JPS60216984A - Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance - Google Patents

Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance

Info

Publication number
JPS60216984A
JPS60216984A JP7297284A JP7297284A JPS60216984A JP S60216984 A JPS60216984 A JP S60216984A JP 7297284 A JP7297284 A JP 7297284A JP 7297284 A JP7297284 A JP 7297284A JP S60216984 A JPS60216984 A JP S60216984A
Authority
JP
Japan
Prior art keywords
steel
rolling
corrosion resistance
slab
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7297284A
Other languages
Japanese (ja)
Other versions
JPH0364233B2 (en
Inventor
Toru Izawa
伊沢 徹
Kenji Hirabe
平部 謙二
Shigeyasu Matsumoto
松本 重康
Kazuhiko Oo
大尾 和彦
Kazuaki Matsumoto
和明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7297284A priority Critical patent/JPS60216984A/en
Publication of JPS60216984A publication Critical patent/JPS60216984A/en
Publication of JPH0364233B2 publication Critical patent/JPH0364233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Abstract

PURPOSE:To improve corrosion resistance, strength and toughness by subjecting a sandwich type assembled slab formed by inserting two sheets of cladding steel materials sandwiching a separating material between two sheets of steel base metal to rolling under prescribed conditions and peeling the slab from the part of the separating material. CONSTITUTION:Two sheets of the cladding materials consisting of austenitic stainless steels or two-phase stainless steels disposed by sandwiching the separating material therebetween are inserted between two sheets of the base metals consisting of a low carbon steel or low alloy steel. The sandwich type assembled slab is heated to >=1,050 deg.C and is then rolled at 850-950 deg.C, 30-80% cumulative draft and >=850 deg.C finish temp. The slab is then subjected to accelerated cooling down to 450-650 deg.C at 2-30 deg.C/sec average cooling rate in the base metal part. The slab is allowed to cool and is separated from the part of the above- described separating material.

Description

【発明の詳細な説明】 この発明は、合せ材がオーステナイト系ステンレス鋼ま
たは二相系ステンレス鋼からなシ、母相が低炭素鋼また
は低合金鋼からなるステンレスクラッド・鋼板の製造方
法に係り、詳しくは、圧延法によシ、2枚の母材と2枚
の合せ材とからなるサンドインチ型組立スラブから、耐
食性の優れた高靭性、高強度ステンレスクラツド鋼板を
製造するステンレスクラツド鋼板の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a stainless steel clad/steel plate in which the cladding material is not austenitic stainless steel or duplex stainless steel and the parent phase is low carbon steel or low alloy steel. In detail, stainless steel clad steel sheets are manufactured using a rolling method to produce high-toughness, high-strength stainless steel clad steel sheets with excellent corrosion resistance from sandwich-type assembled slabs consisting of two base materials and two laminates. The present invention relates to a manufacturing method.

クラツド鋼板は、その価格が、単身のオーステナイト系
ステンレス鋼板又は二相系ステンレス鋼板と比較して安
価なため、徐々にこれらの代替品として拡販される方向
にある。
Since clad steel sheets are cheaper than single austenitic stainless steel sheets or duplex stainless steel sheets, sales of clad steel sheets are gradually expanding as a substitute for these sheets.

これらクラツド鋼板においては、耐食性は合せ材で、強
度、靭性は母材で確保するのが一般的であるが、従来技
術の圧延法によるクラツド鋼板の品質面についてみると
、合せ材との接着強度を確保するための製造上の制約、
ステンレス鋼等合せ拐に優れた耐食性を賦与するための
製造上の制約等から、母材の強度、靭性は、単身の低炭
素鋼乃至低合金鋼のそれに比較して′劣る。また、合せ
材たるオーステナイト系ステンレス鋼、二相系ステンレ
ス鋼も同様の理由等から、耐食性がこれら単身の鋼板と
比較して劣る。そのために、従来のクラツド鋼板を、高
強度、高靭性、高耐食性が要求されるような用途、例え
ば高耐食性が要求されるようなラインパイプに用いるク
ラッドパイプ等に適用するには問題がある。
In these clad steel plates, corrosion resistance is generally secured in the laminate material, and strength and toughness are ensured in the base material, but when looking at the quality of clad steel plates produced by the conventional rolling method, the adhesive strength with the laminate material manufacturing constraints to ensure that
Due to manufacturing constraints for imparting excellent corrosion resistance to stainless steel and other materials, the strength and toughness of the base material are inferior to those of single low carbon steel or low alloy steel. Further, for the same reason, the corrosion resistance of austenitic stainless steel and duplex stainless steel, which are laminated materials, is inferior to that of these single steel plates. Therefore, there are problems in applying conventional clad steel sheets to applications that require high strength, high toughness, and high corrosion resistance, such as clad pipes used in line pipes that require high corrosion resistance.

そこで、これらの問題点の解決法として、制御圧延によ
るクラツド鋼板の製造方法または溶体化処理型クラツド
鋼板の製造方法が検討されている。
Therefore, as a solution to these problems, a method of manufacturing a clad steel sheet by controlled rolling or a method of manufacturing a solution-treated clad steel sheet is being considered.

前者は、母材と合せ材を重ね合せて圧延し、クラツディ
ングするに際し、母材のオーステナイト未再結晶温度域
で実質的な累積圧下を行う所謂制御圧延によって、母材
である低炭素鋼または低合金鋼の高強度化、高靭化をは
がシ、これを介して前記のごとくクラツド鋼板の高強度
化、高靭性化を達成せんとするものである。
The former is a low-carbon steel or a low-carbon steel that is the base material by so-called controlled rolling that performs a substantial cumulative reduction in the austenite non-recrystallization temperature range of the base material when the base material and laminate are overlapped, rolled, and clad. The objective is to increase the strength and toughness of alloy steel and, through this, to achieve higher strength and toughness of clad steel sheets as described above.

しかし、この制御圧延にょシ高強度化、高靭性化するに
は、未再結晶温度域のしかも850℃以下といつだ低温
度域で相当高い累積圧下を行う必要があり、これにつれ
て仕上り温度も必然的に低くなってくる。このことは、
必然的に同月と合せ材との接着強度を確保するために必
要な、よシ高温域での圧下が不足することを意味するだ
けでなく、850℃未満で圧下を加えると合せ祠がオー
ステナイト系ステンレス鋼であるときは、その炭素含有
量にもよるが、Cr炭化物の誘起析出を招き、まだ二相
系ステンレス鋼にあってはσ相の析出を招き、これらの
析出にょシフラッド鋼板の耐食性が劣化する。
However, in order to increase the strength and toughness of this controlled rolling, it is necessary to perform a fairly high cumulative reduction in the non-recrystallized temperature range, and also in the low temperature range of 850°C or less, and as a result, the finishing temperature also increases. inevitably becomes lower. This means that
Not only does this mean that the reduction at a higher temperature, which is necessary to ensure the adhesive strength between the laminate and the laminate, is insufficient, but if the reduction is applied at a temperature below 850°C, the laminate becomes austenitic. When the stainless steel is used, depending on its carbon content, induced precipitation of Cr carbides is induced, and when it is still a duplex stainless steel, the precipitation of the σ phase is caused, and these precipitations deteriorate the corrosion resistance of the flat steel sheet. to degrade.

また、制御圧延後の冷却は空冷となるため、圧延開始前
に組立スラブをCr炭化物が十分に固溶する温度に加熱
しておいても、圧延後の冷却過程で一度固溶したCr炭
化物が再析出する危険性がある。
In addition, since cooling after controlled rolling is performed by air cooling, even if the assembled slab is heated to a temperature at which Cr carbide is sufficiently dissolved in the solid solution before rolling, the Cr carbide that has been dissolved in the solid solution will be removed during the cooling process after rolling. There is a risk of redeposition.

特に、2枚の母材間に分離剤を中心にして対称的に配し
た2枚の合せ材を挿入してなるサンドイッチ型組立スラ
ブを圧延する(即ち2枚のクラツド鋼板を同時に得るよ
うな)場合には、圧延中及びその後の冷却の各時点にお
ける板厚は通常のそれの2倍となることから、クラツド
鋼板の冷却速度は益々おそくなる傾向となり、Cr炭化
物の析出によるステンレス鋼の耐食性低下が問題となっ
てくる。
In particular, sandwich-type assembled slabs are rolled that are formed by inserting two sheets of laminate material arranged symmetrically around a separating agent between two base materials (i.e., two clad steel sheets are obtained at the same time). In this case, the plate thickness at each point during rolling and subsequent cooling is twice the normal thickness, so the cooling rate of the clad steel plate tends to become slower and the corrosion resistance of the stainless steel deteriorates due to the precipitation of Cr carbides. becomes a problem.

また、サンドインチ型組立スラブを用いるクラッド、鋼
板の製造においては、圧延段階各時点で板厚は通常のそ
れの2倍となるだめ、同一圧下値のもとでは各クラツド
鋼板にか\る圧下量は−にしかならず、制御圧延による
強度、靭性の向上もそれ程期待できないことから、何ら
か別の対策を講する必要がでてくる。
In addition, in the production of cladding and steel plates using sand inch type assembled slabs, the thickness of the plate is twice that of the normal thickness at each point in the rolling stage. Since the amount is only -, and we cannot expect much improvement in strength and toughness through controlled rolling, it becomes necessary to take some other measures.

後者の溶体化処理型クラツド鋼板の製造にあつイrr+
 J−箇加剖償曲七聞υ百トちス〜+うも七 m処決そ
の他の適宜の方法によシ母材と合せ材とがクラツディン
グされたクラツド鋼板を熱処理することにより所定の性
質を賦与せんとす乙方法になるが、合せ材であるステン
レス鋼の溶体化処理を主、たる目的としてその加熱温度
を選定すると、Cr炭化物を固溶させるだめ1050℃
以上の如き高温加熱が必要となってくる。母材はこのよ
うな高温に加熱されると、そのオーステナイト粒度が異
状に粗大化し、その靭性の劣化を招くとともに、冷却過
程において合せ材であるステンレス鋼のCr炭化物が再
析出するのを防止する目的で急冷すると、母材は硬化し
て焼戻し処理が必要となってくる。
For the production of the latter solution-treated clad steel sheet rr+
Predetermined properties can be obtained by heat-treating a clad steel plate in which a base material and a laminate material are clad together by a suitable method such as J-Kakana-Kai-Kyoku Shichimon υ 100 Tochis ~ + Umo 7 m treatment or other appropriate method. However, if the heating temperature is selected with the main purpose of solution treatment of the stainless steel that is the cladding material, the heating temperature will be 1050℃ to dissolve the Cr carbide.
High-temperature heating as described above becomes necessary. When the base metal is heated to such high temperatures, its austenite grain size becomes abnormally coarse, leading to deterioration of its toughness, and at the same time preventing the Cr carbide of the stainless steel, which is the bonding material, from re-precipitating during the cooling process. If the material is rapidly cooled for that purpose, the base material hardens and requires tempering.

焼戻しを行えば母材は軟化するが、ステンレス鋼の鋭敏
化につながる。
Tempering softens the base material, but it also sensitizes the stainless steel.

一方、母材である低炭素鋼または低合金鋼の強度、靭性
改善を主たる目的としてその熱処理加熱温度を選定する
と、上に述べたところから明らかなように、ステンレス
鋼においてCr炭化物の固溶が不十分となり、その耐食
性を十分に発揮しえないところとなる。
On the other hand, if the heat treatment temperature is selected with the main purpose of improving the strength and toughness of the base metal, low carbon steel or low alloy steel, as is clear from the above, solid solution of Cr carbides in stainless steel will occur. This results in insufficient corrosion resistance, and the corrosion resistance cannot be fully demonstrated.

結局のところ、その加熱温度としては、両温度の中間を
とって、両特性とも充分な性質を発揮し得ぬところで妥
協し、また冷却も空冷を採用する以外に適当な手段がな
いのが現況である。
In the end, the current situation is that the heating temperature is somewhere between the two temperatures, making a compromise where both properties cannot be fully demonstrated, and there is no other suitable means for cooling other than air cooling. It is.

この発明は、上述の現状に鑑み、母材の靭性および強度
が優れると同時に合せ材の耐食性にも優れ、かつ、母材
と合せ材の接着強度が十分なステンレスクラツド鋼板の
製造方法を提供するもので、分離剤を挾んで配置された
オーステナイト系ステンレス鋼または二相系ステンレス
鋼からなる2枚の合せ材を、低炭素鋼重たは低合金銅か
らなる2枚の母材間に挿入してなる、サイドインチ型組
立スラブを圧延し、次いで前記分離剤の部分から剥離し
て、ステンレスクラツド鋼板を製造する方法において、
前記組立スラブを1050℃以上の温度に加熱し、次い
で前記組立スラブを、850〜950℃の温度域、30
チ以上80q6未満の累積圧下率で、かつ、850℃以
上の仕上多温度で圧延し、その後直ちに、このようにし
て圧延された組立スラブを、2〜b ける平均冷却導度で、450〜650℃の温度範囲まで
加速冷却し、しかる後に、このようにして加速冷却され
た組立スラブを放冷することに特徴を有する。
In view of the above-mentioned current situation, the present invention provides a method for manufacturing a stainless clad steel sheet that has excellent toughness and strength of the base material, excellent corrosion resistance of the laminate material, and sufficient adhesive strength between the base material and the laminate material. In this method, two mating materials made of austenitic stainless steel or duplex stainless steel with a separating agent sandwiched between them are inserted between two base materials made of heavy low carbon steel or low alloy copper. In the method of manufacturing a stainless clad steel sheet by rolling a side-inch type assembled slab and then peeling it from the separating agent part,
The assembled slab is heated to a temperature of 1050°C or higher, and then the assembled slab is heated in a temperature range of 850 to 950°C for 30 minutes.
Immediately after rolling the assembled slab thus rolled at a cumulative reduction rate of 1 to 80q6 and less than 80q6 and at a finishing temperature of 850°C or higher, an average cooling conductivity of 450 to 650 It is characterized by accelerated cooling to a temperature range of 0.degree. C., and then allowing the assembled slab thus accelerated to cool.

、この発明でオーステナイト系ステンレス鋼とは、JI
SG3601ステンレスクラッド鋼において合せ材とし
て適用されているステンレス鋼のう5オーステナイト系
であって、通常溶体化処理が必要とされる全てのステン
レス鋼を指す。また、二相系ステンレス鋼とは、SUS
 329 J Iの如く、フェライトとオーステナイト
の二相組織を有する全ての鋼を指す。これらステンレス
鋼合せ材の組成を概括すれば、C:0.1%以下、S1
’、 2 %以下、Mn:5%以下、Ni:6−50%
、Cr:、10〜30%、All! : 1 %以下、
残部:鉄及び不可避不純物(以上重量%)からなるもの
を基本組成とし、必要に応じて更に、T1:2%以下、
Nb:2%以下、Cu:4、−戸以下、Mo:10%以
下の1種又は2種品上−を含有する。
, In this invention, austenitic stainless steel is JI
SG3601 Stainless clad steel refers to any type of stainless steel that is austenitic and is used as a cladding material, and generally requires solution treatment. In addition, duplex stainless steel is SUS
329 J I refers to all steels that have a two-phase structure of ferrite and austenite. To summarize the composition of these stainless steel laminates, C: 0.1% or less, S1
', 2% or less, Mn: 5% or less, Ni: 6-50%
, Cr:, 10-30%, All! : 1% or less,
The balance: The basic composition consists of iron and unavoidable impurities (more than 2% by weight), and if necessary, T1: 2% or less,
Contains one or two of the following: Nb: 2% or less, Cu: 4% or less, and Mo: 10% or less.

また、炭素鋼乃至低合金鋼とは、同じくJlsG360
’lに母材として適用される材料として掲げであるもの
を包含するが、特に溶接性、強度、靭性を考慮すると、
その組成は次の如くになる。C:0.20%以下、Si
: 0.05〜0.7%、Mn二〇、20〜3.00%
、Sot、An : 0.0 ’i’%以下、残部:鉄
及び不可避不純物(以上重量%)からなるものを基本組
成とし、必要に応じて更に、Nb:0.20%以下、V
:0.30%以下、Zr: 0.20%以下、T1:0
.30%以下、Ta: 0.10%以下、B:0.00
2%以下、Mo:1.5%以下、Cu:1%以下、Ni
:’10チ以下の1種又は2種以上を含有した組成を有
する。
Also, carbon steel or low alloy steel is JlsG360
'l includes the materials listed as base materials, but especially considering weldability, strength, and toughness,
Its composition is as follows. C: 0.20% or less, Si
: 0.05-0.7%, Mn 20, 20-3.00%
, Sot, An: 0.0'i'% or less, balance: iron and unavoidable impurities (weight% or more), and if necessary, Nb: 0.20% or less, V
: 0.30% or less, Zr: 0.20% or less, T1: 0
.. 30% or less, Ta: 0.10% or less, B: 0.00
2% or less, Mo: 1.5% or less, Cu: 1% or less, Ni
: It has a composition containing one or more of the following.

この発明においてクラツド鋼板を製造するに際してサン
ドインチ型組立スラブを用いるのは、圧延中およびその
後の冷却過程において、母材である炭素鋼まだは低合金
鋼と合せ材であるステンレス鋼とは熱膨張率が大幅にこ
となることから、クラツド鋼板には大きな歪みが生ずる
ことに対処するためである。すなわち、分離剤をはさん
で上下1対の合せ材および母材を一体のものとして圧延
及び加速冷却することによシ熱膨張率の差による歪みの
発生を極力抑制するだめである。
In this invention, the sandwich-type assembled slab is used to manufacture clad steel sheets.During rolling and subsequent cooling process, the base material, carbon steel, low alloy steel, and the mating material, stainless steel, undergo thermal expansion. This is to deal with the fact that large distortions occur in the clad steel plate due to the large difference in the ratio. That is, by rolling and accelerating cooling the pair of upper and lower mating materials and the base material as one unit with a separating agent in between, it is possible to suppress the occurrence of distortion due to the difference in coefficient of thermal expansion as much as possible.

前記組立スラブの加熱温度を1050℃以上とするのは
、合せ材であるステンレス鋼にCr炭化物を士、2分に
固溶させるだめであって、これ未満の加熱温度を採用し
た場合は、その後の工程をたとえこの発明の工程と同一
にしても、優れた耐食性を有するクラツド鋼板を製造す
ることはできない。
The heating temperature of the assembled slab is set to 1050°C or higher in order to dissolve Cr carbide into the stainless steel that is the mating material within 2 minutes.If a heating temperature lower than this is used, then Even if the process is the same as the process of the present invention, a clad steel plate with excellent corrosion resistance cannot be manufactured.

前記の加熱後、組立スラブに圧延を施すことになるが、
この圧延は、合せ材と母材との接着性、母料の強度、靭
性ならびに合せ材の耐食性に大きな影響を与えるもので
、圧延条件の設定は重要となる。この発明では、850
〜950℃の温度域での累積圧下率を30−以上80−
未満とし、しかも仕上多温度を850℃以上とする圧延
を行う。
After the above heating, the assembled slab will be rolled.
This rolling has a great effect on the adhesion between the laminate and the base material, the strength and toughness of the base material, and the corrosion resistance of the laminate, so setting the rolling conditions is important. In this invention, 850
The cumulative reduction rate in the temperature range of ~950℃ is 30- or more than 80-
rolling is carried out at a finishing temperature of 850°C or higher.

ここで950℃以下の温度域での累積圧下率を規定する
のは、低炭素鋼または低合金鋼の未再結晶温度域におい
て圧下をかけることにより、母材のオーステナイトに一
定量以上の歪みを導入しフェライトへの変態核を多数生
じさせるためであって、これを超える温度域で圧下を加
えても再結晶によシ歪みが解消され、母材のフェライト
粒微細化には殆んど寄与するところがないためである。
Here, the cumulative reduction rate in the temperature range of 950°C or less is specified by applying a reduction in the non-recrystallization temperature range of low carbon steel or low alloy steel to create a certain amount of strain or more in the austenite of the base material. The purpose is to introduce a large number of transformation nuclei into ferrite, and even if pressure is applied in a temperature range exceeding this, the distortion will be eliminated by recrystallization, and it will hardly contribute to the refinement of the ferrite grains in the base material. This is because there is nowhere to go.

また950℃以下の温度域における累積圧下が艶チ未満
では、オーステナイトに導入される歪みが少くてフェラ
イトの顕著な微細化はもたらされず、従って母材の高強
度、高靭性化は達成できない。
Further, if the cumulative reduction in the temperature range of 950° C. or lower is less than glossy, the strain introduced into the austenite is small and significant refinement of ferrite is not brought about, so that high strength and high toughness of the base material cannot be achieved.

未再結晶温度域での累積圧下の増加は、母材の靭性、強
度の改善上は有効に作用するものの、母材と合せ材との
接着性の上からは、むしろ再結晶温度域で相当量の圧下
が必要で、これとの兼ね合い上、むやみに未再結晶温度
域での累積圧下を増すことは逆にマイナスである。その
ため、この発明では、950℃以下の累積圧下率を80
チ未満とするものであって、この温度域での累積圧下率
を80チ以上とすると、母材と合せ材との接着強度が不
十分となる。母材と合せ材との接着強度を十分なものと
するためには、再結晶温度域での圧下比を4以上様るよ
うに圧延することが望ましい。
Although increasing the cumulative reduction in the non-recrystallized temperature range is effective in improving the toughness and strength of the base material, it is rather difficult to improve the adhesion between the base material and the laminate in the recrystallized temperature range. In consideration of this, increasing the cumulative pressure in the non-recrystallization temperature range unnecessarily has a negative effect. Therefore, in this invention, the cumulative reduction rate of 950°C or less is 80°C.
If the cumulative rolling reduction in this temperature range is 80 inches or more, the adhesive strength between the base material and the laminated material will be insufficient. In order to obtain sufficient adhesive strength between the base material and the laminate, it is desirable to perform rolling with a rolling reduction ratio of 4 or more in the recrystallization temperature range.

なお、この発明において圧延仕上シ温度を850℃以上
とし850℃未満で圧下を加えないのは、単身の低炭素
鋼または低合金鋼における制御圧延において、この温度
域で大きな累積圧下を加えるのと対称的であるが、これ
はこの温度域で圧下を加、えることは母材に対しては有
利に作用するもの\、合せ材のステンレス鋼においては
、Cr炭化物の誘起析出またはσ相の析出を招き、その
耐食性が劣化するだめである。
In addition, in this invention, setting the rolling finish temperature to 850°C or higher and not applying reduction below 850°C is the same as applying a large cumulative reduction in this temperature range in controlled rolling of single low carbon steel or low alloy steel. Although this is symmetrical, applying pressure in this temperature range has an advantageous effect on the base metal.In the case of stainless steel, which is a laminate material, it can cause the induced precipitation of Cr carbides or the precipitation of the σ phase. This will cause corrosion resistance to deteriorate.

上記の圧延完了後直ちに圧延された組立スラブを450
〜650℃まで、母材の平均冷却速度で2〜b が、このような条件の冷却は母材の強靭化および合せ材
に高耐食性を賦与する上に必要欠くべからざる要件であ
る。
Immediately after the above rolling is completed, the assembled slab is rolled at 450
Cooling under such conditions is an indispensable requirement for strengthening the base material and imparting high corrosion resistance to the laminated material.

この発明においては、既述のごとく、サンドインチ型組
立スラブを用いて圧延−冷却が行われるので、オープン
サンドインチ方式組立スラブを用いての場合に比べて板
厚が2倍となシ、冷却−速度がおそくなるから、この加
速冷却は不可欠である。
In this invention, as mentioned above, rolling and cooling are performed using a sandwich-inch assembly slab, so the plate thickness is twice that of the case using an open-sandinch assembly slab. - This accelerated cooling is essential since the speed is slow.

なお、この発明で圧延完7孝の加速冷却速度を母材の平
均冷却速度で規定するのは、クラツド鋼板において全体
に占める母材の比率が、合せ材のそれに比べて格段に大
きいためであシ、母材の冷却速度によって合せ材の冷却
速度もはソ把握しう′ると考えるためである。
In addition, in this invention, the accelerated cooling rate of the 7th grade of rolling is defined by the average cooling rate of the base metal because the ratio of the base metal to the whole in a clad steel plate is much larger than that of the laminated material. This is because it is believed that the cooling rate of the laminate can be determined by the cooling rate of the base material.

先ず母材についてみると、850〜950℃の温度域で
所定の累、積圧下が加えられ、ある程度まで変形帯密度
が高められた未再結晶オーステナイトを、直ちに加速冷
却することによシ、フェライトへの変態が一斉に開始す
ることになり、この結果、微細なフェライト・パーライ
トを主体とする組織となる。この加速冷却は、少くとも
650℃まで行なう必要があるのであって、加速冷却時
の平均冷却速度が2℃/冠未満または加速冷却停止温度
が650℃を越えるときは、上記の効果が得られない0 この加速冷却速度および加速冷却停止温度は、合せ材の
耐食性確保上からは、それぞれ大きければ大きい程、低
温まで加速冷却すればする程好ましいが、母材の性質を
優れたものとする点から制限を受ける。
First, regarding the base material, unrecrystallized austenite, which has been subjected to a predetermined cumulative pressure in a temperature range of 850 to 950°C and whose deformation band density has been increased to a certain extent, is immediately accelerated and cooled to form ferrite. As a result, the structure is mainly composed of fine ferrite and pearlite. This accelerated cooling must be carried out to at least 650°C, and if the average cooling rate during accelerated cooling is less than 2°C/crown or the accelerated cooling stop temperature exceeds 650°C, the above effects cannot be obtained. No 0 The higher the accelerated cooling rate and accelerated cooling stop temperature are, the better it is to ensure the corrosion resistance of the laminated material, and the faster the accelerated cooling to a lower temperature, the better. be restricted from.

すなわち、加速冷却速度が30℃/就を超えるときまた
は450℃未満まで加速冷却するときには、母材にマル
テンサイト組織が生じて靭性が劣化する。から、避けな
ければならない。
That is, when the accelerated cooling rate exceeds 30° C./30° C. or when accelerated cooling is performed to less than 450° C., a martensitic structure is generated in the base material and the toughness is deteriorated. Therefore, it must be avoided.

合せ材であるオーステナイト系ステンレス鋼または二相
系ステンレス鋼については、Cr炭化物の析出には、4
50℃よシ高い温度域の徐冷が問題となるから、圧延完
了後は直ちに加速冷却して、少くとも650℃まで、好
ましくは550℃以下まで急速に冷却する必要がある。
For austenitic stainless steel or duplex stainless steel, which is a cladding material, precipitation of Cr carbide requires 4
Since slow cooling in a temperature range higher than 50°C is a problem, it is necessary to perform accelerated cooling immediately after rolling is completed to rapidly cool the product to at least 650°C, preferably to 550°C or lower.

また、この加速冷却速度としては母材の平均冷却速度で
2℃/ Sec未満では合せ材の耐食性が芳しくなく、
2℃/sec以上とする必要がある。従って、上述のよ
うな加速冷却を行なうことは、合せ材の徐冷によるCr
炭化物の析出防止および耐食性向上にも有利に作用する
In addition, if the accelerated cooling rate is less than 2°C/Sec based on the average cooling rate of the base material, the corrosion resistance of the composite material will be poor.
It is necessary to set the temperature to 2°C/sec or more. Therefore, performing accelerated cooling as described above means that the Cr by slow cooling of the laminated material
It also works advantageously to prevent carbide precipitation and improve corrosion resistance.

加速冷却停止後、組立スラブは放冷され、分子ノ([剤
の部分から剥離してクラツド銅板を得る。
After the accelerated cooling is stopped, the assembled slab is allowed to cool and is peeled off from the molecular layer to obtain a clad copper plate.

次に、この発明を実施例によシ説明する1、第1表に示
す成分を含有する3種類のステンレス鋼合せ材と3種類
の母材とを適宜組合せてなる2枚の母材間に2枚の合せ
材を挿入したサンドインチ型組立スラブから、第1図、
第2図、第3図および第4図の温度曲線を有する製造プ
ロセスI。
Next, the present invention will be explained with reference to examples. Figure 1,
Manufacturing process I with the temperature curves of FIGS. 2, 3 and 4.

■、■および■によシスチンレスクラツド鋼板を製造し
た。
Cystineless clad steel plates were manufactured according to (1), (2) and (2).

第1図に示す製造プロセスIは通常圧延型プロセスで、
圧着圧延後空冷するのみで、母材のオーステナイト未再
結晶温度域での圧下を行なわないものである。第2図に
示す製造プロセス■は制御圧延型プロセスで、圧着圧延
後、母材のオーステナイト未再結晶温度域での圧下(制
御圧延)を相当量行なうものである。第3図に示す製造
プロセス■は熱処理型プロセスで、圧着圧延、空冷に続
いて再度加熱、空冷して規準処理(溶体化処理)をする
ものである。第4図に示す製造プロセスIVは制御圧延
制御冷却型プロセスで、圧着圧延後、母材のオーステナ
イト未再結晶温度域での圧下を相当量行ない、次いで所
定の冷却速度で加速冷却(制御冷却)を行なうものであ
る。
Manufacturing process I shown in FIG. 1 is a normal rolling type process,
It is only air cooled after compression rolling, and no reduction is performed in the austenite non-recrystallization temperature range of the base material. Manufacturing process (1) shown in FIG. 2 is a controlled rolling type process in which, after compression rolling, a considerable amount of reduction (controlled rolling) is performed in the austenite non-recrystallization temperature range of the base material. The manufacturing process (1) shown in FIG. 3 is a heat treatment type process, in which compression rolling and air cooling are followed by heating and air cooling again to perform standard treatment (solution treatment). Manufacturing process IV shown in Figure 4 is a controlled rolling controlled cooling type process, in which after compression rolling, a considerable amount of rolling is performed in the austenite non-recrystallized temperature range of the base material, and then accelerated cooling at a predetermined cooling rate (controlled cooling) This is what we do.

第2表に、得られたステンレスクラツド鋼板1〜20(
比較鋼板1−1.4および本発明鋼板15〜20)と製
造プロセスI〜IYにおける条件を、そして第3表に、
上記クラツド鋼板1〜20の剪断強度、粒界腐食試験結
果および母材の機械試験結果を示す。なお、SUS 3
29J−1である合せ材Cを用いた比較鋼板5、本発明
鋼板19の場合、ストラウス試験では差がでないので、
粒界腐食試験はヒューイテストを行なった。
Table 2 shows the obtained stainless clad steel plates 1 to 20 (
Comparative steel plates 1-1.4 and invention steel plates 15 to 20) and the conditions in manufacturing processes I to IY are shown in Table 3.
The shear strength, intergranular corrosion test results, and base metal mechanical test results of the clad steel plates 1 to 20 are shown below. In addition, SUS 3
In the case of Comparative Steel Plate 5 using Comparative Material C, which is 29J-1, and Invention Steel Plate 19, there is no difference in the Strauss test, so
The intergranular corrosion test was carried out using the Huey test.

比較鋼板lは、第1図の通常圧延型プロセス■により製
造したもので、圧着圧延のみである。圧延完了板厚は3
0mmで、製品板厚は15m、になる。
Comparative steel plate 1 was produced by the normal rolling process (3) shown in FIG. 1, and was only subjected to pressure rolling. The finished plate thickness after rolling is 3
If the thickness is 0mm, the product board thickness will be 15m.

圧延の仕上り温度が1000℃で、母材のオーステナイ
ト未再結晶温度域で何らの圧下が行なわれていないため
、母料の強度、靭性が芳しくないだけでなく、圧延完了
後放冷されているために、合せ材の耐食性も劣っている
The finishing temperature of rolling is 1000℃, and no reduction is performed in the austenite non-recrystallization temperature range of the base material, so not only is the strength and toughness of the base material poor, but it is also left to cool after completion of rolling. Therefore, the corrosion resistance of the laminated material is also poor.

比較鋼板2〜7は、第2図の制御圧延型プロセス■によ
シ製造したものである。いずれも母材のオーステナイト
未再結晶温度域で相当量の累積圧下が行なわれているこ
とから、y、s (降伏強度)、T、S(引張強さ)が
向上している。
Comparative steel plates 2 to 7 were produced by controlled rolling process (2) shown in FIG. In both cases, a considerable amount of cumulative reduction was performed in the austenite non-recrystallization temperature range of the base metal, so y, s (yield strength), T, and S (tensile strength) were improved.

特に850℃以下の温度域で50%の累積圧下を行い、
750℃で仕上げた比較鋼板4,5ではT、S も優れ
衝撃特性も優れたものとなっている。
In particular, perform a cumulative pressure reduction of 50% in a temperature range of 850°C or less,
Comparative steel plates 4 and 5, which were finished at 750°C, had excellent T and S values, as well as excellent impact properties.

しかしながら合せ材の耐食性は、Cr炭化物の析出によ
シいずれも劣ったものとなっている。比較鋼板4では、
Cr炭化物の誘起析出、比較鋼板5のでは、合せ材Cの
二相系ステンレスのσ相の析出による耐食性の劣化、お
よび脆化も重畳してくる。
However, the corrosion resistance of the laminated material is poor due to the precipitation of Cr carbide. For comparison steel plate 4,
In Comparative Steel Sheet 5, induced precipitation of Cr carbides causes deterioration in corrosion resistance and embrittlement due to precipitation of the σ phase of the duplex stainless steel of the laminate C.

比較鋼板6は900℃以下の温度域で80%の強制御圧
延を行った場合で、母相の強度、靭性はiffずのレベ
ルにあるが、母材のオーステナイト再結晶温度域での圧
下が不足となるため、母材と合せ材の接着強度が著しく
低い。
Comparative steel plate 6 was subjected to 80% intensive controlled rolling in a temperature range of 900°C or lower, and the strength and toughness of the matrix were at the level of IF, but the rolling in the austenite recrystallization temperature range of the base metal was As a result, the adhesive strength between the base material and the laminate material is extremely low.

比較鋼板マは厚物クラツド鋼板で、合せ材としては5t
ys 304L (合せ板b)を用いているにもかかわ
らす圧延完了後の板厚が、30龍の場合に比べて圧延彷
の冷却速度がかなりおそくなることから耐食性が劣シ、
また母材の強度、靭性も芳しくない。
The comparison steel plate is a thick clad steel plate, and the laminating material is 5t.
Even though ys 304L (laminated plate b) is used, the plate thickness after rolling is much slower than in the case of 30 yen, so the corrosion resistance is poor.
Also, the strength and toughness of the base material are not good.

比較鋼板8〜11は、第3図の熱処理型プロセス■によ
シ製造したものである。すなわち、比較鋼板lと同様、
仕上多温度を1OOo℃とする圧着圧延によりクラツデ
ィングを行ない、かくして得られたクラツド鋼板を、9
70℃または910℃に再加熱し、空塔する規準処理(
溶体化処理)を行なったものである。
Comparative steel plates 8 to 11 were produced by heat treatment type process (2) shown in FIG. In other words, similar to comparative steel plate l,
Cladding was carried out by pressure rolling at a finishing temperature of 1OOo℃, and the clad steel plate thus obtained was
Standard treatment of reheating to 70°C or 910°C and emptying the column (
solution treatment).

比較鋼板8〜11は、母材の強度、靭性が劣るだけでな
く、合せ材の耐食性も芳しく乃い。規準温度を低目に選
定すると、母材靭性は若干改善されるが、合せ材の耐食
性はむしろ悪化する傾向を示す。
Comparative steel plates 8 to 11 not only have inferior strength and toughness of the base metal, but also have poor corrosion resistance of the laminated material. When the standard temperature is selected to be low, the toughness of the base material is slightly improved, but the corrosion resistance of the laminate material tends to deteriorate.

比較鋼板12〜14は、第4図に示す制御圧延−制御冷
却型プロセス■により製造したもので、母材のオーステ
ナイト未再結晶温度域で実質的な累積圧下圧延を行ない
、かつ、この圧延後に加速冷却を行なっている。しかし
、圧延条件または加速冷却条件が、この発明の条件と異
なるものである。
Comparative steel sheets 12 to 14 were manufactured by the controlled rolling-controlled cooling process (2) shown in FIG. Accelerated cooling is performed. However, the rolling conditions or accelerated cooling conditions are different from those of the present invention.

このうち比較鋼板12.13は、この発明で規定する仕
上多温度未満の温度域で圧下を行った例であシ、母材の
強度、靭性および母材と合せ材の接着強度は申し分ない
が、Cr炭化物の誘起析出によシ合せ材の耐食性に問題
がある。比較鋼板14は、圧延完了後の加速冷却速度が
不十分な場合で、前二者に比べて母材の靭性が劣ると共
に合せ材の耐食性に問題がある。
Of these, comparative steel plates 12 and 13 were rolled in a temperature range below the finishing temperature specified in the present invention, and the strength and toughness of the base material and the adhesive strength between the base material and the laminate were satisfactory. , there is a problem in the corrosion resistance of the joint material due to the induced precipitation of Cr carbides. Comparative steel plate 14 has a case where the accelerated cooling rate after completion of rolling is insufficient, and the toughness of the base material is inferior to that of the former two, and there is a problem in the corrosion resistance of the laminated material.

本発明銅板15〜20は、比較鋼板12〜14と同様に
第4図の制御圧延−制御冷却型プロセスIVによシ製造
したものであるが、比較鋼板12〜14とは、圧延条件
または冷却条件が異なる。すなわち、本発明鋼板15〜
20は、850〜950℃の温度域、30チ以上80%
未満の累積圧下率で、かつ、850℃以上の仕上多温度
という圧延条件内で圧延し、平均冷却速度2〜b ℃の温度まで加速冷却という冷却条件内で冷却したもの
である。
Copper plates 15 to 20 of the present invention, like comparative steel plates 12 to 14, were produced by the controlled rolling-controlled cooling type process IV shown in FIG. Conditions are different. That is, the present invention steel plate 15~
20 is a temperature range of 850-950℃, 80% of 30℃ or more
It is rolled under the rolling conditions of a cumulative rolling reduction of less than or equal to 850° C. and a finishing temperature of 850° C. or higher, and cooled under the cooling conditions of accelerated cooling to a temperature with an average cooling rate of 2 to b° C.

本発明鋼板15〜20は、いずれの試験においても母材
の強度、靭性が優れていると共に合せ材の耐食性も十分
で6.D、母材と合せ材の接着強度も十分なものとなっ
ている。厚物クラツド鋼板である本発明鋼板20におい
ても、比較鋼板7とは異な−シ、母材の強度、靭性、合
せ材の耐食性とも一段と向上しているのがわかる。
Steel plates 15 to 20 of the present invention have excellent strength and toughness of the base material in all tests, and the corrosion resistance of the laminated material is also sufficient.6. D. Adhesive strength between base material and laminate material is also sufficient. It can be seen that the steel plate 20 of the present invention, which is a thick clad steel plate, is also different from the comparative steel plate 7 in that the strength and toughness of the base material and the corrosion resistance of the laminated material are further improved.

以上の実施例からも明らかなように、この発明の製造方
法によれば、母材の靭性および強度が優れると同時に合
せ材の耐食性にも優れ、かつ、母材と合せ材の接着強度
が十分なステンレスクラツド鋼板が得られる。
As is clear from the above examples, according to the manufacturing method of the present invention, the base material has excellent toughness and strength, the laminate has excellent corrosion resistance, and the adhesive strength between the base material and the laminate is sufficient. A stainless clad steel sheet with high quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、通常圧延型の製造プロセスの温度曲線を示す
グラフ、第2図は、制御圧延型の製造プロセスの温度曲
線を示すグラフ、第3図は、熱処理型の製造プロセスの
温度曲線を示すグラフ、第4図は、制御圧延−制御冷却
型の製造プロセスの温度曲線を示すグラフである。 第1図 第3図 時間 第2図 第4図 時間
Fig. 1 is a graph showing the temperature curve of the normal rolling type manufacturing process, Fig. 2 is a graph showing the temperature curve of the controlled rolling type manufacturing process, and Fig. 3 is a graph showing the temperature curve of the heat treatment type manufacturing process. The graph shown in FIG. 4 is a graph showing a temperature curve of a controlled rolling-controlled cooling type manufacturing process. Figure 1 Figure 3 Time Figure 2 Figure 4 Time

Claims (1)

【特許請求の範囲】 分離剤を挾んで配置されたオーステナイト系ステンレス
鋼または二相系ステンレス鋼からなる2枚の合せ材を、
低炭素鋼まだは低合金鋼からなる2枚の母材間に挿入し
てなる、サンドインチ型組立スラブを圧延し、次いで前
記分離剤の部分から剥離して、ステンレスクラツド鋼板
を製造する方法において、前記組立スラブを1050℃
以上の温度に加熱し、次いで前記組立スラブを、850
〜950℃の温度域、304以上80チ未満の累積圧下
率で、かつ、850℃以上の仕上多温度で圧延し、その
後直ちに、このようにして圧延された組立スラブを、2
〜b ける平均冷却速度で、450〜650℃の温度範囲まで
加速冷却し、しかる後に、このようにして加速冷却され
た組立スラブを放冷することを特徴とする、耐食性の優
れた高強度、高靭性ステンレスクラツド鋼板の製造方法
[Claims] Two sheets of austenitic stainless steel or duplex stainless steel placed with a separating agent in between,
A method of manufacturing a stainless clad steel plate by rolling a sandwich-type assembled slab inserted between two base materials made of low carbon steel or low alloy steel, and then peeling it off from the separating agent part. The assembled slab was heated to 1050°C.
The assembled slab is then heated to a temperature of 850° C. or above.
Rolling is performed in a temperature range of ~950°C, at a cumulative reduction rate of 304 or more and less than 80 inches, and at a finishing temperature of 850°C or more, and immediately thereafter, the assembled slab rolled in this way is
High strength with excellent corrosion resistance, characterized by accelerated cooling to a temperature range of 450 to 650 ° C. at an average cooling rate of ~b, and then allowing the assembled slab thus accelerated to cool. A method for manufacturing high-toughness stainless clad steel sheets.
JP7297284A 1984-04-13 1984-04-13 Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance Granted JPS60216984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7297284A JPS60216984A (en) 1984-04-13 1984-04-13 Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7297284A JPS60216984A (en) 1984-04-13 1984-04-13 Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS60216984A true JPS60216984A (en) 1985-10-30
JPH0364233B2 JPH0364233B2 (en) 1991-10-04

Family

ID=13504809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7297284A Granted JPS60216984A (en) 1984-04-13 1984-04-13 Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPS60216984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110880A (en) * 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd Production of two-phase stainless steel clad steel
EP0488222A2 (en) * 1990-11-28 1992-06-03 Nippon Steel Corporation Method of producing clad steel plate having good low-temperature toughness
JP2014114466A (en) * 2012-12-07 2014-06-26 Jfe Steel Corp Cladding material of duplex stainless clad steel having excellent pitting-corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
CN110225989A (en) * 2017-01-26 2019-09-10 杰富意钢铁株式会社 Two phase stainless steel clad steel and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046091A1 (en) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 Methods for joining stainless steel members, and stainless steels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110880A (en) * 1985-11-09 1987-05-21 Sumitomo Metal Ind Ltd Production of two-phase stainless steel clad steel
JPH0422677B2 (en) * 1985-11-09 1992-04-20 Sumitomo Metal Ind
EP0488222A2 (en) * 1990-11-28 1992-06-03 Nippon Steel Corporation Method of producing clad steel plate having good low-temperature toughness
US5183198A (en) * 1990-11-28 1993-02-02 Nippon Steel Corporation Method of producing clad steel plate having good low-temperature toughness
JP2014114466A (en) * 2012-12-07 2014-06-26 Jfe Steel Corp Cladding material of duplex stainless clad steel having excellent pitting-corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
CN110225989A (en) * 2017-01-26 2019-09-10 杰富意钢铁株式会社 Two phase stainless steel clad steel and its manufacturing method
EP3575427A4 (en) * 2017-01-26 2020-01-15 JFE Steel Corporation Two-phase stainless-clad steel and method for producing same

Also Published As

Publication number Publication date
JPH0364233B2 (en) 1991-10-04

Similar Documents

Publication Publication Date Title
CN105671424A (en) Nickel base alloy clad steel plates for pipeline and manufacturing method thereof
JPH04197588A (en) Production of clad steel plate excellent in toughness at low temperature
JPH0366075B2 (en)
JPH0295842A (en) Composite material and manufacture thereof
JPS60216984A (en) Production of high-strength and high-toughness stainless clad steel sheet having excellent corrosion resistance
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JPS62205230A (en) Manufacture of steel plate for low temperature service superior in characteristic for stopping brittle cracking propagation
JPH0365408B2 (en)
JPH04141517A (en) Production of steel plate excellent in brittle crack propagation arresting property and toughness at low temperature
JPH0716792B2 (en) Clad steel plate manufacturing method
JP3432428B2 (en) Deformed bar for reinforcing steel and method for producing the same
JPH0230712A (en) Production of clad steel sheet
JPH0665686A (en) Austenitic stainless steel cast clad steel material excellent in workability and its production
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPS6143413B2 (en)
JPS59182916A (en) Production of high-toughness high-tensile steel plate
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
JP3466300B2 (en) Manufacturing method of hot rolled steel sheet with remarkably excellent fatigue properties, shape freezing property and workability
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPH03260015A (en) Production of steel plate having excellent brittle crack propagating stop characteristic and low temperature toughness
JPS59182915A (en) Production of high tensile steel
JPH0592282A (en) Manufacture of clad steel plate excellent in sour-proofness and low temperature toughness
JPH05271860A (en) Structural steel excellent in brittle fracture resistance and its production
JPH0241400B2 (en)