JPH11173668A - Water heater - Google Patents

Water heater

Info

Publication number
JPH11173668A
JPH11173668A JP9356293A JP35629397A JPH11173668A JP H11173668 A JPH11173668 A JP H11173668A JP 9356293 A JP9356293 A JP 9356293A JP 35629397 A JP35629397 A JP 35629397A JP H11173668 A JPH11173668 A JP H11173668A
Authority
JP
Japan
Prior art keywords
flow rate
hot water
valve opening
detected
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9356293A
Other languages
Japanese (ja)
Other versions
JP3834407B2 (en
Inventor
Hisayasu Watanabe
久恭 渡辺
Toshihisa Saito
寿久 斉藤
Tetsuya Sato
徹哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP35629397A priority Critical patent/JP3834407B2/en
Publication of JPH11173668A publication Critical patent/JPH11173668A/en
Application granted granted Critical
Publication of JP3834407B2 publication Critical patent/JP3834407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply hot water of the set supply temperature at a set total flow rate. SOLUTION: A target flow rate ratio between a bypass flow rate Qbp and a flow rate Qyu on the side of hot water is determined to supply hot water of the set supply temperature. Utilizing outputs of flow rate sensors FS1 and FS2, a flow rate ratio between the bypass flow rate Qbp and the flow rate Qyu on the hot water side is detected to be compared with the target flow rate ratio thus obtained. The total flow rate Q of the supplied hot water is detected by the flow rate sensor FS2 to be compared with a set total flow rate. The travel of valves of first and second flow rate control means GM1 and GM2 is controlled so that the detected flow rate ratio coincides with the target flow rate ratio while the detected total flow rate coincides with the set total flow rate based on a control rule of the travel of the valve previously applied according to the results of the respective comparisons between the flow rates and the total flow rates and the combination of the results of the comparison between the flow rate ratios and total flow rates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、湯を作り出して給
湯する給湯器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater for producing and supplying hot water.

【0002】[0002]

【従来の技術】図12には給湯器のシステム構成の一例
がモデル図により示されている。この給湯器は、同図の
実線に示すように、バーナ1と給湯熱交換器2を有し、
給湯熱交換器2の入側には水供給源から給湯熱交換器2
に水を導くための給水通路3が連通接続され、また、給
湯熱交換器2の出側には給湯通路4の一端側が接続さ
れ、この給湯通路4の他端側は台所やシャワー等の給湯
場所に導かれている。上記給水通路3には該通路3の水
温を検出する入水サーミスタ5と、通水流量を検出する
水量センサ6とが設けられ、給湯通路4には該通路4か
ら給湯される湯水温を検出する出湯サーミスタ7が設け
られている。
2. Description of the Related Art FIG. 12 is a model diagram showing an example of a system configuration of a water heater. This water heater has a burner 1 and a hot water supply heat exchanger 2 as shown by a solid line in FIG.
On the inlet side of the hot water supply heat exchanger 2, a hot water supply heat exchanger 2
A water supply passage 3 for guiding water to the hot water supply heat exchanger 2 is connected to one end of a hot water supply passage 4. The other end of the hot water supply passage 4 is connected to a hot water supply such as a kitchen or a shower. Guided to location. The water supply passage 3 is provided with a water input thermistor 5 for detecting a water temperature of the passage 3 and a water amount sensor 6 for detecting a flow rate of water, and a hot water supply passage 4 for detecting a temperature of hot water supplied from the passage 4. A tap water thermistor 7 is provided.

【0003】上記バーナ1には燃料ガスを導くためのガ
ス供給通路8が連通接続されており、このガス供給通路
8には該通路の開閉を行う電磁弁10,11と、弁開度
でもってバーナ1への供給ガス量を制御する比例弁12
とが介設されている。
[0003] A gas supply passage 8 for introducing fuel gas is connected to the burner 1. The gas supply passage 8 has solenoid valves 10 and 11 for opening and closing the passage and a valve opening degree. Proportional valve 12 for controlling the amount of gas supplied to burner 1
And are interposed.

【0004】この給湯器には給湯運転を制御する制御装
置13が設けられ、この制御装置13には給湯設定温度
を設定するための給湯温度設定手段等が設けられたリモ
コン14が信号接続されている。上記制御装置13は次
のように給湯運転を制御する。例えば、台所やシャワー
等に導かれた給湯通路4の先端側に設けられた給湯栓
(図示せず)が開栓され、給水通路3の通水が水量セン
サ6により検出されると、電磁弁10,11を開弁して
ガス供給通路8からバーナ1に燃料ガスを供給してバー
ナ燃焼を開始させ、給湯される湯温がリモコン14に設
定されている給湯設定温度となるようにバーナ1の燃焼
熱量を比例弁12の弁開度を制御することによって(つ
まり、バーナ1への供給燃料ガス量を制御することによ
って)制御し、上記バーナ燃焼火炎の熱によって給湯熱
交換器2の通水が加熱されて給湯熱交換器2により湯が
作られ、該湯は給湯通路4を通って所望の給湯場所に供
給される。そして、給湯栓が閉栓されて給水通路3の通
水停止を水量センサ6が検出すると、電磁弁11を閉弁
してバーナ1の燃焼を停止し、給湯運転を終了する。
[0004] The water heater is provided with a control device 13 for controlling the hot water supply operation. The control device 13 is connected to a remote control 14 provided with a hot water supply temperature setting means for setting a hot water supply set temperature by signal connection. I have. The control device 13 controls the hot water supply operation as follows. For example, when a hot water tap (not shown) provided at the tip end of a hot water supply passage 4 led to a kitchen, a shower, or the like is opened, and when water flow through the water supply passage 3 is detected by a water amount sensor 6, an electromagnetic valve is provided. The fuel gas is supplied from the gas supply passage 8 to the burner 1 to start burner combustion by opening the valves 10 and 11, and the temperature of the hot water supplied becomes the hot water supply set temperature set on the remote controller 14. Is controlled by controlling the valve opening of the proportional valve 12 (that is, by controlling the amount of fuel gas supplied to the burner 1), and the heat of the burner combustion flame passes through the hot water supply heat exchanger 2. The water is heated to produce hot water by the hot water supply heat exchanger 2, and the hot water is supplied to a desired hot water supply place through the hot water supply passage 4. Then, when the hot water tap is closed and the water flow sensor 6 detects the stoppage of water supply in the water supply passage 3, the solenoid valve 11 is closed to stop the combustion of the burner 1, and the hot water supply operation ends.

【0005】[0005]

【発明が解決しようとする課題】ところで、給湯運転を
停止した直後には、給湯熱交換器2の保有熱量が給湯熱
交換器2に滞留している湯水に加えられて給湯熱交換器
2内の滞留湯水が加熱され給湯設定温度の湯を給湯する
ための湯温よりも高温になる後沸き現象が発生し、この
ように、給湯熱交換器2内の滞留湯水に後沸きが生じて
いる状態から給湯が開始されると、上記高温に加熱され
た湯が給湯して湯の利用者に高温による不快感を与えた
り、火傷を負わせる等の危険があるという問題が生じ
る。
Immediately after the hot water supply operation is stopped, the amount of heat retained in the hot water supply heat exchanger 2 is added to the hot water staying in the hot water supply heat exchanger 2 and the hot water supply in the hot water supply heat exchanger 2 is stopped. After the hot water of the hot water is heated and becomes higher than the hot water temperature for supplying hot water at the hot water supply set temperature, a post-boiling phenomenon occurs. Thus, the hot water staying in the hot water supply heat exchanger 2 is post-boiling. When the hot water supply is started from the state, there is a problem in that the hot water heated to the high temperature gives the user of the hot water an uncomfortable feeling due to the high temperature or a danger of causing a burn.

【0006】上記給湯熱交換器2内の滞留湯水に後沸き
が発生している状態から給湯が開始されるという再出湯
時の高温給湯の問題を回避するために、次に示すような
再出湯時高温給湯防止手段が考えられる。例えば、図1
2の点線に示すように、給水通路3と給湯通路4間を給
湯熱交換器2を迂回して連通接続するバイパス通路15
を設け、バイパス通路15には該通路15の開閉を行う
電磁弁により形成されたバイパス弁16を介設し、ま
た、給湯熱交換器2の出側には湯温を検出する熱交出側
サーミスタ17を設けておき、熱交出側サーミスタ17
により検出される湯温が予め定めた温度以上で給湯熱交
換器2内の滞留湯水に後沸きが発生していると判断でき
る状態から給湯が開始されたときには、上記バイパス弁
16を開弁して、給湯熱交換器2から流れ出た高温湯に
バイパス通路15から水をミキシングして湯温を下げ、
上記再出湯時の高温給湯の問題発生を防止することが考
えられる。
[0006] In order to avoid the problem of high-temperature hot water supply at the time of re-water supply, in which hot water supply is started from a state in which post-boiling occurs in the retained hot water in the hot water supply heat exchanger 2, the following re-water supply is required. Means for preventing high-temperature hot water supply can be considered. For example, FIG.
As shown by the dotted line 2, a bypass passage 15 that connects between the water supply passage 3 and the hot water supply passage 4 to bypass the hot water supply heat exchanger 2 and communicate therewith.
A bypass valve 16 formed by an electromagnetic valve for opening and closing the passage 15 is provided in the bypass passage 15, and a heat exchange side for detecting hot water temperature is provided on the outlet side of the hot water supply heat exchanger 2. The thermistor 17 is provided, and the heat exchange side thermistor 17 is provided.
When hot water supply is started from a state in which it is determined that post-boiling has occurred in the stagnant hot water in the hot water supply heat exchanger 2 when the hot water temperature detected by the above is equal to or higher than a predetermined temperature, the bypass valve 16 is opened. Then, the hot water flowing out of the hot water supply heat exchanger 2 is mixed with water from the bypass passage 15 to lower the hot water temperature,
It is conceivable to prevent the occurrence of the problem of high-temperature hot water supply at the time of the re-hot water supply.

【0007】しかしながら、バイパス通路15から流れ
出る水の単位時間当たりの流量は、給湯熱交換器2から
流れ出る湯温の高低に拘らずほぼ一定であることから、
給湯設定温度の湯を給湯するための給湯熱交換器の出側
湯温に対する給湯熱交換器2から流れ出る湯温の上昇分
(以下、オーバーシュートの大きさと記す)が小さいと
きには、給湯熱交換器2から流れ出た湯にミキシングす
る水量が過剰となり、給湯設定温度よりもかなり低めの
アンダーシュートの湯が給湯されてしまったり、反対
に、上記オーバーシュートの大きさが大きいときには、
給湯熱交換器2から流れ出た湯にミキシングする水量が
不足して、給湯設定温度よりも高めの湯が給湯されてし
まい、給湯開始時に給湯設定温度の湯を安定供給するこ
とができないという問題が発生する。
However, the flow rate of water flowing out of the bypass passage 15 per unit time is substantially constant regardless of the temperature of the hot water flowing out of the hot water supply heat exchanger 2.
When the rise in the temperature of the hot water flowing out of the hot water supply heat exchanger 2 with respect to the outlet hot water temperature of the hot water supply heat exchanger for supplying hot water at the set hot water supply temperature (hereinafter referred to as the magnitude of overshoot) is small, When the amount of water to be mixed with the hot water flowing out of 2 becomes excessive and hot water of an undershoot considerably lower than the hot water set temperature is supplied, or conversely, when the size of the overshoot is large,
The amount of water to be mixed with the hot water flowing out of the hot water supply heat exchanger 2 is insufficient, so that hot water higher than the hot water supply set temperature is supplied, and the hot water at the hot water supply set temperature cannot be stably supplied at the start of hot water supply. Occur.

【0008】この発明は、上記課題を解決するためにな
されたものであり、その目的は、再出湯時にも、給湯設
定温度の湯を予め定めた設定総流量でもって安定給湯す
ることが可能な給湯器を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to make it possible to stably supply hot water at a set hot water supply temperature at a predetermined total flow rate even when the hot water is again supplied. It is to provide a water heater.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この発明は次のような構成をもって前記課題を解決
する手段としている。すなわち、第1の発明は、給水通
路から供給された水を加熱して湯を作り出し該湯を給湯
通路に送出する給湯熱交換器と、上記給水通路と給湯通
路間を上記給湯熱交換器を迂回して連通接続するバイパ
ス通路と、該バイパス通路から流れ出た水が合流する湯
側の流量を弁開度でもって制御する第1の流量制御手段
と、上記バイパス通路を流れる水の流量を弁開度でもっ
て制御する第2の流量制御手段と、上記バイパス通路の
通水流量と湯側の流量との総流量を検出する総流量検出
手段とを有し、バイパス通路から流れ出る水と湯側の湯
とのミキシング後の湯温が予め定められた給湯設定温度
になるためのバイパス通路の通水流量と湯側の流量との
目標流量比を検出する目標流量比検出部と、バイパス通
路の通水流量と湯側の流量との流量比を検出する流量比
検出部とを備えた給湯器であって、上記流量比検出部に
より検出された流量比を上記目標流量比検出部により検
出された目標流量比に比較する流量比比較部と;上記総
流量検出手段により検出された総流量を予め定められた
設定総流量に比較する総流量比較部と;上記流量比と総
流量の各比較結果の組み合わせに応じて予め与えられて
いる弁開度制御ルールと、上記流量比比較部と総流量比
較部の各比較結果とに基づいて上記第1と第2の各流量
制御手段の弁開度を制御して上記検出流量比が目標流量
比に一致する方向に制御し併せて検出総流量が設定総流
量に一致する方向に制御して給湯設定温度の湯を設定総
流量でもって給湯するための流量比・総流量制御部と;
が設けられている構成をもって前記課題を解決する手段
としている。
Means for Solving the Problems In order to achieve the above object, the present invention has the following structure to solve the above problems. That is, the first invention is a hot water supply heat exchanger that heats water supplied from a water supply passage to produce hot water and sends the hot water to the hot water supply passage, and the hot water supply heat exchanger between the water supply passage and the hot water supply passage. A bypass passage for bypassing and communicating, first flow control means for controlling, by a valve opening, a flow rate on a hot water side where water flowing out from the bypass passage joins, and a flow rate of water flowing through the bypass passage; A second flow rate control means for controlling the flow rate based on the opening degree; and a total flow rate detection means for detecting a total flow rate of the flow rate of the bypass passage and the flow rate of the hot water side. A target flow ratio detecting unit for detecting a target flow ratio between a flow rate of the bypass passage and a flow rate on the hot water side so that the hot water temperature after mixing with the hot water reaches a predetermined hot water supply set temperature; The flow ratio between the water flow and the hot water flow A hot water supply comprising a flow rate ratio detecting section that outputs a flow rate, a flow rate comparing section that compares the flow rate detected by the flow rate detecting section with a target flow rate detected by the target flow rate detecting section; A total flow rate comparison unit for comparing the total flow rate detected by the total flow rate detection means with a predetermined total flow rate; a valve opening provided in advance according to a combination of each of the comparison results of the flow rate ratio and the total flow rate And controlling the valve opening of each of the first and second flow rate control means on the basis of the flow rate control rule and the comparison results of the flow rate comparison section and the total flow rate comparison section. And a flow ratio / total flow control unit for controlling the direction in which the detected total flow rate matches the set total flow rate and controlling the hot water at the hot water supply set temperature with the set total flow rate.
Is provided as means for solving the above problem.

【0010】第2の発明は、上記第1の発明の構成を備
え、弁開度制御ルールは、上記検出総流量が設定総流量
にほぼ等しく検出流量比が目標流量比よりも大きい場合
に上記第1の流量制御手段の弁開度を予め定めた第1上
限変化量を越えない範囲で開方向に小さく制御し、第2
の流量制御手段の弁開度を予め定めた第2上限変化量を
越えない範囲で閉方向に小さく制御する第1のルール
と、検出総流量が設定総流量にほぼ等しく検出流量比が
目標流量比よりも小さい場合に第1の流量制御手段の弁
開度を小さく閉方向に、第2の流量制御手段の弁開度を
小さく開方向にそれぞれ制御する第2のルールと、検出
総流量が設定総流量よりも多くて検出流量比が目標流量
比にほぼ等しい場合に第1の流量制御手段の弁開度を小
さく閉方向に、第2の流量制御手段の弁開度を小さく閉
方向にそれぞれ制御する第3のルールと、検出総流量が
設定総流量よりも少なくて検出流量比が目標流量比にほ
ぼ等しい場合に第1の流量制御手段の弁開度を小さく開
方向に、第2の流量制御手段の弁開度を小さく開方向に
それぞれ制御する第4のルールと、検出総流量が設定総
流量よりも少なくて検出流量比が目標流量比よりも大き
い場合に第1の流量制御手段の弁開度を予め定めた第1
下限変化量以上に開方向に大きく制御し、第2の流量制
御手段の弁開度を閉方向に小さく制御する第5のルール
と、検出総流量が設定総流量よりも少なくて検出流量比
が目標流量比よりも小さい場合に第1の流量制御手段の
弁開度を小さく閉方向に、第2の流量制御手段の弁開度
を予め定めた第2下限変化量以上に開方向に大きく制御
する第6のルールと、検出総流量が設定総流量よりも多
くて検出流量比が目標流量比よりも大きい場合に第1の
流量制御手段の弁開度を小さく開方向に、第2の流量制
御手段の弁開度を大きく閉方向にそれぞれ制御する第7
のルールと、検出総流量が設定総流量よりも多くて検出
流量比が目標流量比よりも小さい場合に第1の流量制御
手段の弁開度を大きく閉方向に、第2の流量制御手段の
弁開度を小さく開方向にそれぞれ制御する第8のルール
と、検出総流量が設定の総流量にほぼ等しく検出流量比
が目標流量比にほぼ等しい場合には第1と第2の各流量
制御手段の弁開度を変化させない第9のルールとから成
る構成をもって前記課題を解決する手段としている。
The second invention has the configuration of the first invention, and the valve opening control rule is such that when the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is larger than the target flow rate ratio, The valve opening degree of the first flow control means is controlled to be small in the opening direction within a range not exceeding a predetermined first upper limit change amount, and
A first rule that controls the valve opening degree of the flow control means in the closing direction so as not to exceed a second predetermined upper limit change amount, and that the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is equal to the target flow rate. When the ratio is smaller than the ratio, the second rule for controlling the valve opening of the first flow control means to be small in the closing direction and the valve opening of the second flow control means to be small in the opening direction; When the detected flow ratio is larger than the set total flow and the detected flow ratio is substantially equal to the target flow ratio, the valve opening of the first flow control means is decreased in the closing direction, and the valve opening of the second flow control means is decreased in the closing direction. And a third rule for controlling each of the first and second flow control means, wherein when the detected total flow rate is smaller than the set total flow rate and the detected flow rate ratio is substantially equal to the target flow rate ratio, the valve opening of the first flow control means is decreased in the opening direction, The flow control means for controlling the valve opening degree in the opening direction to be small. And rules of the first detection total flow a predetermined degree of valve opening of the first flow control means when the detected flow rate ratio less than the set total flow rate is greater than the target flow rate ratio
A fifth rule for controlling the valve opening degree of the second flow rate control means to be smaller in the closing direction by controlling the opening degree to be larger than the lower limit change amount, and the detection total flow rate is smaller than the set total flow rate and the detection flow rate ratio is lower. When the flow rate is smaller than the target flow rate ratio, the valve opening of the first flow control means is controlled to be small in the closing direction, and the valve opening of the second flow control means is largely controlled in the opening direction to be equal to or more than a predetermined second lower limit change amount. The sixth rule to be performed, and when the detected total flow rate is larger than the set total flow rate and the detected flow rate ratio is larger than the target flow rate ratio, the valve opening degree of the first flow rate control means is decreased and the second flow rate is increased. The seventh control in which the valve opening of the control means is largely controlled in the closing direction.
When the detected total flow rate is larger than the set total flow rate and the detected flow rate ratio is smaller than the target flow rate ratio, the valve opening of the first flow control means is largely increased in the closing direction, and the second flow control means An eighth rule for controlling the valve opening in a small opening direction, and a first and a second flow control when the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is substantially equal to the target flow rate ratio. The above-mentioned problem is solved by a configuration including a ninth rule that does not change the valve opening degree of the means.

【0011】第3の発明は、上記第1又は第2の発明の
構成に加えて、目標流量比に対する検出流量比の偏差
と、設定総流量に対する検出総流量の偏差とを求める偏
差検出部が設けられ、上記流量比と総流量の各偏差の組
み合わせを前件部とし、その偏差の組み合わせに応じた
第1と第2の各流量制御手段の弁開度制御形態を後件部
とした弁開度制御ルールと、上記偏差検出部により求め
られた流量比の偏差と総流量の偏差とに基づいたファジ
ィ論理演算により、流量比・総流量制御部は、第1と第
2の各流量制御手段の弁開度の操作量を求め、この求め
た操作量に応じて第1と第2の各流量制御手段の弁開度
を制御する構成をもって前記課題を解決する手段として
いる。
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, a deviation detecting section for determining a deviation of the detected flow ratio from the target flow ratio and a deviation of the detected total flow from the set total flow. A valve provided with a combination of the above-described flow rate ratio and each deviation of the total flow rate as a consequent part, and a valve opening degree control form of the first and second flow control means according to the combination of the deviations as a consequent part. By the fuzzy logic operation based on the opening degree control rule and the deviation of the flow ratio and the deviation of the total flow obtained by the deviation detecting unit, the flow ratio / total flow control unit performs the first and second flow control. An operation amount of the valve opening degree of the means is obtained, and the above-mentioned operation amount is controlled by controlling the valve opening degree of each of the first and second flow rate control means.

【0012】第4の発明は、上記第3の発明の構成を備
え、弁開度制御ルールの前件部は、目標流量比に対する
検出流量比の偏差の大小に応じた複数のメンバーシップ
関数と、設定総流量に対する検出総流量の偏差の大小に
応じた複数のメンバーシップ関数とから成り、弁開度制
御ルールの後件部は、第1の流量制御手段の弁開度操作
量の大小に応じた複数のメンバーシップ関数と、第2の
流量制御手段の弁開度操作量の大小に応じた複数のメン
バーシップ関数とから成り、偏差検出部により求められ
た流量比と総流量の各偏差に基づき、上記前件部のメン
バーシップ関数からファジィ変数グレードを検出するグ
レード検出部と、検出されたファジィ変数グレードに基
づいて前記弁開度制御ルールに合致した第1の流量制御
手段に対応した上記後件部のメンバーシップ関数の有効
面積の和集合と第2の流量制御手段に対応した後件部の
メンバーシップ関数の有効面積の和集合とをそれぞれ検
出する和集合検出部と、これら検出された第1と第2の
各流量制御手段に対応した有効面積の和集合の重心をそ
れぞれ算出し、該求めた重心に基づき第1と第2の各流
量制御手段の弁開度の操作量をそれぞれ検出する弁開度
操作量検出部とが設けられている構成をもって前記課題
を解決する手段としている。
A fourth aspect of the present invention comprises the configuration of the third aspect of the present invention, wherein the antecedent of the valve opening control rule includes a plurality of membership functions corresponding to the magnitude of the deviation of the detected flow ratio from the target flow ratio. A plurality of membership functions according to the magnitude of the deviation of the detected total flow rate with respect to the set total flow rate, and the consequent part of the valve opening degree control rule determines whether the valve opening degree operation amount of the first flow rate control means is large or small. And a plurality of membership functions corresponding to the magnitude of the valve opening operation amount of the second flow control means, and each deviation of the flow ratio and the total flow obtained by the deviation detection unit. Based on the fuzzy variable grade from the membership function of the antecedent part, and a first flow control means that matches the valve opening degree control rule based on the detected fuzzy variable grade. Up A union detection unit for detecting the union of the effective areas of the membership functions of the consequent part and the union of the effective areas of the membership functions of the consequent part corresponding to the second flow rate control means, respectively; The center of gravity of the union of the effective areas corresponding to the first and second flow control means is calculated, and the amount of operation of the valve opening of each of the first and second flow control means is calculated based on the calculated center of gravity. The means for solving the above problem is provided by a configuration in which a valve opening operation amount detection unit for detecting each is provided.

【0013】上記構成の発明において、湯側の流量を制
御する第1の流量制御手段と、バイパス通路の通水流量
を制御する第2の流量制御手段とを設けたので、バイパ
ス通路から流れ出た水と湯側の湯とがミキシングした後
の湯温が給湯設定温度となるようにバイパス通路の通水
流量と湯側の流量との流量比を、上記第1と第2の各流
量制御手段の弁開度制御により、精度良く制御すること
ができ、再出湯時であっても給湯設定温度の湯を安定供
給することが可能となる。
In the invention having the above structure, the first flow rate control means for controlling the flow rate on the hot water side and the second flow rate control means for controlling the flow rate of the water flowing through the bypass passage are provided. The first and second flow rate control means adjust the flow ratio between the flow rate of the bypass passage and the flow rate of the hot water so that the hot water temperature after the mixing of the hot water and the hot water becomes the hot water supply set temperature. By controlling the opening degree of the valve, the control can be performed with high accuracy, and the hot water at the hot water supply set temperature can be stably supplied even at the time of hot water re-discharge.

【0014】その上、この発明では、上記流量比制御に
併せて総流量制御を上記第1と第2の各流量制御手段の
弁開度制御により行う構成を備えていることから、つま
り、流量比比較部により比較された流量比の比較結果
と、総流量比較部により比較された総流量の比較結果
と、流量比と総流量の各比較結果の組み合わせに応じて
予め与えられた弁開度制御ルールとに基づいて、検出流
量比が目標流量比に一致する方向に、かつ、検出総流量
が設定総流量に一致する方向に第1と第2の各流量制御
手段の弁開度を制御する構成を備えていることから、給
湯設定温度の湯を設定総流量でもって給湯することが可
能となる。
In addition, according to the present invention, the total flow rate control is performed by controlling the valve opening degree of the first and second flow rate control means in addition to the flow rate ratio control. The valve opening degree given in advance according to the combination of the comparison result of the flow ratio compared by the ratio comparison unit, the comparison result of the total flow compared by the total flow comparison unit, and the comparison result of the flow ratio and the total flow. Based on the control rule, the valve opening of each of the first and second flow control means is controlled in a direction in which the detected flow rate matches the target flow rate and in a direction in which the detected total flow matches the set total flow. With this configuration, hot water at the hot water supply set temperature can be supplied at the set total flow rate.

【0015】[0015]

【発明の実施の形態】以下に、この発明に係る実施形態
例を図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】この実施形態例の給湯器は図3に示すよう
なシステム構成を有している。図3に示すように、給湯
熱交換器2が設けられ、該給湯熱交換器2の入側には水
供給源から水を給湯熱交換器2に供給するための給水通
路3が接続され、給湯熱交換器2の出側には給湯熱交換
器2により作られた湯を所望の給湯場所に導くための給
湯通路4が接続されている。上記給水通路3と給湯通路
4間を給湯熱交換器2を迂回して連通接続する常時バイ
パス通路18が設けられ、また、この常時バイパス通路
18との接続部Xよりも上流側の給水通路3と、常時バ
イパス通路18との接続部Yよりも下流側の給湯通路4
とを連通接続するバイパス通路15が設けられている。
The water heater of this embodiment has a system configuration as shown in FIG. As shown in FIG. 3, a hot water supply heat exchanger 2 is provided, and a water supply passage 3 for supplying water from a water supply source to the hot water supply heat exchanger 2 is connected to an inlet of the hot water supply heat exchanger 2. The outlet side of the hot water supply heat exchanger 2 is connected to a hot water supply passage 4 for guiding the hot water produced by the hot water supply heat exchanger 2 to a desired hot water supply place. A continuous bypass passage 18 is provided to connect and connect the water supply passage 3 and the hot water supply passage 4 to bypass the hot water supply heat exchanger 2, and the water supply passage 3 upstream of a connection portion X with the constant bypass passage 18. And the hot water supply passage 4 downstream of the connection portion Y with the constant bypass passage 18
Is provided with a bypass passage 15 which communicates with the communication path.

【0017】上記常時バイパス通路18との接続部Yと
バイパス通路15との接続部Zとの間の給湯通路4には
上記バイパス通路15から流れ出た水に合流する湯側の
流量Qyuを弁開度でもって制御する第1の流量制御手段
GM1が介設され、また、上記バイパス通路15には該
通路15を流れる水のバイパス流量Qbpを弁開度でもっ
て制御する第2の流量制御手段GM2が介設されてい
る。上記第1と第2の各流量制御手段GM1,GM2は
ギアモータ等の駆動源が備えられており、その駆動源に
よって上記弁開度を連続的に又は段階的に可変制御可能
な構成となっている。
In the hot water supply passage 4 between the connection portion Y to the constant bypass passage 18 and the connection portion Z to the bypass passage 15, the flow rate Qyu on the hot water side which joins the water flowing out of the bypass passage 15 is opened. A first flow control means GM1 for controlling the flow rate of the water flowing through the passage 15 is provided in the bypass passage 15 by a valve opening degree. Is interposed. Each of the first and second flow control means GM1 and GM2 is provided with a drive source such as a gear motor, and has a configuration in which the valve opening can be variably controlled continuously or stepwise by the drive source. I have.

【0018】上記給水通路3には通水温度を検出する入
水サーミスタ5が設けられ、また、バイパス通路15と
の接続部Zよりも下流側の給湯通路4には湯側の湯温と
バイパス通路15から流れ出た水とがミキシングした後
の湯温を検出する出湯サーミスタ7が設けられ、さら
に、給湯熱交換器2の出側の湯温を検出する熱交出側サ
ーミスタ17が設けられている。
The water supply passage 3 is provided with a water supply thermistor 5 for detecting a water supply temperature, and a hot water supply passage 4 downstream of a connection Z with the bypass passage 15 is provided with a hot water temperature and a bypass passage. A hot water tapping thermistor 7 for detecting the hot water temperature after the water flowing from the hot water 15 has been mixed is provided, and a heat exchange side thermistor 17 for detecting the hot water temperature at the outlet side of the hot water supply heat exchanger 2 is provided. .

【0019】さらに、上記バイパス通路15との接続部
Wと常時バイパス通路18との接続部Xとの間の給水通
路3には該通路3部分の通水流量を上記湯側の流量Qyu
として検出する第1の流量センサFS1が設けられ、ま
た、バイパス通路15との接続部Zよりも下流側の給湯
通路4には給湯される給湯流量(出湯流量)Qを検出す
る総流量検出手段としての第2の流量センサFS2が設
けられている。
Further, in the water supply passage 3 between the connection portion W to the bypass passage 15 and the connection portion X to the constant bypass passage 18, the flow rate of water in the passage 3 is reduced by the flow rate Qyu on the hot water side.
A first flow rate sensor FS1 for detecting the flow rate of hot water is provided in the hot water supply passage 4 downstream of the connection portion Z with the bypass passage 15. A second flow sensor FS2 is provided.

【0020】さらにまた、給湯熱交換器2を燃焼加熱す
るバーナ(図示せず)が設けられており、該バーナには
燃料ガスをバーナに供給するガス供給通路(図示せず)
が接続されている。
Further, a burner (not shown) for burning and heating the hot water supply heat exchanger 2 is provided, and a gas supply passage (not shown) for supplying fuel gas to the burner is provided in the burner.
Is connected.

【0021】この給湯器には給湯運転を制御する制御装
置13が設けられ、この制御装置13にはリモコン14
が信号接続されている。
The water heater is provided with a control device 13 for controlling the hot water supply operation.
Are signal connected.

【0022】この実施形態例では、給湯設定温度の湯を
予め定められた設定総流量(例えば、16リットル/mi
n )でもって給湯できるように上記第1と第2の各流量
制御手段GM1,GM2の弁開度を制御する特有な制御
構成を備えたことを特徴としており、図1にはこの実施
形態例において特徴的な制御構成がブロック図により示
されている。この実施形態例に示す制御装置13は、湯
側温度検出部20と、湯側流量検出部21と、バイパス
流量検出部22と、目標流量比検出部23と、流量比比
較部24と、流量比検出部25と、総流量検出部26
と、偏差検出部27と、流量比・総流量制御部28と、
総流量比較部30と、データ格納部35とを有して構成
されている。
In this embodiment, hot water at a set hot water supply temperature is supplied at a predetermined total flow rate (for example, 16 liter / mi).
n) is characterized by having a unique control structure for controlling the valve opening of the first and second flow rate control means GM1 and GM2 so that hot water can be supplied. , A characteristic control configuration is shown by a block diagram. The control device 13 shown in this embodiment includes a hot water side temperature detecting unit 20, a hot water side flow detecting unit 21, a bypass flow detecting unit 22, a target flow ratio detecting unit 23, a flow ratio comparing unit 24, Ratio detecting unit 25 and total flow detecting unit 26
A deviation detection unit 27, a flow ratio / total flow control unit 28,
It has a total flow rate comparison unit 30 and a data storage unit 35.

【0023】上記湯側温度検出部20は第1の流量制御
手段GM1を通る湯側の湯温を検出する制御構成を有す
る。上記湯側の湯温を検出する図3の点線に示すような
サーミスタ40を設け、該サーミスタ40により検出さ
れる湯温を湯側の湯温として検出してもよいが、この実
施形態例では、部品点数の増加を抑制するために、上記
サーミスタ40を設けずに演算により湯側の湯温を検出
する構成を有する。
The hot water temperature detector 20 has a control structure for detecting the temperature of the hot water passing through the first flow rate control means GM1. A thermistor 40 as shown by a dotted line in FIG. 3 for detecting the hot water temperature may be provided, and the hot water temperature detected by the thermistor 40 may be detected as the hot water temperature. However, in this embodiment, In order to suppress an increase in the number of components, a configuration is provided in which the temperature of the hot water is detected by calculation without providing the thermistor 40.

【0024】湯側温度検出部20は、入水サーミスタ5
により検出された入水温度Tinと、熱交出側サーミスタ
17により検出される湯温Tout とを取り込み、これら
検出温度Tout ,Tinを利用して次式(1)の演算によ
り湯側の湯温Tyuを求める。
The hot water side temperature detector 20 is provided with a water input thermistor 5.
And the hot water temperature Tout detected by the heat exchange side thermistor 17, and the hot water temperature Tyu is calculated by the following equation (1) using the detected temperatures Tout and Tin. Ask for.

【0025】 Tyu=Tout ×m+Tin×n・・・・・(1)Tyu = Tout × m + Tin × n (1)

【0026】上記式(1)に示すmは、給水通路3を通
って来る給水が常時バイパス通路18との接続部Xの位
置で給湯熱交換器2側に流れる水量の分配率であり、n
は上記接続部Xの位置で常時バイパス通路18側に流れ
る水量の分配率であり、上記分配率は予め定まることか
ら、定数として予め与えられる。例えば、給湯熱交換器
2側の分配率が70%で、常時バイパス通路18側の分
配率が30%であるときには、mの値として0.7が、
nの値として0.3がそれぞれ予め与えられる。
M in the above equation (1) is the distribution ratio of the amount of water that flows through the water supply passage 3 to the hot water supply heat exchanger 2 at the position of the connection X with the bypass passage 18 at all times.
Is the distribution ratio of the amount of water that always flows to the bypass passage 18 at the position of the connection portion X. Since the distribution ratio is predetermined, it is given in advance as a constant. For example, when the distribution ratio on the hot water supply heat exchanger 2 side is 70% and the distribution ratio on the always bypass passage 18 side is 30%, 0.7 is set as the value of m.
0.3 is given in advance as the value of n.

【0027】湯側温度検出部20は、上記の如く、入水
サーミスタ5により検出された入水温度Tinと、熱交出
側サーミスタ17により検出された給湯熱交換器出側湯
温Tout とに基づき、上記式(1)の演算により湯側の
湯温Tyuを求め、この求めた湯温Tyuの情報を目標流量
比検出部23に出力する。
As described above, the hot water side temperature detecting section 20 is based on the incoming water temperature Tin detected by the incoming water thermistor 5 and the outlet water temperature Tout of the hot water supply heat exchanger detected by the heat exchange side thermistor 17. The hot water temperature Tyu on the hot water side is obtained by the calculation of the above equation (1), and information on the obtained hot water temperature Tyu is output to the target flow ratio detecting unit 23.

【0028】目標流量比検出部23には上記湯側温度検
出部20から出力された湯側の湯温Tyuと、リモコン1
4に設定されている給湯設定温度Tspと、入水サーミス
タ5により検出された入水温度Tinとの各温度情報が時
々刻々と加えられ、それら温度情報に基づいて下式
(2)の演算により、給湯設定温度Tspの湯を給湯する
ための湯側の流量とバイパス通路15の流量との目標流
量比Rsp(Rsp=Qbp/Qyu)を求める。
The target flow ratio detector 23 includes the hot water temperature Tyu output from the hot water temperature detector 20 and the remote controller 1
4 and the incoming water temperature Tin detected by the incoming water thermistor 5 are added every moment, and the hot water supply is calculated by the following equation (2) based on the temperature information. A target flow ratio Rsp (Rsp = Qbp / Qyu) between the flow on the hot water side for supplying hot water at the set temperature Tsp and the flow in the bypass passage 15 is obtained.

【0029】 Qbp/Qyu=(Tyu−Tsp)/(Tsp−Tin)・・・・(2)Qbp / Qyu = (Tyu−Tsp) / (Tsp−Tin) (2)

【0030】なお、給湯熱交換器2内の後沸きにより、
リモコン14に設定されている給湯設定温度Tspよりも
高温の湯側の湯温Tyuをもつ湯側の流量Qyuの熱量が給
湯設定温度Tspに低下するための放出熱量はバイパス通
路15を通る流量Qbpの水が入水温度Tinから給湯設定
温度Tspに上昇するのに要する吸熱熱量に等しく、この
熱平衡バランスの関係から上式(2)が導かれる。
Incidentally, by the post-boiling in the hot water supply heat exchanger 2,
The amount of heat released to lower the flow rate Qyu on the hot water side having the hot water temperature Tyu higher than the hot water supply set temperature Tsp set on the remote controller 14 to the hot water supply set temperature Tsp is equal to the flow rate Qbp passing through the bypass passage 15. Is equal to the amount of endothermic heat required to raise the temperature of the water from the incoming water temperature Tin to the hot water supply set temperature Tsp.

【0031】目標流量比検出部23は、上記の如く求め
られた目標流量比Rspの情報を後述する流量比比較部2
4と偏差検出部27に出力する。
The target flow ratio detection unit 23 uses the information of the target flow ratio Rsp obtained as described above as the flow ratio comparison unit 2 to be described later.
4 and output to the deviation detection unit 27.

【0032】湯側流量検出部21は第1の流量制御手段
GM1を通る湯側の流量Qyuを検出するものであり、こ
の実施形態例では、第1の流量センサFS1のセンサ出
力を湯側の流量Qyuとして検出し、検出した湯側の流量
Qyuの情報を流量比検出部25に出力する。
The hot water side flow detecting section 21 detects the hot water side flow rate Qyu passing through the first flow rate control means GM1. In this embodiment, the sensor output of the first flow rate sensor FS1 is used to detect the hot water side flow rate Qyu. The flow rate Qyu is detected as the flow rate Qyu, and information on the detected flow rate Qyu on the hot water side is output to the flow rate ratio detection unit 25.

【0033】バイパス流量検出部22はバイパス通路1
5を流れるバイパス流量Qbpを検出するものである。こ
の実施形態例では、図3に示すように、バイパス流量Q
bpを検出する流量センサをバイパス通路15に設けてい
ないので、バイパス流量検出部22は、第1と第2の各
流量センサFS1,FS2のセンサ出力を取り込んで、
第2の流量センサFS2により検出された総流量Qから
第1の流量センサFS1により検出された湯側の流量Q
yuを差し引くことによって、つまり、次式(3)の演算
によりバイパス流量Qbpを求める。
The bypass flow rate detecting section 22 is connected to the bypass passage 1
5 is to detect a bypass flow rate Qbp flowing through the filter 5. In this embodiment, as shown in FIG.
Since the flow rate sensor for detecting bp is not provided in the bypass passage 15, the bypass flow rate detection unit 22 takes in the sensor outputs of the first and second flow rate sensors FS1 and FS2,
From the total flow rate Q detected by the second flow rate sensor FS2 to the hot water side flow rate Q detected by the first flow rate sensor FS1
The bypass flow rate Qbp is obtained by subtracting yu, that is, by the calculation of the following equation (3).

【0034】Qbp=Q−Qyu・・・・・(3)Qbp = Q-Qyu (3)

【0035】バイパス流量検出部22は上記求めたバイ
パス流量Qbpの情報を流量比検出部25に加える。流量
比検出部25は上記湯側流量検出部21から加えられた
湯側の流量Qyuと、バイパス流量検出部22から加えら
れたバイパス流量Qbpとに基づいて、湯側の流量Qyuと
バイパス流量Qbpの流量比Rdeを次式(4)の演算によ
り検出し、その検出流量比Rdeの情報を流量比比較部2
4と偏差検出部27に出力する。
The bypass flow rate detector 22 adds information on the obtained bypass flow rate Qbp to the flow rate detector 25. Based on the hot water flow rate Qyu added from the hot water flow rate detection section 21 and the bypass flow rate Qbp added from the bypass flow rate detection section 22, the flow ratio detection section 25 detects the hot water flow rate Qyu and the bypass flow rate Qbp. Is calculated by the following equation (4), and information on the detected flow rate ratio Rde is used as the flow rate comparison unit 2
4 and output to the deviation detection unit 27.

【0036】Rde=Qbp/Qyu・・・・・(4)Rde = Qbp / Qyu (4)

【0037】流量比比較部24は、上記目標流量比検出
部23から受け取った目標流量比Rspを、流量比検出部
25から受け取った検出流量比Rdeに比較し、検出流量
比Rdeが目標流量比Rspよりも大きいか否か、又は、検
出流量比Rdeが目標流量比Rspよりも小さいか否か、又
は、検出流量比Rdeが目標流量比Rspを含む予め定めた
許容幅内に入っており検出流量比Rdeは目標流量比Rsp
にほぼ等しいか否かを判断し、その比較結果を流量比・
総流量制御部28に出力する。
The flow ratio comparing unit 24 compares the target flow ratio Rsp received from the target flow ratio detecting unit 23 with the detected flow ratio Rde received from the flow ratio detecting unit 25. Whether the detected flow ratio Rde is smaller than the target flow ratio Rsp, or whether the detected flow ratio Rde is within a predetermined allowable range including the target flow ratio Rsp. The flow ratio Rde is equal to the target flow ratio Rsp
Is determined to be approximately equal to
Output to the total flow control unit 28.

【0038】偏差検出部27は、上記目標流量比検出部
23から加えられた目標流量比Rspから、流量比検出部
25から加えられた検出流量比Rdeを差し引いて、目標
流量比Rspに対する検出流量比Rdeの偏差ΔRを求め、
その偏差ΔRの情報を流量比・総流量制御部28に加え
る。
The deviation detecting section 27 subtracts the detected flow rate Rde added from the flow rate detecting section 25 from the target flow rate Rsp added from the target flow rate detecting section 23 to obtain a detected flow rate relative to the target flow rate Rsp. Find the deviation ΔR of the ratio Rde,
The information of the deviation ΔR is added to the flow ratio / total flow controller 28.

【0039】総流量検出部26は給湯される給湯流量
(出湯流量)Qを検出するものであり、この実施形態例
では、第2の流量センサFS2のセンサ出力を総流量Q
として検出し、その検出した総流量Qの情報を偏差検出
部27と総流量比較部30に加える。
The total flow rate detecting section 26 detects a hot water supply flow rate (outflow flow rate) Q. In this embodiment, the total flow rate detection section 26 outputs the sensor output of the second flow rate sensor FS2 to the total flow rate Q.
And the information of the detected total flow rate Q is added to the deviation detecting section 27 and the total flow comparing section 30.

【0040】データ格納部35には予め定められた設定
総流量Qsp(例えば、16リットル/min )が与えられ
ており、総流量比較部30は上記総流量検出部26から
加えられた検出総流量Qを上記設定総流量Qspに比較
し、検出総流量Qが設定総流量Qspよりも多いか否か、
又は、検出総流量Qが設定総流量Qspよりも少ないか否
か、又は、検出総流量Qが設定総流量Qspを含む予め定
めた許容幅内に入っており検出総流量Qが設定総流量Q
spにほぼ等しいか否かを判断し、その比較結果を流量比
・総流量制御部28に加える。
The data storage section 35 is provided with a predetermined total flow rate Qsp (for example, 16 liters / min), and the total flow rate comparison section 30 detects the detected total flow rate added from the total flow rate detection section 26. Q is compared with the set total flow rate Qsp, and whether the detected total flow rate Q is larger than the set total flow rate Qsp,
Or, whether or not the detected total flow rate Q is smaller than the set total flow rate Qsp, or if the detected total flow rate Q is within a predetermined allowable range including the set total flow rate Qsp, and the detected total flow rate Q is equal to the set total flow rate Qsp.
It is determined whether it is substantially equal to sp or not, and the comparison result is added to the flow rate / total flow rate control unit 28.

【0041】偏差検出部27は、上記データ格納部35
に格納されている設定総流量Qspから、上記総流量検出
部26により検出された総流量Qを差し引いて、設定総
流量Qspに対する検出総流量Qの偏差ΔQを求め、この
偏差ΔQの情報を流量比・総流量制御部28に加える。
The deviation detector 27 is provided with the data storage 35
The deviation ΔQ of the detected total flow rate Q from the set total flow rate Qsp is obtained by subtracting the total flow rate Q detected by the total flow rate detection unit 26 from the set total flow rate Qsp stored in It is added to the ratio / total flow rate control unit 28.

【0042】流量比・総流量制御部28は上記流量比比
較部24による流量比の比較結果と、総流量比較部30
による総流量の比較結果と、偏差検出部27により検出
された流量比の偏差ΔRと総流量の偏差ΔQとに基づい
て、第1と第2の各流量制御手段GM1,GM2の弁開
度を制御し検出流量比Rdeが目標流量比Rspに一致する
方向に流量比を制御し併せて検出総流量Qが設定総流量
Qspに一致する方向に総流量を制御する制御構成を有し
ている。この実施形態例では、流量比・総流量制御部2
8は、ファジィ論理演算を用いて上記第1と第2の各流
量制御手段GM1,GM2の弁開度を制御する。
The flow ratio / total flow control unit 28 compares the flow ratio comparison result by the flow ratio comparison unit 24 with the total flow comparison unit 30.
Based on the comparison result of the total flow rate and the deviation ΔR of the flow ratio detected by the deviation detection unit 27 and the deviation ΔQ of the total flow rate, the valve opening degrees of the first and second flow control means GM1 and GM2 are determined. It has a control structure that controls the flow rate in a direction in which the detected flow rate ratio Rde matches the target flow rate ratio Rsp, and controls the total flow rate in a direction in which the detected total flow rate Q matches the set total flow rate Qsp. In this embodiment, the flow ratio / total flow control unit 2
Numeral 8 controls the valve opening of the first and second flow control means GM1 and GM2 using fuzzy logic operation.

【0043】流量比・総流量制御部28は、図2に示す
ように、グレード検出部31と、和集合検出部32と、
ミキシング制御部33と、弁開度操作量検出部34とを
有して構成されている。
As shown in FIG. 2, the flow ratio / total flow control unit 28 includes a grade detection unit 31, a union detection unit 32,
It is configured to include a mixing control unit 33 and a valve opening operation amount detection unit 34.

【0044】データ格納部35には、目標流量比Rspと
検出流量比Rdeの比較結果と、設定総流量Qspと検出総
流量Qの比較結果に基づいて第1と第2の各流量制御手
段GM1,GM2の弁開度を制御するための次に示すよ
うな弁開度制御ルールが予め定め与えられている。この
実施形態例では、弁開度制御ルールは第1〜第9のルー
ルから成っている。
The data storage unit 35 stores first and second flow rate control means GM1 based on the comparison result of the target flow rate Rsp and the detected flow rate Rde and the comparison result of the set total flow rate Qsp and the detected total flow rate Q. , GM2 are controlled in advance by the following valve opening control rules. In this embodiment, the valve opening control rules are made up of first to ninth rules.

【0045】1) 検出総流量Qが設定総流量Qspにほ
ぼ等しく検出流量比Rdeが目標流量比Rspよりも大きい
場合に上記第1の流量制御手段GM1の弁開度を予め定
めた第1上限変化量(例えば、図4の(c)に示す弁開
度変化量ΔWj1)を越えない範囲で開方向に小さく制御
し、第2の流量制御手段GM2の弁開度を予め定めた第
2上限変化量(例えば、図4の(d)に示す弁開度変化
量ΔWj2)を越えない範囲で閉方向に小さく制御する。
1) When the detected total flow rate Q is substantially equal to the set total flow rate Qsp and the detected flow rate ratio Rde is greater than the target flow rate ratio Rsp, the valve opening of the first flow rate control means GM1 is set to a predetermined first upper limit. The opening amount of the second flow rate control means GM2 is controlled so as not to exceed a change amount (for example, a valve opening change amount ΔWj1 shown in FIG. 4C) in the opening direction so as not to exceed a predetermined second upper limit. The control is made small in the closing direction within a range not exceeding a change amount (for example, a valve opening change amount ΔWj2 shown in FIG. 4D).

【0046】2) 検出総流量Qが設定総流量Qspにほ
ぼ等しく検出流量比Rdeが目標流量比Rspよりも小さい
場合には第1の流量制御手段GM1の弁開度を小さく閉
方向に、第2の流量制御手段GM2の弁開度を小さく開
方向にそれぞれ制御する。
2) If the detected total flow rate Q is substantially equal to the set total flow rate Qsp and the detected flow rate ratio Rde is smaller than the target flow rate ratio Rsp, the valve opening of the first flow control means GM1 is decreased in the closing direction. The valve opening of the second flow control means GM2 is controlled to be small in the opening direction.

【0047】3) 検出総流量Qが設定総流量Qspより
も多くて検出流量比Rdeが目標流量比Rspにほぼ等しい
場合に第1の流量制御手段GM1の弁開度を小さく閉方
向に、第2の流量制御手段GM2の弁開度を小さく閉方
向にそれぞれ制御する。
3) When the detected total flow rate Q is greater than the set total flow rate Qsp and the detected flow rate ratio Rde is substantially equal to the target flow rate ratio Rsp, the valve opening of the first flow control means GM1 is decreased in the closing direction. The valve opening of the second flow control means GM2 is controlled to be small in the closing direction.

【0048】4) 検出総流量Qが設定総流量Qspより
も少なくて検出流量比Rdeが目標流量比Rspにほぼ等し
い場合に第1の流量制御手段GM1の弁開度を小さく開
方向に、第2の流量制御手段GM2の弁開度を小さく開
方向にそれぞれ制御する。
4) When the detected total flow rate Q is smaller than the set total flow rate Qsp and the detected flow rate ratio Rde is substantially equal to the target flow rate Rsp, the valve opening of the first flow control means GM1 is decreased in the opening direction. The valve opening of the second flow control means GM2 is controlled to be small in the opening direction.

【0049】5) 検出総流量Qが設定総流量Qspより
も少なくて検出流量比Rdeが目標流量比Rspよりも大き
い場合に第1の流量制御手段GM1の弁開度を予め定め
た第1下限変化量(例えば、図4の(c)に示す弁開度
変化量ΔWk1)以上に開方向に大きく制御し、第2の流
量制御手段GM2の弁開度を閉方向に小さく制御する。
5) When the detected total flow rate Q is smaller than the set total flow rate Qsp and the detected flow rate ratio Rde is larger than the target flow rate ratio Rsp, the first lower limit of the valve opening of the first flow control means GM1 is determined in advance. The opening amount is controlled to be larger than the change amount (for example, the valve opening change amount ΔWk1 shown in FIG. 4C), and the valve opening degree of the second flow control means GM2 is controlled to be smaller in the closing direction.

【0050】6) 検出総流量Qが設定総流量Qspより
も少なくて検出流量比Rdeが目標流量比Rspよりも小さ
い場合に第1の流量制御手段GM1の弁開度を小さく閉
方向に、第2の流量制御手段GM2の弁開度を予め定め
た第2下限変化量(例えば、図4の(d)に示す弁開度
変化量ΔWk2)以上に開方向に大きく制御する。
6) When the detected total flow rate Q is smaller than the set total flow rate Qsp and the detected flow rate ratio Rde is smaller than the target flow rate Rsp, the valve opening of the first flow rate control means GM1 is decreased in the closing direction. The valve opening of the second flow control means GM2 is controlled to be larger in the opening direction than a predetermined second lower limit change amount (for example, a valve opening change amount ΔWk2 shown in FIG. 4D).

【0051】7) 検出総流量Qが設定総流量Qspより
も多くて検出流量比Rdeが目標流量比Rspよりも大きい
場合に第1の流量制御手段GM1の弁開度を小さく開方
向に、第2の流量制御手段GM2の弁開度を大きく閉方
向にそれぞれ制御する。
7) When the detected total flow rate Q is greater than the set total flow rate Qsp and the detected flow rate ratio Rde is greater than the target flow rate ratio Rsp, the valve opening of the first flow control means GM1 is decreased in the opening direction. The valve opening degree of the second flow rate control means GM2 is controlled in a large closing direction.

【0052】8) 検出総流量Qが設定総流量Qspより
も多くて検出流量比Rdeが目標流量比Rspよりも小さい
場合に第1の流量制御手段GM1の弁開度を大きく閉方
向に、第2の流量制御手段GM2の弁開度を小さく開方
向にそれぞれ制御する。
8) When the detected total flow rate Q is larger than the set total flow rate Qsp and the detected flow rate ratio Rde is smaller than the target flow rate ratio Rsp, the valve opening of the first flow control means GM1 is increased in the closing direction. The valve opening of the second flow control means GM2 is controlled to be small in the opening direction.

【0053】9) 検出総流量Qが設定の総流量Qspに
ほぼ等しく検出流量比Rdeが目標流量比Rspにほぼ等し
い場合には第1と第2の各流量制御手段GM1,GM2
の弁開度を変化させない。
9) When the detected total flow rate Q is substantially equal to the set total flow rate Qsp and the detected flow rate ratio Rde is substantially equal to the target flow rate ratio Rsp, the first and second flow control means GM1 and GM2 are used.
Do not change the valve opening.

【0054】以上の第1〜第9のルールを記号化して記
すと、以下のように表すことができる。ただし、以下に
示すΔQは設定総流量Qspに対する検出総流量Qの偏差
を表し、ΔRは目標流量比Rspに対する検出流量比Rde
の偏差を表し、V1は第1の流量制御手段GM1の弁開
度を変動させるためにギアモータ等の駆動源を操作する
操作量(つまり、ここでは駆動源への供給電圧)を表
し、V2は第2の流量制御手段GM2の弁開度を変動さ
せるための操作量を表し、NBは閉方向に大きく弁開度
を変化させることを、NSは閉方向に小さく弁開度を変
化させることを、ZOは弁開度を変化させないことを、
PSは開方向に小さく弁開度を変化させることを、PB
は開方向に大きく変化させることをそれぞれ表してい
る。
The above first to ninth rules are symbolized and described as follows. Here, ΔQ shown below represents a deviation of the detected total flow rate Q from the set total flow rate Qsp, and ΔR is a detected flow rate ratio Rde with respect to the target flow rate Rsp.
V1 represents an operation amount for operating a drive source such as a gear motor to change the valve opening of the first flow control means GM1 (that is, a supply voltage to the drive source in this case), and V2 represents The operation amount for changing the valve opening degree of the second flow rate control means GM2 is indicated. NB indicates that the valve opening degree is largely changed in the closing direction, and NS indicates that the valve opening degree is changed in the closing direction. , ZO does not change the valve opening,
PS indicates that changing the valve opening degree slightly in the opening direction is PB
Represents a large change in the opening direction.

【0055】1) IF ΔQ=ZO&ΔR=NB T
HEN V1=PS,V2=NS
1) IF ΔQ = ZO & ΔR = NBT
HEN V1 = PS, V2 = NS

【0056】2) IF ΔQ=ZO&ΔR=PB T
HEN V1=NS,V2=PS
2) IF ΔQ = ZO & ΔR = PBT
HEN V1 = NS, V2 = PS

【0057】3) IF ΔQ=NB&ΔR=ZO T
HEN V1=NS,V2=NS
3) IF ΔQ = NB & ΔR = ZO T
HEN V1 = NS, V2 = NS

【0058】4) IF ΔQ=PB&ΔR=ZO T
HEN V1=PS,V2=PS
4) IF ΔQ = PB & ΔR = ZO T
HEN V1 = PS, V2 = PS

【0059】5) IF ΔQ=PB&ΔR=NB T
HEN V1=PB,V2=NS
5) IF ΔQ = PB & ΔR = NBT
HEN V1 = PB, V2 = NS

【0060】6) IF ΔQ=PB&ΔR=PB T
HEN V1=NS,V2=PB
6) IF ΔQ = PB & ΔR = PBT
HEN V1 = NS, V2 = PB

【0061】7) IF ΔQ=NB&ΔR=NB T
HEN V1=PS,V2=NB
7) IF ΔQ = NB & ΔR = NB T
HEN V1 = PS, V2 = NB

【0062】8) IF ΔQ=NB&ΔR=PB T
HEN V1=NB,V2=PS
8) IF ΔQ = NB & ΔR = PBT
HEN V1 = NB, V2 = PS

【0063】9) IF ΔQ=ZO&ΔR=ZO T
HEN V1=ZO,V2=ZO
9) IF ΔQ = ZO & ΔR = ZO T
HEN V1 = ZO, V2 = ZO

【0064】上記弁開度制御ルールにおける第1〜第9
のルールは、具体的には、流量比の偏差ΔRと総流量の
偏差ΔQに基づいて第1の流量制御手段GM1の弁開度
を変化させるため操作量(制御量)V1を求めるための
下記の表1に示すようなファジィテーブルと、流量比の
偏差ΔRと総流量の偏差ΔQに基づいて第2の流量制御
手段GM2の弁開度を変化させるため操作量(制御量)
V2を求めるための下記の表2に示すようなファジィテ
ーブルとにまとめられてデータ格納部35に記憶されて
いる。
The first to ninth of the above-mentioned valve opening control rules
Specifically, the following rule is used to obtain an operation amount (control amount) V1 for changing the valve opening of the first flow control means GM1 based on the flow ratio deviation ΔR and the total flow deviation ΔQ. An operation amount (control amount) for changing the valve opening of the second flow control means GM2 based on the fuzzy table as shown in Table 1 and the deviation ΔR of the flow ratio and the deviation ΔQ of the total flow.
The data are stored in the data storage unit 35 in a fuzzy table as shown in Table 2 below for obtaining V2.

【0065】[0065]

【表1】 [Table 1]

【0066】[0066]

【表2】 [Table 2]

【0067】また、データ格納部35にはファジィ論理
演算に使用する図4の(a),(b),(c),(d)
に示されるようなメンバーシップ関数が格納されてい
る。図4の(a)には設定総流量Qspに対する検出総流
量Qの偏差ΔQの大小に応じたネガティブビックNBと
ゼロZOとポジティブビックPBの各前件部のメンバー
シップ関数が示され、同図の(b)には目標流量比Rsp
に対する検出流量比Rdeの偏差ΔRの大小に応じたネガ
ティブビックNBとゼロZOとポジティブビックPBの
各前件部のメンバーシップ関数が示され、同図の(c)
には第1の流量制御手段GM1の弁開度の操作量V1の
大小に応じたネガティブビックNBとネガティブスモー
ルNSとゼロZOとポジティブスモールPSとポジティ
ブビックPBの各後件部のメンバーシップ関数が示さ
れ、同図の(d)には第2の流量制御手段GM2の弁開
度の操作量V2の大小に応じたネガティブビックNBと
ネガティブスモールNSとゼロZOとポジティブスモー
ルPSとポジティブビックPBの各後件部のメンバーシ
ップ関数が示されている。
The data storage unit 35 stores the data used in the fuzzy logic operation in FIGS. 4A, 4B, 4C, and 4D.
Is stored. FIG. 4A shows the membership functions of the antecedent parts of the negative big NB, zero ZO, and positive big PB according to the magnitude of the deviation ΔQ of the detected total flow rate Q with respect to the set total flow rate Qsp. (B) shows the target flow ratio Rsp
The membership functions of the antecedents of the negative big NB, zero ZO, and positive big PB according to the magnitude of the deviation ΔR of the detected flow rate ratio Rde with respect to are shown, and FIG.
The membership function of each consequent part of the negative big NB, the negative small NS, the zero ZO, the positive small PS, and the positive big PB according to the magnitude of the operation amount V1 of the valve opening degree of the first flow control means GM1 is (D) of the figure shows the negative big NB, the negative small NS, the zero ZO, the positive small PS, and the positive big PB according to the magnitude of the operation amount V2 of the valve opening of the second flow control means GM2. The membership function of each consequent is shown.

【0068】グレード検出部31には、前記流量比比較
部24による流量比の比較結果と、総流量比較部30に
よる総流量の比較結果と、偏差検出部27により検出さ
れた流量比の偏差ΔRと、総流量の偏差ΔQとの情報が
加えられ、これら情報と、前記データ格納部35に記憶
されている弁開度制御ルールと前記前件部のメンバーシ
ップ関数とに基づいて、グレード検出部31は前記弁開
度制御ルールの前件部に合致するファジィ変数グレード
を上記前件部のメンバーシップ関数から検出し、そのグ
レードの情報は和集合検出部32に出力され、該和集合
検出部32は、上記グレードに基づいて、前記弁開度制
御ルールに合致した第1の流量制御手段GM1に対応し
た後件部のメンバーシップ関数の有効面積の和集合を求
め、また、第2の流量制御手段GM2に対応した後件部
のメンバーシップ関数の有効面積の和集合を求める。
The grade detection unit 31 includes a comparison result of the flow ratio by the flow ratio comparison unit 24, a comparison result of the total flow by the total flow comparison unit 30, and a deviation ΔR of the flow ratio detected by the deviation detection unit 27. And a deviation ΔQ of the total flow rate are added. Based on these information, the valve opening degree control rule stored in the data storage unit 35, and the membership function of the antecedent unit, a grade detection unit 31 detects a fuzzy variable grade that matches the antecedent part of the valve opening control rule from the membership function of the antecedent part, and outputs the information of the grade to the union detection part 32; 32 calculates a union of the effective areas of the membership functions of the consequent part corresponding to the first flow rate control means GM1 that matches the valve opening degree control rule based on the grade, The union of the effective areas of the membership functions of the consequent part corresponding to the quantity control means GM2 is obtained.

【0069】具体的には、例えば、検出総流量Qが設定
総流量Qspよりも少なく、その偏差ΔQが図5の(a)
に示すΔQnaであるときには、図5の(a)に示す総流
量の偏差ΔQに対応した前件部のメンバーシップ関数に
基づいて、上記総流量の偏差ΔQnaに対応するZOのグ
レードは0.75であり、NBのグレードは0.25で
ある。また、検出流量比Rdeが目標流量比Rspよりも大
きく、その偏差ΔRが図5の(b)に示すΔRpaである
ときには、図5の(b)に示す総流量の偏差ΔQに対応
した前件部のメンバーシップ関数に基づいて、流量比の
偏差ΔRpaに対応するZOのグレードは0.25であ
り、PBのグレードは0.75である。
Specifically, for example, the detected total flow rate Q is smaller than the set total flow rate Qsp, and the deviation ΔQ thereof is shown in FIG.
, The grade of the ZO corresponding to the deviation ΔQna of the total flow rate is 0.75 based on the membership function of the antecedent part corresponding to the deviation ΔQ of the total flow rate shown in FIG. And the grade of NB is 0.25. When the detected flow ratio Rde is larger than the target flow ratio Rsp and the deviation ΔR is ΔRpa shown in FIG. 5B, the antecedent corresponding to the deviation ΔQ of the total flow shown in FIG. Based on the membership function of the part, the grade of ZO corresponding to the deviation ΔRpa of the flow ratio is 0.25 and the grade of PB is 0.75.

【0070】上記総流量の偏差ΔQnaに対応するグレー
ドと流量比の偏差ΔRpaに対応するグレードとに基づい
て、弁開度制御ルールにおける第1〜第9の各ルールの
前件部に対応するファジィ変数グレードを上記各ルール
毎に次のように検出する。
Based on the grade corresponding to the deviation ΔQna of the total flow and the grade corresponding to the deviation ΔRpa of the flow ratio, the fuzzy corresponding to the antecedent of each of the first to ninth rules in the valve opening control rules. The variable grade is detected for each rule as follows.

【0071】前記弁開度制御ルールにおける第1のルー
ルの前件部は、「IF ΔQ=ZO&ΔR=NB」であ
り、総流量の偏差ΔQnaに対応したZOのグレードは
0.75であるが、流量比の偏差ΔRpaに該当するNB
のグレードはなく、この第1のルールは無視される。
The antecedent of the first rule in the valve opening control rule is “IF ΔQ = ZO & ΔR = NB”, and the grade of ZO corresponding to the deviation ΔQna of the total flow rate is 0.75. NB corresponding to flow rate deviation ΔRpa
, And this first rule is ignored.

【0072】前記第2のルールの前件部は、「IF Δ
Q=ZO&ΔR=PB」であり、総流量の偏差ΔQnaに
対応したZOのグレードは0.75であり、流量比の偏
差ΔRpaに対応したPBのグレードは0.75であるこ
とから、上記総流量の偏差ΔQnaに対応したZOのグレ
ード0.75と、流量比の偏差ΔRpaに対応したPBの
グレード0.75とのうち、ミニマム演算により小さい
方を、第2のルールに対応したファジィ変数グレードと
して検出するが、この場合、上記総流量の偏差ΔQnaの
グレードと流量比の偏差ΔRpaのグレードは等しいこと
から、グレード0.75が第2のルールに対応したファ
ジィ変数グレードとしてグレード検出部31により検出
される。
The antecedent of the second rule is “IF Δ
Q = ZO & ΔR = PB ”, the ZO grade corresponding to the total flow deviation ΔQna is 0.75, and the PB grade corresponding to the flow ratio deviation ΔRpa is 0.75. Of the ZO grade 0.75 corresponding to the deviation ΔQna of the PB and the PB grade 0.75 corresponding to the deviation ΔRpa of the flow ratio, the smaller one for the minimum operation is defined as the fuzzy variable grade corresponding to the second rule. In this case, since the grade of the deviation ΔQna of the total flow rate and the grade of the deviation ΔRpa of the flow rate ratio are equal, the grade 0.75 is detected by the grade detection unit 31 as a fuzzy variable grade corresponding to the second rule. Is done.

【0073】前記第2のルールの後件部は、「V1=N
S,V2=PS」であることから、図5の(c)に示す
第1の流量制御手段GM1の弁開度の操作量V1に対応
したNSのメンバーシップ関数を上記検出されたグレー
ド0.75の位置で頭切りし、図5の(c)に示す領域
AB0Cの面積が有効面積として求められ、また、図5
の(d)に示す第2の流量制御手段GM2の弁開度の操
作量V2に対応したPSのメンバーシップ関数を上記検
出されたグレード0.75の位置で頭切りし、図5の
(d)に示す領域abc0の面積が有効面積として求め
られる。
The consequent part of the second rule is “V1 = N
S, V2 = PS ”, the NS membership function corresponding to the manipulated variable V1 of the valve opening of the first flow control means GM1 shown in FIG. The head is truncated at the position 75, and the area of the area AB0C shown in FIG. 5C is obtained as the effective area.
5 (d), the membership function of PS corresponding to the operation amount V2 of the valve opening of the second flow control means GM2 is truncated at the position of the detected grade 0.75, and FIG. The area of the region abc0 shown in ()) is obtained as the effective area.

【0074】また、第3のルールの前件部は、「IF
ΔQ=NB&ΔR=ZO」であり、総流量の偏差ΔQna
に対応したNBのグレードは図6の(a)に示すグレー
ド0.25であり、流量比の偏差ΔRpaに対応したZO
のグレードは図6の(b)に示すグレード0.25であ
ることから、前述したように、ミニマム演算によりグレ
ード0.25が第3のルールのグレードとして検出され
る。
The antecedent of the third rule is “IF
ΔQ = NB & ΔR = ZO ”, and the deviation ΔQna of the total flow rate
The grade of the NB corresponding to the above is the grade 0.25 shown in FIG.
Is the grade 0.25 shown in FIG. 6B, and therefore, as described above, the grade 0.25 is detected as the grade of the third rule by the minimum operation.

【0075】第3のルールの後件部は「V1=NS,V
2=NS」であることから、上記検出されたグレード
0.25に基づいて、第1の流量制御手段GM1の弁開
度の操作量V1に対応したNSのメンバーシップ関数の
頭切りが行われて図6の(c)に示すような領域DE0
Cの面積が有効面積として検出され、また、第2の流量
制御手段GM2の弁開度の操作量V2に対応したNSの
メンバーシップ関数の頭切りが行われて図6の(d)に
示すような領域de0fの面積が有効面積として検出さ
れる。
The consequent part of the third rule is “V1 = NS, V
2 = NS ", the NS membership function corresponding to the manipulated variable V1 of the valve opening of the first flow control means GM1 is truncated based on the detected grade 0.25. Area DE0 as shown in FIG.
The area of C is detected as the effective area, and the NS membership function corresponding to the operation amount V2 of the valve opening degree of the second flow rate control means GM2 is truncated, as shown in FIG. 6D. The area of such a region de0f is detected as an effective area.

【0076】さらに、上記第4と第5と第6と第7の各
ルールは、上記第1のルールと同様に、総流量の偏差Δ
Qna又は流量比の偏差ΔRpaに該当するグレードがな
く、無視される。
Further, each of the fourth, fifth, sixth, and seventh rules has a deviation Δ of the total flow rate, similarly to the first rule.
There is no grade corresponding to Qna or the deviation ΔRpa of the flow rate ratio and is ignored.

【0077】第8のルールの前件部は、「IF ΔQ=
NB&ΔR=PB」であり、総流量の偏差ΔQnaに対応
したNBのグレードは図7の(a)に示すグレード0.
25であり、流量比の偏差ΔRpaに対応したPBのグレ
ードは図7の(b)に示すグレード0.75であること
から、前述したように、ミニマム演算によりグレード
0.25が第8のルールのグレードとして検出され、該
グレード0.25に基づき、第8のルールの後件部に該
当した第1の流量制御手段GM1の弁開度の操作量V1
に対応するNBのメンバーシップ関数の頭切りが行われ
て図7の(c)に示すような領域FGHIの面積が有効
面積として検出され、また、第2の流量制御手段GM2
の弁開度の操作量V2に対応するPSのメンバーシップ
関数の頭切りが行われて図7の(d)に示すような領域
ghc0の面積が有効面積として検出される。
The antecedent of the eighth rule is “IF ΔQ =
NB & ΔR = PB ”, and the grade of the NB corresponding to the deviation ΔQna of the total flow rate is grade 0 .0 shown in FIG.
25, and the grade of PB corresponding to the deviation ΔRpa of the flow rate ratio is the grade 0.75 shown in FIG. 7B, so that the grade 0.25 is changed to the eighth rule by the minimum calculation as described above. Of the valve opening degree of the first flow control means GM1 corresponding to the consequent part of the eighth rule based on the grade 0.25.
Is cut off, the area of the region FGHI as shown in FIG. 7C is detected as the effective area, and the second flow rate control means GM2
The membership function of the PS corresponding to the operation amount V2 of the valve opening degree is truncated, and the area of the region ghc0 as shown in FIG. 7D is detected as the effective area.

【0078】第9のルールについても、前記同様にし
て、前件部のルールに従ってグレード0.25が検出さ
れ、該検出されたグレードに基づいて、図8の(c)に
示すような領域JKLHの面積が第1の流量制御手段G
M1の弁開度操作量V1に対応したZOのメンバーシッ
プ関数の有効面積として検出され、図8の(d)に示す
ような領域ijklの面積が第2の流量制御手段GM2
の弁開度操作量V2に対応したZOのメンバーシップ関
数の有効面積として検出される。
In the ninth rule, similarly, the grade 0.25 is detected in accordance with the rule of the antecedent part, and based on the detected grade, the area JKLH as shown in FIG. Area of the first flow control means G
It is detected as the effective area of the membership function of ZO corresponding to the valve opening manipulated variable V1 of M1, and the area of the region ijkl as shown in FIG. 8D is the second flow control means GM2
Is detected as the effective area of the ZO membership function corresponding to the valve opening operation amount V2.

【0079】そして、上記の如く第1〜第9の各ルール
毎に検出された第1と第2の各流量制御手段GM1,G
M2の操作量V1,V2にそれぞれ対応するメンバーシ
ップ関数の有効面積の和集合を和集合検出部32により
求める。つまり、第1の流量制御手段GM1の弁開度操
作量V1については、図9の(c)に示すような領域A
BEKLIFDの面積を第1の流量制御手段GM1の弁
開度操作量V1に対応する有効面積の和集合として求
め、図9の(d)に示す領域abcfdgの面積を第2
の流量制御手段GM2の弁開度操作量V2に対応する有
効面積の和集合として求める。
The first and second flow rate control means GM1, G2 detected for each of the first to ninth rules as described above.
The union of the effective areas of the membership functions respectively corresponding to the manipulated variables V1 and V2 of M2 is obtained by the union detection unit 32. That is, regarding the valve opening degree operation amount V1 of the first flow control means GM1, the region A as shown in FIG.
The area of BEKLIFD is obtained as the union of the effective areas corresponding to the valve opening degree operation amount V1 of the first flow rate control means GM1, and the area of the region abcdfg shown in FIG.
Of the effective area corresponding to the valve opening operation amount V2 of the flow rate control means GM2.

【0080】和集合検出部32は上記の如く第1と第2
の各流量制御手段GM1,GM2の操作量V1,V2に
対応したメンバーシップ関数の有効面積の和集合を検出
したの後に、該有効面積の和集合の情報を弁開度操作量
検出部34に出力する。
The union detection unit 32 performs the first and second
After detecting the union of the effective areas of the membership functions corresponding to the operation amounts V1 and V2 of the flow rate control means GM1 and GM2, the information of the union of the effective areas is sent to the valve opening degree operation amount detection unit 34. Output.

【0081】弁開度操作量検出部34には和集合検出部
32から加えられた有効面積の和集合に基づいて該有効
面積の和集合の重心を求めるための解放データが予め与
えられており、弁開度操作量検出部34は、上記受け取
った有効面積の和集合の情報と上記解放データとに基づ
き、第1の流量制御手段GM1の弁開度操作量V1に対
応した上記有効面積の和集合の図9の(c)に示す重心
Sv1を、また、第2の流量制御手段GM2の弁開度操作
量V2に対応した上記有効面積の和集合の図9の(d)
に示す重心Sv2をそれぞれ求める。なお、上記有効面積
の和集合の重心を求めるための解放手法には様々な手法
があり、ここでは、それら手法のうちの何れの手法を用
いてもよく、ここでは、その手法および上記解放データ
の説明は省略する。
Release data for obtaining the center of gravity of the union of the effective areas based on the union of the effective areas added from the union detection unit 32 is given in advance to the valve opening operation amount detection unit 34. The valve opening operation amount detection unit 34, based on the received information on the union of the effective areas and the release data, calculates the effective area corresponding to the valve opening operation amount V1 of the first flow control unit GM1. The center of gravity Sv1 of the union shown in FIG. 9C and the union of the effective areas corresponding to the valve opening operation amount V2 of the second flow rate control means GM2 are shown in FIG.
Are obtained respectively. There are various methods for releasing the center of gravity of the union of the effective areas. Here, any of these methods may be used. Here, the method and the release data are used. Is omitted.

【0082】弁開度操作量検出部34は、上記求めた重
心に基づいて第1の流量制御手段GM1の弁開度操作量
ΔV1と、第2の流量制御手段GM2の弁開度操作量Δ
V2とを検出し、上記求めた弁開度操作量ΔV1,ΔV
2の情報をミキシング制御部33に出力する。ミキシン
グ制御部33は弁開度操作量検出部34により求められ
た操作量ΔV1,ΔV2の電圧を第1と第2の各流量制
御手段GM1,GM2の駆動源に供給し、第1と第2の
各流量制御手段GM1,GM2の弁開度を変動させる。
The valve opening operation amount detecting section 34 detects the valve opening operation amount ΔV1 of the first flow control means GM1 and the valve opening operation amount ΔV1 of the second flow control means GM2 based on the obtained center of gravity.
V2 and the valve opening operation amounts ΔV1 and ΔV determined above.
2 is output to the mixing control unit 33. The mixing control unit 33 supplies the voltages of the operation amounts ΔV1 and ΔV2 obtained by the valve opening operation amount detection unit 34 to the drive sources of the first and second flow rate control means GM1 and GM2, and the first and second The valve opening of each of the flow control means GM1 and GM2 is varied.

【0083】この実施形態例によれば、バイパス通路1
5を設け、該バイパス通路15の通水流量を弁開度でも
って制御する第1の流量制御手段GM1と、バイパス通
路15から流れ出た水が合流する湯側の流量Qyuを弁開
度でもって制御する第2の流量制御手段GM2とを設け
たので、上記第1と第2の各流量制御手段GM1,GM
2の弁開度を可変制御することによって、湯側の流量Q
yuとバイパス流量Qbpの流量比を可変制御することがで
き、かつ、湯側の流量Qyuとバイパス流量Qbpの総流量
Qを制御することが可能となる。
According to this embodiment, the bypass passage 1
5 and a first flow rate control means GM1 for controlling the flow rate of water through the bypass passage 15 with the valve opening, and a flow rate Qyu on the hot water side where the water flowing out from the bypass passage 15 merges with the valve opening. The second flow control means GM2 for controlling the first and second flow control means GM1 and GM are provided.
2 by variably controlling the valve opening degree, the flow rate Q on the hot water side
The flow ratio between yu and bypass flow Qbp can be variably controlled, and the total flow Q of hot water side flow Qyu and bypass flow Qbp can be controlled.

【0084】この実施形態例では、給湯設定温度の湯を
給湯するための湯側の流量Qyuとバイパス流量Qbpの目
標流量比Rspを求める一方で、バイパス流量Qbpと湯側
の流量Qyuの流量比Rdeを検出し、該検出流量比Rdeを
目標流量比Rspに比較した比較結果と、検出した総流量
Qを設定総流量Qspに比較した比較結果と、総流量と流
量比の各比較結果の組み合わせに応じて定められた弁開
度制御ルールとに基づいて、第1と第2の各流量制御手
段GM1,GM2の弁開度を制御するので、上記流量比
と総流量を共に考慮して上記第1と第2の各流量制御手
段GM1,GM2の弁開度の制御を行うことができ、通
常の給湯運転中にはもちろんのこと、給湯熱交換器2内
に後沸きが発生している状態から給湯が開始される再出
湯時にも、給湯設定温度の湯を設定総流量でもって精度
良く安定供給することが可能である。
In this embodiment, the target flow ratio Rsp between the hot water side flow rate Qyu and the bypass flow rate Qbp for supplying hot water at the hot water supply set temperature is determined, while the flow rate ratio between the bypass flow rate Qbp and the hot water side flow rate Qyu is determined. Combination of the comparison result of detecting the Rde and comparing the detected flow ratio Rde with the target flow ratio Rsp, the comparison result of comparing the detected total flow Q with the set total flow Qsp, and the comparison results of the total flow and the flow ratio The valve opening of each of the first and second flow control means GM1 and GM2 is controlled based on the valve opening control rule determined according to the above. The valve opening of the first and second flow control means GM1 and GM2 can be controlled, and post-boiling occurs in the hot water supply heat exchanger 2 as well as during normal hot water supply operation. At the time of hot water supply when hot water supply is started from the state, the hot water supply set temperature Set the hot water with a total flow rate can be precisely and stably supplied.

【0085】例えば、給湯設定温度の湯を給湯すること
ができるように流量比のみを考慮して第1と第2の各流
量制御手段GM1,GM2の弁開度を制御した場合に
は、例えば、再出湯時に、流量比制御を行わない場合の
図11の(b)の点線に示す給湯湯温変動に比べて、図
11の(b)の実線に示すように、出湯開始後、直ち
に、給湯設定温度の湯を給湯することができるようにな
るが、給水通路3に流れ込む水圧が予め想定された通常
の水圧よりも高い地域では、図11の(a)に示す出湯
開始後の出湯流量の時間的変化に示すように、出湯開始
直後、設定流量(設定総流量)よりも多めの流量で給湯
され、反対に、水供給源の水圧が通常の水圧よりも低い
地域では、出湯開始直後、設定流量よりも少なめの流量
で給湯される虞がある。
For example, when the valve opening of the first and second flow control means GM1 and GM2 is controlled in consideration of only the flow rate ratio so that hot water at the set hot water supply temperature can be supplied, for example, As shown by the solid line in (b) of FIG. 11, immediately after the start of tapping, as compared with the hot water temperature fluctuation shown by the dotted line in (b) of FIG. Hot water at the set hot water supply temperature can be supplied, but in an area where the water pressure flowing into the water supply passage 3 is higher than a normal water pressure assumed in advance, the flow rate of the hot water after the start of hot water supply shown in FIG. As shown in the temporal change of the hot water, hot water is supplied at a flow rate higher than the set flow rate (set total flow rate) immediately after the start of hot water supply. Conversely, in areas where the water pressure of the water supply source is lower than the normal water pressure, immediately after the start of hot water supply Hot water may be supplied at a flow rate smaller than the set flow rate

【0086】これに対して、この実施形態例では、前記
の如く、流量比と総流量を共に考慮して第1と第2の各
流量制御手段GM1,GM2の弁開度制御が行われるの
で、図10の(a),(b)に示すように、再出湯時
に、給湯開始後、瞬時に、給湯設定温度の湯を給湯する
ことが可能となるだけでなく、出湯流量が高低に変動す
ることなく設定流量でもって給湯することができるとい
う優れた効果を得ることができる。
On the other hand, in this embodiment, as described above, the valve opening degree control of the first and second flow rate control means GM1 and GM2 is performed in consideration of both the flow rate ratio and the total flow rate. As shown in FIGS. 10 (a) and 10 (b), at the time of hot water re-supply, not only hot water at the hot water supply set temperature can be supplied instantly after hot water supply is started, but also the flow rate of hot water fluctuates between high and low. It is possible to obtain an excellent effect that hot water can be supplied at a set flow rate without performing.

【0087】特に、この実施形態例では、上記第1と第
2の各流量制御手段GM1,GM2の弁開度操作量V
1,V2をファジィ論理演算により求めているので、検
出流量比を目標流量比に一致させ、かつ、総流量を設定
総流量に一致させることが容易となり、より一層精度良
く、給湯設定温度の湯を設定総流量でもって給湯するこ
とができるようになる。
Particularly, in this embodiment, the valve opening operation amounts V of the first and second flow control means GM1 and GM2 are set.
Since 1 and V2 are obtained by the fuzzy logic operation, it is easy to make the detected flow rate coincide with the target flow rate and make the total flow coincide with the set total flow rate. Can be supplied with the set total flow rate.

【0088】なお、この発明は上記実施形態例に限定さ
れるものではなく、様々な実施の形態と採り得る。例え
ば、上記実施形態例では、上記第1と第2の各流量制御
手段GM1,GM2の弁開度制御は給湯が行われている
間、継続的に行われたが、再出湯時のみ行うようにして
もよい。
Note that the present invention is not limited to the above-described embodiment, but can take various embodiments. For example, in the above-described embodiment, the valve opening degree control of the first and second flow rate control means GM1 and GM2 is continuously performed while hot water is supplied. It may be.

【0089】また、上記実施形態例では、図3に示すよ
うなシステム構成をもつ給湯器を例にして説明したが、
図3以外の給湯器にも本発明は適用することができる。
例えば、図3では、総流量(出湯流量)Qを検出する第
2の流量センサFS2はバイパス通路15との接続部Z
よりも下流側の給湯通路4に設けられていたが、バイパ
ス通路15との接続部Wよりも上流側の給水通路3に設
けてもよい。
Further, in the above embodiment, the water heater having the system configuration as shown in FIG. 3 has been described as an example.
The present invention can be applied to water heaters other than those shown in FIG.
For example, in FIG. 3, the second flow rate sensor FS <b> 2 that detects the total flow rate (hot water flow rate) Q is connected to the connection portion Z with the bypass passage 15.
Although it is provided in the hot water supply passage 4 on the downstream side, it may be provided in the water supply passage 3 on the upstream side of the connection portion W with the bypass passage 15.

【0090】さらに、バイパス通路15には流量センサ
が設けられていなかったが、バイパス流量Qbpを検出す
るバイパス流量センサをバイパス通路15に設けてもよ
い。このようにバイパス流量センサを設ける場合には、
第1の流量センサFS1と第2の流量センサFS2のう
ちのどちらか一方を省略してもよい。バイパス流量セン
サを設け、第1の流量センサFS1を省略する場合に
は、バイパス流量検出部22は上記バイパス流量センサ
のセンサ出力をバイパス流量Qbpとして検出し、湯側流
量検出部21は第2の流量センサFS2により検出され
る総流量Qから上記バイパス流量センサにより検出され
るバイパス流量Qbpを差し引いて湯側の流量Qyuを求め
る。
Further, although a flow rate sensor is not provided in the bypass passage 15, a bypass flow sensor for detecting the bypass flow rate Qbp may be provided in the bypass passage 15. When the bypass flow sensor is provided in this manner,
One of the first flow sensor FS1 and the second flow sensor FS2 may be omitted. When a bypass flow rate sensor is provided and the first flow rate sensor FS1 is omitted, the bypass flow rate detection unit 22 detects the sensor output of the bypass flow rate sensor as the bypass flow rate Qbp, and the hot water side flow rate detection unit 21 outputs the second flow rate. The hot water side flow rate Qyu is obtained by subtracting the bypass flow rate Qbp detected by the bypass flow rate sensor from the total flow rate Q detected by the flow rate sensor FS2.

【0091】また、バイパス流量Qbpを検出するバイパ
ス流量センサを設け、第2の流量センサFS2を省略す
る場合には、前記バイパス流量検出部22は上記バイパ
ス流量センサのセンサ出力をバイパス流量Qbpとして検
出し、総流量検出部26は、第1の流量センサFS1に
より検出された湯側の流量Qyuと、上記バイパス流量セ
ンサにより検出されたバイパス流量Qbpとを合わせた流
量を総流量Qとして検出する。
When a bypass flow rate sensor for detecting the bypass flow rate Qbp is provided and the second flow rate sensor FS2 is omitted, the bypass flow rate detection unit 22 detects the sensor output of the bypass flow rate sensor as the bypass flow rate Qbp. Then, the total flow rate detection unit 26 detects, as the total flow rate Q, a flow rate obtained by adding the hot water side flow rate Qyu detected by the first flow rate sensor FS1 and the bypass flow rate Qbp detected by the bypass flow rate sensor.

【0092】さらに、第1の流量センサFS1や上記バ
イパス流量センサを設けずに総流量Qを検出する第2の
流量センサFS2のみを設けるようにしてもよく、この
場合には、湯側温度検出部20により検出される湯側の
温度Tyuと、入水サーミスタ5により検出される入水温
度Tinと、出湯サーミスタ7により検出される給湯温度
Tmix と、第2の流量センサFS2により検出される総
流量Qとに基づいて、次に示す式(5)の演算により、
バイパス流量検出部22はバイパス流量Qbpを求め、湯
側流量検出部21は上記求められたバイパス流量Qbpを
第2の流量センサFS2により検出された総流量Qから
差し引いて湯側の流量Qyuを求める。
Further, only the second flow rate sensor FS2 for detecting the total flow rate Q may be provided without providing the first flow rate sensor FS1 and the bypass flow rate sensor. In this case, the hot water side temperature detection The hot water side temperature Tyu detected by the section 20, the incoming water temperature Tin detected by the incoming water thermistor 5, the hot water supply temperature Tmix detected by the outgoing thermistor 7, and the total flow rate Q detected by the second flow rate sensor FS2. Is calculated based on the following equation (5).
The bypass flow rate detector 22 determines the bypass flow rate Qbp, and the hot water side flow rate detector 21 subtracts the determined bypass flow rate Qbp from the total flow rate Q detected by the second flow rate sensor FS2 to determine the hot water side flow rate Qyu. .

【0093】 Qbp=(Tyu−Tin)×Q/(Tmix −Tin)・・・・(5)Qbp = (Tyu−Tin) × Q / (Tmix−Tin) (5)

【0094】さらに、上記図3に示す給湯器の例では総
流量Qを検出する第2の流量センサFS2が設けられて
いたが、湯側の湯温Tyuと、入水温度Tinと、湯側の湯
とバイパス通路15の水とがミキシングした後の湯温T
mixと、バイパス通路15の流量Qbpとを検出すること
ができる場合には、上記第2の流量センサFS2を省略
してもよい。この場合には、例えば、次式(6)によっ
て総流量Qを演算により求めることができる。
Further, in the example of the water heater shown in FIG. 3, the second flow rate sensor FS2 for detecting the total flow rate Q is provided, but the hot water temperature Tyu, the incoming water temperature Tin, and the hot water temperature Hot water temperature T after hot water and water in bypass passage 15 are mixed
If the mix and the flow rate Qbp of the bypass passage 15 can be detected, the second flow rate sensor FS2 may be omitted. In this case, for example, the total flow rate Q can be calculated by the following equation (6).

【0095】 Q=(Tmix−Tin)×Qbp/(Tyu−Tin)・・・・・(6)Q = (Tmix−Tin) × Qbp / (Tyu−Tin) (6)

【0096】さらに、上記図3に示す給湯器では常時バ
イパス通路18が1本設けられていたが、この常時バイ
パス通路18は省略してもよいし、また、2本以上常時
バイパス通路18を設けてもよい。
Further, in the water heater shown in FIG. 3, one bypass passage 18 is always provided. However, the bypass passage 18 may be omitted, or two or more bypass passages 18 may be provided. You may.

【0097】さらに、図3に示す給湯器のシステム構成
に風呂機能を備えた給湯器、例えば、図3に示すバイパ
ス通路15との接続部Zよりも下流側の給湯通路4と浴
槽を連通接続する湯張り通路が設けられ、給湯熱交換器
2により作られた湯を上記湯張り通路を介して落とし込
む風呂の湯張り機能を備えた給湯器や、浴槽水を循環さ
せ浴槽水の追い焚きを行うための追い焚き循環通路と、
給湯熱交換器2により作られた湯を上記追い焚き循環通
路を介して浴槽に落とし込む湯張り通路とを備えた風呂
の追い焚き機能と湯張り機能を備えた給湯器等にも、こ
の発明は適用することが可能である。
Further, a water heater having a bath function in the system configuration of the water heater shown in FIG. 3, for example, connects the hot water supply passage 4 downstream of the connecting portion Z with the bypass passage 15 shown in FIG. A hot water supply passage is provided, and a hot water supply device having a hot water filling function of a bath for dropping the hot water produced by the hot water supply heat exchanger 2 through the hot water supply passage, or a bath tub water is circulated to reheat the bath tub water. Reburning circulation passage for performing
The present invention also applies to a hot water supply device having a hot water refilling function and a hot water refilling function of a bath having a hot water refilling path for dropping hot water produced by the hot water supply heat exchanger 2 into the bathtub through the reheating recirculation passage. It is possible to apply.

【0098】さらに、上記実施形態例では、弁開度制御
ルールに示した開方向と閉方向の第1上限変化量は等し
かったが、開方向の第1上限変化量と閉方向の第1上限
変化量とを異なる値に設定してもよい。第2上限変化量
と第1下限変化量と第2下限変化量についても同様に、
開方向と閉方向とで異なる値を取るようにしてもよい。
Further, in the above embodiment, the first upper limit change amount in the opening direction and the first upper limit change amount in the closing direction indicated in the valve opening degree control rule are equal, but the first upper limit change amount in the opening direction and the first upper limit change amount in the closing direction. The change amount may be set to a different value. Similarly, for the second upper limit change amount, the first lower limit change amount, and the second lower limit change amount,
Different values may be taken for the opening direction and the closing direction.

【0099】さらに、上記実施形態例では、流量比・総
流量制御部28はファジィ論理演算を用いて、第1と第
2の各流量制御手段GM1,GM2の弁開度を制御した
が、ファジィ論理演算を用いずに第1と第2の各流量制
御手段GM1,GM2の弁開度を制御してもよい。例え
ば、前記したような第1〜第9の弁開度制御ルールを予
め定め与えておき、かつ、流量比の偏差ΔRと総流量の
偏差ΔQの組み合せによって第1と第2の各流量制御手
段GM1,GM2の弁開度操作量(変化量)を求めるた
めの弁開度操作量検出データを予め定め与えておき、流
量比・総流量制御部28は、流量比比較部24と総流量
比較部30の各比較結果と弁開度制御ルールとに基づい
て第1と第2の各流量制御手段GM1,GM2の弁開度
の可変方向を求め、上記流量比と総流量の各偏差と上記
弁開度操作量検出データとに基づいて、第1と第2の各
流量制御手段GM1,GM2の弁開度の変化量を求め
て、第1と第2の各流量制御手段GM1,GM2の弁開
度を制御するようにしてもよい。
Further, in the above embodiment, the flow ratio / total flow control unit 28 controls the valve opening of each of the first and second flow control means GM1 and GM2 by using fuzzy logic operation. The valve opening of each of the first and second flow control means GM1 and GM2 may be controlled without using the logical operation. For example, the first to ninth valve opening control rules described above are given in advance, and the first and second flow rate control means are determined by a combination of the flow rate deviation ΔR and the total flow rate deviation ΔQ. The valve opening operation amount detection data for obtaining the valve opening operation amounts (change amounts) of the GM1 and GM2 is given in advance, and the flow ratio / total flow control unit 28 compares the total flow amount with the flow ratio comparison unit 24. The variable direction of the valve opening of each of the first and second flow control means GM1 and GM2 is obtained based on each comparison result of the section 30 and the valve opening control rule, and the deviation of the flow ratio and the total flow is calculated. The amount of change in the valve opening of the first and second flow control means GM1 and GM2 is determined based on the valve opening operation amount detection data, and the amount of change in the valve opening of the first and second flow control means GM1 and GM2 is determined. The valve opening may be controlled.

【0100】さらに、この発明における弁開度制御ルー
ルは、検出流量比が目標流量比に一致する方向に、か
つ、検出総流量が設定総流量に一致する方向に第1と第
2の各流量制御手段の弁開度を制御するために流量比と
総流量の各比較結果の組み合わせに応じて定められたも
のであればよく、上記実施形態例に示した弁開度制御ル
ールに限定されるものではない。さらに、上記実施形態
例では、ファジィ論理演算に用いられるメンバーシップ
関数は三角形状であったが、釣り鐘状のメンバーシップ
関数を与えてもよい。
Further, the valve opening control rule according to the present invention is such that the first and second flow rates are set so that the detected flow rate matches the target flow rate and the detected total flow rate matches the set total flow rate. In order to control the valve opening degree of the control means, any value may be used as long as it is determined according to the combination of each comparison result of the flow rate ratio and the total flow rate, and is limited to the valve opening degree control rule shown in the above embodiment. Not something. Further, in the above embodiment, the membership function used for the fuzzy logic operation is triangular, but a bell-shaped membership function may be provided.

【0101】さらに、上記実施形態例では、流量比・総
流量制御部28のグレード検出部31は、流量比の偏差
ΔRのグレードと総流量の偏差ΔQのグレードのうちの
小さい方を選択するミニマム演算によりファジィ変数グ
レードを選択検出していたが、例えば、上記流量比の偏
差ΔRのグレードと総流量の偏差ΔQのグレードのうち
の大きい方を選択するマキシマム演算によりファジィ変
数グレードを選択検出してもよいし、上記流量比の偏差
ΔRのグレードと総流量の偏差ΔQのグレードとの平均
を求めて該平均値をファジィ変数グレードを選択検出し
てもよく、このように、上記ミニマム演算以外の手法に
より、流量比の偏差ΔRのグレードと総流量の偏差ΔQ
のグレードに基づいてファジィ変数グレードを検出して
もよい。
Further, in the above embodiment, the grade detecting section 31 of the flow ratio / total flow control section 28 selects the smaller one of the grade of the deviation ΔR of the flow ratio and the grade of the deviation ΔQ of the total flow. The fuzzy variable grade is selected and detected by the calculation. For example, the fuzzy variable grade is selectively detected by the maximum calculation of selecting the larger one of the grade of the flow rate deviation ΔR and the grade of the total flow rate deviation ΔQ. Alternatively, an average of the grade of the deviation ΔR of the flow rate ratio and the grade of the deviation ΔQ of the total flow rate may be obtained, and the average value may be selected and detected as a fuzzy variable grade. By the method, the grade of the deviation ΔR of the flow ratio and the deviation ΔQ of the total flow
The fuzzy variable grade may be detected based on the grade of the fuzzy variable.

【0102】さらに、上記実施形態例では、流量比・総
流量制御部28の和集合検出部32は、例えば、弁開度
制御ルールに合致する第1の流量制御手段GM1の弁開
度操作量V1に対応するメンバーシップ関数の有効面積
の和集合として、図9の(c)に示すような領域ABE
KLIFDの面積を求めていたが、例えば、図5の
(c)に示す領域AB0Cと図6の(c)に示す領域D
E0Cと図7の(c)に示す領域FGHIと図8の
(c)に示す領域JKLHの面積を合計した面積をメン
バーシップ関数の有効面積の和集合として求めてもよ
い。第2の流量制御手段GM2の弁開度操作量V2に対
応するメンバーシップ関数の有効面積の和集合について
も同様である。
Further, in the above embodiment, the union detection unit 32 of the flow ratio / total flow control unit 28 determines, for example, the valve opening operation amount of the first flow control unit GM1 that matches the valve opening control rule. As a union of the effective areas of the membership functions corresponding to V1, a region ABE as shown in FIG.
The area of the KLIFD has been determined. For example, the area AB0C shown in FIG. 5C and the area D shown in FIG.
The area obtained by summing the area of E0C, the area FGHI shown in FIG. 7C, and the area JKLH shown in FIG. 8C may be obtained as a union set of the effective areas of the membership function. The same applies to the union of the effective areas of the membership functions corresponding to the valve opening manipulated variable V2 of the second flow control means GM2.

【0103】[0103]

【発明の効果】この発明によれば、給水通路と給湯通路
間を給湯熱交換器を迂回して連通接続するバイパス通路
を設け、該バイパス通路から流れ出る湯側の流量を弁開
度でもって制御する第1の流量制御手段と、バイパス通
路の通水流量を弁開度でもって制御する第2の流量制御
手段とを設けたので、上記第1と第2の各流量制御手段
の弁開度を制御することによって、湯側の流量とバイパ
ス通路のバイパス流量との流量比、および、湯側の流量
と上記バイパス流量の総流量とを共に制御することが可
能となる。
According to the present invention, a bypass passage is provided between the water supply passage and the hot water supply passage for communication bypassing the hot water supply heat exchanger, and the flow rate of the hot water flowing out of the bypass passage is controlled by the valve opening. And the second flow control means for controlling the flow rate of the water in the bypass passage by the valve opening degree, so that the valve opening degree of each of the first and second flow control means is provided. , It is possible to control both the flow rate of the hot water side flow rate and the bypass flow rate of the bypass passage, and the total flow rate of the hot water side flow rate and the bypass flow rate.

【0104】この発明では、さらに、給湯設定温度の湯
を給湯するための湯側の流量とバイパス流量の目標流量
比を求め、上記流量比を検出し該検出した流量比を上記
目標流量比に比較し、また、検出した総流量を設定総流
量に比較し、これら流量比と総流量の比較結果と、流量
比と総流量の各比較結果の組み合わせに応じて予め与え
られている弁開度制御ルールとに基づいて、第1と第2
の各流量制御手段の弁開度を制御して検出流量比が目標
流量比に一致する方向に制御し併せて検出総流量が設定
総流量に一致する方向に制御する流量比・総流量制御部
を備えた構成としたので、再出湯時においても、精度良
く給湯設定温度の湯を設定総流量でもって給湯すること
ができるという画期的な効果を得ることができる。
In the present invention, a target flow ratio between the hot water side flow rate and the bypass flow rate for supplying hot water at the hot water supply set temperature is determined, the flow rate ratio is detected, and the detected flow rate ratio is used as the target flow rate ratio. Compare the detected total flow rate with the set total flow rate, and compare the flow rate and the total flow rate, and the valve opening degree given in advance according to the combination of the flow rate ratio and the total flow rate. Based on the control rules, the first and second
A flow ratio / total flow control unit that controls the valve opening of each of the flow control means to control the detected flow ratio in a direction that matches the target flow ratio, and controls the detected total flow in a direction that matches the set total flow. The hot water supply at the set hot water supply temperature can be accurately supplied at the set total flow rate even when the hot water is supplied again, so that an epoch-making effect can be obtained.

【0105】特に、ファジィ論理演算によって上記第1
と第2の各流量制御手段の弁開度操作量を検出して該検
出操作量に応じて上記第1と第2の各流量制御手段の弁
開度を制御する構成にあっては、より一層、精度良く給
湯設定温度の湯を設定総流量でもって給湯することがで
きるようになる。
In particular, the first operation is performed by fuzzy logic operation.
And the valve opening of each of the second and third flow control means is detected and the valve opening of each of the first and second flow control means is controlled in accordance with the detected operation amount. Further, hot water at the set hot water supply temperature can be supplied with high accuracy at the set total flow rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この実施形態例において特徴的な制御構成を示
すブロック図である。
FIG. 1 is a block diagram showing a characteristic control configuration in this embodiment.

【図2】ファジィ論理演算を用いて第1と第2の各流量
制御手段の弁開度操作量を求める流量比・総流量制御部
の制御構成例を示すブロック図である。
FIG. 2 is a block diagram showing a control configuration example of a flow ratio / total flow control unit for obtaining a valve opening operation amount of each of first and second flow control means using fuzzy logic operation.

【図3】この実施形態例に示す給湯器のシステム構成を
示すモデル図である。
FIG. 3 is a model diagram showing a system configuration of the water heater shown in the embodiment.

【図4】この実施形態例に示すファジィ論理演算に用い
るメンバーシップ関数を示すグラフである。
FIG. 4 is a graph showing a membership function used for fuzzy logic operation shown in the embodiment.

【図5】この実施形態例に示すファジィ論理演算により
第1と第2の各流量制御手段GM1,GM2の弁開度操
作量を求める手法を示すための説明図である。
FIG. 5 is an explanatory diagram showing a method of obtaining the valve opening operation amounts of the first and second flow rate control means GM1 and GM2 by fuzzy logic operation shown in this embodiment.

【図6】引き続き、この実施形態例に示すファジィ論理
演算により第1と第2の各流量制御手段GM1,GM2
の弁開度操作量を求める手法を示すための説明図であ
る。
FIG. 6 is a flow chart showing the operation of the first and second flow control means GM1 and GM2 according to the fuzzy logic operation shown in the embodiment.
FIG. 7 is an explanatory diagram for illustrating a method of obtaining a valve opening degree operation amount of FIG.

【図7】さらに、この実施形態例に示すファジィ論理演
算により第1と第2の各流量制御手段GM1,GM2の
弁開度操作量を求める手法を示すための説明図である。
FIG. 7 is an explanatory diagram showing a method for obtaining the valve opening operation amounts of the first and second flow rate control means GM1 and GM2 by fuzzy logic operation shown in the embodiment.

【図8】さらに、この実施形態例に示すファジィ論理演
算により第1と第2の各流量制御手段GM1,GM2の
弁開度操作量を求める手法を示すための説明図である。
FIG. 8 is an explanatory diagram showing a method of obtaining the valve opening degree operation amounts of the first and second flow rate control means GM1 and GM2 by fuzzy logic operation shown in the embodiment.

【図9】さらにまた、この実施形態例に示すファジィ論
理演算により第1と第2の各流量制御手段GM1,GM
2の弁開度操作量を求める手法を示すための説明図であ
る。
FIG. 9 shows a first and a second flow rate control means GM1, GM by a fuzzy logic operation shown in this embodiment.
It is explanatory drawing for showing the technique of calculating | requiring the valve opening degree operation amount of No. 2.

【図10】流量比と総流量を共に考慮した本実施形態例
に示した手法により第1と第2の各流量制御手段GM
1,GM2の弁開度を制御したときの出湯流量と給湯温
度の各特性データを示すグラフである。
FIG. 10 shows first and second flow rate control means GM according to the method shown in the present embodiment in which both the flow rate ratio and the total flow rate are considered.
It is a graph which shows each characteristic data of hot water supply flow rate and hot-water supply temperature when the valve opening degree of GM1 and GM2 is controlled.

【図11】流量比と総流量のうちの流量比のみを考慮し
た手法により第1と第2の各流量制御手段GM1,GM
2の弁開度を制御したときの出湯流量と給湯温度の各特
性データを示すグラフである。
FIG. 11 shows first and second flow rate control means GM1, GM by a method in which only a flow rate ratio of the flow rate ratio and the total flow rate is considered.
It is a graph which shows each characteristic data of the tap water flow rate and hot-water supply temperature at the time of controlling the valve opening degree of No. 2.

【図12】従来の給湯器のシステム構成を示すモデル図
である。
FIG. 12 is a model diagram showing a system configuration of a conventional water heater.

【符号の説明】[Explanation of symbols]

2 給湯熱交換器 3 給水通路 4 給湯通路 15 バイパス通路 23 目標流量比検出部 24 流量比比較部 25 流量比検出部 26 総流量検出部 27 偏差検出部 28 流量比・総流量制御部 30 総流量比較部 31 グレード検出部 32 和集合検出部 34 弁開度操作量検出部 GM1 第1の流量制御手段 GM2 第2の流量制御手段 FS2 第2の流量センサ 2 Hot water supply heat exchanger 3 Water supply passage 4 Hot water supply passage 15 Bypass passage 23 Target flow ratio detection unit 24 Flow ratio comparison unit 25 Flow ratio detection unit 26 Total flow detection unit 27 Deviation detection unit 28 Flow ratio / total flow control unit 30 Total flow Comparison unit 31 Grade detection unit 32 Union set detection unit 34 Valve opening operation amount detection unit GM1 First flow control unit GM2 Second flow control unit FS2 Second flow sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 給水通路から供給された水を加熱して湯
を作り出し該湯を給湯通路に送出する給湯熱交換器と、
上記給水通路と給湯通路間を上記給湯熱交換器を迂回し
て連通接続するバイパス通路と、該バイパス通路から流
れ出た水が合流する湯側の流量を弁開度でもって制御す
る第1の流量制御手段と、上記バイパス通路を流れる水
の流量を弁開度でもって制御する第2の流量制御手段
と、上記バイパス通路の通水流量と湯側の流量との総流
量を検出する総流量検出手段とを有し、バイパス通路か
ら流れ出る水と湯側の湯とのミキシング後の湯温が予め
定められた給湯設定温度になるためのバイパス通路の通
水流量と湯側の流量との目標流量比を検出する目標流量
比検出部と、バイパス通路の通水流量と湯側の流量との
流量比を検出する流量比検出部とを備えた給湯器であっ
て、上記流量比検出部により検出された流量比を上記目
標流量比検出部により検出された目標流量比に比較する
流量比比較部と;上記総流量検出手段により検出された
総流量を予め定められた設定総流量に比較する総流量比
較部と;上記流量比と総流量の各比較結果の組み合わせ
に応じて予め与えられている弁開度制御ルールと、上記
流量比比較部と総流量比較部の各比較結果とに基づいて
上記第1と第2の各流量制御手段の弁開度を制御して上
記検出流量比が目標流量比に一致する方向に制御し併せ
て検出総流量が設定総流量に一致する方向に制御して給
湯設定温度の湯を設定総流量でもって給湯するための流
量比・総流量制御部と;が設けられていることを特徴と
した給湯器。
1. A hot water supply heat exchanger for heating water supplied from a water supply passage to produce hot water and sending the hot water to the hot water supply passage;
A bypass passage for connecting the water supply passage and the hot water supply passage so as to bypass the hot water supply heat exchanger, and a first flow rate for controlling the flow rate on the hot water side where the water flowing out from the bypass passage joins with the valve opening degree; Control means, second flow rate control means for controlling the flow rate of water flowing through the bypass passage with a valve opening degree, and total flow rate detection for detecting the total flow rate of the flow rate of the bypass passage and the flow rate of the hot water side And a target flow rate between the flow rate of the bypass passage and the flow rate of the hot water so that the hot water temperature after mixing the water flowing out of the bypass passage with the hot water on the hot water side becomes a predetermined hot water supply set temperature. A water heater comprising a target flow ratio detecting unit for detecting a ratio, and a flow ratio detecting unit for detecting a flow ratio between a flow rate of the bypass passage and a flow rate on the hot water side, wherein the water flow rate is detected by the flow rate detecting unit. The target flow ratio detector detects the A flow ratio comparing unit that compares the detected target flow ratio; a total flow comparing unit that compares the total flow detected by the total flow detecting unit with a predetermined set total flow; The first and second flow rate control means are controlled based on a valve opening degree control rule given in advance in accordance with a combination of the respective comparison results, and the respective comparison results of the flow rate comparison unit and the total flow rate comparison unit. The valve opening is controlled to control the detected flow ratio in a direction in which the detected flow ratio matches the target flow ratio, and the detected total flow is controlled in a direction in accordance with the set total flow to supply hot water at the hot water supply set temperature with the set total flow. And a flow ratio / total flow control unit for supplying hot water.
【請求項2】 弁開度制御ルールは、上記検出総流量が
設定総流量にほぼ等しく検出流量比が目標流量比よりも
大きい場合に上記第1の流量制御手段の弁開度を予め定
めた第1上限変化量を越えない範囲で開方向に小さく制
御し、第2の流量制御手段の弁開度を予め定めた第2上
限変化量を越えない範囲で閉方向に小さく制御する第1
のルールと、検出総流量が設定総流量にほぼ等しく検出
流量比が目標流量比よりも小さい場合に第1の流量制御
手段の弁開度を小さく閉方向に、第2の流量制御手段の
弁開度を小さく開方向にそれぞれ制御する第2のルール
と、検出総流量が設定総流量よりも多くて検出流量比が
目標流量比にほぼ等しい場合に第1の流量制御手段の弁
開度を小さく閉方向に、第2の流量制御手段の弁開度を
小さく閉方向にそれぞれ制御する第3のルールと、検出
総流量が設定総流量よりも少なくて検出流量比が目標流
量比にほぼ等しい場合に第1の流量制御手段の弁開度を
小さく開方向に、第2の流量制御手段の弁開度を小さく
開方向にそれぞれ制御する第4のルールと、検出総流量
が設定総流量よりも少なくて検出流量比が目標流量比よ
りも大きい場合に第1の流量制御手段の弁開度を予め定
めた第1下限変化量以上に開方向に大きく制御し、第2
の流量制御手段の弁開度を閉方向に小さく制御する第5
のルールと、検出総流量が設定総流量よりも少なくて検
出流量比が目標流量比よりも小さい場合に第1の流量制
御手段の弁開度を小さく閉方向に、第2の流量制御手段
の弁開度を予め定めた第2下限変化量以上に開方向に大
きく制御する第6のルールと、検出総流量が設定総流量
よりも多くて検出流量比が目標流量比よりも大きい場合
に第1の流量制御手段の弁開度を小さく開方向に、第2
の流量制御手段の弁開度を大きく閉方向にそれぞれ制御
する第7のルールと、検出総流量が設定総流量よりも多
くて検出流量比が目標流量比よりも小さい場合に第1の
流量制御手段の弁開度を大きく閉方向に、第2の流量制
御手段の弁開度を小さく開方向にそれぞれ制御する第8
のルールと、検出総流量が設定の総流量にほぼ等しく検
出流量比が目標流量比にほぼ等しい場合には第1と第2
の各流量制御手段の弁開度を変化させない第9のルール
とから成ることを特徴とする請求項1記載の給湯器。
2. The valve opening control rule defines a valve opening of the first flow control means in advance when the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is larger than the target flow rate ratio. A first control in which the valve is controlled to be small in the opening direction within a range not exceeding the first upper limit change amount and a valve opening degree of the second flow control means is controlled to be small in the closing direction in a range not exceeding a predetermined second upper limit change amount.
When the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is smaller than the target flow rate ratio, the valve opening of the first flow rate control means is decreased and the valve of the second flow rate control means is closed. A second rule for controlling the opening degree in the opening direction to be smaller and a valve opening degree of the first flow control means when the detected total flow rate is larger than the set total flow rate and the detected flow rate ratio is substantially equal to the target flow rate ratio. A third rule for controlling the valve opening degree of the second flow control means in the closing direction to be small in the closing direction and the detected total flow rate is smaller than the set total flow rate and the detected flow rate ratio is substantially equal to the target flow rate ratio. In this case, a fourth rule for controlling the valve opening of the first flow control means to be small in the opening direction and controlling the valve opening of the second flow control means to be small in the opening direction, and the detected total flow rate is larger than the set total flow rate The detected flow ratio is greater than the target flow ratio Largely controlled in the opening direction to a first or lower limit change amount determined in advance the valve opening degree of the first flow control means, the second
5th control for reducing the valve opening degree of the flow control means in the closing direction.
When the detected total flow rate is smaller than the set total flow rate and the detected flow rate ratio is smaller than the target flow rate ratio, the valve opening degree of the first flow control means is reduced and the second flow control means is closed. A sixth rule for controlling the valve opening degree in the opening direction to be larger than a predetermined second lower limit change amount, and a sixth rule when the detected total flow rate is larger than the set total flow rate and the detected flow rate ratio is larger than the target flow rate ratio. The valve opening of the first flow control means is decreased in the opening direction,
A seventh rule for controlling the valve opening degree of the flow control means in the large closing direction, and a first flow control when the detected total flow rate is larger than the set total flow rate and the detected flow rate ratio is smaller than the target flow rate ratio. An eighth control means for controlling the valve opening degree of the second flow control means in the closing direction and controlling the valve opening degree of the second flow control means in the closing direction;
And the first and second rules when the detected total flow rate is substantially equal to the set total flow rate and the detected flow rate ratio is substantially equal to the target flow rate ratio.
The water heater according to claim 1, wherein the ninth rule does not change the valve opening of each flow control means.
【請求項3】 目標流量比に対する検出流量比の偏差
と、設定総流量に対する検出総流量の偏差とを求める偏
差検出部が設けられ、上記流量比と総流量の各偏差の組
み合わせを前件部とし、その偏差の組み合わせに応じた
第1と第2の各流量制御手段の弁開度制御形態を後件部
とした弁開度制御ルールと、上記偏差検出部により求め
られた流量比の偏差と総流量の偏差とに基づいたファジ
ィ論理演算により、流量比・総流量制御部は、第1と第
2の各流量制御手段の弁開度の操作量を求め、この求め
た操作量に応じて第1と第2の各流量制御手段の弁開度
を制御する構成としたことを特徴とする請求項1又は請
求項2記載の給湯器。
3. A deviation detecting unit for determining a deviation of a detected flow ratio from a target flow ratio and a deviation of a detected total flow from a set total flow is provided. And a valve opening control rule having a valve opening control form of each of the first and second flow control means according to the combination of the deviation as a consequent part, and a deviation of the flow ratio obtained by the deviation detecting unit. The flow ratio / total flow control unit obtains an operation amount of the valve opening degree of each of the first and second flow control means by a fuzzy logic operation based on the deviation of the total flow amount and a deviation of the total flow amount. The water heater according to claim 1 or 2, wherein the valve opening of each of the first and second flow control means is controlled.
【請求項4】 弁開度制御ルールの前件部は、目標流量
比に対する検出流量比の偏差の大小に応じた複数のメン
バーシップ関数と、設定総流量に対する検出総流量の偏
差の大小に応じた複数のメンバーシップ関数とから成
り、弁開度制御ルールの後件部は、第1の流量制御手段
の弁開度操作量の大小に応じた複数のメンバーシップ関
数と、第2の流量制御手段の弁開度操作量の大小に応じ
た複数のメンバーシップ関数とから成り、偏差検出部に
より求められた流量比と総流量の各偏差に基づき、上記
前件部のメンバーシップ関数からファジィ変数グレード
を検出するグレード検出部と、検出されたファジィ変数
グレードに基づいて前記弁開度制御ルールに合致した第
1の流量制御手段に対応した上記後件部のメンバーシッ
プ関数の有効面積の和集合と第2の流量制御手段に対応
した後件部のメンバーシップ関数の有効面積の和集合と
をそれぞれ検出する和集合検出部と、これら検出された
第1と第2の各流量制御手段に対応した有効面積の和集
合の重心をそれぞれ算出し、該求めた重心に基づき第1
と第2の各流量制御手段の弁開度の操作量をそれぞれ検
出する弁開度操作量検出部とが設けられていることを特
徴とした請求項3記載の給湯器。
4. The antecedent part of the valve opening control rule includes a plurality of membership functions according to the magnitude of the deviation of the detected flow rate with respect to the target flow rate, and the magnitude of the deviation of the detected total flow rate with respect to the set total flow rate. A plurality of membership functions, and the consequent part of the valve opening control rule includes a plurality of membership functions according to the magnitude of the valve opening operation amount of the first flow control means, and a second flow control. A plurality of membership functions according to the magnitude of the valve opening operation amount of the means, and based on each deviation of the flow ratio and the total flow obtained by the deviation detection unit, a fuzzy variable is calculated from the membership function of the antecedent part. The sum of the effective area of the membership function of the consequent part corresponding to the first flow rate control means that matches the valve opening degree control rule based on the detected fuzzy variable grade and the grade detection unit for detecting the grade A union detection unit for detecting the union of the effective area of the membership function of the consequent part corresponding to the set and the second flow rate control means, respectively, and the detected first and second flow rate control means. The center of gravity of the union of the corresponding effective areas is calculated, and the first center is calculated based on the obtained center of gravity.
4. The water heater according to claim 3, further comprising a valve opening operation amount detecting unit for detecting an operation amount of the valve opening of each of the second flow control means.
JP35629397A 1997-12-09 1997-12-09 Water heater Expired - Fee Related JP3834407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35629397A JP3834407B2 (en) 1997-12-09 1997-12-09 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35629397A JP3834407B2 (en) 1997-12-09 1997-12-09 Water heater

Publications (2)

Publication Number Publication Date
JPH11173668A true JPH11173668A (en) 1999-07-02
JP3834407B2 JP3834407B2 (en) 2006-10-18

Family

ID=18448313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35629397A Expired - Fee Related JP3834407B2 (en) 1997-12-09 1997-12-09 Water heater

Country Status (1)

Country Link
JP (1) JP3834407B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102900A (en) * 2011-03-14 2011-06-22 李耀强 Water heater without outflow of cold water
JP2015152196A (en) * 2014-02-12 2015-08-24 パナソニックIpマネジメント株式会社 Hot water/water mixing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102900A (en) * 2011-03-14 2011-06-22 李耀强 Water heater without outflow of cold water
JP2015152196A (en) * 2014-02-12 2015-08-24 パナソニックIpマネジメント株式会社 Hot water/water mixing device

Also Published As

Publication number Publication date
JP3834407B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JPH11173668A (en) Water heater
JP2019027615A (en) Heating hot water supply device
JP3824734B2 (en) Combustion device
JP2004036960A (en) Supply control method for fluid supply device, and fluid supply device
JP3859810B2 (en) Flow rate control device and hot water supply device
JP3872864B2 (en) Hot water combustion equipment
JPH08247547A (en) Hot water-supply device
JP3859811B2 (en) Hot water combustion equipment
JP2021103026A (en) Hot water supply device, method of controlling hot water supply device, and program for controlling hot water supply device
JP3859837B2 (en) Combustion device
JP3971507B2 (en) Gas water heater with remembrance function
JP3862048B2 (en) One can multi-channel water heater
JP3182975B2 (en) Water heater overflow prevention device
JP3881190B2 (en) Water heater with remembrance
JP3211517B2 (en) Automatic hot water bath equipment
JP3719272B2 (en) Bath kettle with water heater
JP3922795B2 (en) Water heater with hot water filling function
JPH1144454A (en) Hot water supply apparatus with reheating function
JP2946862B2 (en) Operation control method of bath kettle with water heater
JPH0712840Y2 (en) Mixing hot water temperature control device for water heaters, etc.
JPH08320149A (en) One-boiler two-water passage type bath heater
JP3798142B2 (en) Combustion equipment
JPH10238853A (en) One-can two-channel hot water supply machine
JP3166459B2 (en) Water heater
JPH1163665A (en) Hot water supply device provided with bypass passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees