JPH11179566A - Titanium clad steel plate, and its manufacture - Google Patents

Titanium clad steel plate, and its manufacture

Info

Publication number
JPH11179566A
JPH11179566A JP30754397A JP30754397A JPH11179566A JP H11179566 A JPH11179566 A JP H11179566A JP 30754397 A JP30754397 A JP 30754397A JP 30754397 A JP30754397 A JP 30754397A JP H11179566 A JPH11179566 A JP H11179566A
Authority
JP
Japan
Prior art keywords
titanium
steel sheet
slab
clad steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30754397A
Other languages
Japanese (ja)
Other versions
JP3296271B2 (en
Inventor
Naoyuki Asanuma
直行 浅沼
Kunikazu Tomita
邦和 冨田
Satoshi Murata
早登史 村田
Satoshi Ishijima
聡 石島
Norifumi Shiotani
昇史 塩谷
Takashi Matsuno
隆 松野
Akiyoshi Tsuji
章嘉 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30754397A priority Critical patent/JP3296271B2/en
Publication of JPH11179566A publication Critical patent/JPH11179566A/en
Application granted granted Critical
Publication of JP3296271B2 publication Critical patent/JP3296271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the thin titanium clad steel sheet having the critical bend radius below 1.0 t, and its manufacturing method using an existing hot rolling process for steel sheet. SOLUTION: In a manufacturing method for a titanium clad steel sheet, a steel in which the C content is <=0.01 wt.% is used for a base metal, a titanium or a titanium alloy is used for a clad plate, the base metal is lapped on the clad plate, the periphery of the lapped plates is welded in the vacuum of <=10<-3> Torr to manufacture a slab, the slab is heated to <=1,000 deg.C, the heated slab is roughed so that the draft for the first pass is >=5% in hot rolling the slab so that the total draft is >=85%, and the slab is finish-rolled at >=700 deg.C, and the finish-rolled titanium clad steel plate is coiled at >=650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタンクラッド鋼
板、特に曲げ加工性に優れた板厚の薄いチタンクラッド
鋼板および既存の薄鋼板用熱間圧延プロセスを用いたそ
の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium-clad steel sheet, particularly to a thin titanium-clad steel sheet having excellent bending workability and a method for producing the same using an existing hot rolling process for a thin steel sheet.

【0002】[0002]

【従来の技術】非常に優れた耐食性を有するチタンまた
はチタン合金(合わせ材と呼ばれる)を強度部材である
鋼板(母材と呼ばれる)の表面に接合させたチタンクラ
ッド鋼板は、コスト的にも有利なため使用環境の厳しい
海洋構造物、化学プラント、発電プラントなどの分野で
その用途を拡大しつつある。
2. Description of the Related Art A titanium clad steel sheet in which titanium or a titanium alloy (referred to as a composite material) having extremely excellent corrosion resistance is joined to the surface of a steel sheet (referred to as a base material) as a strength member is advantageous in cost. Therefore, its use is expanding in fields such as marine structures, chemical plants, and power plants, which have severe usage environments.

【0003】チタンクラッド鋼板の製造は、これまでそ
の接合の難しさから爆着法で行われていたが、現在では
生産性に優れ、しかも寸法制約の少ない圧接法でもその
製造が可能になっている。実際、特開昭62ー6783
号公報などにはスラブ加熱方法を最適化して、また特開
昭55ー48468号公報、特開昭57ー109588
号公報、特開昭57ー112985号公報、特開昭57
ー192256号公報などにはチタンと鋼の界面に鉄、
ニッケル、銅などの板または箔の中間媒接材を挟みこん
で圧延したりして、接合界面に脆いFeーTi金属間化
合物やTiCなどの生成を抑制し、高い接合強度を有す
るチタンクラッド鋼板の製造法が開示されている。しか
し、これらの方法は、既存の厚鋼板用圧延機の使用が前
提とされた板厚の比較的厚いチタンクラッド鋼板の製造
を対象としたものである。
[0003] The production of titanium clad steel sheet has hitherto been carried out by the explosion method due to the difficulty of joining, but now it is possible to produce it by the pressure welding method which is excellent in productivity and has few dimensional restrictions. I have. In fact, JP-A-62-26783
The slab heating method is optimized in JP-A-55-48468 and JP-A-57-109588.
JP, JP-A-57-112985, JP-A-57-112985
No. 192256 discloses that iron is used at the interface between titanium and steel,
Titanium-clad steel plate with high bonding strength by suppressing the formation of brittle Fe-Ti intermetallic compounds and TiC at the bonding interface by rolling by sandwiching an intermediate medium contact material of a plate or foil of nickel, copper, etc. Is disclosed. However, these methods are intended for producing a relatively thick titanium clad steel sheet on the assumption that an existing rolling mill for thick steel sheets is used.

【0004】最近、建材、自動車部品、家電製品などの
分野にもチタンクラッド鋼板を適用しようという動きが
ある。そのため、既存の薄鋼板用熱間圧延プロセスを用
いて板厚の薄いチタンクラッド鋼板を製造する技術が検
討されている。例えば、特開昭63ー144881号公
報、特開平1ー122677号公報には銅の中間媒接材
を用いて、また特許第2546589号公報、特開平8
ー141754号公報、特開平8ー276283号公報
などには熱延条件を最適化して接合性に優れた板厚の薄
いチタンクラッド鋼板の製造法が開示されている。
[0004] Recently, there has been a movement to apply titanium clad steel sheet to fields such as building materials, automobile parts and home electric appliances. Therefore, a technology of manufacturing a thin titanium-clad steel sheet using an existing hot rolling process for a thin steel sheet is being studied. For example, in JP-A-63-144881 and JP-A-1-122677, an intermediate contact material of copper is used.
JP-A-141754, JP-A-8-276283, and the like disclose a method of manufacturing a thin titanium-clad steel sheet having excellent joining properties by optimizing hot rolling conditions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者等が上記特許公報に記載された板厚の薄いチタンクラ
ッド鋼板の製造法を検討したところ、加工性、特に曲げ
性に関してはその限界曲げ半径が温間曲げ加工を施して
も高々1.0t(tは板厚)程度で、建材、自動車部
品、家電製品などに適用した場合に必要な1.0t未満
の限界曲げ半径が得られなかった。
However, the present inventors have studied the method of manufacturing a thin titanium clad steel sheet described in the above-mentioned patent publication and found that the workability, particularly the bendability, is limited to the critical bending radius. However, even when subjected to warm bending, it is at most about 1.0 t (t is a plate thickness), and a critical bending radius of less than 1.0 t required when applied to building materials, automobile parts, home electric appliances, and the like was not obtained. .

【0006】本発明はこのような課題を解決するために
なされたもので、1.0t未満の限界曲げ半径を有する
板厚の薄いチタンクラッド鋼板および既存の薄鋼板用熱
間圧延プロセスを用いたその製造法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and uses a thin titanium clad steel sheet having a critical bending radius of less than 1.0 t and an existing hot rolling process for a thin steel sheet. It is intended to provide a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記課題は、(イ)母材
としてC含有量が0.01wt%以下の鋼を、合わせ材
としてチタンまたはチタン合金を用い、前記母材と前記
合わせ材を重ね、その周囲を10-3Torr以下の真空
中で溶接してスラブを製造する工程と、(ロ)前記スラ
ブを1000℃以下の温度に加熱する工程と、(ハ)前
記加熱されたスラブをトータル圧下率が85%以上とな
るように熱間圧延するに際し、1パス目の圧下率が5%
以上となるように粗圧延し、700℃以上の温度で仕上
圧延する工程と、(ニ)前記仕上圧延されたチタンクラ
ッド鋼板を650℃以上の温度で巻取る工程とを有して
なるチタンクラッド鋼板の製造法により解決される。
The above object is achieved by (a) using steel having a C content of 0.01% by weight or less as a base material and titanium or a titanium alloy as a base material, and combining the base material and the base material with each other. Stacking and welding the periphery thereof in a vacuum of 10 −3 Torr or less to produce a slab; (b) heating the slab to a temperature of 1000 ° C. or less; and (c) removing the heated slab. When hot rolling is performed so that the total draft is 85% or more, the draft of the first pass is 5%.
Titanium cladding comprising the steps of rough rolling as described above and finish rolling at a temperature of 700 ° C. or higher, and (d) winding the finish-rolled titanium clad steel sheet at a temperature of 650 ° C. or higher. The problem is solved by a method of manufacturing a steel sheet.

【0008】母材と合わせ材の界面に界面強度を著しく
低下させるTiCが熱延中に形成されないように、母材
としてC含有量が0.01wt%以下の鋼を用いる必要
がある。なお、母材の鋼に極低炭素Ti添加鋼などのイ
ンタースティシャルフリー鋼を用いると、界面における
TiCの形成を完全に抑制できるので、より好ましい。
It is necessary to use steel having a C content of 0.01% by weight or less as a base material so that TiC which significantly lowers the interface strength is not formed at the interface between the base material and the composite material during hot rolling. In addition, it is more preferable to use an interstitial-free steel such as an ultra-low carbon Ti-added steel as the base material steel, since the formation of TiC at the interface can be completely suppressed.

【0009】熱間圧延に先立ち母材と合わせ材を重ね合
わせてスラブを製造するとき、加熱中や熱延中に界面で
酸化物が形成されるのを抑制するためにその周囲を溶接
する必要がある。また、溶接時にも、母材と合わせ材の
界面に酸化物が形成されるので、10-3Torr以下の
真空中で溶接を行う必要がある。溶接は、電子ビーム溶
接で行うことが短時間でクリーンな状態で行えるので好
ましい。
When a slab is manufactured by laminating a base material and a bonding material prior to hot rolling, it is necessary to weld the periphery of the slab to suppress the formation of oxides at the interface during heating or hot rolling. There is. Also, at the time of welding, an oxide is formed at the interface between the base material and the composite material, so that it is necessary to perform welding in a vacuum of 10 −3 Torr or less. The welding is preferably performed by electron beam welding because it can be performed in a short time in a clean state.

【0010】こうして製造したスラブを熱間圧延するに
は加熱する必要があるが、界面で脆いFeーTi金属間
化合物が生成するのを防ぐため、その温度を1000℃
以下、より好ましくは950℃以下にする必要がある。
[0010] Hot rolling of the slab thus produced requires heating, but the temperature is set at 1000 ° C to prevent the formation of brittle Fe-Ti intermetallic compound at the interface.
Or less, more preferably 950 ° C. or less.

【0011】加熱されたスラブを熱間圧延するとき、母
材、合わせ材ともに拡散接合に望ましい新生面が形成さ
れて高い接合強度と1.0t未満の限界曲げ半径を得る
ために、熱間圧延の1パス目すなわち粗圧延の1パス目
の圧下率を5%以上にする必要がある。
When the heated slab is hot-rolled, a new surface desired for diffusion bonding is formed on both the base material and the laminated material, so that high bonding strength and a critical bending radius of less than 1.0 t are obtained. It is necessary to make the rolling reduction in the first pass, that is, the first pass of the rough rolling, 5% or more.

【0012】こうした条件に加え、1.0t未満の限界
曲げ半径を得るために、以下のように仕上温度、トータ
ル圧下率、巻取温度をコントロールする必要がある。
In addition to these conditions, in order to obtain a critical bending radius of less than 1.0 t, it is necessary to control the finishing temperature, the total draft and the winding temperature as follows.

【0013】図1に、チタン面側の限界曲げ半径(18
0°U曲げ)と仕上温度、トータル圧下率との関係にか
かる実験結果を示す。
FIG. 1 shows a critical bending radius (18) on the titanium surface side.
Experimental results relating to the relationship between 0 ° U bending), the finishing temperature, and the total draft are shown.

【0014】700℃以上の温度で仕上圧延し、かつト
ータル圧下率が85%以上となるようにすれば、0.5
t以下の限界曲げ半径が得られる。
If the finish rolling is performed at a temperature of 700 ° C. or more and the total draft is 85% or more, 0.5%
A critical bending radius less than or equal to t is obtained.

【0015】図2に、鋼面側の割れ発生の有無と曲げ半
径、巻取温度との関係にかかる実験結果を示す。
FIG. 2 shows the results of an experiment on the relationship between the presence or absence of cracks on the steel surface side, the bending radius, and the winding temperature.

【0016】650℃以上の温度で巻取りを行えば0.
5t以下の限界曲げ半径が得られ、700℃以上では0
tでも割れが生じない。
If the winding is carried out at a temperature of 650 ° C. or more, it is possible to reduce the temperature to 0.
A critical bending radius of 5t or less is obtained.
No cracking occurs even at t.

【0017】形状凍結性の観点より、板材の曲げ加工に
は、通常の曲げ加工に比べより厳しい条件であるストレ
ッチ力が付加されながら曲げ加工が施される、いわゆる
ストレッチ曲げが行われる場合がある。そこで、ストレ
ッチ曲げにおいても1.0t未満の限界曲げ半径の得ら
れる条件を検討したところ、巻取温度の影響を大きく受
け、以下に示すように750℃以上の温度で巻取れば、
ストレッチ曲げで0.5tの限界曲げ半径の得られるこ
とが明らかになった。
From the viewpoint of shape freezing, bending of a sheet material may be performed in a so-called stretch bending in which the bending is performed while a stretching force, which is a more severe condition, is applied as compared with normal bending. . Therefore, when a condition in which a critical bending radius of less than 1.0 t was obtained was examined even in stretch bending, the condition was greatly affected by the winding temperature, and if the winding was performed at a temperature of 750 ° C. or more as shown below,
It became clear that a critical bending radius of 0.5 t can be obtained by stretch bending.

【0018】図3に、ストレッチ曲げの試験方法を示
す。図3の方法は、試験片を2点で支持し、その両端に
ストレッチ力を加えながらその中央部を所定の半径rを
有するポンチで押し込み、ある程度曲がったところで両
端から押し付けて180°密着曲げを行う曲げ試験方法
である。
FIG. 3 shows a test method for stretch bending. In the method shown in FIG. 3, the test piece is supported at two points, and the center is pressed with a punch having a predetermined radius r while applying a stretching force to both ends. This is the bending test method to be performed.

【0019】この曲げ試験方法により、半径rを0.5
tと1.0tに変えてポンチをチタン面側より押し付
け、鋼面側の割れ発生の有無を調査した。ストレッチ力
としては、通常付加されている程度の値、すなわちクラ
ッド鋼板の耐力に3kgf/mm2を加えた応力を用い
た。また、非常に厳しいストレッチ力の場合を想定し、
クラッド鋼板の耐力に6kgf/mm2を加えた応力に
ついても同様の調査を行った。
According to this bending test method, the radius r is set to 0.5
The punch was pressed from the titanium surface side at t and 1.0t, and the presence or absence of cracks on the steel surface side was investigated. As the stretching force, a value to which a normal value was applied, that is, a stress obtained by adding 3 kgf / mm 2 to the proof stress of the clad steel sheet was used. In addition, assuming a very severe stretching force,
The same investigation was performed on the stress obtained by adding 6 kgf / mm 2 to the proof stress of the clad steel sheet.

【0020】図4に、鋼面側の割れ発生の有無とストレ
ッチ曲げ半径、巻取温度との関係にかかる実験結果を示
す。
FIG. 4 shows the results of an experiment on the relationship between the presence or absence of cracks on the steel surface side, the stretch bending radius, and the winding temperature.

【0021】ストレッチ力がクラッド鋼板の耐力に3k
gf/mm2を加えた応力の場合、750℃以上の温度
で巻取りを行えば、0.5tの限界曲げ半径が得られ
る。また、780℃以上の温度で巻取りを行えば、スト
レッチ力をクラッド鋼板の耐力に6kgf/mm2とさ
らに厳しい値にしても、0.5tの限界曲げ半径が可能
になる。
The stretching force is 3k to the proof stress of the clad steel sheet.
In the case of a stress applied with gf / mm 2 , if winding is performed at a temperature of 750 ° C. or more, a critical bending radius of 0.5 t can be obtained. Further, if the winding is performed at a temperature of 780 ° C. or higher, a critical bending radius of 0.5 t can be achieved even if the stretching force is set to a stricter value of 6 kgf / mm 2 for the yield strength of the clad steel sheet.

【0022】上記図1、図2、図4の結果は、、着目し
た条件以外の条件をすべて本発明範囲内に設定して作製
した板厚4〜6mmのチタンクラッド鋼板を用いて求め
たものである。
The results shown in FIGS. 1, 2 and 4 are obtained by using a titanium clad steel sheet having a thickness of 4 to 6 mm manufactured by setting all the conditions other than the focused condition within the scope of the present invention. It is.

【0023】板厚で占める割合の多い母材の鋼のAr3
変態点以下の温度で圧延すれば、その後の圧延はすべて
α域単相で行われることになり、圧延中に変態が起こり
変形抵抗が変わることによる板厚変動を回避できる。
Ar 3 of the base steel, which accounts for a large proportion of the sheet thickness
If rolling is performed at a temperature lower than the transformation point, all subsequent rolling is performed in a single phase in the α region, and it is possible to avoid plate thickness fluctuation due to transformation during rolling and change in deformation resistance.

【0024】板厚の薄いものを製造するときは仕上温度
の確保が難しいので、粗圧延後仕上圧延前に、800℃
以上母材の鋼のAr3変態点以下の温度範囲に再加熱す
ることがより好ましい。800℃未満では700℃以上
の仕上温度を確保するのが難しく、Ar3変態点を超え
ると鋼のα域単相圧延ができなくなる。
Since it is difficult to secure the finishing temperature when manufacturing a thin plate, it is necessary to set the temperature at 800 ° C. after rough rolling and before finishing rolling.
More preferably, reheating is performed to a temperature range not higher than the Ar 3 transformation point of the base steel. If it is less than 800 ° C., it is difficult to secure a finishing temperature of 700 ° C. or more, and if it exceeds the Ar 3 transformation point, it becomes impossible to perform α-region single-phase rolling of steel.

【0025】本発明法で製造されるチタンクラッド鋼板
の板厚については、特に限定されないが、通常の熱間圧
延機で製造される熱延鋼板の場合と同様な板厚範囲で製
造可能である。
[0025] The thickness of the titanium clad steel sheet produced by the method of the present invention is not particularly limited, but it can be produced in the same thickness range as that of a hot rolled steel sheet produced by a normal hot rolling mill. .

【0026】[0026]

【実施例】(実施例1)表1に示す成分系のチタンを合
わせ材、鋼を母材として用い、母材の上に合わせ材を重
ね、その上にAl23の剥離材を介して表1の鋼の犠牲
材(セミサンドイッチ方式)、あるいは表1のチタンお
よび鋼を順次重ね(サンドイッチ方式)、6×10-4
orrの真空中で電子ビーム溶接を行い、スラブを組み
立てた。この鋼のAr3変態点は、別途測定したところ
880℃であった。
(Example 1) Titanium of the component system shown in Table 1 was used as a bonding material, and steel was used as a base material. The bonding material was stacked on the base material, and a release material of Al 2 O 3 was placed thereon. The sacrificial material of the steel shown in Table 1 (semi-sandwich type) or the titanium and steel shown in Table 1 are successively stacked (sandwich type), and 6 × 10 -4 T
Electron beam welding was performed in a vacuum of orr to assemble the slab. The Ar 3 transformation point of this steel was 880 ° C. as measured separately.

【0027】このスラブを薄鋼板用の熱間圧延プロセス
を用いて表2に示す熱間圧延条件で圧延し、セミサンド
イッチ方式では犠牲材を、サンドイッチ方式では双方の
チタンクラッド鋼板を剥離し、全板厚5mm(合わせ材
1.5mm+母材3.5mm)のチタンクラッド鋼板を
作製した。そして、チタン面側および鋼面側の180°
U曲げ試験を行い限界曲げ半径を調査した。
The slab was rolled under the hot rolling conditions shown in Table 2 using a hot rolling process for a thin steel sheet, and the sacrificial material was peeled off in the semi-sandwich method, and both titanium clad steel sheets were peeled off in the sandwich method. A titanium-clad steel sheet having a thickness of 5 mm (a combined material of 1.5 mm + a base material of 3.5 mm) was produced. And 180 ° on the titanium side and the steel side
A U-bend test was performed to investigate the critical bending radius.

【0028】実験結果を表2に示す。本発明範囲の条件
で作製されたチタンクラッド鋼板では、チタン面、鋼面
ともに0.5t以下の限界曲げ半径が得られる。
Table 2 shows the experimental results. In the titanium clad steel sheet manufactured under the conditions of the present invention, a critical bending radius of 0.5 t or less can be obtained on both the titanium surface and the steel surface.

【0029】一方、スラブの加熱温度が1000℃を超
えたり、1パス目の圧下率が5%未満であったり、トー
タル圧下率が85%未満であったり、仕上温度が700
℃未満であるとチタン面側で限界曲げ半径が2tとなり
曲げ性に劣り、巻取温度が650℃未満であると鋼面側
での限界曲げ半径が2tとなり曲げ性に劣る。
On the other hand, the heating temperature of the slab exceeds 1000 ° C., the rolling reduction in the first pass is less than 5%, the total rolling reduction is less than 85%, and the finishing temperature is 700%.
If the temperature is lower than ℃, the critical bending radius on the titanium surface side is 2t, resulting in inferior bendability. If the winding temperature is less than 650 ° C, the critical bending radius on the steel surface side is 2t, resulting in inferior bendability.

【0030】なお、本発明例のなかで1パス目の圧延温
度が母材の鋼のAr3変態点を超えたものは、0.5t
以下の限界曲げ半径が得られているが、板厚変動が、製
品としての許容範囲であるが、比較的大きかった。
In the examples of the present invention, those in which the rolling temperature in the first pass exceeds the Ar 3 transformation point of the base steel is 0.5 t.
Although the following critical bending radii were obtained, the plate thickness variation was relatively large, though it was an allowable range as a product.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例2)実施例1と同様な方法で作製
したスラブを薄鋼板用の熱間圧延プロセスを用いて表3
に示す熱間圧延条件で圧延し、実施例1と同様に剥離し
て、全板厚5mm(合わせ材1.5mm+母材3.5m
m)のチタンクラッド鋼板を作製した。そして、曲げ半
径0.5tで鋼面側の180°Uストレッチ曲げ試験
を、ストレッチ力を(試料の耐力+3kgf/mm2
と(試料の耐力+6kgf/mm2)に変えて行い、割
れの有(×)無(○)を調査した。
Example 2 A slab produced in the same manner as in Example 1 was subjected to a hot rolling process for a thin steel sheet as shown in Table 3.
, And peeled off in the same manner as in Example 1 to obtain a total sheet thickness of 5 mm (combined material 1.5 mm + base material 3.5 m).
m) was prepared. Then, a 180 ° U stretch bending test on the steel surface side with a bending radius of 0.5 t was performed to determine the stretching force (proof strength of sample + 3 kgf / mm 2 ).
And ((proof stress of sample + 6 kgf / mm 2 )), and the existence of cracks (×) and absence (() were investigated.

【0034】実験結果を表3に示す。巻取温度を750
℃以上にすれば、少なくともストレッチ力が(試料の耐
力+3kgf/mm2)の場合には、割れは発生しな
い。また、巻取温度を780℃以上にすると、ストレッ
チ力が(試料の耐力+6kgf/mm2)の場合でも、
割れは発生しなくなる。
Table 3 shows the experimental results. Winding temperature 750
C. or higher, no cracking occurs, at least when the stretching force is (the proof stress of the sample + 3 kgf / mm 2 ). Further, when the winding temperature is set to 780 ° C. or higher, even if the stretching force is (proof strength of sample + 6 kgf / mm 2 ),
No cracks occur.

【0035】一方、巻取温度が750℃未満では、スト
レッチ力が(試料の耐力+3kgf/mm2)の場合で
も、割れは発生しストレッチ曲げ性に劣る。
On the other hand, if the winding temperature is lower than 750 ° C., even if the stretching force is (proof strength of the sample + 3 kgf / mm 2 ), cracks occur and the stretch bending property is poor.

【0036】[0036]

【表3】 [Table 3]

【0037】(実施例3)仕上圧延前の再加熱温度の影
響を調査するため、実施例1と同様な方法で作製したス
ラブを薄鋼板用の熱間圧延プロセスを用いて表4に示す
熱間圧延条件で圧延し、実施例1と同様に剥離して、全
板厚3.5mm(合わせ材0.75mm+母材2.75
mm)のより薄いチタンクラッド鋼板を作製し、実施例
1と同様な方法で限界曲げ半径を調査した。
Example 3 In order to investigate the influence of the reheating temperature before finish rolling, a slab produced in the same manner as in Example 1 was subjected to a heat rolling process shown in Table 4 using a hot rolling process for a thin steel sheet. Rolled under cold rolling conditions, peeled off in the same manner as in Example 1, and had a total thickness of 3.5 mm (0.75 mm of the composite material + 2.75 of the base material).
mm), a critical bending radius was investigated in the same manner as in Example 1.

【0038】実験結果を表4に示す。仕上圧延前に再加
熱し、再加熱温度を800℃以上母材の鋼のAr3変態
点以下の範囲に調整すれば、3.5mmの薄いチタンク
ラッド鋼板においてもチタン面側、鋼面側ともに0tの
限界曲げ半径が得られる。
Table 4 shows the experimental results. By reheating before finish rolling, and adjusting the reheating temperature to a range of 800 ° C. or more and the Ar 3 transformation point of the base steel or less, even on a 3.5 mm thin titanium clad steel sheet, both the titanium surface side and the steel surface side can be used. A critical bending radius of 0t is obtained.

【0039】一方、再加熱温度がAr3変態点を超える
と0tの限界曲げ半径が得られるが、板厚変動が、製品
としての許容範囲であるが、比較的大きかった。また、
800℃未満では仕上温度が確保できなくなり、チタン
面側で限界曲げ半径が2tとなり曲げ性に劣る。
On the other hand, when the reheating temperature exceeds the Ar 3 transformation point, a critical bending radius of 0 t is obtained, but the variation in sheet thickness is relatively large, though it is an allowable range as a product. Also,
If the temperature is less than 800 ° C., the finishing temperature cannot be secured, and the critical bending radius becomes 2t on the titanium surface side, resulting in poor bendability.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明は以上説明したように構成されて
いるので、1.0t未満の限界曲げ半径を有する板厚の
薄いチタンクラッド鋼板および既存の薄鋼板用熱間圧延
プロセスを用いたその製造法を提供できる。
Since the present invention is constructed as described above, a thin titanium-clad steel sheet having a critical bending radius of less than 1.0 t and its hot-rolling process using an existing thin steel sheet. Manufacturing methods can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】チタン面側の限界曲げ半径と仕上温度、トータ
ル圧下率との関係にかかる実験結果を示す図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view showing an experimental result relating to a relationship between a critical bending radius on a titanium surface side, a finishing temperature, and a total draft.

【図2】鋼面側の割れ発生の有無と曲げ半径、巻取温度
との関係にかかる実験結果を示す図である。
FIG. 2 is a diagram showing the results of an experiment on the relationship between the occurrence of cracks on the steel surface side, the bending radius, and the winding temperature.

【図3】ストレッチ曲げの試験方法を示す図である。FIG. 3 is a diagram showing a test method for stretch bending.

【図4】鋼面側の割れ発生の有無とストレッチ曲げ半
径、巻取温度との関係にかかる実験結果を示す図であ
る。
FIG. 4 is a diagram showing the results of an experiment on the relationship between the presence or absence of cracks on the steel surface side, the stretch bending radius, and the winding temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C21D 9/46 C21D 9/46 Z (72)発明者 石島 聡 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 塩谷 昇史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松野 隆 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 辻 章嘉 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification symbol FI C21D 9/46 C21D 9/46 Z (72) Inventor Satoshi Ishijima 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Noboru Shioya, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Inventor Takashi Matsuno 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Akiyoshi Tsuji 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (イ)母材としてC含有量が0.01w
t%以下の鋼を、合わせ材としてチタンまたはチタン合
金を用い、前記母材と前記合わせ材を重ね、その周囲を
10-3Torr以下の真空中で溶接してスラブを製造す
る工程と、 (ロ)前記スラブを1000℃以下の温度に加熱する工
程と、 (ハ)前記加熱されたスラブをトータル圧下率が85%
以上となるように熱間圧延するに際し、1パス目の圧下
率が5%以上となるように粗圧延し、700℃以上の温
度で仕上圧延する工程と、 (ニ)前記仕上圧延されたチタンクラッド鋼板を650
℃以上の温度で巻取る工程と、を有してなるチタンクラ
ッド鋼板の製造法。
(1) The base material has a C content of 0.01 w
using titanium or a titanium alloy as a mating material, stacking the base material and the mating material, and welding the periphery thereof in a vacuum of 10 −3 Torr or less to produce a slab; (B) a step of heating the slab to a temperature of 1000 ° C. or lower; and (c) a total draft of the heated slab of 85%.
When hot rolling as described above, rough rolling is performed so that the reduction rate in the first pass is 5% or more, and finish rolling is performed at a temperature of 700 ° C. or more; (d) the finish-rolled titanium 650 clad steel plate
A process of winding at a temperature of at least ℃.
【請求項2】 仕上圧延されたチタンクラッド鋼板を7
50℃以上の温度で巻取る請求項1に記載のチタンクラ
ッド鋼板の製造法。
2. The finish-rolled titanium clad steel sheet is
The method for producing a titanium-clad steel sheet according to claim 1, wherein the coil is wound at a temperature of 50C or higher.
【請求項3】 加熱されたスラブを母材の鋼のAr3
態点以下の温度で粗圧延する請求項1または請求項2に
記載のチタンクラッド鋼板の製造法。
3. The method for producing a titanium clad steel sheet according to claim 1, wherein the heated slab is roughly rolled at a temperature not higher than the Ar 3 transformation point of the base steel.
【請求項4】 粗圧延されたチタンクラッド鋼片を仕上
圧延前に800℃以上母材の鋼のAr3変態点以下の温
度範囲に再加熱する請求項1から請求項3のいずれか1
項に記載のチタンクラッド鋼板の製造法。
4. The rough-rolled titanium clad slab is reheated to a temperature range from 800 ° C. to the Ar 3 transformation point of the base steel before finish rolling.
The method for producing a titanium-clad steel sheet according to the above item.
【請求項5】 請求項1から請求項4のいずれか1項に
記載のチタンクラッド鋼板の製造法により製造されたチ
タンクラッド鋼板。
5. A titanium-clad steel sheet produced by the method for producing a titanium-clad steel sheet according to any one of claims 1 to 4.
JP30754397A 1997-02-14 1997-11-10 Titanium clad steel sheet and its manufacturing method Expired - Fee Related JP3296271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30754397A JP3296271B2 (en) 1997-02-14 1997-11-10 Titanium clad steel sheet and its manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2999097 1997-02-14
JP9-29990 1997-10-14
JP9-280370 1997-10-14
JP28037097 1997-10-14
JP30754397A JP3296271B2 (en) 1997-02-14 1997-11-10 Titanium clad steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH11179566A true JPH11179566A (en) 1999-07-06
JP3296271B2 JP3296271B2 (en) 2002-06-24

Family

ID=27286799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30754397A Expired - Fee Related JP3296271B2 (en) 1997-02-14 1997-11-10 Titanium clad steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3296271B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
WO2017018514A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for hot rolling
WO2017018517A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium material for hot rolling
CN110961455A (en) * 2019-11-28 2020-04-07 湖南湘投金天钛金属股份有限公司 Preparation process of titanium steel composite coil
US10920300B2 (en) 2015-07-29 2021-02-16 Nippon Steel Corporation Titanium composite material and titanium material for hot rolling
TWI744780B (en) * 2020-01-21 2021-11-01 日商日本製鐵股份有限公司 Processed titanium material and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108262359B (en) * 2018-03-20 2019-10-25 洛阳双瑞精铸钛业有限公司 A kind of process improving cold rolling titanium strip coil surface quality

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716554B2 (en) 1999-04-08 2004-04-06 Quallion Llc Battery case, cover, and feedthrough
WO2017018514A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium composite material, and titanium material for hot rolling
WO2017018517A1 (en) * 2015-07-29 2017-02-02 新日鐵住金株式会社 Titanium material for hot rolling
KR20180030122A (en) * 2015-07-29 2018-03-21 신닛테츠스미킨 카부시키카이샤 Titanium material for hot rolling
CN107847993A (en) * 2015-07-29 2018-03-27 新日铁住金株式会社 Titanium material for hot rolling
JPWO2017018514A1 (en) * 2015-07-29 2018-05-24 新日鐵住金株式会社 Titanium composite and titanium material for hot rolling
JPWO2017018517A1 (en) * 2015-07-29 2018-05-24 新日鐵住金株式会社 Titanium material for hot rolling
TWI632959B (en) * 2015-07-29 2018-08-21 日商新日鐵住金股份有限公司 Titanium composite and titanium for hot rolling
US10913242B2 (en) 2015-07-29 2021-02-09 Nippon Steel Corporation Titanium material for hot rolling
US10920300B2 (en) 2015-07-29 2021-02-16 Nippon Steel Corporation Titanium composite material and titanium material for hot rolling
CN110961455A (en) * 2019-11-28 2020-04-07 湖南湘投金天钛金属股份有限公司 Preparation process of titanium steel composite coil
TWI744780B (en) * 2020-01-21 2021-11-01 日商日本製鐵股份有限公司 Processed titanium material and its manufacturing method

Also Published As

Publication number Publication date
JP3296271B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
JP3296271B2 (en) Titanium clad steel sheet and its manufacturing method
JP3742340B2 (en) Method for producing aluminum composite material
KR102164307B1 (en) Method of manufacturing clad steel
CN101947571A (en) Manufacturing method of compound steel
JPS6356033B2 (en)
KR100376505B1 (en) The method of manufacturing stainless/aluminum cladding material
CN110653258A (en) Production method of stainless steel and copper composite coiled material
JPH10286681A (en) Production of titanium-clad steel sheet
JPS63140782A (en) Production of multi-layered clad plate
US4936504A (en) Process for producing a clad plate
JPH0313559A (en) Production of ferritic stainless steel sheet with high al content or formed part of the same
JP3376842B2 (en) Steel plate excellent in laser cutting property and method for producing the same
JP2002069545A (en) METHOD FOR PRODUCING TiAl BASED INTERMETALLIC COMPOUND BY LAMINATE ROLLING
JPS62124229A (en) Manufacture of stainless clad steel sheet superior in workability and corrosion resistance
JPS5935664A (en) Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling
JP2868344B2 (en) Manufacturing method of composite metal plate
JP2546589B2 (en) Method for producing titanium clad steel sheet by continuous hot rolling
JPS60216984A (en) Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance
JPH01166891A (en) Manufacture of intermetallic compound material
JP2000042758A (en) Manufacture of titanium-clad steel plate excellent in workability and joining strength of welded part
JPH05169283A (en) Manufacture of clad steel sheet
JP3317177B2 (en) Titanium clad steel sheet with excellent workability
JPH0433783A (en) Manufacture of aluminum clad steel plate excellent in shear strength
JPH0741312B2 (en) Large diameter stainless clad square steel pipe manufacturing method
JPH049288A (en) Production of aluminum clad steel plate having excellent shearing strength

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

LAPS Cancellation because of no payment of annual fees