JP3971507B2 - Gas water heater with remembrance function - Google Patents

Gas water heater with remembrance function Download PDF

Info

Publication number
JP3971507B2
JP3971507B2 JP12527798A JP12527798A JP3971507B2 JP 3971507 B2 JP3971507 B2 JP 3971507B2 JP 12527798 A JP12527798 A JP 12527798A JP 12527798 A JP12527798 A JP 12527798A JP 3971507 B2 JP3971507 B2 JP 3971507B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
proportional valve
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12527798A
Other languages
Japanese (ja)
Other versions
JPH11304241A (en
Inventor
寿久 斎藤
久恭 渡辺
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP12527798A priority Critical patent/JP3971507B2/en
Publication of JPH11304241A publication Critical patent/JPH11304241A/en
Application granted granted Critical
Publication of JP3971507B2 publication Critical patent/JP3971507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ガス給湯装置に関する。
【0002】
【従来の技術】
一般に、ガス給湯装置は、熱交換部と、この熱交換部を通る給湯配管と、この熱交換部に燃焼熱を供給するガスバーナと、このガスバーナへのガス供給量を調節する電磁比例弁と、この比例弁への供給電流を制御する制御部とを備えている。
上記制御部は、比例弁への供給電流を決定し、出湯温度を設定温度に一致させる制御をしている。詳述すると、制御部は、出湯量(給湯配管を流れる水の量)と、熱交換部へ向かう水の温度と、設定温度の情報に基づいて給湯要求熱量を演算し、この給湯要求熱量と記憶データとからフィードフォワード出力分を演算する。なお、この記憶データは、給湯要求熱量と比例弁への供給電流とのリニアな関係を表すものであり、記憶部に演算式またはマップの形態で記憶されている。上記フィードフォワード演算は、給湯初期や出湯量の急変,設定温度の急変に即応するために必要なものである。
【0003】
なお、上記フィードフォワード演算だけでは、温度情報や出湯量情報に検出誤差があったり、比例弁への供給電流と熱交換部での吸収熱量との実際の関係が理論値からずれている場合に、出湯温度を設定温度に一致させることができないので、フィードバック演算でこれを補うようにしている。すなわち、出湯温度と設定温度に基づいてフィードバック出力分を演算し、上記フィードフォワード出力分にフィードバック出力分を加算して、上記比例弁への供給電流を決定するのである。
【0004】
ところで、最近では、追焚機能を有する1缶2水路型のガス給湯装置が開発されている。このガス給湯装置では、熱交換部とガスバーナが給湯,追焚に共通のものであり、熱交換部に給湯配管と追焚配管が通っている。このガス給湯装置では、給湯要求熱量と比例弁電流との関係を表す記憶データは、給湯単独実行時のものと、給湯,追焚の同時実行のものと、2種類ある。同時実行の際には、燃焼熱の一部が追焚にも消費されるからである。
【0005】
【発明が解決しようとする課題】
しかし、上記同時実行の際に用いられる記憶データは、浴槽の水温や循環量の変動により追焚で消費される熱量が変動するにも拘わらず、給湯要求熱量と比例弁電流との関係が一定であるため、給湯のための正確なフィードフォワード出力分を演算することができなかった。
【0006】
【課題を解決するための手段】
請求項1の発明は、共通の熱交換部と、この熱交換部を通る給湯配管および追焚配管と、この熱交換部に燃焼熱を供給する共通のガスバーナと、このガスバーナへのガス供給量を調節する比例弁と、この比例弁への供給電流を制御する制御部と、給湯単独実行の際の給湯要求熱量と比例弁への供給電流との関係を表すデータを記憶する記憶部とを備え、
上記制御部が、給湯単独実行の際に、給湯配管を流れる水の流量と、熱交換部へ向かう水の温度と、設定温度の情報に基づいて給湯要求熱量を演算し、この給湯要求熱量と上記記憶データとから上記比例弁への供給電流値を決定する追焚機能付きガス給湯装置において、
上記制御部は、給湯と追焚を同時に実行している時には、追焚で消費される熱量を補うために、比例弁への供給電流を、上記給湯単独実行用の記憶データと給湯要求熱量に基づく供給電流値から、出湯温度を給湯設定温度にするための上記給湯配管における上記熱交換部の理想出口温度と、浴槽水の温度との偏差に基づいて、変化させることを特徴とする。
【0008】
請求項2の発明は、共通の熱交換部と、この熱交換部を通る給湯配管および追焚配管と、この熱交換部に燃焼熱を供給する共通のガスバーナと、このガスバーナへのガス供給量を調節する比例弁と、この比例弁への供給電流を制御する制御部と、給湯単独実行の際の給湯要求熱量と比例弁への供給電流との関係を表すデータを記憶する記憶部とを備え、
上記制御部が、給湯単独実行の際に、給湯配管を流れる水の流量と、熱交換部へ向かう水の温度と、設定温度の情報に基づいて給湯要求熱量を演算し、この給湯要求熱量と上記記憶データとから上記比例弁への供給電流値を決定する追焚機能付きガス給湯装置において、
上記制御部は、給湯と追焚を同時に実行している時には、追焚で消費される熱量を補うために、比例弁への供給電流を、上記給湯単独実行用の記憶データと給湯要求熱量に基づく供給電流値から、出湯温度を給湯設定温度にするための上記給湯配管における上記熱交換部の理想出口温度と浴槽水の温度との偏差に、追焚配管のポンプ駆動に伴う浴槽水の循環流量を乗じた数値に基づいて、変化させることを特徴とする。
【0009】
請求項は、請求項に記載の追焚機能付きガス給湯装置において、上記制御部は、給湯の最中において、追焚要求があった時には上記ポンプによる循環流量を徐々に増大させ、追焚要求が解除された時にはポンプによる循環流量を徐々に低減させるようにしたことを特徴とする。
請求項は、請求項1〜のいずれかに記載の追焚機能付きガス給湯装置において、上記制御部は、上記記憶データと給湯要求熱量を含む情報に基づき決定された供給電流値をフィードフォワード出力分として用い、さらに給湯配管からの出湯温度と上記設定温度に基づいてフィードバック出力分を演算し、上記フィードフォワード出力分にフィードバック出力分を加味して最終的な供給電流値を決定することを特徴とする。
【0010】
【発明の実施の形態】
以下、この発明の一実施の形態について図1および図2を参照して説明する。図1に示すように1缶2水路式の追焚機能付きガス給湯装置は、缶(図示せず)の下部に収容された給湯,追焚共通のガスバーナ1と、缶の上部に収容された給湯,追焚共通の熱交換部2と、ガスバーナ1に燃焼空気を供給するためのファン(図示せず)と、を備えている。上記ガスバーナ1にガスを供給する手段は、ガス管3と、このガス管3に設けられた電磁開閉弁4および電磁比例弁5とを有している。熱交換部2には、給湯配管10と追焚配管20が通っている。
【0011】
上記給湯配管10は、上記熱交換部2を通る受熱管11と、この受熱管11の入口端に接続された給水管12と、出口端に接続された給湯管13とを有している。給湯管13の末端には給湯栓14が設けられている。給水管12には給水温度センサTINと、フローセンサQaが設けられ、給湯管13には出湯温度センサTOUTと流量制御弁GMが設けられている。給水管12と給湯管13との間には、バイパス管15が受熱管11と並列に設けられている。
【0012】
上記追焚配管20は、熱交換部2を貫通する受熱管21と、その入口端と浴槽6との間に接続された復路管22と、受熱管21の出口端と浴槽6との間に接続された往路管23とを備えている。復路管22には、ポンプ24、温度センサTHRおよびフローセンサQbが設けられている。
上記給湯配管10の給湯管13と追焚配管20の復路管22との間には、浴槽6への湯張りのための注湯管30が設けられている。注湯管30には、電磁開閉弁からなる注湯弁31が設けられている。
【0013】
ガス給湯装置は、さらに、制御部50と記憶部55とリモートコントローラ60とを備えている。制御部50は、上述した種々の検出手段、すなわち温度センサTIN,TOUT,THR,フローセンサQa,Qb、リモートコントローラ60からの情報に基づいて、点火機構,ファン,開閉弁4,比例弁5,流量制御弁GMポンプ24を制御する。なお、温度センサTIN,TOUT,THR,フローセンサQa,Qbの検出値については、それぞれ同符号を付して表すこととする。
上記記憶部55は、図2に実線で示すように、給湯単独実行の際の給湯要求熱量と比例弁5への供給電流(以下、比例弁電流と称す)とのリニアな関係を示すデータをマップまたは演算式(1次方程式)の形態で記憶している。
【0014】
上記構成において、ユーザーが給湯栓14を開くと、フローセンサQaが所定量以上の水流を検出する。制御部50はこの水流検出に応答して、点火機構およびファンを作動させる。これと同時期に、開閉弁4を開き、ガスをガスバーナ1に供給して燃焼を開始する。給水管12からの水は受熱管11を通る過程で燃焼熱を受けて湯となり、給湯管13を経て給湯栓14から吐出される。
【0015】
追焚を行う場合には、リモートコントローラ60の追焚スイッチをON状態にする(追焚要求)。すると、まずポンプ24が起動され、浴槽6内の湯が復路管22および往路管23を通って循環する。復路管22内の湯の流れをフローセンサQbが検出すると、ガスバーナ1が点火される。これによって、浴槽6内の湯が加熱される。そして、温度センサTHRによる検出温度が設定温度に達すると、追焚要求が解除され、ガスバーナ1の燃焼が停止されるとともに、ポンプ24が停止される。
リモートコントローラ60の自動運転スイッチがオンの時には、湯張りを行う。すなわち、注湯弁31を開き、給湯配管10からの湯を注湯管30を経、追焚配管20を経て浴槽6に供給する。
【0016】
上記給湯の際に、上記制御部50は比例弁電流を制御して、この電流と比例関係にある出力側ガス圧を制御し、ひいては燃焼熱量を制御する。上記比例弁電流の制御は、比例弁5の開度の制御をも意味する。
【0017】
まず、追焚を実行せず、給湯を単独で実行する場合の上記比例弁電流制御について詳述する。制御部50は、給水温度センサTINで検出された給水温度(給湯配管10を通って熱交換部2へ向かう水の温度)と、リモートコントローラ60で設定される設定温度TSと、フローセンサQaで検出された出湯量(熱交換部2または給湯配管10を流れる水の流量)を下記式に代入して、給湯要求熱量Gを演算する。
G=(TS−TIN)Qa
そして、演算された給湯要求熱量Gと、上記記憶部55で記憶された給湯要求号数Gと比例弁電流Iとの関係を表すデータ(図2において実線で示す)とからフィードフォワード出力分FFを演算する。例えば給湯要求熱量がG0であれば、フィードフォワード出力分FFはI0となる。
【0018】
また、出湯温度センサTOUTで検出された出湯温度と、設定温度TSとの差に基づくPID演算に基づいて、フィードバック出力分FBを求める。
次に、上記フィードフォワード出力分FFにフィードバック出力分FBとを加算して、比例弁電流Iを決定する。その結果、検出出湯温度TOUTを高精度で設定温度TSにすることができる。
【0019】
次に、追焚と給湯を同時に実行している場合の、上記比例弁電流制御について詳述する。この場合には、前述と同様に、上記記憶データ(図2の実線)に基づいて、給湯要求号数G0から、給湯単独と仮定した時のフィードフォワード出力分I0を求める。次に、
追焚で消費される熱量を補うために電流増加分ΔIを下記式に基づいて演算する。
ΔI=K・(TEX−THR)・Qb
ここでKは定数であり、THR,Qbはそれぞれ浴槽水温度,浴槽水循環流量である。TEXは、出湯温度を給湯設定温度TSにするための熱交換部2の出口温度(バイパス管15より上流側の温度。以下、理想の熱交出口温度と称す)である。この温度TEXは、熱交換部2からの湯とバイパス管15からの水との混合比と、給湯設定温度TSによって決定される。
【0020】
次に、下記のように、フィードフォワード出力分FF=I1を、上記給湯単独と仮定した時の電流値I0に電流増加分ΔIを加算して、決定する。
1=I0+ΔI
次に、給湯単独時と同様に、このフィードフォワード出力分FFにフィードバック出力分FBを加算して最終的な比例弁電流値を決定する。
【0021】
上述したように、追焚で消費される熱量を見込んで、比例弁電流値をΔIだけ増大させるので、フィードフォワード出力分FFを給湯要求熱量をほぼ達成するように決定することができ、フィードバック出力分FBで補う量を少なくすることができ、給湯初期や、設定温度の急変,出湯量の急変に即応することができる。
しかも、上記増大分ΔIは、理想の熱交出口温度TEXと浴槽水温度THRの差が大きい程大きくなり、浴槽水循環流量Qbが大きい程大きくなり、追焚で消費される熱量に正確に対応しているので、フィードフォワード出力分FFを高精度で演算することができ、給湯初期や、設定温度の急変,出湯量の急変に即応して、出湯温度のオーバーシュートやアンダーシュートを最小限にすることができる。
【0022】
本実施形態では、給湯を実行している最中に追焚要求があった時には、ポンプ24を駆動させる際に、一挙に所定循環流量にするのではなく、徐々に流量を増大させて所定循環流量に達するようにポンプ24への供給電圧を制御している。そのため、上記のようにして演算される電流増加分ΔIは、フローセンサQbで検出される循環流量に応じて徐々に増大することになる。これにより、フィードフォワード出力分FFが急激に増大せず徐々に増大し、出湯温度の安定性を確保することができる。同様に、給湯を実行している最中に追焚要求が解除された時には、循環流量を所定流量から徐々に減少させてポンプを停止させる。これにより、フィードフォワード出力分FFが急激に減少せず徐々に減少し、出湯温度の安定性を確保することができる。
【0023】
なお、比例弁電流値のフィードフォワード出力分FFを次のようにして決定してもよい。すなわち、追焚での熱量消費分ΔGを下記のように演算する。
ΔG=K’・(TEX−THR)・Qb
ただし、K’は、定数である。次に、上記と同様にして演算された給湯要求熱量とこの追焚消費分ΔGとを加算して、全体の要求熱量G1を演算する。
1=G0+ΔG
次に、この要求熱量G1と図2の記憶データとから、フィードフォワード出力分FF=I1を得る。
この比例弁電流値I1は、給湯単独実行と仮定した時の比例弁電流値I0に増加分ΔIを加算したものとなるはずである。
【0024】
また図3に示す記憶データを用いて、フィードフォワード出力分を演算してもよい。詳述すると、図3において、実線で示すデータは、図2と同様に、給湯単独実行時の給湯要求熱量と比例弁電流との関係を表すものである。また破線で示すデータは、給湯,追焚同時実行時の給湯要求熱量と比例弁電流との関係を表すものであり、浴槽水温度と理想の熱交出口温度との差が所定値で、循環流量が所定量である時のデータである。給湯,追焚の同時実行の際には、上記温度差と循環流量に基づいて、実線と破線の2つのデータを比例配分してフィードフォワード出力分を演算する。
【0025】
上記実施形態では、浴槽水温度が理想の熱交出口温度より低い場合を想定したものであるが、稀に浴槽水温度の方が高くなることがある。この場合には、給湯,追焚を同時に実行している時に、記憶データと給湯要求熱量に基づく供給電流値で比例弁を制御すると、浴槽水からの給湯側への熱移動が生じ、出湯温度が設定温度より高くなる。そこで、このような場合には、供給電流値を減少させるように制御してもよい。この減少分は、理想の熱交出口温度と浴槽水温度の差が大きい程大きく、浴槽水の循環流量が大きいほど大きくするのが好ましい。
【0026】
本発明は上記実施形態に制約されず、種々の形態を採用可能である。例えば、給湯,追焚同時実行の際の給湯要求熱量と比例弁電流との関係を表すデータを全てマップの形態で記憶してもよい。
ポンプによる浴槽水の循環流量が一定であり、経時変化を考慮しないで済む場合には、給湯,追焚同時実行の際の電流増加分(電流変化分)は、浴槽水温度と理想の熱交出口温度との差だけに基づいて、演算ないしは決定してもよい。
浴槽温度と比較すべき温度情報は、熱交出口温度でなく、熱交換部を通過する途中の温度としてもよい。この温度も給湯設定温度に基づいて演算される。これら熱交出口温度や途中温度は、熱交換部を通過する温度と総称される。
制御を簡略化し、フィードバック演算を行わず、上記フィードフォワード出力分だけで比例弁電流値を決定してもよい。
【0027】
【発明の効果】
以上説明したように、請求項1の発明によれば、給湯,追焚の同時実行に際しては、浴槽水温度と、出湯温度を給湯設定温度にするための給湯配管における熱交換部の理想出口温度に基づいて、給湯単独実行の際の比例弁電流値から変化させるので、出湯温度のオーバーシュートやアンダーシュートを最小限にすることができる。
請求項2の発明によれば、浴槽水温度と、出湯温度を給湯設定温度にするための給湯配管における熱交換部の理想出口温度と、循環流量に基づいて、給湯単独実行の際の比例弁電流値から変化させるので、より一層好適な出湯温度制御を行うことができる。
請求項3の発明によれば、ポンプによる循環流量の漸増,漸減を行うことにより、追焚開始時,終了時の出湯温度をより一層安定化させることができる。
請求項4の発明によれば、フィードフォワード演算とフィードバック演算を組み合わせ、フィードフォワード演算に請求項1〜3の技術を適用するので、給湯初期や、設定温度の急変等に即応できるとともに、出湯温度を高精度で設定温度に一致させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態をなす追焚機能付きガス給湯装置の概略図である。
【図2】給湯単独燃焼に際してのフィードフォワード出力分を演算するための記憶データを示すとともに、給湯,追焚同時燃焼時におけるフィードフォワード出力分を演算する方法をも示す図である。
【図3】フィードフォワード出力分を演算するための記憶データの他の態様を示す図である。
【符号の説明】
1 ガスバーナ
2 熱交換部
5 比例弁
6 浴槽
10 給湯配管
20 追焚配管
24 ポンプ
50 制御部
55 記憶部
Qa,Qb フローセンサ
IN,TOUT,THR 温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas water heater.
[0002]
[Prior art]
In general, a gas hot water supply apparatus includes a heat exchange unit, a hot water supply pipe that passes through the heat exchange unit, a gas burner that supplies combustion heat to the heat exchange unit, an electromagnetic proportional valve that adjusts the gas supply amount to the gas burner, And a control unit for controlling the supply current to the proportional valve.
The said control part determines the supply current to a proportional valve, and performs control which makes the tapping temperature correspond with preset temperature. Specifically, the control unit calculates a hot water supply required heat amount based on information on the amount of hot water (the amount of water flowing through the hot water supply pipe), the temperature of the water toward the heat exchange unit, and the set temperature, The feedforward output is calculated from the stored data. This stored data represents a linear relationship between the required amount of hot water supply and the current supplied to the proportional valve, and is stored in the storage unit in the form of an arithmetic expression or a map. The feedforward calculation is necessary to respond quickly to the initial hot water supply, sudden change in the amount of hot water, and sudden change in set temperature.
[0003]
It should be noted that the above-mentioned feedforward calculation alone has a detection error in temperature information and tapping amount information, or when the actual relationship between the current supplied to the proportional valve and the amount of heat absorbed by the heat exchanger deviates from the theoretical value. Since the tapping temperature cannot be matched with the set temperature, this is compensated for by feedback calculation. That is, the feedback output is calculated based on the tapping temperature and the set temperature, and the feedback output is added to the feedforward output to determine the supply current to the proportional valve.
[0004]
By the way, recently, a canned and two-water channel type hot water supply apparatus having a memorial function has been developed. In this gas hot water supply apparatus, the heat exchange part and the gas burner are common to hot water supply and retreat, and the hot water supply pipe and refurbishment pipe are passed through the heat exchange part. In this gas water heater, there are two types of stored data representing the relationship between the required amount of hot water supply and the proportional valve current, one for when hot water is being executed alone, and one for simultaneously executing hot water and reheating. This is because a part of the heat of combustion is also consumed for the simultaneous execution.
[0005]
[Problems to be solved by the invention]
However, the stored data used at the time of the above simultaneous execution has a constant relationship between the amount of heat required for hot water supply and the proportional valve current, even though the amount of heat consumed in memory changes due to fluctuations in the bath water temperature and circulation rate. Therefore, it was not possible to calculate an accurate feedforward output for hot water supply.
[0006]
[Means for Solving the Problems]
The invention of claim 1 includes a common heat exchanging section, a hot water supply pipe and a memorial pipe passing through the heat exchanging section, a common gas burner for supplying combustion heat to the heat exchanging section, and a gas supply amount to the gas burner. A control valve that controls the supply current to the proportional valve, and a storage unit that stores data representing the relationship between the required amount of hot water supply during hot water supply and the supply current to the proportional valve. Prepared,
When the above-mentioned control unit performs hot water supply alone, it calculates the required amount of hot water supply based on the flow rate of water flowing through the hot water supply pipe, the temperature of the water going to the heat exchange unit, and the set temperature information. In the gas hot water supply device with a memorial function for determining the supply current value to the proportional valve from the stored data,
When the controller performs hot water supply and reheating at the same time, in order to compensate for the amount of heat consumed by the reheating, the control unit converts the supply current to the proportional valve to the stored data for the hot water single operation and the required hot water supply heat amount. The supply current value is changed based on the deviation between the ideal outlet temperature of the heat exchange section and the temperature of the bath water in the hot water supply pipe for changing the hot water temperature to the hot water supply set temperature .
[0008]
The invention of claim 2 includes a common heat exchanging section, a hot water supply pipe and a memorial pipe passing through the heat exchanging section, a common gas burner for supplying combustion heat to the heat exchanging section, and a gas supply amount to the gas burner. A control valve that controls the supply current to the proportional valve, and a storage unit that stores data representing the relationship between the required amount of hot water supply during hot water supply and the supply current to the proportional valve. Prepared,
When the above-mentioned control unit performs hot water supply alone, it calculates the required amount of hot water supply based on the flow rate of water flowing through the hot water supply pipe, the temperature of the water going to the heat exchange unit, and the set temperature information. In the gas hot water supply device with a memorial function for determining the supply current value to the proportional valve from the stored data,
When the controller performs hot water supply and reheating at the same time, in order to compensate for the amount of heat consumed by the reheating, the control unit converts the supply current to the proportional valve to the stored data for the hot water single operation and the required hot water supply heat amount. Based on the supply current value based on the difference between the ideal outlet temperature of the heat exchange section and the temperature of the bath water in the hot water supply pipe for setting the hot water temperature to the set hot water temperature , the bath water circulation accompanying the pump drive of the additional piping based on the numerical value obtained by multiplying the flow rate, and wherein the changing.
[0009]
According to a third aspect of the present invention, in the gas hot water supply device with a renewal function according to the second aspect , the control unit gradually increases the circulation flow rate by the pump when there is a renewal request during the hot water supply. When the dredging request is canceled, the circulating flow rate by the pump is gradually reduced.
According to a fourth aspect of the present invention, in the gas hot water supply device with a renewal function according to any one of the first to third aspects, the control unit feeds a supply current value determined based on the information including the stored data and the required hot water supply heat amount. Use as a forward output, calculate the feedback output based on the hot water temperature from the hot water supply piping and the set temperature, and determine the final supply current value by adding the feedback output to the feedforward output It is characterized by.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 1, a 1-can, 2-water-path type gas hot water supply device with a reheating function is accommodated in a hot water supply, a gas burner 1 common to a retreat, and an upper portion of a can (not shown). A heat exchange unit 2 common to hot water supply and reheating and a fan (not shown) for supplying combustion air to the gas burner 1 are provided. The means for supplying gas to the gas burner 1 has a gas pipe 3 and an electromagnetic on-off valve 4 and an electromagnetic proportional valve 5 provided on the gas pipe 3. A hot water supply pipe 10 and a memorial pipe 20 pass through the heat exchange unit 2.
[0011]
The hot water supply pipe 10 includes a heat receiving pipe 11 that passes through the heat exchanging section 2, a water supply pipe 12 connected to the inlet end of the heat receiving pipe 11, and a hot water supply pipe 13 connected to the outlet end. A hot water tap 14 is provided at the end of the hot water supply pipe 13. The water supply pipe 12 is provided with a water supply temperature sensor T IN and a flow sensor Qa, and the hot water supply pipe 13 is provided with a hot water temperature sensor T OUT and a flow rate control valve GM. A bypass pipe 15 is provided in parallel with the heat receiving pipe 11 between the water supply pipe 12 and the hot water supply pipe 13.
[0012]
The memorial pipe 20 includes a heat receiving pipe 21 penetrating the heat exchanging section 2, a return pipe 22 connected between the inlet end and the bathtub 6, and an outlet end of the heat receiving pipe 21 and the bathtub 6. And a forward pipe 23 connected thereto. The return pipe 22 is provided with a pump 24, a temperature sensor THR, and a flow sensor Qb.
Between the hot water supply pipe 13 of the hot water supply pipe 10 and the return pipe 22 of the memorial pipe 20, a pouring pipe 30 for filling the bathtub 6 is provided. The pouring pipe 30 is provided with a pouring valve 31 composed of an electromagnetic on-off valve.
[0013]
The gas hot water supply device further includes a control unit 50, a storage unit 55, and a remote controller 60. Based on the information from the various detection means described above, that is, the temperature sensors T IN , T OUT , T HR , flow sensors Qa, Qb, and the remote controller 60, the control unit 50 is proportional to the ignition mechanism, the fan, the on-off valve 4. Valve 5 and flow control valve GM pump 24 are controlled. The detected values of the temperature sensors T IN , T OUT , T HR and the flow sensors Qa, Qb are denoted by the same reference numerals.
As shown by a solid line in FIG. 2, the storage unit 55 stores data indicating a linear relationship between the required amount of hot water supply during hot water supply alone and the current supplied to the proportional valve 5 (hereinafter referred to as proportional valve current). It is stored in the form of a map or an arithmetic expression (linear equation).
[0014]
In the above configuration, when the user opens the hot-water tap 14, the flow sensor Qa detects a water flow of a predetermined amount or more. In response to this water flow detection, the controller 50 activates the ignition mechanism and the fan. At the same time, the on-off valve 4 is opened and gas is supplied to the gas burner 1 to start combustion. Water from the water supply pipe 12 receives combustion heat in the process of passing through the heat receiving pipe 11 to become hot water, and is discharged from the hot water tap 14 through the hot water supply pipe 13.
[0015]
When tracking is performed, the tracking switch of the remote controller 60 is turned on (tracking request). Then, first, the pump 24 is activated, and the hot water in the bathtub 6 circulates through the return pipe 22 and the forward pipe 23. When the flow sensor Qb detects the flow of hot water in the return pipe 22, the gas burner 1 is ignited. Thereby, the hot water in the bathtub 6 is heated. When the temperature detected by the temperature sensor T HR reaches a set temperature, add fired request is canceled, along with the combustion of the gas burner 1 is stopped, the pump 24 is stopped.
When the automatic operation switch of the remote controller 60 is on, hot water filling is performed. That is, the hot water supply valve 31 is opened, and hot water from the hot water supply pipe 10 is supplied to the bathtub 6 through the hot water supply pipe 30 and the memorial pipe 20.
[0016]
When the hot water is supplied, the control unit 50 controls the proportional valve current to control the output-side gas pressure that is proportional to the current, thereby controlling the amount of combustion heat. The control of the proportional valve current also means the control of the opening degree of the proportional valve 5.
[0017]
First, the proportional valve current control in the case where the hot water supply is executed independently without executing the remedies will be described in detail. The control unit 50 includes a feed water temperature detected by the feed water temperature sensor T IN (a temperature of water going to the heat exchanging unit 2 through the hot water supply pipe 10), a set temperature T S set by the remote controller 60, and a flow sensor. The hot water supply required heat amount G is calculated by substituting the amount of hot water detected at Qa (the flow rate of water flowing through the heat exchange section 2 or the hot water supply pipe 10) into the following equation.
G = (T S −T IN ) Qa
Then, the feed forward output FF is calculated from the calculated hot water supply required heat amount G and the data (indicated by a solid line in FIG. 2) representing the relationship between the hot water supply request number G stored in the storage unit 55 and the proportional valve current I. Is calculated. For example, if the required hot water supply heat amount is G 0 , the feedforward output FF is I 0 .
[0018]
Also, the hot water temperature detected by the hot water temperature sensor T OUT, based on the PID calculation based on the difference between the set temperature T S, determine the feedback output component FB.
Next, the proportional valve current I is determined by adding the feedback output component FB to the feedforward output component FF. As a result, the detected hot water temperature T OUT can be set to the set temperature T S with high accuracy.
[0019]
Next, the proportional valve current control will be described in detail when the memory and hot water supply are executed simultaneously. In this case, similarly to the above, based on the stored data (solid line in FIG. 2), the feed forward output I 0 when hot water supply is assumed is obtained from the hot water supply request number G 0 . next,
In order to make up for the amount of heat consumed in memory, the current increase ΔI is calculated based on the following equation.
ΔI = K · (T EX −T HR ) · Qb
Here, K is a constant, and T HR and Qb are a bath water temperature and a bath water circulation flow rate, respectively. T EX is the outlet temperature of the heat exchange unit 2 for setting the hot water temperature to the hot water supply set temperature T S (the temperature upstream of the bypass pipe 15; hereinafter referred to as the ideal heat exchange outlet temperature). This temperature T EX is determined by the mixing ratio of hot water from the heat exchanging unit 2 and water from the bypass pipe 15 and the hot water supply set temperature T S.
[0020]
Next, as described below, the feed forward output FF = I 1 is determined by adding the current increase ΔI to the current value I 0 when it is assumed that the hot water supply is alone.
I 1 = I 0 + ΔI
Next, as in the case of hot water supply alone, the final proportional valve current value is determined by adding the feedback output FB to the feedforward output FF.
[0021]
As described above, the proportional valve current value is increased by ΔI in anticipation of the amount of heat consumed in memory, so that the feedforward output FF can be determined so as to substantially achieve the required hot water supply heat amount, and the feedback output The amount supplemented by the minute FB can be reduced, and it is possible to immediately respond to the initial stage of hot water supply, a sudden change in set temperature, and a sudden change in the amount of hot water.
Moreover, the increase ΔI increases as the difference between the ideal heat exchange outlet temperature T EX and the bath water temperature T HR increases, and increases as the bath water circulation flow rate Qb increases. Because it is compatible, feed-forward output FF can be calculated with high accuracy, and overshoot and undershoot of the hot water temperature are minimized by responding to the initial stage of hot water supply, sudden changes in the set temperature, and sudden changes in the amount of hot water. Can be.
[0022]
In the present embodiment, when there is a renewal request during the hot water supply, when the pump 24 is driven, the predetermined circulation flow rate is gradually increased instead of the predetermined circulation flow rate. The supply voltage to the pump 24 is controlled so as to reach the flow rate. Therefore, the current increase ΔI calculated as described above gradually increases according to the circulation flow rate detected by the flow sensor Qb. Thereby, feed forward output FF does not increase rapidly but gradually increases, and the stability of the hot water temperature can be ensured. Similarly, when the chase request is canceled during hot water supply, the circulating flow rate is gradually decreased from a predetermined flow rate to stop the pump. As a result, the feedforward output FF does not rapidly decrease but gradually decreases, and the stability of the hot water temperature can be ensured.
[0023]
The feedforward output FF of the proportional valve current value may be determined as follows. That is, the amount of heat consumed ΔG in memory is calculated as follows.
ΔG = K '· (T EX -T HR) · Qb
However, K ′ is a constant. Next, the total required heat amount G 1 is calculated by adding the required hot water supply heat amount calculated in the same manner as described above and the additional consumption ΔG.
G 1 = G 0 + ΔG
Next, a feed forward output FF = I 1 is obtained from the required heat amount G 1 and the stored data of FIG.
This proportional valve current value I 1 should be the value obtained by adding the increment ΔI to the proportional valve current value I 0 when it is assumed that hot water supply is performed alone.
[0024]
Further, the feedforward output may be calculated using the stored data shown in FIG. More specifically, in FIG. 3, the data indicated by the solid line represents the relationship between the required amount of hot water supply and the proportional valve current during the hot water supply alone, as in FIG. The data indicated by the broken line represents the relationship between the required amount of hot water supply and the proportional valve current during simultaneous hot water supply and reheating. The difference between the bath water temperature and the ideal heat exchange outlet temperature is a predetermined value, and Data when the flow rate is a predetermined amount. When hot water supply and renewal are performed simultaneously, based on the temperature difference and the circulation flow rate, the two data of the solid line and the broken line are proportionally distributed to calculate the feedforward output.
[0025]
In the said embodiment, although the case where bathtub water temperature is lower than ideal heat exchange outlet temperature is assumed, the bathtub water temperature may become higher rarely. In this case, when the proportional valve is controlled with the supply current value based on the stored data and the required hot water supply amount when hot water supply and reheating are performed simultaneously, heat transfer from the bath water to the hot water supply side occurs, and Becomes higher than the set temperature. Therefore, in such a case, control may be performed so as to decrease the supply current value. It is preferable that this decrease is larger as the difference between the ideal heat exchange outlet temperature and the bath water temperature is larger, and larger as the circulation flow rate of the bath water is larger.
[0026]
The present invention is not limited to the above embodiment, and various forms can be adopted. For example, all the data representing the relationship between the hot water supply required heat amount and the proportional valve current at the time of simultaneous hot water supply and tracking may be stored in the form of a map.
When the circulation flow rate of the bath water by the pump is constant and it is not necessary to consider the change over time, the current increase (current change) during simultaneous hot water supply and renewal is calculated as the bath water temperature and the ideal heat exchange. Calculation or determination may be made based solely on the difference from the outlet temperature.
The temperature information to be compared with the bath temperature may be not the heat exchange outlet temperature but the temperature in the middle of passing through the heat exchange section. This temperature is also calculated based on the hot water supply set temperature. These heat exchange outlet temperatures and intermediate temperatures are collectively referred to as temperatures passing through the heat exchange section.
The proportional valve current value may be determined only by the feedforward output without simplifying the control and performing the feedback calculation.
[0027]
【The invention's effect】
As described above, according to the first aspect of the present invention, when hot water supply and reheating are performed simultaneously, the bath water temperature and the ideal outlet temperature of the heat exchange section in the hot water supply pipe for setting the hot water temperature to the hot water supply set temperature. Therefore, the overshoot and undershoot of the hot water temperature can be minimized because the proportional valve current value is changed when the hot water supply is executed alone.
According to the invention of claim 2, the bath water temperature, and the ideal outlet temperature of the heat exchange portion in the hot water supply pipe for the hot water set temperature hot water temperature, based on the circulation flow rate, proportional valve during the single hot water supply run Since it changes from an electric current value, much more suitable tapping temperature control can be performed.
According to the invention of claim 3, by gradually increasing and decreasing the circulating flow rate by the pump, it is possible to further stabilize the tapping temperature at the start and end of the chasing.
According to the invention of claim 4, since the feedforward calculation and the feedback calculation are combined and the technology of claims 1 to 3 is applied to the feedforward calculation, it is possible to immediately respond to an initial hot water supply, a sudden change in the set temperature, etc. Can be matched with the set temperature with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic view of a gas hot water supply device with a remedy function according to an embodiment of the present invention.
FIG. 2 is a diagram showing stored data for calculating a feedforward output for hot water single combustion and a method for calculating a feedforward output for hot water supply and additional combustion simultaneously.
FIG. 3 is a diagram showing another mode of stored data for calculating a feedforward output.
[Explanation of symbols]
1 gas burner 2 a heat exchange unit 5 proportional valve 6 tub 10 hot water supply pipe 20 additionally焚配tube 24 pump 50 control unit 55 storage unit Qa, Qb flow sensor T IN, T OUT, T HR Temperature sensor

Claims (4)

共通の熱交換部と、この熱交換部を通る給湯配管および追焚配管と、この熱交換部に燃焼熱を供給する共通のガスバーナと、このガスバーナへのガス供給量を調節する比例弁と、この比例弁への供給電流を制御する制御部と、給湯単独実行の際の給湯要求熱量と比例弁への供給電流との関係を表すデータを記憶する記憶部とを備え、
上記制御部が、給湯単独実行の際に、給湯配管を流れる水の流量と、熱交換部へ向かう水の温度と、設定温度の情報に基づいて給湯要求熱量を演算し、この給湯要求熱量と上記記憶データとから上記比例弁への供給電流値を決定する追焚機能付きガス給湯装置において、
上記制御部は、給湯と追焚を同時に実行している時には、追焚で消費される熱量を補うために、比例弁への供給電流を、上記給湯単独実行用の記憶データと給湯要求熱量に基づく供給電流値から、出湯温度を給湯設定温度にするための上記給湯配管における上記熱交換部の理想出口温度と、浴槽水の温度との偏差に基づいて変化させることを特徴とする追焚機能付きガス給湯装置。
A common heat exchanging section, a hot water supply pipe and an additional piping passing through the heat exchanging section, a common gas burner for supplying combustion heat to the heat exchanging section, and a proportional valve for adjusting a gas supply amount to the gas burner, A control unit that controls the supply current to the proportional valve, and a storage unit that stores data representing the relationship between the required amount of hot water supply during hot water supply and the supply current to the proportional valve,
When the above-mentioned control unit performs hot water supply alone, it calculates the required amount of hot water supply based on the flow rate of water flowing through the hot water supply pipe, the temperature of the water going to the heat exchange unit, and the set temperature information. In the gas hot water supply device with a memorial function for determining the supply current value to the proportional valve from the stored data,
When the controller performs hot water supply and reheating at the same time, in order to compensate for the amount of heat consumed by the reheating, the control unit converts the supply current to the proportional valve to the stored data for the hot water single operation and the required hot water supply heat amount. A memorial function characterized in that , based on the deviation between the ideal outlet temperature of the heat exchange section in the hot water supply pipe and the temperature of the bath water from the supply current value based on the hot water supply temperature to the hot water supply set temperature Gas hot water supply device.
共通の熱交換部と、この熱交換部を通る給湯配管および追焚配管と、この熱交換部に燃焼熱を供給する共通のガスバーナと、このガスバーナへのガス供給量を調節する比例弁と、この比例弁への供給電流を制御する制御部と、給湯単独実行の際の給湯要求熱量と比例弁への供給電流との関係を表すデータを記憶する記憶部とを備え、
上記制御部が、給湯単独実行の際に、給湯配管を流れる水の流量と、熱交換部へ向かう水の温度と、設定温度の情報に基づいて給湯要求熱量を演算し、この給湯要求熱量と上記記憶データとから上記比例弁への供給電流値を決定する追焚機能付きガス給湯装置において、
上記制御部は、給湯と追焚を同時に実行している時には、追焚で消費される熱量を補うために、比例弁への供給電流を、上記給湯単独実行用の記憶データと給湯要求熱量に基づく供給電流値から、出湯温度を給湯設定温度にするための上記給湯配管における上記熱交換部の理想出口温度と浴槽水の温度との偏差に、追焚配管のポンプ駆動に伴う浴槽水の循環流量を乗じた数値に基づいて、変化させることを特徴とする追焚機能付きガス給湯装置。
A common heat exchanging section, a hot water supply pipe and an additional piping passing through the heat exchanging section, a common gas burner for supplying combustion heat to the heat exchanging section, and a proportional valve for adjusting a gas supply amount to the gas burner, A control unit that controls the supply current to the proportional valve, and a storage unit that stores data representing the relationship between the required amount of hot water supply during hot water supply and the supply current to the proportional valve,
When the above-mentioned control unit performs hot water supply alone, it calculates the required amount of hot water supply based on the flow rate of water flowing through the hot water supply pipe, the temperature of the water going to the heat exchange unit, and the set temperature information. In the gas hot water supply device with a memorial function for determining the supply current value to the proportional valve from the stored data,
When the controller performs hot water supply and reheating at the same time, in order to compensate for the amount of heat consumed by the reheating, the control unit converts the supply current to the proportional valve to the stored data for the hot water single operation and the required hot water supply heat amount. Based on the supply current value based on the difference between the ideal outlet temperature of the heat exchange section and the temperature of the bathtub water in the hot water supply pipe to bring the hot water temperature to the hot water supply set temperature, A gas hot water supply device with a memorial function, which is varied based on a numerical value multiplied by a flow rate.
上記制御部は、給湯の最中において、追焚要求があった時には上記ポンプによる循環流量を徐々に増大させ、追焚要求が解除された時にはポンプによる循環流量を徐々に低減させるようにしたことを特徴とする請求項2に記載の追焚機能付きガス給湯装置。 In the course of hot water supply, the controller gradually increases the circulation flow rate by the pump when there is a request for remedy, and gradually decreases the circulation flow rate by the pump when the request for remedy is canceled. The gas hot-water supply apparatus with a memorial function according to claim 2. 上記制御部は、上記記憶データと給湯要求熱量を含む情報に基づき決定された供給電流値をフィードフォワード出力分として用い、さらに給湯配管からの出湯温度と上記設定温度に基づいてフィードバック出力分を演算し、上記フィードフォワード出力分にフィードバック出力分を加味して最終的な供給電流値を決定することを特徴とする請求項1〜3のいずれかに記載の追焚機能付きガス給湯装置。 The control unit uses the supply current value determined based on the information including the stored data and the required hot water supply heat amount as a feedforward output, and further calculates a feedback output based on the hot water temperature from the hot water supply pipe and the set temperature. 4. A gas hot water supply device with a renewal function according to claim 1, wherein a final supply current value is determined by adding a feedback output to the feedforward output.
JP12527798A 1998-04-20 1998-04-20 Gas water heater with remembrance function Expired - Fee Related JP3971507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12527798A JP3971507B2 (en) 1998-04-20 1998-04-20 Gas water heater with remembrance function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12527798A JP3971507B2 (en) 1998-04-20 1998-04-20 Gas water heater with remembrance function

Publications (2)

Publication Number Publication Date
JPH11304241A JPH11304241A (en) 1999-11-05
JP3971507B2 true JP3971507B2 (en) 2007-09-05

Family

ID=14906099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12527798A Expired - Fee Related JP3971507B2 (en) 1998-04-20 1998-04-20 Gas water heater with remembrance function

Country Status (1)

Country Link
JP (1) JP3971507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7400662B2 (en) * 2020-08-12 2023-12-19 三菱電機株式会社 Hot water storage type water heater

Also Published As

Publication number Publication date
JPH11304241A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
US20190032959A1 (en) Heating and hot water supply apparatus
JP3971507B2 (en) Gas water heater with remembrance function
JP4477566B2 (en) Hot water system
JP3822748B2 (en) Gas water heater with other application functions
JP2007187325A (en) Instantaneous hot water supply system
JP3848746B2 (en) Hot water supply device with memorial function
JP3834420B2 (en) Gas water heater
JP3962158B2 (en) Gas water heater
JP3859837B2 (en) Combustion device
JP3792365B2 (en) Water heater with bypass
JP3164712B2 (en) Circulating water heater
JPH1114145A (en) Hot-water supply
JP3881190B2 (en) Water heater with remembrance
JP2001248911A (en) Method for controlling hot water supply temperature and hot water supply apparatus
JP3848741B2 (en) One can two water channel combustion system
JP3384855B2 (en) Hot water heater and its hot water temperature control method
JP5478829B2 (en) Hot water system
JP2004085112A (en) Space heating apparatus
JP3322750B2 (en) Circulating water heater
JP3097430B2 (en) Water heater
JPH08320149A (en) One-boiler two-water passage type bath heater
JP3872864B2 (en) Hot water combustion equipment
JP3487905B2 (en) Water heater and combustion control method using the same
JPH10300212A (en) Combustor for hot water
JPH1137555A (en) One-storage water heater two-channel bath hot water supplying combustion equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees