JPH1116949A - Acf-bonding structure - Google Patents

Acf-bonding structure

Info

Publication number
JPH1116949A
JPH1116949A JP9169826A JP16982697A JPH1116949A JP H1116949 A JPH1116949 A JP H1116949A JP 9169826 A JP9169826 A JP 9169826A JP 16982697 A JP16982697 A JP 16982697A JP H1116949 A JPH1116949 A JP H1116949A
Authority
JP
Japan
Prior art keywords
acf
electrode
conductive particles
bonding
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9169826A
Other languages
Japanese (ja)
Other versions
JP3725300B2 (en
Inventor
Taro Ura
太郎 浦
泰行 ▲高▼野
Yasuyuki Takano
Masatoshi Takeda
雅俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16982697A priority Critical patent/JP3725300B2/en
Publication of JPH1116949A publication Critical patent/JPH1116949A/en
Application granted granted Critical
Publication of JP3725300B2 publication Critical patent/JP3725300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Abstract

PROBLEM TO BE SOLVED: To provide a CF-bonding structure, wherein bonding reliability of an electronic component and a board can be ensured, in fine pitch mounting of a semiconductor component using AC(anisotropic conducting film), and deterioration in electrical characteristics can be prevented. SOLUTION: In a method wherein a semiconductor component 1 and a printed wiring board 4 are electrically bonded by using an ACF 6, a resist 8 restraining the flow of conducting particles 7 at the time of melting of the ACF 6 is formed in the vicinity of an electrode 5 to which a bump 2 is bonded, and the vicinity of the electrode 5 is made a recessed part. Thereby the conducting particles 7 which flow out from a part between the bump 2 and the electrode 5 when the ACF is melted are restrained by the resist 8, and bonding reliability and electrical characteristics can be ensured sufficiently by ensuring the number of the conducting particles 7 participating in the electrical bonding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスや樹脂等の
基板に半導体パッケージや半導体チップなどの電子部品
を異方導電性フィルムを用いて接合するACF接合構造
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ACF bonding structure for bonding an electronic component such as a semiconductor package or a semiconductor chip to a substrate such as glass or resin using an anisotropic conductive film.

【0002】[0002]

【従来の技術】異方導電性フィルム(以下、「ACF」
と記す)は、金属コートプラスチック粒子や金属粒子を
熱硬化性樹脂等の樹脂に分散した接着フィルムであり、
その異方導電性及び接着性を利用して、電子部品と基板
の電気的接続に広く利用されている。以下、従来のAC
F接合方式について説明する。
2. Description of the Related Art An anisotropic conductive film (hereinafter, "ACF")
Is an adhesive film in which metal-coated plastic particles or metal particles are dispersed in a resin such as a thermosetting resin,
Utilizing its anisotropic conductivity and adhesiveness, it is widely used for electrical connection between electronic components and substrates. Hereinafter, the conventional AC
The F joining method will be described.

【0003】図3は従来のプリント配線基板に半導体部
品をACFを用いて接合する前の状態を示す断面図であ
り、図4は同ACFの硬化メカニズム図である。
FIG. 3 is a sectional view showing a state before a semiconductor component is joined to a conventional printed wiring board using an ACF, and FIG. 4 is a curing mechanism diagram of the ACF.

【0004】図3において、1は半導体部品、2はバン
プ、3はパッド、4はプリント配線基板、5は電極、6
はACF、7は導電粒子である。
In FIG. 3, 1 is a semiconductor component, 2 is a bump, 3 is a pad, 4 is a printed wiring board, 5 is an electrode, 6
Is an ACF, and 7 is a conductive particle.

【0005】従来の半導体部品1をプリント配線基板4
にACF6を用いて接合する方法として、まずプリント
配線基板4とACF6を熱をかけながら仮圧着する。次
にこの仮圧着したプリント配線基板4とACF6に半導
体部品1を熱を加えずに仮圧着する。最後に圧着用の治
具を用いて熱をかけながら本圧着を行う。このとき、加
熱・加圧によってACF6中のエポキシ樹脂及び接着剤
が溶融しながらバンプ2と電極5の間から流れ出し(図
4(a),(b),(c))、分散されている導電粒子
7がバンプ2と電極5の電極間に捕獲される(図4
(d))。
A conventional semiconductor component 1 is connected to a printed wiring board 4
As a method of joining using the ACF 6, first, the printed wiring board 4 and the ACF 6 are temporarily press-bonded while applying heat. Next, the semiconductor component 1 is pre-bonded to the pre-pressed printed wiring board 4 and the ACF 6 without applying heat. Finally, the main bonding is performed while applying heat using a jig for crimping. At this time, the epoxy resin and the adhesive in the ACF 6 flow out from between the bumps 2 and the electrodes 5 while being melted by heating and pressing (FIGS. 4A, 4B, and 4C), and the dispersed conductive material. Particles 7 are trapped between the bump 2 and the electrode 5 (FIG. 4).
(D)).

【0006】ここで、ACF6における導電粒子7の充
填量と導電率の関係からACF6の導電粒子7充填量に
対する導電率の依存性には異方性がある。すなわち、フ
ィルム膜厚方向で高い導電性を示す一方、面内方向では
導電粒子7が互いに孤立しているため、高い絶縁性を示
す。導電粒子7とバンプ2・電極5の間の機械的接触
は、ACF6内のエポキシ樹脂の硬化収縮力と接着剤の
高い接着力により保持されている。このようにACF6
を用いることにより、半導体部品1とプリント配線基板
4の電気的及び機械的接合を行っている。
Here, from the relationship between the filling amount of the conductive particles 7 in the ACF 6 and the electric conductivity, the dependency of the electric conductivity on the filling amount of the conductive particles 7 in the ACF 6 is anisotropic. That is, the conductive particles 7 exhibit high conductivity in the film thickness direction, while exhibiting high insulation properties in the in-plane direction because the conductive particles 7 are isolated from each other. The mechanical contact between the conductive particles 7 and the bumps 2 and the electrodes 5 is maintained by the curing shrinkage force of the epoxy resin in the ACF 6 and the high adhesive force of the adhesive. Thus, ACF6
Is used to electrically and mechanically join the semiconductor component 1 and the printed wiring board 4.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記従来
方法では、高接続密度化・小型化・薄型化が要求されて
いる半導体実装分野において、接続ピッチの細密化が進
んだ場合、バンプやパターンの寸法も小さくなり導電粒
子の捕獲数は少なくなる。その結果、接続信頼性や電気
的特性の低下が考えられる。
However, in the above-mentioned conventional method, in the field of semiconductor mounting where high connection density, miniaturization and thinning are required, when the connection pitch becomes finer, dimensions of bumps and patterns are increased. And the number of captured conductive particles decreases. As a result, the connection reliability and the electrical characteristics may be reduced.

【0008】したがって本発明は、ACFを用いた電子
部品のファインピッチ実装において、電子部品と基板の
接合信頼性を確保できるとともに、電気的特性の低下を
防止できるACF接合構造を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an ACF bonding structure that can secure the bonding reliability between an electronic component and a substrate and prevent a decrease in electrical characteristics in fine pitch mounting of electronic components using an ACF. And

【0009】[0009]

【課題を解決するための手段】本発明は、電子部品と基
板を導電粒子を含む異方導電性フィルムを用い、前記導
電粒子を前記電子部品と前記基板の電極の間に介在させ
ることにより電気的な接合を行うにあたり、前記基板上
に形成された電極近傍に前記電極の厚みよりも厚い絶縁
部材を設けることにより前記電極を凹部とし、前記電子
部品と前記基板の接合時におけるACFの溶融による導
電粒子の流れを抑制して、前記電子部品と前記基板との
接合時における前記凹部の導電粒子数を増大させるよう
にした。この構成により、ACFを用いたファインピッ
チ接合においても、電子部品と基板の接合信頼性および
電気的特性が十分に確保されたACF接合構造を実現で
きる。
According to the present invention, an electronic component and a substrate are formed by using an anisotropic conductive film containing conductive particles, and the conductive particles are interposed between the electronic component and an electrode of the substrate. In performing a typical joining, by providing an insulating member thicker than the thickness of the electrode in the vicinity of the electrode formed on the substrate, the electrode is formed into a concave portion, and the ACF is melted at the time of joining the electronic component and the substrate. The flow of the conductive particles is suppressed, and the number of the conductive particles in the recess at the time of joining the electronic component and the substrate is increased. With this configuration, even in the fine pitch bonding using the ACF, it is possible to realize the ACF bonding structure in which the bonding reliability and the electrical characteristics of the electronic component and the substrate are sufficiently ensured.

【0010】[0010]

【発明の実施の形態】請求項1に記載の発明は、電子部
品と基板を導電粒子を含む異方導電性フィルムを用い、
前記導電粒子を前記電子部品と前記基板の電極の間に介
在させることにより電気的な接合を行うにあたり、前記
基板上に形成された電極近傍に前記電極の厚みよりも厚
い絶縁部材を設けることにより前記電極周辺を凹部と
し、前記電子部品と前記基板の接合時ACFの溶融によ
る導電粒子の流れを抑制し前記電子部品と前記基板との
接合時における前記凹部の導電粒子数を増大させる。こ
の構成により、ファインピッチ実装においても電気的接
合に関与する導電粒子の捕獲数を確保し、接合信頼性お
よび電気的特性を十分に確保できる。
The invention according to claim 1 uses an anisotropic conductive film containing conductive particles for an electronic component and a substrate.
In performing electrical bonding by interposing the conductive particles between the electronic component and the electrode of the substrate, by providing an insulating member thicker than the thickness of the electrode near the electrode formed on the substrate. A concave portion is formed around the electrode to suppress the flow of conductive particles due to melting of the ACF at the time of joining the electronic component and the substrate, thereby increasing the number of conductive particles in the concave portion at the time of joining the electronic component and the substrate. With this configuration, even in fine pitch mounting, the number of captured conductive particles involved in electrical bonding can be ensured, and bonding reliability and electrical characteristics can be sufficiently ensured.

【0011】請求項2に記載の発明は、前記電極に前記
絶縁部材の一部もしくは全部が重なるように設けること
により、前記凹部の深さを深くした。この構成により、
ファインピッチ実装においても電気的接合に関与する導
電粒子の捕獲数を確保し、接合信頼性および電気的特性
を十分に確保できる。
In the invention according to claim 2, the depth of the concave portion is increased by providing the electrode so that a part or the whole of the insulating member overlaps. With this configuration,
Even in fine pitch mounting, the number of captured conductive particles involved in electrical bonding can be ensured, and bonding reliability and electrical characteristics can be sufficiently ensured.

【0012】(実施の形態1)図1は、本発明の実施の
形態1のACFを用いて半導体部品をプリント配線基板
に実装した状態の断面図である。図1において、1は半
導体部品、2はバンプ、3はパッド、4はプリント配線
基板、5は電極、6はACF、7は導電粒子、8はレジ
ストを示す。
(Embodiment 1) FIG. 1 is a sectional view showing a state in which a semiconductor component is mounted on a printed wiring board using an ACF according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor component, 2 denotes a bump, 3 denotes a pad, 4 denotes a printed wiring board, 5 denotes an electrode, 6 denotes an ACF, 7 denotes conductive particles, and 8 denotes a resist.

【0013】図1に示すように、半導体部品1のパッド
3上にボンディングされたバンプ2が接合するプリント
配線基板4上のパターンの電極5に開口部を持った絶縁
部材であるレジスト8を印刷法や写真法等により設け
る。このとき、通常レジスト8の高さは23〜25μ
m、電極5の高さは18μmであり、レジスト8のほう
が電極5より5〜7μm高く、したがって電極5は凹部
となっており、レジスト8をバンプ2と電極5の間から
流れ出る導電粒子7のストッパーとする。つまり、半導
体部品1の本圧着時における加熱・加圧による導電粒子
7の流れ出しをレジスト8で妨げることにより、導電粒
子7がバンプ2と電極5の間の凹部から流れ出ることを
抑制し、電気的接合に関与する導電粒子7の捕獲数を確
保する。
As shown in FIG. 1, a resist 8 which is an insulating member having an opening is printed on an electrode 5 of a pattern on a printed wiring board 4 to which a bump 2 bonded to a pad 3 of a semiconductor component 1 is joined. It is provided by a method or a photographic method. At this time, the height of the resist 8 is usually 23 to 25 μm.
m, the height of the electrode 5 is 18 μm, and the height of the resist 8 is 5 to 7 μm higher than that of the electrode 5. Therefore, the electrode 5 is a concave portion, and the resist 8 is formed of the conductive particles 7 flowing out from between the bump 2 and the electrode 5. Stopper. That is, the resist 8 prevents the conductive particles 7 from flowing out due to heating and pressurization during the final press-fitting of the semiconductor component 1, thereby suppressing the conductive particles 7 from flowing out of the concave portion between the bump 2 and the electrode 5, thereby providing an electrical connection. The number of captured conductive particles 7 involved in bonding is ensured.

【0014】このように、バンプ2と電極5の間の電気
的接合に関与する導電粒子7の捕獲数を確保すること
で、ファインピッチ実装によりバンプ2や電極5の寸法
が小さくなっても、接合信頼性及び電気的特性を低下さ
せることのないACF6を用いた半導体部品1とプリン
ト配線基板4の接合が実現できる。
As described above, by ensuring the number of captured conductive particles 7 involved in the electrical connection between the bump 2 and the electrode 5, even if the dimensions of the bump 2 and the electrode 5 are reduced by the fine pitch mounting, The joining of the semiconductor component 1 and the printed wiring board 4 using the ACF 6 without lowering the joining reliability and the electrical characteristics can be realized.

【0015】(実施の形態2)図2は、本発明の実施の
形態2のACFを用いて半導体部品をプリント配線基板
に実装した状態の断面図である。図2に示すように、半
導体部品1のパッド3上にボンディングされたバンプ2
が接合するプリント配線基板4上の電極5に開口部を持
ったレジスト8を印刷法や写真法等により設ける。ここ
で、レジスト8の開口部寸法を電極5の寸法より小さく
し、電極5とレジスト8を重ねることで、電極の高さ1
8μmをキャンセルすることができ、従ってレジスト8
の高さそのものが凹部の深さ23〜25μmとなり、よ
り深い凹部が電極5上に形成される。したがってこのレ
ジスト8による壁をバンプ2と電極5の間から流れ出る
導電粒子7のストッパーとする。つまり、半導体部品1
本圧着時におけるの加熱・加圧による導電粒子7の流れ
出しを妨げることにより、導電粒子7がバンプ2と電極
5の間から流れ出ることを抑制し、電気的接合に関与す
る導電粒子7の捕獲数を十分確保する。
(Embodiment 2) FIG. 2 is a sectional view showing a state in which a semiconductor component is mounted on a printed wiring board using an ACF according to Embodiment 2 of the present invention. As shown in FIG. 2, the bump 2 bonded on the pad 3 of the semiconductor component 1
Is provided with a resist 8 having an opening in the electrode 5 on the printed wiring board 4 to be joined by a printing method or a photographic method. Here, the size of the opening of the resist 8 is made smaller than the size of the electrode 5, and the electrode 5 and the resist 8 are overlapped, so that the electrode height 1
8 μm can be cancelled, and therefore resist 8
The height of the recess itself is 23 to 25 μm, and a deeper recess is formed on the electrode 5. Therefore, the wall of the resist 8 serves as a stopper for the conductive particles 7 flowing out from between the bump 2 and the electrode 5. That is, the semiconductor component 1
By preventing the conductive particles 7 from flowing out due to heating and pressurization during the final press bonding, the conductive particles 7 are prevented from flowing out between the bumps 2 and the electrodes 5, and the number of captured conductive particles 7 involved in electrical bonding To secure enough.

【0016】このように、バンプ2と電極5の間の電気
的接合に関与する導電粒子7の捕獲数を確保すること
で、ファインピッチ実装によりバンプ2や電極5の寸法
が小さくなっても、接合信頼性及び電気的特性を低下さ
せることのないACF6を用いた半導体部品1とプリン
ト配線基板4の接合が実現できる。
As described above, by ensuring the number of captured conductive particles 7 involved in the electrical connection between the bump 2 and the electrode 5, even if the dimensions of the bump 2 and the electrode 5 are reduced by the fine pitch mounting, The joining of the semiconductor component 1 and the printed wiring board 4 using the ACF 6 without lowering the joining reliability and the electrical characteristics can be realized.

【0017】[0017]

【発明の効果】以上のように本発明によれば、ACF溶
融時にバンプと電極の間から流れ出る導電粒子を抑制
し、電気的接合に関与する導電粒子数を確保することに
より、接合信頼性及び電気的特性を十分に確保できる。
As described above, according to the present invention, it is possible to suppress the conductive particles flowing out between the bump and the electrode when the ACF is melted, and to secure the number of the conductive particles involved in the electrical bonding, thereby improving the reliability of the bonding. Sufficient electrical characteristics can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1のACFを用いて半導体
部品をプリント配線基板に実装した状態の断面図
FIG. 1 is a cross-sectional view of a state in which a semiconductor component is mounted on a printed wiring board using an ACF according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2のACFを用いて半導体
部品をプリント配線基板に実装した状態の断面図
FIG. 2 is a cross-sectional view showing a state where a semiconductor component is mounted on a printed wiring board using the ACF according to the second embodiment of the present invention;

【図3】従来のプリント配線基板に半導体部品をACF
を用いて接合する前の状態を示す断面図
FIG. 3 shows a conventional printed circuit board in which a semiconductor component is ACF.
Sectional view showing the state before joining using

【図4】従来のACFの硬化メカニズム図FIG. 4 is a diagram showing a curing mechanism of a conventional ACF.

【符号の説明】[Explanation of symbols]

1 半導体部品 2 バンプ 3 パッド 4 プリント配線基板 5 電極 6 ACF 7 導電粒子 8 レジスト DESCRIPTION OF SYMBOLS 1 Semiconductor component 2 Bump 3 Pad 4 Printed wiring board 5 Electrode 6 ACF 7 Conductive particle 8 Resist

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子部品と基板を導電粒子を含む異方導電
性フィルムを用い、前記導電粒子を前記電子部品と前記
基板の電極の間に介在させることにより電気的な接合を
行うにあたり、前記基板上に形成された電極近傍に前記
電極の厚みよりも厚い絶縁部材を設けることにより前記
電極を凹部とし、前記電子部品と前記基板の接合時にお
けるACFの溶融による導電粒子の流れを抑制して、前
記電子部品と前記基板との接合時における前記凹部の導
電粒子数を増大させることを特徴とするACF接合構
造。
An electronic component and a substrate are formed by using an anisotropic conductive film containing conductive particles, and the conductive particles are interposed between electrodes of the electronic component and the substrate to perform electrical bonding. By providing an insulating member thicker than the thickness of the electrode in the vicinity of the electrode formed on the substrate, the electrode is formed as a concave portion, and the flow of conductive particles due to melting of ACF at the time of joining the electronic component and the substrate is suppressed. An ACF joining structure, wherein the number of conductive particles in the concave portion at the time of joining the electronic component and the substrate is increased.
【請求項2】前記電極に前記絶縁部材の一部もしくは全
部が重なるように設けることにより、前記凹部の深さを
深くしたことを特徴とする請求項1記載のACF接合構
造。
2. The ACF bonding structure according to claim 1, wherein a depth of the concave portion is increased by providing the insulating member so as to partially or entirely overlap the electrode.
JP16982697A 1997-06-26 1997-06-26 ACF junction structure Expired - Fee Related JP3725300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16982697A JP3725300B2 (en) 1997-06-26 1997-06-26 ACF junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16982697A JP3725300B2 (en) 1997-06-26 1997-06-26 ACF junction structure

Publications (2)

Publication Number Publication Date
JPH1116949A true JPH1116949A (en) 1999-01-22
JP3725300B2 JP3725300B2 (en) 2005-12-07

Family

ID=15893631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16982697A Expired - Fee Related JP3725300B2 (en) 1997-06-26 1997-06-26 ACF junction structure

Country Status (1)

Country Link
JP (1) JP3725300B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409866B1 (en) 1999-05-28 2002-06-25 Sony Chemicals Corp. Process for mounting semiconductor device
US6769469B2 (en) * 1999-08-09 2004-08-03 Sony Chemicals Corp. Process for mounting semiconductor device and mounting apparatus
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
US20090174073A1 (en) * 2008-01-08 2009-07-09 Woong Sun Lee Substrate for semiconductor package having coating film and method for manufacturing the same
US20120153443A1 (en) * 2006-11-22 2012-06-21 Tessera, Inc. Packaged semiconductor chips with array
US8405196B2 (en) 2007-03-05 2013-03-26 DigitalOptics Corporation Europe Limited Chips having rear contacts connected by through vias to front contacts
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US9224649B2 (en) 2010-12-08 2015-12-29 Tessera, Inc. Compliant interconnects in wafers
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409866B1 (en) 1999-05-28 2002-06-25 Sony Chemicals Corp. Process for mounting semiconductor device
US6769469B2 (en) * 1999-08-09 2004-08-03 Sony Chemicals Corp. Process for mounting semiconductor device and mounting apparatus
KR100616792B1 (en) * 1999-08-09 2006-08-29 소니 케미카루 가부시키가이샤 Apparatus and method for mounting semiconductor element
JP2006298954A (en) * 2005-04-15 2006-11-02 Tatsuta System Electronics Kk Electroconductive adhesive sheet and circuit board
US9070678B2 (en) 2006-11-22 2015-06-30 Tessera, Inc. Packaged semiconductor chips with array
US9548254B2 (en) 2006-11-22 2017-01-17 Tessera, Inc. Packaged semiconductor chips with array
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US8653644B2 (en) * 2006-11-22 2014-02-18 Tessera, Inc. Packaged semiconductor chips with array
US20120153443A1 (en) * 2006-11-22 2012-06-21 Tessera, Inc. Packaged semiconductor chips with array
US8405196B2 (en) 2007-03-05 2013-03-26 DigitalOptics Corporation Europe Limited Chips having rear contacts connected by through vias to front contacts
US20090174073A1 (en) * 2008-01-08 2009-07-09 Woong Sun Lee Substrate for semiconductor package having coating film and method for manufacturing the same
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US9355948B2 (en) 2010-09-17 2016-05-31 Tessera, Inc. Multi-function and shielded 3D interconnects
US9362203B2 (en) 2010-09-17 2016-06-07 Tessera, Inc. Staged via formation from both sides of chip
US9847277B2 (en) 2010-09-17 2017-12-19 Tessera, Inc. Staged via formation from both sides of chip
US10354942B2 (en) 2010-09-17 2019-07-16 Tessera, Inc. Staged via formation from both sides of chip
US9269692B2 (en) 2010-12-02 2016-02-23 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9368476B2 (en) 2010-12-02 2016-06-14 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US9620437B2 (en) 2010-12-02 2017-04-11 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages and carrier above chip
US9099296B2 (en) 2010-12-02 2015-08-04 Tessera, Inc. Stacked microelectronic assembly with TSVS formed in stages with plural active chips
US9224649B2 (en) 2010-12-08 2015-12-29 Tessera, Inc. Compliant interconnects in wafers

Also Published As

Publication number Publication date
JP3725300B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP2769491B2 (en) Electrical equipment
US7640655B2 (en) Electronic component embedded board and its manufacturing method
JP2000113919A (en) Electrical connection device and electrically connecting method
JP2002198395A (en) Semiconductor device, its manufacturing method, circuit board, and electronic appliance
JP3725300B2 (en) ACF junction structure
JP2000195584A (en) Electrical connection device and electrical connection method
US7466030B2 (en) Semiconductor device and fabrication process thereof
JP2000277649A (en) Semiconductor and manufacture of the same
JP2008288490A (en) Process for producing built-in chip substrate
JP3743716B2 (en) Flexible wiring board and semiconductor element mounting method
JP3897278B2 (en) Manufacturing method of flexible wiring board
WO2000026959A1 (en) Semiconductor device, method of manufacture thereof, circuit board and electronic device
JP3438583B2 (en) Anisotropic conductive film connection method
JP2004134653A (en) Substrate connecting structure and fabricating process of electronic parts therewith
JPH0951018A (en) Semiconductor device and its manufacturing method
JPH10321758A (en) Semiconductor device
JP3176325B2 (en) Mounting structure and manufacturing method thereof
JP3337922B2 (en) Semiconductor device and manufacturing method thereof
JP2000150576A (en) Electronic circuit device and manufacture thereof
JP3598058B2 (en) Circuit board
JP2001237365A (en) Bonding method for connection terminal, semiconductor device and method of manufacturing the same
JPH10125730A (en) Mounted structure and manufacturing method thereof
JP2986466B2 (en) Circuit board flattening method and semiconductor device manufacturing method
JP3383774B2 (en) Semiconductor element mounting method
JP3239004B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees