイトへCを濃化させ所望の
残留オーステナイト(γ)を得るために平均冷却速度
(CR1)の上限を10℃/秒とし、設備の長大化抑制
の観点から下限を1℃/秒とした。また、未変態オース
テナイトへのC濃化を企図して冷却速度(T1)の上限
温度を700℃、炭化物生成抑制を企図して下限温度を
550℃とした。
Second, the average cooling rate (CR 1 ) 1 to 10
Cooling is performed at a rate of 550 ° C./sec to a temperature (T 1 ) in the range of 550 to 700 ° C. The upper limit of the average cooling rate (CR 1 ) is set to 10 ° C./sec, and the lower limit is set to 1 ° C./sec from the viewpoint of suppressing the equipment lengthening in order to concentrate C into untransformed austenite and obtain a desired retained austenite (γ). And Further, the upper limit temperature of the cooling rate (T 1 ) was set to 700 ° C. in order to enrich C in untransformed austenite, and the lower limit temperature was set to 550 ° C. in order to suppress carbide formation.

【0070】第三に、温度(T1)以降は350℃以下
の温度T2まで平均冷却速度(CR2)10℃/秒以上で
冷却することが必要である。350℃超、10℃/秒未
満では室温までの冷却中に炭化物の析出が懸念され、本
発明の所望の組織、特性を得ることができない
Thirdly, after the temperature (T 1 ), it is necessary to cool to a temperature T 2 of 350 ° C. or less at an average cooling rate (CR 2 ) of 10 ° C./sec or more. If it exceeds 350 ° C. and is less than 10 ° C./sec, carbides may be precipitated during cooling to room temperature, and the desired structure and characteristics of the present invention cannot be obtained.

【0071】[0071]

【実施例】表1に示す化学成分を有する鋼を鋳造して得
た鋼片を用いて、鋼番1〜20については、表2に示す
製造条件で熱延鋼板を製造し製品とした。鋼番21〜2
4については表3に示す製造条件により冷延焼鈍し、冷
延鋼板を製造し製品とした。得られた鋼板のミクロ組織
と材質特性を表4及び表5に示す。表1〜5において、
本発明例が鋼番1〜12、鋼番21であり、比較例が鋼
番13〜20、鋼番22〜24である。
EXAMPLES Using steel slabs obtained by casting steels having the chemical components shown in Table 1, for steel numbers 1 to 20, hot-rolled steel sheets were manufactured under the manufacturing conditions shown in Table 2 to obtain products. Steel numbers 21 and 2
For No. 4, cold-rolled annealing was performed under the manufacturing conditions shown in Table 3 to manufacture a cold-rolled steel sheet to obtain a product. Tables 4 and 5 show the microstructure and material properties of the obtained steel sheet. In Tables 1 to 5,
Examples of the present invention are steel numbers 1 to 12 and steel number 21, and comparative examples are steel numbers 13 to 20 and steel numbers 22 to 24.

【0072】[0072]

【表1】 [Table 1]

【0073】[0073]

【表2】 [Table 2]

【0074】[0074]

【表3】 [Table 3]

【0075】[0075]

【表4】 [Table 4]

【0076】[0076]

【表5】 [Table 5]

【0077】従来技術である本発明者らが特開平7−2
52592号公報で提案した鋼板で示される疲労限度比
0.45〜0.51、及び比較例の疲労限度比0.37
〜0.45に対し、本発明例では疲労限度比0.53〜
0.60と格段に優れ、バラツキも小さい。さらに、他
の特性レベル及びバラツキ、製品歩留の観点からも優れ
ていた。すなわち、本発明により疲労特性及び衝突安全
性を兼備した加工用高強度鋼板が得られている。
The present inventors, who are the prior art, disclosed in
No. 52592, a fatigue limit ratio of 0.45 to 0.51, which is indicated by a steel sheet, and a fatigue limit ratio of a comparative example, 0.37.
On the other hand, in the present invention, the fatigue limit ratio is 0.53 to 0.45.
It is remarkably excellent at 0.60, and the variation is small. Furthermore, it was excellent from the viewpoints of other characteristic levels, variations, and product yield. That is, a high-strength steel sheet for processing having both fatigue characteristics and collision safety is obtained by the present invention.

【0078】なお、本発明例はスポット溶接性もたがね
試験において剥離破断がなく、良好であった。
In the examples of the present invention, the spot weldability was satisfactory without any peeling fracture in the spot test.

【0079】ミクロ組織は以下の方法で評価した。The microstructure was evaluated by the following method.

【0080】フェライト及び残部組織の同定及び平均粒
径(円相当径)と体積分率の測定はナイタール試薬及び
特開昭59−219473号公報に開示された試薬によ
り鋼板圧延方向断面を腐食した倍率1000倍の光学顕
微鏡写真により行った。
The identification of ferrite and the remaining structure, and the measurement of the average particle diameter (equivalent circle diameter) and the volume fraction were carried out by using a nital reagent and a reagent disclosed in JP-A-59-219473 in which the cross-section in the rolling direction of the steel sheet was corroded. The measurement was performed using a 1000 times optical microscope photograph.

【0081】残留オーステナイトの同定及び平均粒径
(円相当径)は特開平5−163590号公報で開示さ
れた試薬により圧延方向断面を腐食し、倍率1000倍
の光学顕微鏡写真より求めた。
The identification of the retained austenite and the average particle diameter (equivalent circle diameter) were obtained from an optical microscope photograph at a magnification of 1000 times, in which the cross section in the rolling direction was corroded by the reagent disclosed in Japanese Patent Application Laid-Open No. 5-163590.

【0082】残留オーステナイト体積分率(Vγ:単位
は%)はMo―Kα線によるX線解析で次式に従い算出
した。
The retained austenite volume fraction (Vγ: unit is%) was calculated according to the following equation by X-ray analysis using Mo-Kα radiation.

【0083】Vγ=(2/3){100/(0.7×α
(211)/γ(220)+1)}+(1/3){10
0/(0.78×α(211)/γ(311)+1)} ただし、α(211)、γ(220)、α(211)、
γ(311)は面強度を示す。
Vγ = (2/3) {100 / (0.7 × α)
(211) / γ (220) +1)} + (1 /) {10
0 / (0.78 × α (211) / γ (311) +1) where α (211), γ (220), α (211),
γ (311) indicates the surface strength.

【0084】残留γのC濃度(Cγ:単位は%)はMo
―Kα線によるX線解析でオーステナイトの(211)
面、(220)面、(311)面の反射率から格子定数
(単位はオングストローム)を求め、次式に従い算出し
た。
The C concentration (Cγ: unit is%) of the residual γ is Mo
-(211) of austenite by X-ray analysis with Kα ray
The lattice constant (unit: Angstroms) was determined from the reflectivity of the (220) and (311) planes, and was calculated according to the following equation.

【0085】 Cγ(%)=(格子定数−3.572)/0.033Cγ (%) = (lattice constant−3.572) /0.033

【0086】特性評価は以下の方法で実施した。The characteristic evaluation was carried out by the following method.

【0087】引張試験はJIS5号(標点距離50m
m、平行部幅25mm)を用い引張速度10mm/分で
実施し引張強さ(TS)、全伸び(T.El)、降伏強
度(YS)と加工硬化指数(歪5〜10%のn値)を求
め、TS×El、YS×nを計算した。
The tensile test was conducted according to JIS No. 5 (gauge length 50 m).
m, parallel part width 25 mm) at a tensile speed of 10 mm / min., tensile strength (TS), total elongation (T.El), yield strength (YS) and work hardening index (n value of strain 5-10%) ) Was calculated, and TS × El and YS × n were calculated.

【0088】伸びフランジ性は20mmの打ち抜き穴を
バリのない面から30度円錐ポンチで押し拡げ、クラッ
クが板厚を貫通した時点での穴径(d)と初期穴径(d
0、20mm)との穴拡げ比(d/d0)を求めた。
The stretch flangeability was determined by expanding a punched hole of 20 mm from a burr-free surface with a 30-degree conical punch, and the hole diameter (d) when the crack penetrated the plate thickness and the initial hole diameter (d)
0 , 20 mm) (d / d 0 ).

【0089】スポット溶接性は鋼板板厚の平方根の5倍
の先端径を有する電極によりチリ発生電流の0.9倍の
電流で接合したスポット溶接試験片をたがねで破断ささ
せた時にいわゆる剥離破断を生じたら不適とした。
The spot weldability is so-called when a spot welded test piece joined with an electrode having a tip diameter 5 times the square root of the thickness of the steel sheet with a current 0.9 times the dust generation current is broken with a chisel. If peel fracture occurred, it was judged unsuitable.

【0090】疲労限度比は製造したままの表面にて図3
に示す寸法、形状の疲労試験片を用いた完全両振りの平
面曲げ疲労限FL(1000万回で破断しない応力)と
TSとの比、FL/TSとした。
FIG. 3 shows the fatigue limit ratio for the as-manufactured surface.
The ratio of the plane bending fatigue limit FL (stress that does not break after 10 million cycles) to TS using the fatigue test piece having the dimensions and shape shown in FIG.

【0091】[0091]

【発明の効果】本発明により従来にない優れた疲労特性
及び衝突安全性を兼備した加工用高強度鋼板を低コスト
且つ安定的に提供することが可能となったため、高強度
鋼板の使用用途・使用条件が格段に広がり、工業上、経
済上の効果は非常に大きい。
According to the present invention, it has become possible to stably provide a low-cost and high-strength steel sheet for processing which has both excellent fatigue characteristics and collision safety, which has not been achieved before. The conditions of use are greatly expanded, and the industrial and economic effects are extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】疲労限度比と第2相体積分率の関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between a fatigue limit ratio and a second phase volume fraction.

【図2】フェライト硬さの疲労限向上への寄与を示す図
である。
FIG. 2 is a diagram showing the contribution of ferrite hardness to improvement in fatigue limit.

【図3】疲労限度比を求めるための疲労試験片の概略図
である。
FIG. 3 is a schematic view of a fatigue test piece for obtaining a fatigue limit ratio.

【図4】加工硬化指数と衝突エネルギー吸収量の関係を
示す図である。
FIG. 4 is a diagram showing a relationship between a work hardening index and a collision energy absorption amount.

【図5】降伏強さ×加工硬化指数と衝突エネルギー吸収
量の関係を示す図である。
FIG. 5 is a diagram showing the relationship between yield strength × work hardening index and collision energy absorption.

【図6】ハット型試験片の断面図である。FIG. 6 is a cross-sectional view of a hat-shaped test piece.

【図7】ハット型試験片の概略図である。FIG. 7 is a schematic view of a hat-shaped test piece.

【図8】衝撃圧壊試験法の模式図である。FIG. 8 is a schematic view of an impact crush test method.

【符号の説明】[Explanation of symbols]

1 天板 2 試験片 3 スポット溶接 4 落錘 5 架台 6 ショックアブソーバー DESCRIPTION OF SYMBOLS 1 Top plate 2 Specimen 3 Spot welding 4 Falling weight 5 Stand 6 Shock absorber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (72)発明者 間渕 秀里 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K037 EA01 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA20 EA27 EA28 EB05 EB06 EB07 EB09 EB12 FC03 FC04 FD02 FD03 FD04 FE01 FH01 FJ05 FK02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/58 C22C 38/58 (72) Inventor Hidesato Mabuchi 1 Oshino-shi, Oita-shi New Japan F-term in Oita Works (reference) 4K037 EA01 EA05 EA06 EA11 EA13 EA15 EA16 EA17 EA20 EA27 EA28 EB05 EB06 EB07 EB09 EB12 FC03 FC04 FD02 FD03 FD04 FE01 FH01 FJ05 FK02

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 成形加工前のミクロ組織において、ビッ
カース硬度180超のフェライトを主相とし、体積分率
で3%以上の残留オーステナイト(γ)を含み、残部組
織(第2相)の体積分率が6%未満であり、5%成形加
工後のミクロ組織において、体積分率で3%以上の残留
オーステナイト(γ)を含み、加工硬化指数が0.13
0以上であることを特徴とする疲労特性と衝突安全性に
優れた加工用高強度鋼板。
1. A microstructure before forming comprising a ferrite having a Vickers hardness of more than 180 as a main phase, containing retained austenite (γ) at a volume fraction of 3% or more, and a volume fraction of a residual structure (second phase). Is less than 6%, contains 5% or more of retained austenite (γ) by volume fraction in the microstructure after 5% forming, and has a work hardening index of 0.13.
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety characterized by being 0 or more.
【請求項2】 成形加工前のミクロ組織において、ビッ
カース硬度180超のフェライトを主相とし、体積分率
で3%以上の残留オーステナイト(γ)を含み、残部組
織(第2相)の体積分率が3%未満であり、5%成形加
工後のミクロ組織において、体積分率で3%以上の残留
オーステナイト(γ)を含み、加工硬化指数が0.13
0以上であることを特徴とする疲労特性と衝突安全性に
優れた加工用高強度鋼板。
2. A microstructure before molding, which has a main phase of ferrite having a Vickers hardness of more than 180, contains retained austenite (γ) of 3% or more in volume fraction, and has a volume fraction of the remaining structure (second phase). Is less than 3%, contains 5% or more by volume of retained austenite (γ) in the microstructure after 5% forming, and has a work hardening index of 0.13.
A high-strength steel sheet for processing excellent in fatigue characteristics and collision safety characterized by being 0 or more.
【請求項3】 フェライト体積分率(Vf)が80%超
且つフェライト平均粒径(df)が6μm未満であるこ
とを特徴とする請求項1又は請求項2に記載の疲労特性
と衝突安全性に優れた加工用高強度鋼板。
3. Fatigue properties and collision safety according to claim 1, wherein the ferrite volume fraction (Vf) is more than 80% and the average ferrite grain size (df) is less than 6 μm. High-strength steel sheet for processing with excellent quality.
【請求項4】 フェライト体積分率(Vf)とフェライ
ト平均粒径(df)との比Vf/dfが18以上である
ことを特徴とする請求項1〜3の何れか1つに記載の疲
労特性に優れた加工用高強度鋼板。
4. The fatigue according to claim 1, wherein a ratio Vf / df between the ferrite volume fraction (Vf) and the average ferrite grain size (df) is 18 or more. High strength steel sheet for processing with excellent properties.
【請求項5】 第2相及び残留オーステナイト(γ)の
平均粒径がフェライト平均粒径より小さいことを特徴と
する請求項1〜4の何れか1つに記載の疲労特性と衝突
安全性に優れた加工用高強度鋼板。
5. The fatigue characteristic and the collision safety according to claim 1, wherein the average grain size of the second phase and the retained austenite (γ) is smaller than the average grain size of the ferrite. Excellent high strength steel sheet for processing.
【請求項6】 降伏強さ×加工硬化指数が70以上であ
ることを特徴とする請求項1〜5の何れか1つに記載の
疲労特性と衝突安全性に優れた加工用高強度鋼板。
6. The high-strength steel sheet for processing according to claim 1, wherein a yield strength × a work hardening index is 70 or more.
【請求項7】 化学成分として、C:0.03〜0.3
重量%、SiとAlの内の1種又は2種を合計量で0.
5〜4%、Mn、Ni、Cr、Mo、Cuの内の1種又
は2種以上を合計量で0.5〜4%を含むことを特徴と
する請求項1〜6の何れかに記載の疲労特性と衝突安全
性に優れた加工用高強度鋼板。
7. C: 0.03 to 0.3 as a chemical component
Wt%, one or two of Si and Al in a total amount of 0.1%.
7. The method according to claim 1, wherein a total amount of one or more of Mn, Ni, Cr, Mo, and Cu is 0.5 to 4%. High-strength steel sheet for processing with excellent fatigue characteristics and collision safety.
【請求項8】 化学成分として、Si<0.1%とする
ことを特徴とする請求項7に記載の疲労特性と衝突安全
性に優れた加工用高強度鋼板。
8. The high-strength steel sheet for processing according to claim 7, wherein Si is less than 0.1% as a chemical component.
【請求項9】 化学成分として、Si:0.1〜1%と
することを特徴とする請求項7に記載の疲労特性と衝突
安全性に優れた加工用高強度鋼板。
9. The high-strength steel sheet for processing according to claim 7, wherein the chemical composition is Si: 0.1 to 1%.
【請求項10】 化学成分として、Si:1%超〜4%
とすることを特徴とする請求項7に記載の疲労特性と衝
突安全性に優れた加工用高強度鋼板。
10. As a chemical component, Si: more than 1% to 4%
The high-strength steel sheet for processing according to claim 7, which is excellent in fatigue characteristics and collision safety.
【請求項11】 化学成分として、Al≦0.2%とす
ることを特徴とする請求項7に記載の疲労特性と衝突安
全性に優れた加工用高強度鋼板。
11. The high-strength steel sheet for processing according to claim 7, wherein the chemical composition is Al ≦ 0.2%.
【請求項12】 フェライト体積分率(Vf)が、C/
(1−0.01×Vf)+0.07×Mn+0.04×
(Ni+Cr+Mo+Cu)≧0.87の関係式を満た
すことを特徴とする請求項7〜11の何れか1つに記載
の疲労特性と衝突安全性に優れた加工用高強度鋼板。
12. The ferrite volume fraction (Vf) is C /
(1-0.01 × Vf) + 0.07 × Mn + 0.04 ×
The high strength steel sheet for processing according to any one of claims 7 to 11, wherein the steel sheet satisfies a relational expression of (Ni + Cr + Mo + Cu) ≥ 0.87.
【請求項13】 化学成分として、さらにNb、V、T
i、P、B、Ca、REMの1種又は2種以上を、N
b、V、Tiについては、それらの1種又は2種以上を
合計量で0.3%以下、Pについては、0.3%以下、
Bについては、0.01%以下、Caについては、0.
0005〜0.01%REMについては、0.005〜
0.05%を含むことを特徴とする請求項7〜12の何
れか1つに記載の疲労特性と衝突安全性に優れた加工用
高強度鋼板。
13. The chemical component further includes Nb, V, T
one or more of i, P, B, Ca, REM,
For b, V, and Ti, one or more of them are 0.3% or less in total, P is 0.3% or less,
B is 0.01% or less, and Ca is 0.1% or less.
For 0005-0.01% REM, 0.005-
The high-strength steel sheet for processing excellent in fatigue characteristics and collision safety according to any one of claims 7 to 12, comprising 0.05%.
【請求項14】 仕上温度(FT)をAr3〜Ar3+1
80℃とし、さらにパラメータAが(1)式及び(2)
式を満たすように熱間圧延を終了し、熱延に引き続く冷
却テーブルにおける平均冷却速度(CR)を5℃/秒以
上とし、さらにパラメータAが(3)式を満たすように
巻取温度(CT)を調整することを特徴とする疲労特性
と衝突安全性に優れた加工用高強度鋼板の製造方法。 9≦logA≦18 ・ ・ ・ (1) ΔT≦21×logA−108 ・ ・ ・ (2) CT≦6×logA+296 ・ ・ ・ (3) ただし、パラメータA=ε* ×exp{(75282
−42745×Ceq)/[1.978×(FT+27
3)]} FT:仕上温度(℃) Ceq:炭素当量=C+Mneq/6(%) Mneq:マンガン当量=Mn+(Ni+Cr+Cu)
/2(%) ε* :最終パス歪み速度(S-1) ε* =(v/(R×h10.5)×(1/r0.5)×ln
{1/(1−r)} h1:最終パス入側板厚、h2:最終パス出側板厚、r=
(h1−h2)/h1 R:ロール径、v:最終パス出側速度 ΔT:仕上温度(仕上最終パス出側温度)−仕上入側温
度(仕上第一パス入側温度) Ar3=868−396×C+25×Si−68×Mn
−36×Ni−21×Cu−25×Cr+30×Mo
14. A finishing temperature (FT) of Ar 3 to Ar 3 +1
80 ° C., and the parameter A is determined by the equation (1) and the equation (2).
The hot rolling is completed so as to satisfy the equation, the average cooling rate (CR) in the cooling table following the hot rolling is set to 5 ° C./sec or more, and the winding temperature (CT) is adjusted so that the parameter A satisfies the equation (3). A) A method for producing a high-strength steel sheet for processing having excellent fatigue characteristics and collision safety, characterized by adjusting the following. 9 ≦ logA ≦ 18 (1) ΔT ≦ 21 × logA−108 (2) CT ≦ 6 × logA + 296 (3) where parameter A = ε * × expex (75282)
−42745 × Ceq) / [1.978 × (FT + 27
3)]} FT: Finishing temperature (° C.) Ceq: Carbon equivalent = C + Mneq / 6 (%) Mneq: Manganese equivalent = Mn + (Ni + Cr + Cu)
/ 2 (%) ε *: final pass strain rate (S −1 ) ε * = (v / (R × h 1 ) 0.5 ) × (1 / r 0.5 ) × ln
{1 / (1-r)} h 1 : Thickness of the final pass entrance side, h 2 : Thickness of the final pass exit side, r =
(H 1 −h 2 ) / h 1 R: roll diameter, v: final pass exit speed ΔT: finishing temperature (finish final pass exit temperature) −finish entrance temperature (finish first pass entrance temperature) Ar 3 = 868-396 × C + 25 × Si-68 × Mn
-36 x Ni-21 x Cu-25 x Cr + 30 x Mo
【請求項15】 さらに、熱延鋼板を酸洗後冷延し、そ
の後、連続焼鈍する際に、焼鈍温度STをAc1〜Ac3
の温度範囲とし、その温度範囲で10秒以上保持し、そ
の後、平均冷却速度(CR1)1〜10℃/秒で550
〜700℃の範囲内の温度(T1)へ冷却し、さらに温
度(T1)以降は350℃以下の温度(T2)まで平均冷
却速度(CR2)10℃/秒以上で冷却することを特徴
とする請求項14に記載の疲労特性と衝突安全性に優れ
た加工用高強度鋼板の製造方法。
15. When the hot-rolled steel sheet is pickled and cold-rolled, and then continuously annealed, the annealing temperature ST is adjusted to Ac 1 to Ac 3.
And maintained at that temperature range for 10 seconds or more, and then at an average cooling rate (CR 1 ) of 1 to 10 ° C./sec.
Cooling to a temperature (T 1 ) within the range of 700 ° C. to 700 ° C., and further cooling to a temperature (T 2 ) of 350 ° C. or less at an average cooling rate (CR 2 ) of 10 ° C./sec or more after the temperature (T 1 ). The method for producing a high-strength steel sheet for processing according to claim 14, which is excellent in fatigue characteristics and collision safety.
JP9935099A 1999-04-06 1999-04-06 High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture Withdrawn JP2000290745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9935099A JP2000290745A (en) 1999-04-06 1999-04-06 High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9935099A JP2000290745A (en) 1999-04-06 1999-04-06 High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000290745A true JP2000290745A (en) 2000-10-17

Family

ID=14245175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9935099A Withdrawn JP2000290745A (en) 1999-04-06 1999-04-06 High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000290745A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200694A (en) * 2004-01-14 2005-07-28 Nippon Steel Corp Hot dip galvanized high strength steel sheet having excellent plating adhesion and hole expansibility, and its production method
JP2007002276A (en) * 2005-06-21 2007-01-11 Sumitomo Metal Ind Ltd High strength steel sheet and its manufacturing method
JP2007092132A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and workability, and its production method
KR100747133B1 (en) * 2001-06-06 2007-08-09 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
WO2007122910A1 (en) 2006-03-24 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho High-strength hot rolled steel sheet having excellent composite moldability
WO2015002190A1 (en) 2013-07-01 2015-01-08 新日鐵住金株式会社 Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216397B2 (en) 2001-06-06 2012-07-10 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
KR100747133B1 (en) * 2001-06-06 2007-08-09 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
KR100753244B1 (en) * 2001-06-06 2007-08-30 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
US7267890B2 (en) 2001-06-06 2007-09-11 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance corrosion resistance ductility and plating adhesion after servere deformation and a method of producing the same
US7824509B2 (en) 2001-06-06 2010-11-02 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
JP2005200694A (en) * 2004-01-14 2005-07-28 Nippon Steel Corp Hot dip galvanized high strength steel sheet having excellent plating adhesion and hole expansibility, and its production method
JP2007002276A (en) * 2005-06-21 2007-01-11 Sumitomo Metal Ind Ltd High strength steel sheet and its manufacturing method
JP2007092132A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and workability, and its production method
WO2007122910A1 (en) 2006-03-24 2007-11-01 Kabushiki Kaisha Kobe Seiko Sho High-strength hot rolled steel sheet having excellent composite moldability
US8529829B2 (en) 2006-03-24 2013-09-10 Kobe Steel, Ltd. High-strength hot-rolled steel sheet with excellent combined formability
WO2015002190A1 (en) 2013-07-01 2015-01-08 新日鐵住金株式会社 Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
KR20160003849A (en) 2013-07-01 2016-01-11 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel plate, galvanized cold-rolled steel plate, and method for manufacturing said plates
US9970074B2 (en) 2013-07-01 2018-05-15 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, galvanized cold-rolled steel sheet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6544354B1 (en) High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for the production thereof
EP2314729B1 (en) Dual-phase type high-strength steel sheets having high impact energy absorption properties
US8177924B2 (en) High-strength steel sheet and process for producing the same
JP3619357B2 (en) High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
EP2314730B1 (en) High-strength steels having high impact energy absorption properties.
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
US20090314395A1 (en) High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
JP6689384B2 (en) Ultra high strength steel sheet excellent in chemical conversion treatment property and hole expandability, and method for producing the same
JP3492176B2 (en) Good workability high-strength steel sheet having high dynamic deformation resistance and method for producing the same
JP2004002969A (en) High tension hot-rolled steel plate excellent in stretch characteristics and stretch flange formability, and its producing method
US6319338B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP5880235B2 (en) Steel plate manufacturing method
JP6628561B2 (en) Stainless steel sheet for structural member excellent in workability and method for producing the same
KR20200106195A (en) High-strength steel sheet and its manufacturing method
JPH1161326A (en) High strength automobile steel plate superior in collision safety and formability, and its manufacture
JP2000239791A (en) Superfine-grained hot rolled steel plate excellent in impact resistance
JP3936440B2 (en) High-strength steel sheet for automobiles with excellent collision safety and formability and its manufacturing method
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
JP2013216945A (en) Steel sheet and impact absorbing member
JP2022024145A (en) Method for manufacturing steel sheet and method for manufacturing member
JP2009068039A (en) High-strength alloyed-galvanized steel sheet excellent in energy-absorbing characteristics, and production method therefor
JP2000290745A (en) High strength steel sheet for working, excellent in fatigue characteristic and safety against collision, and its manufacture
JPH10273752A (en) Automotive high strength steel sheet excellent in collision resisting safety and formability and its production
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP3954411B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent material uniformity and hole expandability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606