JP2546589B2 - Method for producing titanium clad steel sheet by continuous hot rolling - Google Patents

Method for producing titanium clad steel sheet by continuous hot rolling

Info

Publication number
JP2546589B2
JP2546589B2 JP4319105A JP31910592A JP2546589B2 JP 2546589 B2 JP2546589 B2 JP 2546589B2 JP 4319105 A JP4319105 A JP 4319105A JP 31910592 A JP31910592 A JP 31910592A JP 2546589 B2 JP2546589 B2 JP 2546589B2
Authority
JP
Japan
Prior art keywords
titanium
hot rolling
steel sheet
continuous hot
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4319105A
Other languages
Japanese (ja)
Other versions
JPH06155050A (en
Inventor
章夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4319105A priority Critical patent/JP2546589B2/en
Publication of JPH06155050A publication Critical patent/JPH06155050A/en
Application granted granted Critical
Publication of JP2546589B2 publication Critical patent/JP2546589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チタンクラッド鋼板の
連続熱延による製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium clad steel sheet by continuous hot rolling.

【0002】[0002]

【従来の技術】鋼は、安価で良好な機械的、熱的、電気
的特性を有しているため、古くから非常に広い用途に使
用されてきた。しかし、鋼にはそのまま使用すると短時
間で錆びたり腐食したりするという致命的な欠点があ
る。一方チタンは、鋼に比べると著しく耐食性が優れて
いるので、腐食や防錆の問題は解決するが、他の特性、
例えば熱伝導性などは鋼とはかなり異なった特性を示す
ために、チタンで完全に代替することは必ずしも容易で
はないのである。さらに、チタンは鋼に比べると著しく
高価であるために、資源的、経済的にも困難といわざる
を得ないのが実情である。
2. Description of the Related Art Steel has been used for a wide range of applications since ancient times because it is inexpensive and has good mechanical, thermal and electrical properties. However, steel has a fatal drawback that it rusts or corrodes in a short time when used as it is. On the other hand, titanium has significantly better corrosion resistance than steel, so it solves the problems of corrosion and rust prevention, but other characteristics,
For example, it is not always easy to completely replace titanium with titanium, because it exhibits properties that are quite different from steel, such as thermal conductivity. Furthermore, titanium is extremely expensive as compared with steel, and therefore it is unavoidable that it is difficult in terms of resources and economy.

【0003】これらの問題を解決する方法として、表面
をチタン、中心部を鋼としたクラッド鋼が使用されてい
る。クラッド鋼は、母材に目的とする特性に合致した炭
素鋼ないしステンレス鋼を利用し、表面に耐食性の優れ
たチタンを用いることで、優れた耐食性を有しかつ目的
とする特性を満足する材料が得られるために、熱交換機
などの化学装置では広く利用されている。
As a method for solving these problems, clad steel having a titanium surface and a steel center portion is used. The clad steel uses carbon steel or stainless steel that matches the desired characteristics as the base material, and titanium that has excellent corrosion resistance on the surface, so that it has excellent corrosion resistance and satisfies the desired characteristics. Therefore, it is widely used in chemical devices such as heat exchangers.

【0004】いわゆるクラッド鋼板の製造方法には大き
く分けて2種類がある。すなわち、溶鋼レベルで複合化
を行なういわゆる鋳包み法と固相レベルで接合させる方
法である。チタンクラッド鋼の場合、チタンと鋼の界面
に脆いFe−Ti金属間化合物やTiCなどの層が厚く
生成すると界面で剥離しやすくなる。従って、溶鋼レベ
ルで行なう鋳包み法は適用できず、固相レベルでの接合
が採用されている。中でも爆着による方法は、中間媒接
材を使用せずしかも接合強度に対して信頼性が高いこと
から、現在最も広く使用されている方法である。しか
し、爆着法は強力な爆発の力を利用するために、どこで
も実施が可能というわけにはいかず、通常人里離れた山
中などで行なわざるを得ない。しかも、大量生産には不
向きであることなどから非常に高価な材料である。ま
た、爆着法ではサイズも限定され特に薄板の製造は困難
である。
There are roughly two types of so-called clad steel plate manufacturing methods. That is, it is a so-called cast-in method in which compounding is performed at the molten steel level and a method of joining at the solid phase level. In the case of titanium clad steel, if a brittle Fe-Ti intermetallic compound or a TiC layer is formed thickly at the interface between titanium and steel, peeling easily occurs at the interface. Therefore, the casting method performed at the molten steel level cannot be applied, and joining at the solid phase level is adopted. Above all, the method by explosion bonding is the most widely used method at present because it does not use an intermediate contact material and has high reliability in terms of bonding strength. However, since the explosive landing method uses the power of a powerful explosion, it cannot be implemented anywhere, and usually has to be done in secluded mountains. Moreover, it is a very expensive material because it is not suitable for mass production. Further, the size of the explosive deposition method is limited, and it is particularly difficult to manufacture a thin plate.

【0005】圧接による方法は、生産性が高く板厚が比
較的自由にとれることや従来の製造工程が適用できるこ
となどから爆着法に比べて有利な方法である。しかし、
圧接による方法では接合界面に金属間化合物などの脆い
層が生成する可能性が非常に高い上に、界面に酸化物な
どが存在すると接合が不可能になる。特に熱間圧接の場
合、拡散速度や酸化速度がはやいので、これらの危険性
は高くなる。
The method using pressure welding is advantageous over the explosive deposition method because it has high productivity and the plate thickness can be taken relatively freely and conventional manufacturing processes can be applied. But,
In the method using pressure welding, it is very likely that a brittle layer such as an intermetallic compound is formed at the bonding interface, and if an oxide or the like is present at the interface, bonding becomes impossible. Particularly in the case of hot pressure welding, the risk of these increases because the diffusion rate and the oxidation rate are fast.

【0006】界面の脆い中間層の生成を抑制して接合さ
せる方法として、特開昭62−6783号公報には熱延
加熱条件の限定が、また例えば特開昭55−48468
号、特開昭57−109588号、特開昭57−112
985号や特開昭57−192256号の各公報には、
クラッド界面に純鉄やニッケル、銅などの板ないし箔を
中間媒接材として挟み込む方法が提案されている。
As a method for bonding while suppressing the formation of an intermediate layer having a brittle interface, Japanese Unexamined Patent Publication No. Sho 62-6783 limits the hot rolling heating conditions, for example, Japanese Unexamined Patent Publication No. Sho 55-48468.
JP-A-57-109588 and JP-A-57-112.
In Japanese Patent Laid-Open No. 985 and Japanese Patent Application Laid-Open No. 57-192256,
A method has been proposed in which a plate or foil of pure iron, nickel, copper or the like is sandwiched as an intermediate medium contact material at the clad interface.

【0007】一方接合界面の酸化を防止するには、少な
くとも合せ面を真空にしたり不活性雰囲気にする以外に
適切な方法がない。例えば特開昭57−109588号
公報には環境を1Torr以下の真空にすることを必須条件
としている。このために、コストの低下をはかることが
できず、安価であるというクラッド鋼の特徴を生かすこ
とが必ずしも容易ではない状況にある。従って、通常チ
タンクラッド鋼板は厚板として、チタンの耐食性が不可
欠な化学反応装置などに利用されているに過ぎない。
On the other hand, in order to prevent the oxidation of the bonding interface, there is no suitable method other than vacuuming at least the mating surfaces or setting an inert atmosphere. For example, in Japanese Patent Laid-Open No. 57-109588, it is an essential condition that the environment is a vacuum of 1 Torr or less. For this reason, it is not always easy to take advantage of the features of the clad steel that it is not possible to reduce the cost and the cost is low. Therefore, the titanium clad steel plate is usually used only as a thick plate in a chemical reaction device in which the corrosion resistance of titanium is essential.

【0008】ステンレス鋼などのクラッド鋼板の場合、
合せ面を溶接してから圧延などを行なう方法も提案され
ているが、チタンクラッド鋼板の場合はFe−Tiの金
属間化合物が生成して適用することはできない。
In the case of a clad steel plate such as stainless steel,
A method in which the mating surfaces are welded and then rolled is proposed, but in the case of a titanium clad steel plate, an intermetallic compound of Fe-Ti is generated and cannot be applied.

【0009】このほかに、接合界面の酸化を防止する方
法として、特開昭57−112985号公報ではフラッ
クスで界面を覆うことを提案している。しかし、特殊な
設備が必要であることからやはりコスト低下には到らな
い。
In addition to this, as a method for preventing the oxidation of the bonding interface, Japanese Patent Laid-Open No. 57-112985 proposes covering the interface with a flux. However, the cost does not decrease because special equipment is required.

【0010】[0010]

【発明が解決しようとする課題】これに対して本発明者
らは、チタンと銅の金属間化合物を積極的に利用し真空
を不要とするチタンクラッド薄鋼板の製造方法を発明し
た(特開平01−122677号公報参照)。この結
果、従来の厚板のチタンクラッド鋼板に比べて飛躍的に
コストの低いチタンクラッド薄鋼板の製造が可能になっ
たのである。しかし、以上の方法を適用し熱延によりチ
タンクラッド鋼の薄板を製造した場合、本発明者らが前
に発明した、チタンと銅の金属間化合物を積極的に利用
し真空を不要とするチタンクラッド薄鋼板の製造方法で
も、界面を真空にし中間媒接材を使用しない組立スラブ
を圧延する従来の考え方に基づく方法によっても、製造
したクラッド鋼板の接合面の剥離強度が劣り、例えばシ
ャーで切断した際に接合面が容易に剥離する場合があっ
た。
On the other hand, the inventors of the present invention have invented a method for producing a titanium clad thin steel sheet, which positively utilizes an intermetallic compound of titanium and copper and does not require a vacuum (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). No. 01-122677). As a result, it has become possible to manufacture a titanium clad thin steel sheet which is significantly lower in cost than the conventional thick titanium clad steel sheet. However, when a thin sheet of titanium clad steel is produced by hot rolling by applying the above method, titanium which has been invented by the present inventors and positively utilizes an intermetallic compound of titanium and copper and does not require a vacuum is used. Even in the method for producing a clad thin steel sheet, the peeling strength of the joint surface of the produced clad steel sheet is inferior even by the method based on the conventional idea of rolling the assembled slab that makes the interface a vacuum and does not use the intermediate contact material, for example, cutting with a shear. In some cases, the joint surface could be easily peeled off.

【0011】本発明は、以上の問題を解決すべく、安定
して剥離強度の高いチタンクラッド薄鋼板の連続熱延に
よる製造方法を提供するものである。
In order to solve the above problems, the present invention provides a method for producing a titanium clad thin steel sheet having a stable and high peel strength by continuous hot rolling.

【0012】[0012]

【課題を解決するための手段】本発明者らは、チタンク
ラッド鋼板をシャー切断したところ破断面で剥離開孔す
るものとしないものがあることを見出した。そしてシャ
ー切断で剥離開孔するチタンクラッド鋼板の剥離状況を
詳細に観察した結果、剥離した合せ板のチタン板が剥が
れる方向に反っていることを発見した。すなわち、シャ
ーで剥離しやすいものは、接合面に剥離方向の応力が残
留していることを認めたのである。
DISCLOSURE OF THE INVENTION The present inventors have found that when shear-cutting a titanium clad steel plate, there are some types that do not have peeling holes at the fracture surface and others do not. As a result of observing in detail the peeling condition of the titanium clad steel plate having peeling holes by shear cutting, it was found that the peeled laminated titanium plate was warped in the peeling direction. That is, it was confirmed that the shearing-prone material that has a peeling direction stress remains on the joint surface.

【0013】この残留応力は、熱延工程で変形能の異な
るチタンと鋼を同量変形させたために生じた歪、および
熱膨張率の異なるチタンと鋼を高温から一体で冷却した
ために生じた熱歪であることは容易に推測される。しか
るに、残留応力に及ぼす熱延条件の影響を検討したとこ
ろ、最終圧延温度や圧下率などの熱延条件よりも、捲取
り温度の影響が強いことが判明した。この理由は、熱延
後の捲取り処理は材料に対してほぼその温度での保定を
行なったのと同じ影響があるので、捲取り後の徐冷が歪
とり焼鈍と同じこととなって、圧下時に生じた歪や高温
側で生じた熱歪が緩和されるためであると考えた。本発
明は、以上の知見に基づいてなされたものである。
This residual stress is due to the strain caused by the same amount of deformation of titanium and steel having different deformability in the hot rolling process, and the heat generated by integrally cooling titanium and steel having different thermal expansion coefficients from a high temperature. It is easily inferred that it is distortion. However, when the effect of hot rolling conditions on residual stress was examined, it was found that the effect of winding temperature was stronger than that of hot rolling conditions such as final rolling temperature and rolling reduction. The reason for this is that since the winding treatment after hot rolling has the same effect as that of holding the material at about that temperature, gradual cooling after winding is the same as strain relief annealing, It was thought that this was because the strain generated during the reduction and the thermal strain generated at the high temperature side were alleviated. The present invention has been made based on the above findings.

【0014】接合界面の剥離強度を向上させるために
は、界面の残留応力を極力低減するとともに、できれば
応力の方向を剥離方向から接合方向に変えることが考え
られたのである。そこで、実験室的に製造したチタンク
ラッド鋼板を用いて、接合界面の残留応力の大きさおよ
び方向に及ぼす捲取り相当の熱処理温度の影響を検討し
た。実験は、実験室的に827℃で最終圧延後急冷して
切板状で製造したチタンクラッド鋼板(チタン厚0.5
mm、全厚2.5mm)を幅20mm×長さ120mmに切断
し、捲取り温度を想定した種々の温度に1h加熱保定し
空冷する方法で行なった。しかる後、先端の20mmをシ
ャー切断し、その際わずかに剥離開孔した接合界面にた
がねを打込み、合せ材のチタン板を完全に剥がし取っ
た。シャー切断で剥離開孔しないものは、コーナー部分
を曲げ戻しして強制的に剥離させ、同様に剥がし取っ
た。残留応力は、剥がし取りカールしているチタン板を
端部から30mmの長さまで平面に押え込み、残った70
mm長さの自由部分の反りが押え込んだ面からどの程度離
れているかを測定し評価した。
In order to improve the peel strength at the joint interface, it was considered to reduce residual stress at the interface as much as possible and, if possible, to change the stress direction from the peel direction to the joint direction. Therefore, the influence of the heat treatment temperature corresponding to the winding on the magnitude and direction of the residual stress at the joint interface was investigated using a titanium clad steel plate manufactured in a laboratory. In the experiment, titanium clad steel plate (titanium thickness 0.5
mm, total thickness 2.5 mm) was cut into a width of 20 mm and a length of 120 mm, and heated and kept at various temperatures assuming the winding temperature for 1 h and air-cooled. Then, 20 mm at the tip was shear-cut, and at the time, a chisel was driven into the joint interface where a slight peeling hole was formed, and the titanium plate of the laminated material was completely peeled off. In the case where shearing did not result in peeling and opening, the corners were bent back to force peeling and peeled off in the same manner. Residual stress was retained by pressing the peeled off and curled titanium plate to a flat surface up to a length of 30 mm from the end and remaining 70
How far the warp of the free portion of mm length is from the pressed surface was measured and evaluated.

【0015】図1に、反り高さに及ぼす熱処理温度の影
響を示した。反りの方向は保定の有無にかかわらずいず
れも剥離方向であった。反りの高さは、高温保定ほど低
下し、約800℃ではほぼ0となった。逆に400℃以
下では、加熱保定しない場合と変わらず歪取り効果がな
かった。以上の結果から、捲取り温度は少なくとも40
0℃を超えるのが望ましいことが判明した。
FIG. 1 shows the effect of heat treatment temperature on the warp height. The warp direction was the peeling direction regardless of whether or not there was retention. The height of warpage decreased as the temperature was held at high temperature, and became almost 0 at about 800 ° C. On the other hand, at 400 ° C. or lower, there was no strain-removing effect as in the case without heat retention. From the above results, the winding temperature is at least 40.
It has been found desirable to exceed 0 ° C.

【0016】一方、捲取り処理が高温になると、界面の
金属間化合物層が成長して接合強度そのものが低下する
危険性がある。図2は、捲取りを想定した熱処理後の金
属間化合物の厚さに及ぼす熱処理温度の影響を示した図
である。金属間化合物の厚さは、切断面を樹脂に埋め込
み、ナイタールによる腐食で変色した部分の最大厚さと
最少厚さを測定し、その平均とした。1hの保定をした
熱処理では、800℃以上で金属間化合物の大きな成長
が認められ、その程度は温度が高いほど大きかった。し
かし、750℃以下ではほとんど成長が認められなかっ
た。
On the other hand, when the winding process is performed at a high temperature, there is a risk that the intermetallic compound layer at the interface grows and the bonding strength itself is lowered. FIG. 2 is a diagram showing the effect of heat treatment temperature on the thickness of the intermetallic compound after heat treatment assuming winding. Regarding the thickness of the intermetallic compound, the cut surface was embedded in a resin, and the maximum thickness and the minimum thickness of a portion discolored by corrosion by Nital was measured, and the average thereof was used. In the heat treatment held for 1 h, large growth of the intermetallic compound was observed at 800 ° C. or higher, and the degree was larger as the temperature was higher. However, almost no growth was observed at 750 ° C or lower.

【0017】本発明は、以上の知見に基づいてなされた
ものである。すなわち本発明は、(1)母材が鋼、合せ
材がチタンまたはチタン合金であるチタンクラッド組立
スラブを、複数回の連続熱延によって熱間圧延鋼板とす
る製造工程において、捲取り温度を450℃以上750
℃以下とするチタンクラッド鋼板の連続熱延による製造
方法である。上記本発明は、チタンと鋼の界面に純鉄や
ニッケルなどの中間媒接材を挟んだ方法でも、あるいは
本発明者らの発明し特願昭62−277826号公報に
示したチタンと銅の金属間化合物を積極的に利用して真
空を不要としたチタンクラッド薄鋼板の製造方法でも同
じ効果が得られる。すなわち、第2および第3の発明
は、(2)母材が鋼、合せ材がチタンまたはチタン合金
で、母材と合せ材の間に中間媒接材を挟んだチタンクラ
ッド組立スラブを、複数回の連続熱延によって熱間圧延
鋼板とする製造工程において、捲取り温度を450℃以
上750℃以下とするチタンクラッド鋼板の連続熱延に
よる製造方法であり、(3)母材が鋼、合せ材がチタン
またはチタン合金で、母材と合せ材の間に中間媒接材と
して銅または銅を30%以上含有する銅合金を挟んだチ
タンクラッド組立スラブを、複数回の連続熱延によって
熱間圧延鋼板とする製造工程において、850℃超10
00℃以下の温度で、10%以上の圧下率で少なくとも
1パス圧下して、溶融したチタンと銅の金属間化合物な
いし合金層を絞り出し、かつ捲取り温度を450℃以上
750℃以下とするチタンクラッド鋼板の連続熱延によ
る製造方法である。また、本発明を有効に実施するに
は、その装置は従来チタンクラッド鋼の製造に用いられ
ていたリバース型の熱延機より、炭素鋼などのコイルの
熱間圧延に利用されている連続熱間圧延機の方が適して
いる。すなわち、本発明は複数回の圧下を1台ないし複
数台の粗圧延機および複数台の仕上げ圧延機からなる連
続熱間圧延機で行なうことで最も効果が発揮される。す
なわち、第4の発明は、(4)前項(1),(2)およ
び(3)のそれぞれにおいて、複数回の圧下を1台ない
し複数台の粗圧延機および複数台の仕上げ圧延機からな
る連続熱間圧延機で行なうチタンクラッド鋼板の連続熱
延による製造方法である。上記第4の発明にかかる連続
熱間圧延機は、1台ないし複数台の粗圧延機および複数
台の仕上げ圧延機以外に、1台ないし複数台の中間圧延
機やデスケール用の軽圧下装置などが付属するものも含
むものである。
The present invention has been made based on the above findings. That is, according to the present invention, in a manufacturing process of (1) a titanium clad assembly slab in which a base material is steel and a laminating material is titanium or a titanium alloy is a hot rolled steel sheet by continuous hot rolling a plurality of times, a winding temperature is 450. ℃ or more 750
It is a manufacturing method by continuous hot rolling of a titanium clad steel plate at a temperature of ℃ or less. The present invention described above can be achieved by a method in which an intermediate medium contact material such as pure iron or nickel is sandwiched at the interface between titanium and steel, or of titanium and copper disclosed in Japanese Patent Application No. 62-277826 invented by the present inventors. The same effect can be obtained by the method for producing a titanium clad thin steel sheet that does not require vacuum by positively utilizing the intermetallic compound. That is, the second and third inventions are (2) a plurality of titanium clad assembly slabs in which the base material is steel, the composite material is titanium or a titanium alloy, and an intermediate medium contact material is sandwiched between the base material and the composite material. In a manufacturing process for producing a hot rolled steel sheet by continuous hot rolling once, a titanium clad steel sheet having a winding temperature of 450 ° C to 750 ° C is continuously hot rolled. A titanium clad assembly slab in which the material is titanium or a titanium alloy, and copper or a copper alloy containing 30% or more of copper is sandwiched between the base material and the laminated material as an intermediate contact material by hot rolling multiple times. In the manufacturing process of rolled steel sheet, it is more than 850 ℃ 10
Titanium having a temperature of 00 ° C. or lower and a rolling reduction of 10% or more for at least one pass to squeeze out a molten intermetallic compound of titanium and copper or an alloy layer, and a winding temperature of 450 ° C. to 750 ° C. This is a manufacturing method by continuous hot rolling of a clad steel plate. Further, in order to effectively carry out the present invention, the apparatus is a continuous hot rolling machine used for hot rolling of a coil such as carbon steel rather than a reverse type hot rolling machine conventionally used for manufacturing titanium clad steel. A hot rolling mill is more suitable. That is, the present invention is most effective when a plurality of times of reduction is performed by a continuous hot rolling mill including one or a plurality of rough rolling mills and a plurality of finish rolling mills. That is, a fourth invention is (4) in each of the above items (1), (2) and (3), comprising a plurality of roughing mills and one or more rough rolling mills and a plurality of finish rolling mills. It is a manufacturing method by continuous hot rolling of a titanium clad steel plate performed by a continuous hot rolling mill. The continuous hot rolling mill according to the fourth aspect of the present invention includes one or more rough rolling mills and plural finishing mills, as well as one or more intermediate rolling mills and a light rolling device for descaling. It also includes the ones attached to.

【0018】次に、本発明の限定条件を説明する。捲取
り温度は、図1の結果から歪の緩和効果のある450℃
を下限とした。また、図2から金属間化合物の成長がほ
とんど認められない750℃を上限とした。第3の発明
において、中間媒接材として使用する銅または銅合金
は、合せ材のチタンと相互拡散して固相反応を起こし金
属間化合物となる必要があるので、銅の含有率が30%
以上とした。
Next, the limiting conditions of the present invention will be described. From the results shown in Fig. 1, the winding temperature is 450 ° C, which has a strain relaxation effect.
Was set as the lower limit. Further, from FIG. 2, the upper limit was 750 ° C. at which almost no growth of intermetallic compounds was observed. In the third invention, since the copper or copper alloy used as the intermediate medium contact material has to interdiffuse with titanium of the bonding material to cause a solid phase reaction to become an intermetallic compound, the copper content is 30%.
That's it.

【0019】圧下によって溶融した中間層を端部より絞
り出すためには、中間層が溶融している必要があるの
で、チタンと銅の合金の溶融している温度域すなわち8
50℃を超える温度で圧下を加えることを限定した。し
かし、接合の温度が高すぎるとチタンと銅の固相反応が
進行しすぎてチタンの厚さが低下するのみならず、溶融
層の粘度が低下して接合せずに滑りを生ずるために、上
限温度を1000℃とした。この圧下は、1パスでも十
分に目的に達せられるし、2パス以上となっても障害が
ないが、加えないと接合しなかったり例え接合してもク
ラッド鋼としての十分な品質が得られないので、1パス
以上の圧下を加えることと限定した。また、850℃超
1000℃以下の温度での圧下の圧下率は、10%未満
では溶融した中間媒接材の絞り出しが不十分なため、1
0%以上で圧下することに限定した。
In order to squeeze the melted intermediate layer from the end by pressing, the intermediate layer needs to be melted. Therefore, the temperature range where the alloy of titanium and copper is molten, that is, 8
Limited application of reduction at temperatures above 50 ° C. However, if the joining temperature is too high, not only the solid-phase reaction of titanium and copper proceeds too much to reduce the thickness of titanium, but also the viscosity of the molten layer decreases and slippage occurs without joining, The upper limit temperature was 1000 ° C. This reduction can achieve the purpose sufficiently even with one pass, and there is no obstacle even if it is more than two passes, but if it is not added it will not be joined or even if joined, sufficient quality as clad steel cannot be obtained. Therefore, it was limited to applying a reduction of 1 pass or more. Further, if the rolling reduction ratio at a temperature of more than 850 ° C. and 1000 ° C. or less is less than 10%, the squeezing of the melted intermediate medium contact material is insufficient, so that 1
The reduction was limited to 0% or more.

【0020】[0020]

【作用】以上示したとおり、熱延鋼板の捲取り温度を適
切に限定することで界面の残留応力を低下させ、その結
果接合界面の剥離強度を向上させることに成功した。こ
の結果、安定した品質のチタンクラッド鋼の薄鋼板を通
常の鋼と同じ設備工程で製造することが可能となった。
さらに、連続熱間圧延機を用いて安定した品質のチタン
クラッド鋼の薄鋼板を製造することも可能となった。本
発明によるチタンクラッド鋼は、界面の金属間化合物層
も急冷した場合と大差なく、しかも界面の残留応力が低
いレベルに緩和されているために、クラッド薄鋼板とし
ての品質の劣化は認められなかった。また、薄鋼板とし
ての加工性(曲げ性)は、ほぼ溶融亜鉛めっき材並みの
特性を有していた。
As described above, by appropriately limiting the winding temperature of the hot-rolled steel sheet, the residual stress at the interface was reduced, and as a result, the peel strength at the joint interface was improved. As a result, it has become possible to manufacture stable steel sheets of titanium-clad steel in the same equipment process as ordinary steel.
Furthermore, it has become possible to manufacture a stable steel sheet of titanium-clad steel using a continuous hot rolling mill. The titanium clad steel according to the present invention is not much different from the case where the intermetallic compound layer at the interface is also rapidly cooled, and the residual stress at the interface is relaxed to a low level. Therefore, deterioration of the quality as a clad thin steel sheet is not recognized. It was Further, the workability (bendability) of the thin steel sheet was almost the same as that of the hot-dip galvanized material.

【0021】[0021]

【実施例】【Example】

〔実施例1〕合せ材としての6.0mm厚のJIS 2種
の純チタン板を、母材として0.12%のCおよび0.
05%のTiを含有する50mm厚の炭素鋼鋳片とサンド
イッチ状に重ね、さらにチタンの上からAl2 3 +Z
rO2 系分離材を介して同じ組合せのチタンおよび炭素
鋼を上下対称に重ね、端面および側面に12mm厚の母材
と同じ成分組成の鋼板を挟み、かつ内部を真空にして端
面および側面を溶接し固定した。次いで、この組立スラ
ブを950℃に加熱し、14パスで板厚6mmまで圧下
し、最終圧下後のホットランテーブル上で冷却水を制御
し、380〜786℃の間の4水準の温度域で捲取っ
た。その後、Al2 3 +ZrO2 系分離材の部分で上
下に分離し3mmの熱延コイルとした。この熱延板をシャ
ー切断した際、接合界面の剥離の有無を表1(No.1〜
4)に示した。捲取り温度が450℃以上750℃以下
のコイルは、シャー切断したところ破断面には剥離開孔
が見られなかった。しかし、777〜786℃の捲取り
材では、界面の金属間化合物層が厚くなって剥離開孔し
た。380〜395℃捲取り材では、界面の金属間化合
物層の肥厚化は認められなかったが、合せ材のチタン板
が反り返るような形で剥離開孔した。
[Example 1] A pure titanium plate of JIS Class 2 having a thickness of 6.0 mm as a joining material was used as a base material with 0.12% of C and 0.
Sandwiched with a 50 mm thick carbon steel slab containing 05% Ti, and then Al 2 O 3 + Z on top of titanium
Titanium and carbon steel of the same combination are vertically laminated through rO 2 -based separator, 12 mm thick steel plate having the same composition as the base metal is sandwiched between the end faces and side faces, and the inside is evacuated to weld the end faces and side faces. Fixed. Next, this assembled slab is heated to 950 ° C., rolled down to a plate thickness of 6 mm in 14 passes, and the cooling water is controlled on the hot run table after the final rolling to wind it in four temperature ranges between 380 and 786 ° C. I took it. Then, the Al 2 O 3 + ZrO 2 based separator was separated into upper and lower parts to obtain a 3 mm hot rolled coil. When shear-cutting this hot-rolled sheet, the presence or absence of peeling at the bonding interface is shown in Table 1 (No. 1 to No. 1).
4). With respect to the coil having a winding temperature of 450 ° C. or higher and 750 ° C. or lower, no peeling opening was observed on the fracture surface when shear cutting. However, in the wound material at 777 to 786 ° C., the intermetallic compound layer at the interface became thick and peeled and opened. In the wound material of 380 to 395 ° C., thickening of the intermetallic compound layer at the interface was not observed, but the titanium plate of the laminated material was peeled and opened in such a manner as to warp.

【0022】〔実施例2〕合せ材としての6.0mm厚の
JIS 2種の純チタン板と、中間媒接材として99.
9%以上の純度を持つ0.2mm厚の純鉄板を介在させ、
母材として0.07%のCを含有する55mm厚の炭素鋼
鋳片とをサンドイッチ状に重ね、さらにチタンの上から
Al2 3 +ZrO2 系分離材を介して同じ組合せのチ
タンおよび炭素鋼を上下対称に重ね、端面および側面に
12mm厚の母材と同じ成分組成の鋼板を挟み、かつ内部
を真空にして端面および側面を溶接し固定した。次い
で、この組立スラブを950℃に加熱し、12パスで板
厚7mmまで圧下し、最終圧下後のホットランテーブル上
で冷却水を制御し、415〜808℃の間の4水準の温
度域で捲取った。その後、Al2 3 +ZrO2 系分離
材の部分で上下に分離し3.5mmの熱延コイルとした。
この熱延板をシャー切断した際、接合界面の剥離の有無
を表1(No.5〜8)に示した。捲取り温度が450℃
以上750℃以下のコイルは、シャー切断したところ破
断面には剥離開孔が見られなかった。しかし、797〜
808℃の捲取り材では、界面の金属間化合物層が厚く
なって剥離開孔した。415〜427℃捲取り材では、
界面の金属間化合物層の肥厚化は認められなかったが、
合せ材のチタン板が反り返るような形で剥離開孔した。
[Embodiment 2] A pure titanium plate of JIS type 2 having a thickness of 6.0 mm as a bonding material, and 99.
With 0.2mm pure iron plate with a purity of 9% or more,
A 55 mm-thick carbon steel slab containing 0.07% C as a base material was laminated in a sandwich form, and the same combination of titanium and carbon steel was further placed on the titanium via an Al 2 O 3 + ZrO 2 based separator. Were vertically symmetrically stacked, a steel plate having the same composition as the base material having a thickness of 12 mm was sandwiched between the end faces and side faces, and the inside was evacuated to weld and fix the end faces and side faces. Next, this assembled slab is heated to 950 ° C., rolled down to a plate thickness of 7 mm in 12 passes, and the cooling water is controlled on the hot run table after the final rolling to wind it in four temperature ranges between 415 and 808 ° C. I took it. Then, the Al 2 O 3 + ZrO 2 based separator was separated into upper and lower parts to obtain a 3.5 mm hot rolled coil.
Table 1 (Nos. 5 to 8) shows the presence or absence of peeling at the joint interface when shear-cutting the hot-rolled sheet. Winding temperature is 450 ℃
When the coil having a temperature of 750 ° C. or lower was shear-cut, no peeling opening was observed on the fracture surface. However, from 797
In the coiled material at 808 ° C., the intermetallic compound layer at the interface became thick and peeled and opened. With 415 to 427 ° C winding material,
Although thickening of the intermetallic compound layer at the interface was not observed,
A peeling hole was formed such that the titanium plate of the laminated material was warped.

【0023】〔実施例3〕合せ材としての7.0mm厚の
JIS 1種の純チタン板と、中間媒接材として99.
9%以上の純度を持つ1.0mm厚の銅板を介在させ、母
材として0.12%のCを含有する55mm厚の炭素鋼鋳
片とをサンドイッチ状に重ね、さらにチタンの上からA
2 3 +ZrO2 系分離材を介して同じ組合せのチタ
ン、銅および炭素鋼を上下対称に重ね、端面および側面
に16mm厚の母材と同じ成分組成の鋼板を挟み、大気中
で端面および側面を溶接し固定した。この際、端面溶接
の一部に空気抜きの穴を設けた。次いで、この組立スラ
ブを900℃に加熱し、粗圧延機が1台、仕上げ圧延機
が6台の連続熱延機を用いて、850℃までに20〜2
5%の圧下を3パス加えて溶融したチタンと銅の金属間
化合物ないし合金層を絞り出し、合計16パスで板厚5
mmまで圧下した。さらに、最終圧下後のホットランテー
ブル上で冷却水を制御し、407〜775℃の間の4水
準の温度域で捲取った。その後、Al2 3 +ZrO2
系分離材の部分で上下に分離し2.5mmの熱延コイルと
した。この熱延板をシャー切断した際、接合界面の剥離
の有無を表1(No.9〜12)に示した。捲取り温度が
450℃以上750℃以下のコイルは、シャー切断した
ところ破断面には剥離開孔が見られなかった。しかし、
769〜775℃の捲取り材では、界面の金属間化合物
層が厚くなって剥離開孔した。407〜420℃捲取り
材では、界面の金属間化合物層の肥厚化は認められなか
ったが、合せ材のチタン板が反り返るような形で剥離開
孔した。
[Embodiment 3] A pure titanium plate of JIS Class 1 having a thickness of 7.0 mm as a bonding material and 99.
A 1.0 mm thick copper plate having a purity of 9% or more is interposed, a 55 mm thick carbon steel slab containing 0.12% C as a base material is laminated in a sandwich form, and further, from the top of titanium, A
The same combination of titanium, copper and carbon steels are vertically symmetrically laminated through the l 2 O 3 + ZrO 2 system separating material, and a steel plate having the same composition as the base material with a thickness of 16 mm is sandwiched between the end surface and the side surface. The sides were welded and fixed. At this time, an air vent hole was provided in part of the end face welding. Next, this assembled slab is heated to 900 ° C., and a continuous hot rolling machine with one rough rolling mill and six finishing rolling mills is used to reach 20 to 2 up to 850 ° C.
A 5% reduction was added in 3 passes to squeeze out the molten titanium-copper intermetallic compound or alloy layer, and a total of 16 passes to obtain a plate thickness of 5
It was rolled down to mm. Further, the cooling water was controlled on the hot run table after the final reduction and was wound in four temperature ranges between 407 and 775 ° C. After that, Al 2 O 3 + ZrO 2
A hot-rolled coil of 2.5 mm was obtained by separating the upper and lower parts of the system separating material. Table 1 (Nos. 9 to 12) shows the presence or absence of peeling at the joint interface when shear-cutting the hot-rolled sheet. With respect to the coil having a winding temperature of 450 ° C. or higher and 750 ° C. or lower, no peeling opening was observed on the fracture surface when shear cutting. But,
In the wound material at 769 to 775 ° C., the intermetallic compound layer at the interface became thick and peeled and opened. In the 407 to 420 ° C. wound material, thickening of the intermetallic compound layer at the interface was not observed, but the titanium plate of the laminated material was peeled and opened in such a manner as to warp.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明により、特殊な工程や設備を必要
とせず、通常の鋼製造設備や工程をそのまま利用してチ
タンクラッド鋼薄板を量産することが可能となった。こ
の結果、チタンクラッド鋼薄板が工業的に実用可能とな
り、しかもコスト的には従来の厚板から予想される価格
よりもはるかに安価になるので、チタンの優れた耐食性
を低コストで享受することができ、資源的、経済的な利
益は大きいものである。また、本発明により量産される
チタンクラッド鋼薄板は、従来の厚板と異なりチタン層
の厚さが薄いために、使用時の注意や取扱要領がクラッ
ド材と認識するよりめっき材料と考えた方が適切となる
ため、従来の特殊な用途や苛酷な腐食環境以外にも多く
の分野で使用可能となる。この結果、種々の工業設計に
おいて、材料選択の幅を拡大せしめることで設計が容易
になるなど、工業的、社会的利益は大きい。
According to the present invention, it is possible to mass-produce titanium clad steel thin plates without using special steps and facilities and using normal steel manufacturing facilities and steps as they are. As a result, the titanium clad steel sheet becomes industrially practical, and in terms of cost it is much cheaper than the price expected from conventional thick sheets, so you can enjoy the excellent corrosion resistance of titanium at low cost. And the resource and economic benefits are great. Further, the titanium clad steel thin plate mass-produced according to the present invention has a thin titanium layer unlike the conventional thick plate. Since it is appropriate, it can be used in many fields other than conventional special applications and harsh corrosive environments. As a result, in various industrial designs, the range of selection of materials can be expanded to facilitate the design, which has great industrial and social benefits.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験室製造のチタンクラッド鋼板のチタン板を
剥離した際の長さ70mmにおける反り高さに及ぼす捲取
り想定温度の影響を示した図である。
FIG. 1 is a diagram showing an influence of an assumed winding temperature on a warp height at a length of 70 mm when a titanium plate of a titanium clad steel plate manufactured in a laboratory is peeled off.

【図2】捲取りを想定した熱処理の前後での金属間化合
物の厚さの変化に及ぼす熱処理温度の影響を示した図で
ある。
FIG. 2 is a diagram showing the effect of heat treatment temperature on the change in the thickness of the intermetallic compound before and after the heat treatment assuming winding.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B21B 3/00 B21B 3/00 K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B21B 3/00 B21B 3/00 K

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 母材が鋼、合せ材がチタンまたはチタン
合金であるチタンクラッド組立スラブを、複数回の連続
熱延によって熱間圧延鋼板とする製造工程において、捲
取り温度を450℃以上750℃以下とすることを特徴
とする連続熱延によるチタンクラッド鋼板の製造方法。
1. In a manufacturing process in which a titanium clad assembly slab in which a base material is steel and a laminating material is titanium or a titanium alloy is a hot rolled steel sheet by continuous hot rolling a plurality of times, a winding temperature is 450 ° C. or higher and 750 or more. A method for producing a titanium clad steel sheet by continuous hot rolling, characterized in that the temperature is not higher than ℃.
【請求項2】 母材が鋼、合せ材がチタンまたはチタン
合金で、母材と合せ材の間に中間媒接材を挟んだチタン
クラッド組立スラブを、複数回の連続熱延によって熱間
圧延鋼板とする製造工程において、捲取り温度を450
℃以上750℃以下とすることを特徴とする連続熱延に
よるチタンクラッド鋼板の製造方法。
2. A titanium clad assembly slab in which a base material is steel, a composite material is titanium or a titanium alloy, and an intermediate medium contact material is sandwiched between the base material and the composite material, and hot rolling is performed by continuous hot rolling a plurality of times. In the manufacturing process of steel plate, the winding temperature is set to 450
A method for producing a titanium clad steel sheet by continuous hot rolling, characterized in that the temperature is from ℃ to 750 ° C.
【請求項3】 母材が鋼、合せ材がチタンまたはチタン
合金で、母材と合せ材の間に中間媒接材として銅または
銅を30%以上含有する銅合金を挟んだチタンクラッド
組立スラブを、複数回の連続熱延によって熱間圧延鋼板
とする製造工程において、850℃超1000℃以下の
温度で、10%以上の圧下率で少なくとも1パス圧下し
て、溶融したチタンと銅の金属間化合物ないし合金層を
絞り出し、かつ捲取り温度を450℃以上750℃以下
とすることを特徴とするチタンクラッド鋼板の連続熱延
による製造方法。
3. A titanium clad assembly slab in which a base material is steel, a composite material is titanium or a titanium alloy, and copper or a copper alloy containing 30% or more of copper is sandwiched between the base material and the composite material as an intermediate medium contact material. In a process for producing hot-rolled steel sheet by continuous hot rolling a plurality of times, at a temperature of more than 850 ° C. and 1000 ° C. or less, at least one pass reduction with a reduction rate of 10% or more, and molten metal of titanium and copper. A method for producing a titanium clad steel sheet by continuous hot rolling, which comprises squeezing out an intermetallic compound or an alloy layer and setting a winding temperature to 450 ° C. or higher and 750 ° C. or lower.
【請求項4】 複数回の圧下を1台ないし複数台の粗圧
延機および複数台の仕上げ圧延機からなる連続熱間圧延
機で行なうことを特徴とする請求項1,2あるいは3の
それぞれに記載のチタンクラッド鋼板の連続熱延による
製造方法。
4. A continuous hot rolling mill comprising a single or a plurality of rough rolling mills and a plurality of finish rolling mills for performing a plurality of rolling reductions, respectively. A method for producing a titanium clad steel sheet by continuous hot rolling.
JP4319105A 1992-11-27 1992-11-27 Method for producing titanium clad steel sheet by continuous hot rolling Expired - Lifetime JP2546589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4319105A JP2546589B2 (en) 1992-11-27 1992-11-27 Method for producing titanium clad steel sheet by continuous hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4319105A JP2546589B2 (en) 1992-11-27 1992-11-27 Method for producing titanium clad steel sheet by continuous hot rolling

Publications (2)

Publication Number Publication Date
JPH06155050A JPH06155050A (en) 1994-06-03
JP2546589B2 true JP2546589B2 (en) 1996-10-23

Family

ID=18106522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4319105A Expired - Lifetime JP2546589B2 (en) 1992-11-27 1992-11-27 Method for producing titanium clad steel sheet by continuous hot rolling

Country Status (1)

Country Link
JP (1) JP2546589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874605B (en) * 2015-06-16 2018-05-01 攀钢集团攀枝花钢铁研究院有限公司 The method that titanium steel composite board is rolled under atmospheric environment
CN113145664A (en) * 2021-05-10 2021-07-23 成都先进金属材料产业技术研究院股份有限公司 Chamber furnace high-temperature heating method for TA titanium and Q235 steel composite board/coiled raw material blank

Also Published As

Publication number Publication date
JPH06155050A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
CN114682627B (en) Rolling technology of metal composite plate
US5060845A (en) Method for manufacture titanium clad steel plate
EP1365910B1 (en) Method of manufacturing metallic composite material
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JP2546589B2 (en) Method for producing titanium clad steel sheet by continuous hot rolling
KR102164307B1 (en) Method of manufacturing clad steel
JP3296271B2 (en) Titanium clad steel sheet and its manufacturing method
JPH1099976A (en) Manufacture of ti-coated clad plate
JPH01122677A (en) Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium
JP3017237B2 (en) Method for producing Fe-Si-Al alloy soft magnetic thin plate
JPH0757425B2 (en) Hot rolling method for titanium clad steel sheet
JPS6311981B2 (en)
JP3017236B2 (en) Method for producing Fe-Al alloy soft magnetic sheet having excellent magnetic properties
KR950004434B1 (en) Process for clad plate of stainless steel
JPH06155049A (en) Method for hot rolling titanium clad steel sheet taking copper as intermediate joint medium
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JP2649590B2 (en) Manufacturing method of Fe-Al alloy thin plate
JPH0353077B2 (en)
JPH01162502A (en) Method for lamination rolling of titanium or titanium alloy
JPH02205277A (en) Production of titanium clad thin steel sheet by using copper or copper alloy as intermediate joining material
JP2510332B2 (en) Processing method of titanium clad steel plate
JPH062383B2 (en) Titanium clad steel sheet with good workability and method for producing the same
JPH0569638B2 (en)
JPH0569161A (en) Production of composite metallic plate
JP3317177B2 (en) Titanium clad steel sheet with excellent workability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 17