JP3383774B2 - Semiconductor element mounting method - Google Patents

Semiconductor element mounting method

Info

Publication number
JP3383774B2
JP3383774B2 JP30366998A JP30366998A JP3383774B2 JP 3383774 B2 JP3383774 B2 JP 3383774B2 JP 30366998 A JP30366998 A JP 30366998A JP 30366998 A JP30366998 A JP 30366998A JP 3383774 B2 JP3383774 B2 JP 3383774B2
Authority
JP
Japan
Prior art keywords
semiconductor element
anisotropic conductive
bump
circuit board
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30366998A
Other languages
Japanese (ja)
Other versions
JP2000133682A (en
Inventor
英信 西川
博之 大谷
一人 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30366998A priority Critical patent/JP3383774B2/en
Publication of JP2000133682A publication Critical patent/JP2000133682A/en
Application granted granted Critical
Publication of JP3383774B2 publication Critical patent/JP3383774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路用プリン
ト基板に半導体素子を実装する半導体素子の実装方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element mounting method for mounting a semiconductor element on a printed circuit board for electronic circuits.

【0002】[0002]

【従来の技術】今日、電子回路基板は、あらゆる製品に
使用されるようになりかつ、携帯機器の増加から、IC
チップをパッケージでなく、裸のまま回路基板に搭載す
るフリップチップ実装方法が求められている。
2. Description of the Related Art Today, electronic circuit boards have come to be used in all products and due to the increase in portable devices, IC
There is a demand for a flip-chip mounting method in which a chip is mounted on a circuit board as it is without being packaged.

【0003】従来の電子機器の回路基板へICチップを
接合する方法について、以下に説明する。
A conventional method of joining an IC chip to a circuit board of an electronic device will be described below.

【0004】図5(a)、(b)に示される特公昭62
−6652号公報記載の方法のように、異方性導電シー
ト6を回路基板4に貼り付け、半導体素子1を圧着ヘッ
ド10で熱圧着することによって、バンプ3と回路基板
電極5間の接合を行うことが従来知られている。なお、
2は半導体素子1側の電極、7は剥離テープである。
Japanese Patent Publication No. Sho 62 shown in FIGS. 5 (a) and 5 (b).
As in the method described in Japanese Patent No. 6652, the anisotropic conductive sheet 6 is attached to the circuit board 4, and the semiconductor element 1 is thermocompression bonded by the pressure bonding head 10 to bond the bumps 3 to the circuit board electrodes 5. It is conventionally known to do. In addition,
Reference numeral 2 is an electrode on the semiconductor element 1 side, and 7 is a peeling tape.

【0005】その際図5(c)のグラフに示されるよう
に、温度Tを180℃で圧力Pを75gf/バンプに設
定した圧着ヘッド10で20secの間熱圧着してい
る。
At this time, as shown in the graph of FIG. 5 (c), thermocompression bonding is performed for 20 seconds by the pressure bonding head 10 in which the temperature T is 180 ° C. and the pressure P is 75 gf / bump.

【0006】又、図6(a)、(b)に示される半導体
実装方法のように、異方性導電ペースト15を使用する
ものであって、絶縁樹脂中に導電性粒子を加えて構成す
る異方性導電ペースト15を回路基板4に塗布し、半導
体素子1を圧着ヘッド10で熱圧着することによって、
バンプ3と回路基板4の電極5間の接合を行うことが従
来知られている。なお、2は半導体素子1側の電極であ
る。
Further, as in the semiconductor mounting method shown in FIGS. 6A and 6B, an anisotropic conductive paste 15 is used, which is constructed by adding conductive particles to an insulating resin. By applying the anisotropic conductive paste 15 to the circuit board 4 and thermocompression-bonding the semiconductor element 1 with the pressure-bonding head 10,
It is conventionally known to bond the bumps 3 to the electrodes 5 of the circuit board 4. Reference numeral 2 is an electrode on the semiconductor element 1 side.

【0007】その際図6(c)のグラフに示されるよう
に、温度Tを180℃で圧力Pを75gf/バンプに設
定した圧着ヘッド10で20secの間熱圧着してい
る。
At this time, as shown in the graph of FIG. 6 (c), thermocompression bonding is performed for 20 seconds by the pressure bonding head 10 in which the temperature T is 180 ° C. and the pressure P is 75 gf / bump.

【0008】[0008]

【発明が解決しようとする課題】このように、電気製品
の小型化を実現するために、従来の技術に示したフリッ
プチップ実装が提案され、実用化されているが、以下の
ような問題点を生じている。
As described above, in order to realize the miniaturization of electric products, the flip chip mounting shown in the prior art has been proposed and put into practical use, but the following problems are encountered. Is occurring.

【0009】第一点は、半導体素子1の載置時に加熱と
加圧を同時に行い、バンプ3と回路基板上電極5の電気
的接続と、基板4と半導体素子1間の封止樹脂(異方性
導電シート6、異方性導電ペースト15)の硬化を同時
に行うために、図5(e)、図6(e)に示すように樹
脂の方向的に自由な硬化収縮18に逆らって荷重17が
加えられるため、樹脂硬化後に内部歪みを生じかつ、十
分な硬化を阻害し硬化率が上がらなくなる。このため、
接合信頼性を劣化させてしまっている。
The first point is that the semiconductor element 1 is heated and pressed at the same time when it is mounted, the bumps 3 and the electrodes 5 on the circuit board are electrically connected, and the sealing resin between the substrate 4 and the semiconductor element 1 is different. In order to simultaneously cure the anisotropic conductive sheet 6 and the anisotropic conductive paste 15), the load is applied against the directionally free curing shrinkage 18 of the resin as shown in FIGS. 5 (e) and 6 (e). Since 17 is added, internal strain occurs after the resin is cured, and sufficient curing is hindered so that the curing rate cannot be increased. For this reason,
The joint reliability is deteriorated.

【0010】第二点は、半導体素子1の載置時に加熱と
加圧を同時に行い、バンプ3と回路基板上電極5の電気
的接続と、基板4と半導体素子1間の封止樹脂の硬化を
同時に行うために、図5(d)、図6(d)に示すよう
にバンプ3、半導体素子1を介して加熱温度と加圧が回
路基板4にかかり、加熱が基板樹脂の軟化、加圧で基板
電極5を変形16させてしまうことである。このよう
な、電極変形が発生した場合、多層基板の場合、回路基
板4の表層と内層の二層間の絶縁性を損なう恐れがあ
る。また、電極自身の破損による導電性を損なう恐れが
ある。さらに、微細配線を可能にしているビルドアップ
基板においては、通常のガラスエポキシ基板に比べ、表
層の絶縁層にはガラス繊維を含まず、また、表層配線が
微細なことにより電極5の変形が大きくなる。
The second point is that the semiconductor element 1 is heated and pressed at the same time when it is mounted, the bumps 3 are electrically connected to the electrodes 5 on the circuit board, and the sealing resin between the substrate 4 and the semiconductor element 1 is cured. 5D and 6D, heating temperature and pressure are applied to the circuit board 4 via the bumps 3 and the semiconductor element 1 to heat and soften the board resin. That is, the substrate electrode 5 is deformed 16 by the pressure. When such electrode deformation occurs, in the case of a multi-layer substrate, there is a risk of impairing the insulation between the two layers of the surface layer and the inner layer of the circuit board 4. Further, there is a possibility that the electrode itself may be damaged and the conductivity may be impaired. Further, in the build-up substrate that enables fine wiring, the surface insulating layer does not contain glass fiber and the electrode 5 is largely deformed because the surface layer wiring is fine as compared with a normal glass epoxy substrate. Become.

【0011】本発明は、上記従来の問題点に鑑みて、回
路基板上の電極の変形を抑制しかつ、高い接合信頼性を
得る半導体素子の実装方法を提供することを目的とす
る。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide a semiconductor element mounting method that suppresses the deformation of electrodes on a circuit board and obtains high junction reliability.

【0012】[0012]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下のように構成している。
In order to achieve the above object, the present invention is configured as follows.

【0013】本願の第一発明は、熱硬化性の異方性導電
シートを回路基板に貼り付け、半導体素子のバンプと前
記回路基板上の電極を異方性導電シートを介して接する
ように載置し、半導体素子からの加熱、加圧で異方性導
電シートを硬化して、半導体素子を圧着し、前記バンプ
と前記電極とを接合する半導体素子の実装方法におい
て、半導体素子の圧着工程を、第一段階条件は、加熱温
度が160〜240℃かつ、加圧条件が50〜100g
/バンプ、第二段階条件は、加熱温度が160〜240
℃かつ、加圧条件が50g/バンプ以下、の二段階工程
で行うことを特徴とする。
In the first invention of the present application, a thermosetting anisotropic conductive sheet is attached to a circuit board, and the bumps of the semiconductor element and the electrodes on the circuit board are mounted so as to be in contact with each other via the anisotropic conductive sheet. In the mounting method of the semiconductor element, the anisotropic conductive sheet is cured by heating and pressure from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded. The first stage condition is that the heating temperature is 160 to 240 ° C. and the pressurizing condition is 50 to 100 g.
/ Bump, the second stage conditions, the heating temperature is 160 ~ 240
It is characterized in that it is carried out in a two-step process in which the temperature is 50 ° C. and the pressure is 50 g / bump or less.

【0014】本願の第二発明は、熱硬化性の異方性導電
シートを回路基板に貼り付け、半導体素子のバンプと前
記回路基板上の電極を異方性導電シートを介して接する
ように載置し、半導体素子からの加熱、加圧で異方性導
電シートを硬化して、半導体素子を圧着し、前記バンプ
と前記電極とを接合する半導体素子の実装方法におい
て、半導体素子の圧着工程を、第一段階条件は、加熱温
度が異方性導電シートの軟化温度以上で基板のガラス転
移温度未満かつ、加圧条件が50〜100g/バンプ、
第二段階条件は、加熱条件が基板のガラス転移温度以上
で240℃以下かつ、加圧条件が50g/バンプ以下、
の二段階工程で行うことを特徴とする。
In the second invention of the present application, a thermosetting anisotropic conductive sheet is attached to a circuit board, and the bumps of the semiconductor element and the electrodes on the circuit board are mounted so as to be in contact with each other via the anisotropic conductive sheet. In the mounting method of the semiconductor element, the anisotropic conductive sheet is cured by heating and pressure from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded. The first stage condition is that the heating temperature is equal to or higher than the softening temperature of the anisotropic conductive sheet and lower than the glass transition temperature of the substrate, and the pressure condition is 50 to 100 g / bump.
The second stage condition is that the heating condition is not less than the glass transition temperature of the substrate and not more than 240 ° C. and the pressing condition is not more than 50 g / bump,
It is characterized in that it is carried out in a two-step process.

【0015】本願の第三発明は、熱硬化性の異方性導電
ペーストを回路基板に塗布し、半導体素子のバンプと前
記回路基板上の電極を異方性導電ペーストを介して接す
るように載置し、半導体素子からの加熱、加圧で異方性
導電ペーストを硬化して、半導体素子を圧着し、前記バ
ンプと前記電極とを接合する半導体素子の実装方法にお
いて、半導体素子の圧着工程を、第一段階条件は、加熱
温度が160〜240℃かつ、加圧条件が50〜100
g/バンプ、第二段階条件は、加熱温度が160〜24
0℃かつ、加圧条件が50g/バンプ以下、の二段階工
程で行うことを特徴とする。
According to a third aspect of the present invention, a thermosetting anisotropic conductive paste is applied to a circuit board, and the bumps of the semiconductor element and the electrodes on the circuit board are placed in contact with each other via the anisotropic conductive paste. In the method for mounting a semiconductor element, the anisotropic conductive paste is cured by heating and pressure from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded together. The first stage condition is that the heating temperature is 160 to 240 ° C. and the pressurizing condition is 50 to 100.
g / bump, the second stage condition is that the heating temperature is 160 to 24
It is characterized in that it is performed in a two-step process of 0 ° C. and a pressure condition of 50 g / bump or less.

【0016】本願の第四発明は、熱硬化性の異方性導電
ペーストを回路基板に塗布し、半導体素子のバンプと前
記回路基板上の電極を異方性導電ペーストを介して接す
るように載置し、半導体素子からの加熱、加圧で異方性
導電ペーストを硬化して、半導体素子を圧着し、前記バ
ンプと前記電極とを接合する半導体素子の実装方法にお
いて、半導体素子の圧着工程を、第一段階条件は、加熱
温度が異方性導電ペーストの軟化温度以上で基板のガラ
ス転移温度未満かつ、加圧条件が50〜100g/バン
プ、第二段階条件は、加熱温度が基板のガラス転移温度
以上で240℃以下かつ、加圧条件は50g/バンプ以
下、の二段階条件で行うことを特徴とする。
According to a fourth aspect of the present invention, a thermosetting anisotropic conductive paste is applied to a circuit board, and the bumps of the semiconductor element and the electrodes on the circuit board are placed in contact with each other through the anisotropic conductive paste. In the method for mounting a semiconductor element, the anisotropic conductive paste is cured by heating and pressure from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded together. The first stage condition is that the heating temperature is equal to or higher than the softening temperature of the anisotropic conductive paste and lower than the glass transition temperature of the substrate, and the pressurizing condition is 50 to 100 g / bump, and the second stage condition is that the heating temperature is the glass of the substrate. It is characterized in that it is carried out under the two-stage conditions of a transition temperature or higher and 240 ° C. or lower and a pressurization condition of 50 g / bump or lower.

【0017】上記第一発明及び、第三発明によれば、半
導体素子上バンプと基板電極とを電気的に接触させ、封
止目的の樹脂を半硬化させた後に、圧着荷重を低荷重に
して、自由に封止樹脂を硬化させるため、樹脂中の内部
歪みを減少させることができる。
According to the first and third inventions, the bumps on the semiconductor element and the substrate electrodes are electrically contacted with each other, and the resin for sealing is semi-cured, and then the pressure-bonding load is reduced. Since the sealing resin is freely cured, internal strain in the resin can be reduced.

【0018】上記第二発明及び、第四発明によれば、基
板ガラス転移温度未満で半導体素子上バンプと基板電極
の電気的接触した後に、圧着荷重を低荷重にして、樹脂
を硬化させるため、基板電極変形を抑制することができ
る。
According to the above-mentioned second and fourth inventions, after the electrical contact between the bumps on the semiconductor element and the substrate electrodes at a temperature lower than the substrate glass transition temperature, the pressure bonding load is reduced to cure the resin, The substrate electrode deformation can be suppressed.

【0019】[0019]

【発明の実施の形態】つぎに、本発明の実施形態を図面
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0020】本発明の第一実施形態にかかる回路基板4
への半導体素子1の実装方法を図1(a)〜(e)を用
いて説明する。
Circuit board 4 according to the first embodiment of the present invention
A method for mounting the semiconductor element 1 on the semiconductor device 1 will be described with reference to FIGS.

【0021】図1(a)において、半導体素子1のAl
パッド(半導体素子側電極)2上に直径25μmのAu
線を用いて、ワイヤボンディング装置によりバンプ3を
形成した。
In FIG. 1A, the Al of the semiconductor element 1 is
Au having a diameter of 25 μm is formed on the pad (semiconductor element side electrode) 2.
The wire 3 was used to form the bump 3 by a wire bonding apparatus.

【0022】図1(b)において、ガラスエポキシ基板
4(NEC製、FR−4)上に、厚み80μmの異方性
導電シート6(ソニーケミカル製、MJ−932)を半
導体素子1実装領域に置き、温度80℃、荷重1.5k
gf/cm2に設定した貼付ヘッド8で貼り付けた。
In FIG. 1B, an anisotropic conductive sheet 6 (manufactured by NEC Chemical, MJ-932) having a thickness of 80 μm is mounted on a glass epoxy substrate 4 (manufactured by NEC, FR-4) in a semiconductor element 1 mounting region. Place, temperature 80 ℃, load 1.5k
The application was performed with the application head 8 set to gf / cm 2 .

【0023】図1(c)において、異方性導電シート6
上のセパレーター7と呼ばれるフィルムを剥がした。
In FIG. 1C, the anisotropic conductive sheet 6 is used.
The film called Separator 7 above was peeled off.

【0024】図1(d)において、基板4上の基板電極
5と半導体素子1に形成したバンプ3が接するように位
置合わせして半導体素子マウントヘッド9により載置し
た。
In FIG. 1D, the substrate electrodes 5 on the substrate 4 and the bumps 3 formed on the semiconductor element 1 are aligned so as to be in contact with each other and mounted by the semiconductor element mount head 9.

【0025】図1(e)において、温度条件を異方性導
電シート6の硬化温度である180℃に設定した圧着ヘ
ッド10で、第一段階の圧力11としての75gf/バ
ンプで10sec間荷重を加え、異方性導電シート6が
60〜80%硬化した後、ひき続き同一温度、同一の圧
着ヘッド10で第二段階の圧力12として30gf/バ
ンプで10sec間荷重を加え、異方性導電シート6を
90%以上硬化させた。
In FIG. 1 (e), with the pressure bonding head 10 in which the temperature condition is set to 180 ° C. which is the curing temperature of the anisotropic conductive sheet 6, a load of 10 seconds at 75 gf / bump as the pressure 11 of the first stage. In addition, after the anisotropic conductive sheet 6 is cured by 60 to 80%, a load of 30 gf / bumps for 10 seconds is applied as the second stage pressure 12 at the same temperature and the same pressure bonding head 10 for a period of 10 seconds. 6 was cured by 90% or more.

【0026】以上、図1(e)に示す二段階の圧着工程
により、圧着ヘッド10の荷重に阻害されること無く異
方性導電シート6の硬化収縮を行うことができ、圧着後
の異方性導電シート6内に圧着荷重と異方性導電シート
6の樹脂の方向的に自由な硬化収縮による内部歪みを減
少させることができた。従来の圧着工程では、表面実装
部品のはんだ付けリフローソルダーリング後に半導体素
子1上のバンプ3と基板電極5間に接合破断を生じる
か、又は、接続抵抗値を、圧着後の15倍以上に上げて
しまうことがあったが、前記二段階の圧着工程では、リ
フローソルダーリング後の接続抵抗値は、1.2倍に止
まり、耐熱性を向上することができた。
As described above, the anisotropic conductive sheet 6 can be cured and shrunk without being hindered by the load of the pressure bonding head 10 by the two-stage pressure bonding process shown in FIG. It was possible to reduce the internal strain due to the pressure bonding load in the conductive conductive sheet 6 and the directionally free curing shrinkage of the resin of the anisotropic conductive sheet 6. In the conventional crimping process, after the soldering reflow soldering of the surface mount component, a joint breakage occurs between the bump 3 on the semiconductor element 1 and the substrate electrode 5, or the connection resistance value is increased to 15 times or more after the crimping. However, in the two-step crimping process, the connection resistance value after the reflow soldering was only 1.2 times, and the heat resistance could be improved.

【0027】本発明の第二実施形態にかかる回路基板4
への半導体素子1の実装方法を図2(a)〜(e)を用
いて説明する。
Circuit board 4 according to the second embodiment of the present invention
A method for mounting the semiconductor element 1 on the semiconductor device 1 will be described with reference to FIGS.

【0028】図2(a)において、半導体素子1のAl
パッド(半導体素子側電極)2上に直径25μmのAu
線を用いて、ワイヤボンディング装置によりバンプ3を
形成した。
In FIG. 2A, the Al of the semiconductor element 1 is
Au having a diameter of 25 μm is formed on the pad (semiconductor element side electrode) 2.
The wire 3 was used to form the bump 3 by a wire bonding apparatus.

【0029】図2(b)において、ガラスエポキシ基板
4(NEC製、FR−4)上に、厚み80μmの異方性
導電シート6(ソニーケミカル製、MJ−932)を半
導体素子1実装領域に置き、温度80℃、荷重1.5k
gf/cm2に設定した貼付ヘッド8で貼り付けた。
In FIG. 2B, an anisotropic conductive sheet 6 (manufactured by NEC Chemical, MJ-932) having a thickness of 80 μm is mounted on the glass epoxy substrate 4 (manufactured by NEC, FR-4) in the semiconductor element 1 mounting region. Place, temperature 80 ℃, load 1.5k
The application was performed with the application head 8 set to gf / cm 2 .

【0030】図2(c)において、異方性導電シート6
上のセパレーター7と呼ばれるフィルムを剥がした。
In FIG. 2 (c), the anisotropic conductive sheet 6 is used.
The film called Separator 7 above was peeled off.

【0031】図2(d)において、基板4上の基板電極
5と半導体素子1に形成したバンプ3が接するように位
置合わせして半導体素子マウントヘッド9により載置し
た。
In FIG. 2D, the substrate electrodes 5 on the substrate 4 and the bumps 3 formed on the semiconductor element 1 are aligned so as to be in contact with each other and mounted by the semiconductor element mount head 9.

【0032】図2(e)において、第一段階の温度条件
を異方性導電シート6の軟化温度以上で基板4のガラス
転移温度以下の温度である80℃に設定して圧着ヘッド
10で、第一段階の圧力11として75gf/バンプで
10sec間荷重を加えて半導体素子1上のバンプ3と
基板電極5を電気的に接触させ、第二段階の温度条件を
異方性導電シート6の硬化温度以上である180℃に
し、圧力12として30gf/バンプで10sec間荷
重を加えて、異方性導電シート6を硬化させた。
In FIG. 2 (e), the pressure condition of the first step is set to 80 ° C., which is a temperature higher than the softening temperature of the anisotropic conductive sheet 6 and lower than the glass transition temperature of the substrate 4, and the pressure bonding head 10 is used. A pressure of 75 gf / bump is applied for 10 seconds as a pressure 11 in the first step to electrically contact the bump 3 on the semiconductor element 1 with the substrate electrode 5, and the anisotropic conductive sheet 6 is cured under the temperature condition in the second step. The temperature was set to 180 ° C. or higher, and a load of 30 gf / bump was applied for 10 seconds at a pressure of 12 to cure the anisotropic conductive sheet 6.

【0033】以上、図2(e)に示す二段階の圧着工程
により、半導体素子上バンプ3と基板電極5を基板4の
ガラス転移温度T(エポキシ樹脂のガラス転移温度T
は、130〜145℃である。)未満の温度で接触させ
てから、低荷重で異方性導電シート6を硬化させること
により、従来の圧着工程のような加熱と荷重より基板電
極5を変形させ、電気導電性を損なう恐れなどがなく半
導体素子1を基板4に実装することができた。
As described above, the glass transition temperature T of the bumps 3 on the semiconductor element and the substrate electrode 5 (the glass transition temperature T of the epoxy resin T) of the substrate 4 is changed by the two-step pressure bonding process shown in FIG. 2 (e).
Is 130 to 145 ° C. By contacting the anisotropic conductive sheet 6 at a temperature of less than 1) and then curing the anisotropic conductive sheet 6 with a low load, the substrate electrode 5 may be deformed by the heat and load as in the conventional pressure bonding step, and the electrical conductivity may be impaired. The semiconductor element 1 could be mounted on the substrate 4 without any problem.

【0034】本発明の第三実施形態にかかる回路基板4
への半導体素子1の実装方法を図3(a)〜(e)を用
いて説明する。
Circuit board 4 according to the third embodiment of the present invention
A method for mounting the semiconductor element 1 on the semiconductor device 1 will be described with reference to FIGS.

【0035】図3(a)において、半導体素子上バンプ
3は、半導体素子1のAlパッド(半導体素子側電極)
2上に直径25μmのAu線を用いて、ワイヤボンディ
ング装置によりバンプ3を形成した。
In FIG. 3A, the bump 3 on the semiconductor element is an Al pad (semiconductor element side electrode) of the semiconductor element 1.
Bumps 3 were formed on the substrate 2 by using a wire bonding device using a 25 μm diameter Au wire.

【0036】図3(b)において、ガラスエポキシ基板
4(NEC製、FR−4)を示している。
In FIG. 3B, a glass epoxy substrate 4 (NEC, FR-4) is shown.

【0037】図3(c)において、異方性導電ペースト
15(東芝ケミカル製、XAP−0072)を半導体素
子1実装領域にディスペンス法により塗布した。
In FIG. 3C, anisotropic conductive paste 15 (XAP-0072, manufactured by Toshiba Chemical Co., Ltd.) was applied to the semiconductor element 1 mounting region by a dispensing method.

【0038】図3(d)において、基板4上の基板電極
5と半導体素子1に形成したバンプ3が接するように位
置合わせして半導体素子マウントヘッド9により載置し
た。
In FIG. 3D, the semiconductor device mount head 9 was placed by aligning the substrate electrodes 5 on the substrate 4 and the bumps 3 formed on the semiconductor device 1 so as to be in contact with each other.

【0039】図3(e)において、温度条件を異方性導
電ペースト15の硬化温度(160℃〜240℃)であ
る180℃に設定し、圧着ヘッド10で、第一段階の圧
力11としての75gf/バンプで10sec間荷重を
加え、異方性導電ペースト15が60〜80%硬化した
後、第二段階の圧力12として30gf/バンプで10
sec間荷重を加え、異方性導電ペースト15を90%
以上硬化させた。
In FIG. 3E, the temperature condition is set to 180 ° C., which is the curing temperature (160 ° C. to 240 ° C.) of the anisotropic conductive paste 15, and the pressure 11 is used as the pressure 11 at the first stage by the pressure bonding head 10. A load of 75 gf / bump is applied for 10 seconds to cure the anisotropic conductive paste 15 by 60 to 80%, and then a pressure of 30 gf / bump is applied as the second stage pressure 12.
90% of anisotropic conductive paste 15 by applying a load for sec
The above was cured.

【0040】以上、図3(e)に示す二段階の圧着工程
により、圧着ヘッド10の荷重に阻害されること無く異
方性導電ペースト15の硬化収縮を行うことができ、圧
着後の異方性導電ペースト15内に圧着荷重と異方性導
電ペースト15の樹脂の方向的に自由な硬化収縮による
内部歪みを減少させることができた。従来の圧着工程で
は、表面実装部品のはんだ付けリフローソルダーリング
後に半導体素子1上のバンプ3と基板電極5間に接合破
断を生じるか、又は、接続抵抗値を、圧着後の15倍以
上に上げてしまうことがあったが、前記二段階の圧着工
程では、リフローソルダーリング後の接続抵抗値は、
1.2倍に止まり、耐熱性を向上することができた。
As described above, the anisotropic conductive paste 15 can be cured and shrunk without being hindered by the load of the pressure bonding head 10 by the two-stage pressure bonding process shown in FIG. It was possible to reduce the internal strain due to the compression load in the conductive conductive paste 15 and the directionally free curing shrinkage of the resin of the anisotropic conductive paste 15. In the conventional crimping process, after the soldering reflow soldering of the surface mount component, a joint breakage occurs between the bump 3 on the semiconductor element 1 and the substrate electrode 5, or the connection resistance value is increased to 15 times or more after the crimping. However, in the two-step crimping process, the connection resistance value after reflow soldering was
The heat resistance was improved to 1.2 times, and the heat resistance could be improved.

【0041】本発明の第四実施形態にかかる回路基板4
への半導体素子1の実装方法を図4(a)〜(e)を用
いて説明する。
Circuit board 4 according to the fourth embodiment of the present invention
A method for mounting the semiconductor element 1 on the semiconductor device 1 will be described with reference to FIGS.

【0042】図4(a)において、半導体素子上バンプ
3は、半導体素子1のAlパッド(半導体素子側電極)
2上に直径25μmのAu線を用いて、ワイヤボンディ
ング装置によりバンプ3を形成した。
In FIG. 4A, the bump 3 on the semiconductor element is an Al pad (semiconductor element side electrode) of the semiconductor element 1.
Bumps 3 were formed on the substrate 2 by using a wire bonding device using a 25 μm diameter Au wire.

【0043】図4(b)において、ガラスエポキシ基板
4(NEC製、FR−4)を示している。
FIG. 4B shows a glass epoxy substrate 4 (FR-4, manufactured by NEC).

【0044】図4(c)において、異方性導電ペースト
15(東芝ケミカル製、XAP−0072)を半導体素
子1実装領域にディスペンス法により塗布した。
In FIG. 4 (c), anisotropic conductive paste 15 (XAP-0072, manufactured by Toshiba Chemical Co., Ltd.) was applied to the semiconductor element 1 mounting region by a dispensing method.

【0045】図4(d)において、基板4上の基板電極
5と半導体素子1に形成したバンプ3が接するように位
置合わせして半導体素子マウントヘッド9により載置し
た。
In FIG. 4 (d), the substrate electrodes 5 on the substrate 4 and the bumps 3 formed on the semiconductor element 1 are aligned so that they are in contact with each other, and the semiconductor element mount head 9 mounts them.

【0046】図4(e)において、第一段階の温度条件
を異方性導電ペースト15の軟化温度以上(好ましく
は、15℃以上)で基板4のガラス転移温度未満である
40℃に設定して圧着ヘッド10で、第一段階の圧力1
1として75gf/バンプで荷重を加えて半導体素子上
バンプ3と基板電極5を10sec間電気的に接触さ
せ、第二段階の温度条件を異方性導電ペースト15の硬
化温度(基板4のガラス転移温度以上で240℃以下)
である180℃にし、圧力12として30gf/バンプ
で、異方性導電ペースト15を硬化させた。
In FIG. 4 (e), the temperature condition of the first stage is set to 40 ° C., which is higher than the softening temperature of the anisotropic conductive paste 15 (preferably higher than 15 ° C.) and lower than the glass transition temperature of the substrate 4. With the pressure bonding head 10, the first pressure 1
As a result, a load of 75 gf / bump is applied to electrically contact the bumps 3 on the semiconductor element and the substrate electrodes 5 for 10 seconds, and the second stage temperature condition is set to the curing temperature of the anisotropic conductive paste 15 (glass transition of the substrate 4). (Temperature above 240 ° C)
Then, the anisotropic conductive paste 15 was cured at a temperature of 180 ° C. and a pressure of 30 gf / bump.

【0047】以上、図4(e)に示す二段階の圧着工程
により、半導体素子1上のバンプ3と基板電極5を基板
4のガラス転移温度(エポキシ樹脂のガラス転移温度
は、130〜145℃である。)未満の温度で接触させ
てから、低荷重で異方性導電ペースト15を硬化させる
ことにより、従来の圧着工程のような加熱と荷重より基
板電極5を変形させ、電気導電性を損なう恐れなどがな
く半導体素子1を基板4に実装することができた。
As described above, the glass transition temperature of the bump 3 and the substrate electrode 5 on the semiconductor element 1 (the glass transition temperature of the epoxy resin is 130 to 145 ° C.) of the substrate 4 by the two-step pressure bonding process shown in FIG. 4E. Then, the anisotropic conductive paste 15 is cured with a low load after contacting at a temperature lower than 100 ° C., so that the substrate electrode 5 is deformed by the heating and the load as in the conventional pressure bonding step, and the electrical conductivity is improved. The semiconductor element 1 could be mounted on the substrate 4 without fear of damage.

【0048】[0048]

【発明の効果】以上のように本発明は、半導体素子上バ
ンプと基板電極の電気的接触と封止目的の樹脂を半硬化
させた後に、圧着荷重を低荷重にして、自由に封止樹脂
を硬化させ、樹脂中の内部歪みを減少させることができ
るため、半導体素子上バンプと基板電極の接合信頼性を
向上させることができ、また半導体素子の圧着工程につ
いては、異方性導電シート、あるいは異方性導電ペース
トの軟化温度以上基板ガラス転移温度未満で半導体素子
上バンプと基板電極と電気的接触後に、圧着荷重を低荷
重にして、樹脂を硬化させ、基板電極変形を抑制するこ
とができるため、半導体素子の基板電極への圧着工程に
於いての基板電極変形を防止することができる。
As described above, according to the present invention, after the resin for the purpose of electrical contact between the bumps on the semiconductor element and the substrate electrode and the resin for sealing are semi-cured, the pressure bonding load is reduced and the sealing resin is freely applied. Can be hardened and internal strain in the resin can be reduced, so that the bonding reliability between the bumps on the semiconductor element and the substrate electrode can be improved, and in the crimping step of the semiconductor element, an anisotropic conductive sheet, Alternatively, after electrical contact between the bumps on the semiconductor element and the substrate electrode at a temperature above the softening temperature of the anisotropic conductive paste and below the glass transition temperature of the substrate, the pressure load is reduced to cure the resin and suppress the substrate electrode deformation. Therefore, it is possible to prevent the substrate electrode from being deformed in the step of crimping the semiconductor element to the substrate electrode.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(e)は本発明の第一実施形態にかか
る回路基板への半導体素子の実装方法を示す説明図。
1A to 1E are explanatory views showing a method of mounting a semiconductor element on a circuit board according to a first embodiment of the present invention.

【図2】(a)〜(e)は本発明の第二実施形態にかか
る回路基板への半導体素子の実装方法を示す説明図。
2A to 2E are explanatory views showing a method for mounting a semiconductor element on a circuit board according to a second embodiment of the present invention.

【図3】(a)〜(e)は本発明の第三実施形態にかか
る回路基板への半導体素子の実装方法を示す説明図。
3A to 3E are explanatory views showing a method for mounting a semiconductor element on a circuit board according to a third embodiment of the present invention.

【図4】(a)〜(e)は本発明の第四実施形態にかか
る回路基板への半導体素子の実装方法を示す説明図。
4A to 4E are explanatory views showing a method of mounting a semiconductor element on a circuit board according to a fourth embodiment of the present invention.

【図5】(a)〜(e)は従来の回路基板への半導体素
子の実装方法を示す説明図。
5A to 5E are explanatory views showing a conventional method for mounting a semiconductor element on a circuit board.

【図6】(a)〜(e)は従来の回路基板への半導体素
子の実装方法を示す説明図。
6A to 6E are explanatory views showing a conventional method for mounting a semiconductor element on a circuit board.

【符号の説明】[Explanation of symbols]

1 半導体素子 3 バンプ 4 回路基板 5 電極 6 異方性導電シート 15 異方性導電ペースト T 加熱温度 P 加圧条件 1 Semiconductor element 3 bumps 4 circuit board 5 electrodes 6 Anisotropic conductive sheet 15 Anisotropic conductive paste T heating temperature P Pressurization condition

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−297227(JP,A) 特開 平9−162235(JP,A) 特開 平10−144727(JP,A) 特開 平11−330162(JP,A) 特開 平11−307584(JP,A) 実開 平5−77939(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01L 21/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-297227 (JP, A) JP-A-9-162235 (JP, A) JP-A-10-144727 (JP, A) JP-A-11- 330162 (JP, A) Japanese Patent Laid-Open No. 11-307584 (JP, A) Actual Development No. 5-77939 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱硬化性の異方性導電シートを回路基板
に貼り付け、半導体素子のバンプと前記回路基板上の電
極を異方性導電シートを介して接するように載置し、半
導体素子からの加熱、加圧で異方性導電シートを硬化し
て、半導体素子を圧着し、前記バンプと前記電極とを接
合する半導体素子の実装方法において、半導体素子の圧
着工程を、 第一段階条件は、加熱温度が160〜240℃かつ、加
圧条件が50〜100g/バンプ、 第二段階条件は、加熱温度が160〜240℃かつ、加
圧条件が50g/バンプ以下、の二段階工程で行うこと
を特徴とする半導体素子の実装方法。
1. A thermosetting anisotropic conductive sheet is attached to a circuit board, and a bump of the semiconductor element and an electrode on the circuit board are placed so as to be in contact with each other via the anisotropic conductive sheet. In the method for mounting a semiconductor element, in which the anisotropic conductive sheet is cured by heating and pressing from above, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded, Is a heating temperature of 160 to 240 ° C. and a pressurizing condition of 50 to 100 g / bump, and a second stage condition is a heating temperature of 160 to 240 ° C. and a pressurizing condition of 50 g / bump or less. A method for mounting a semiconductor element, which is characterized by carrying out.
【請求項2】 熱硬化性の異方性導電シートを回路基板
に貼り付け、半導体素子のバンプと前記回路基板上の電
極を異方性導電シートを介して接するように載置し、半
導体素子からの加熱、加圧で異方性導電シートを硬化し
て、半導体素子を圧着し、前記バンプと前記電極とを接
合する半導体素子の実装方法において、半導体素子の圧
着工程を、 第一段階条件は、加熱温度が異方性導電シートの軟化温
度以上で基板のガラス転移温度未満かつ、加圧条件が5
0〜100g/バンプ、 第二段階条件は、加熱条件が基板のガラス転移温度以上
で240℃以下かつ、加圧条件が50g/バンプ以下、
の二段階工程で行うことを特徴とする半導体素子の実装
方法。
2. A thermosetting anisotropic conductive sheet is attached to a circuit board, and the bumps of the semiconductor element are placed so as to be in contact with the electrodes on the circuit board via the anisotropic conductive sheet. In the method for mounting a semiconductor element, in which the anisotropic conductive sheet is cured by heating and pressing from above, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded, Means that the heating temperature is equal to or higher than the softening temperature of the anisotropic conductive sheet and lower than the glass transition temperature of the substrate, and the pressure condition is 5
0 to 100 g / bump, the second stage condition is that the heating condition is the glass transition temperature of the substrate or higher and 240 ° C. or lower, and the pressurization condition is 50 g / bump or lower
A method for mounting a semiconductor element, which is performed in a two-step process.
【請求項3】 熱硬化性の異方性導電ペーストを回路基
板に塗布し、半導体素子のバンプと前記回路基板上の電
極を異方性導電ペーストを介して接するように載置し、
半導体素子からの加熱、加圧で異方性導電ペーストを硬
化して、半導体素子を圧着し、前記バンプと前記電極と
を接合する半導体素子の実装方法において、半導体素子
の圧着工程を、 第一段階条件は、加熱温度が160〜240℃かつ、加
圧条件が50〜100g/バンプ、 第二段階条件は、加熱温度が160〜240℃かつ、加
圧条件が50g/バンプ以下、の二段階工程で行うこと
を特徴とする半導体素子の実装方法。
3. A thermosetting anisotropic conductive paste is applied to a circuit board, and the bumps of the semiconductor element are placed so as to be in contact with the electrodes on the circuit board via the anisotropic conductive paste.
In the method of mounting a semiconductor element, the anisotropic conductive paste is cured by heating and pressing from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded. The stage conditions include a heating temperature of 160 to 240 ° C. and a pressure condition of 50 to 100 g / bump, and a second stage condition of a heating temperature of 160 to 240 ° C. and a pressure condition of 50 g / bump or less. A method for mounting a semiconductor element, which is performed in a process.
【請求項4】 熱硬化性の異方性導電ペーストを回路基
板に塗布し、半導体素子のバンプと前記回路基板上の電
極を異方性導電ペーストを介して接するように載置し、
半導体素子からの加熱、加圧で異方性導電ペーストを硬
化して、半導体素子を圧着し、前記バンプと前記電極と
を接合する半導体素子の実装方法において、半導体素子
の圧着工程を、 第一段階条件は、加熱温度が異方性導電ペーストの軟化
温度以上で基板のガラス転移温度未満かつ、加圧条件が
50〜100g/バンプ、 第二段階条件は、加熱温度が基板のガラス転移温度以上
で240℃以下かつ、加圧条件は50g/バンプ以下、
の二段階条件で行うことを特徴とする半導体素子の実装
方法。
4. A thermosetting anisotropic conductive paste is applied to a circuit board, and the bumps of the semiconductor element and the electrodes on the circuit board are placed so as to be in contact with each other via the anisotropic conductive paste.
In the method of mounting a semiconductor element, the anisotropic conductive paste is cured by heating and pressing from the semiconductor element, the semiconductor element is pressure-bonded, and the bump and the electrode are bonded. The stage conditions are such that the heating temperature is equal to or higher than the softening temperature of the anisotropic conductive paste and lower than the glass transition temperature of the substrate, and the pressing condition is 50 to 100 g / bump. The second stage condition is that the heating temperature is equal to or higher than the glass transition temperature of the substrate. 240 ° C or less and the pressurizing condition is 50 g / bump or less,
The method for mounting a semiconductor element, which is performed under the following two-step conditions.
JP30366998A 1998-10-26 1998-10-26 Semiconductor element mounting method Expired - Fee Related JP3383774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30366998A JP3383774B2 (en) 1998-10-26 1998-10-26 Semiconductor element mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30366998A JP3383774B2 (en) 1998-10-26 1998-10-26 Semiconductor element mounting method

Publications (2)

Publication Number Publication Date
JP2000133682A JP2000133682A (en) 2000-05-12
JP3383774B2 true JP3383774B2 (en) 2003-03-04

Family

ID=17923809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30366998A Expired - Fee Related JP3383774B2 (en) 1998-10-26 1998-10-26 Semiconductor element mounting method

Country Status (1)

Country Link
JP (1) JP3383774B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393039B2 (en) * 2014-02-12 2018-09-19 デクセリアルズ株式会社 Manufacturing method of connecting body, connecting method and connecting body

Also Published As

Publication number Publication date
JP2000133682A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
JP4056424B2 (en) Manufacturing method of semiconductor device
US6153938A (en) Flip-chip connecting method, flip-chip connected structure and electronic device using the same
JP3886401B2 (en) Method for manufacturing connection structure
JP3494940B2 (en) Tape carrier type semiconductor device, manufacturing method thereof, and liquid crystal module using the same
JP2000113919A (en) Electrical connection device and electrically connecting method
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
JP3727587B2 (en) Mounting method of semiconductor device
JP2000195584A (en) Electrical connection device and electrical connection method
JP2000277649A (en) Semiconductor and manufacture of the same
JPH1116949A (en) Acf-bonding structure
JPH10270497A (en) Semiconductor element fixing method
JP2001257239A (en) Manufacturing method of semiconductor device
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
JP3279470B2 (en) Semiconductor device and manufacturing method thereof
JP3383774B2 (en) Semiconductor element mounting method
JP4479582B2 (en) Manufacturing method of electronic component mounting body
JP4035949B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
JP3741553B2 (en) Semiconductor device connection structure and connection method, and semiconductor device package using the same
JP3438583B2 (en) Anisotropic conductive film connection method
JP3012809B2 (en) Method for forming electrode structure of semiconductor device
JP2000223534A (en) Apparatus for mounting semiconductor and method of mounting semiconductor chip
JPH11288975A (en) Bonding method and device
JP2967560B2 (en) Connection structure of film carrier
JP2002252326A (en) Method for manufacturing semiconductor device
JP2004253598A (en) Method for packaging electronic component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees