JP3309591B2 - Multifunctional material with photocatalytic function - Google Patents

Multifunctional material with photocatalytic function

Info

Publication number
JP3309591B2
JP3309591B2 JP25424294A JP25424294A JP3309591B2 JP 3309591 B2 JP3309591 B2 JP 3309591B2 JP 25424294 A JP25424294 A JP 25424294A JP 25424294 A JP25424294 A JP 25424294A JP 3309591 B2 JP3309591 B2 JP 3309591B2
Authority
JP
Japan
Prior art keywords
particles
layer
photocatalyst
tio
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25424294A
Other languages
Japanese (ja)
Other versions
JPH07232080A (en
Inventor
信 早川
俊也 渡部
圭一郎 則本
栄一 小島
町田  光義
義光 佐伯
辰彦 久我
靖 中島
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP25424294A priority Critical patent/JP3309591B2/en
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to EP95902937A priority patent/EP0684075B1/en
Priority to CA 2155822 priority patent/CA2155822C/en
Priority to ES95902937T priority patent/ES2191043T3/en
Priority to US08/501,110 priority patent/US5853866A/en
Priority to AU11998/95A priority patent/AU1199895A/en
Priority to AT95902937T priority patent/ATE235314T1/en
Priority to PCT/JP1994/002077 priority patent/WO1995015816A1/en
Priority to CN94191730A priority patent/CN1102445C/en
Priority to DE69432348T priority patent/DE69432348T8/en
Priority to CN 02122422 priority patent/CN1289195C/en
Priority to KR1019950703331A priority patent/KR100357482B1/en
Publication of JPH07232080A publication Critical patent/JPH07232080A/en
Priority to US09/167,325 priority patent/US6294246B1/en
Priority to US09/167,324 priority patent/US6027797A/en
Priority to US09/167,327 priority patent/US6294247B1/en
Priority to US09/167,323 priority patent/US6268050B1/en
Priority to US09/167,326 priority patent/US6210779B1/en
Priority to HK98113672A priority patent/HK1017810A1/en
Priority to KR1019990055034A priority patent/KR100361564B1/en
Priority to KR1019990055032A priority patent/KR100361563B1/en
Priority to KR1019990055031A priority patent/KR100358851B1/en
Application granted granted Critical
Publication of JP3309591B2 publication Critical patent/JP3309591B2/en
Priority to HK06105716A priority patent/HK1085719A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は脱臭機能、抗(殺)菌機
能、防汚機能等の機能を発揮する光触媒機能を有する多
機能材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multifunctional material having a photocatalytic function for performing functions such as a deodorizing function, an anti- (bactericidal) fungicidal function and an antifouling function.

【0002】[0002]

【従来の技術】紫外線を照射することで、悪臭成分等の
有機化合物に対して酸素分子の吸着或いは脱着を起こさ
せ、分解(酸化)を促進する機能を発揮する物質とし
て、TiO2、V25、ZnO、WO3等が知られてお
り、特に結晶型がアナターゼ型のTiO2粒子は光触媒
としての効果が高いので、従来から壁材、タイル、ガラ
ス(鏡)、循環濾過装置或いは衛生陶器等の表面に光触
媒層を形成する提案がなされている。
2. Description of the Related Art Irradiation of ultraviolet rays causes organic compounds such as malodorous components to be adsorbed or desorbed by oxygen molecules, and TiO 2 , V 2 are substances that exhibit a function of promoting decomposition (oxidation). O 5 , ZnO, WO 3 and the like are known. In particular, TiO 2 particles having an anatase crystal type have a high effect as a photocatalyst, and thus have conventionally been used as wall materials, tiles, glass (mirrors), circulating filtration devices or sanitary devices. Proposals have been made to form a photocatalytic layer on the surface of pottery or the like.

【0003】上記の光触媒層を形成する方法として、従
来から以下のような方法が行われている。 プラスチ
ック、セラミック、樹脂等の基材表面に、CVD法、
スパッタリング法、電子ビーム蒸着法等によって直接T
iO2粒子等からなる光触媒層を形成する方法。 光
触媒粒子をバインダーに混練してスプレー・コーティン
グ法等によって基材表面に塗布したり、ディップ・コー
ティング法により浸漬塗布した後に、熱処理する方法
(特開平5−201747号公報)。
As a method for forming the photocatalyst layer, the following method has been conventionally used. Plastics, ceramics, on the surface of the substrate such as a resin, CVD method,
Direct T by sputtering, electron beam evaporation, etc.
A method for forming a photocatalyst layer composed of iO 2 particles or the like. A method in which photocatalyst particles are kneaded with a binder and applied to the substrate surface by spray coating or the like, or dip-coated by dip coating, followed by heat treatment (JP-A-5-201747).

【0004】[0004]

【発明が解決しようとする課題】CVD法、スパッタリ
ング法、電子ビーム蒸着法等を用いる場合には、設備が
大規模になり、また歩留りも悪いため製造コストが高く
なる。
When the CVD method, the sputtering method, the electron beam evaporation method, or the like is used, the equipment becomes large-scale and the yield is poor, so that the manufacturing cost increases.

【0005】一方、TiO2粒子等の光触媒粒子が光触
媒としての効果を発揮するには、光触媒粒子に紫外線が
照射されることと、光触媒粒子が悪臭ガス等の分解対象
物質に接触することが必要であるが、特開平5−201
747号公報のように光触媒粒子をバインダーに混練し
て基材に塗布していたのでは、多くの光触媒粒子がバイ
ンダー層中に埋もれ、紫外線が届かなかったり、悪臭ガ
ス等に接触しないことになり、充分な触媒機能を発揮す
ることができない。
On the other hand, in order for the photocatalyst particles such as TiO 2 particles to exhibit the effect as a photocatalyst, it is necessary to irradiate the photocatalyst particles with ultraviolet rays and to contact the photocatalyst particles with a substance to be decomposed such as an odorous gas. Japanese Patent Application Laid-Open No. 5-201
If the photocatalyst particles were kneaded with a binder and applied to the substrate as in Japanese Patent No. 747, many photocatalyst particles would be buried in the binder layer and would not reach the ultraviolet rays or come into contact with the odorous gas. , Cannot exhibit a sufficient catalytic function.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すべく本
発明では以下に示す手段を施した。
Means for Solving the Problems In order to solve the above problems, the present invention has the following means.

【0007】基材表面にバインダー層を介して光触媒で
ある酸化チタン粒子層が保持された光触媒機能を有する
多機能材において、前記酸化チタン粒子層の上層部は外
気と接するようにバインダー層から露出され、また前記
酸化チタン粒子層の下層部はその一部がバインダー層内
に埋設されており、また前記酸化チタン粒子層のうちバ
インダー層から露出する表層を構成する酸化チタン粒子
の間隙に、当該間隙よりも粒径の小さな粒子が酸化チタ
ン粒子同士を焼結するために充填されており、かつ前記
間隙よりも粒径の小さな粒子は酸化スズ、酸化亜鉛、酸
化ビスマスのいずれかであり前記間隙よりも粒径の小さ
な粒子は酸化チタン粒子間のネック部に凝集して存在し
ており、かつ前記酸化チタン層を構成する酸化チタン粒
子の平均粒径は0.3μm未満であるようにした。この
ような構成とすることにより、光触媒層の上層部は露出
しているので、触媒機能を充分に発揮でき、また光触媒
層の下層部はその一部がバインダー層内に埋設されてい
るので光触媒粒子が基材から剥離しにくくなる。
In a multifunctional material having a photocatalytic function in which a titanium oxide particle layer serving as a photocatalyst is held on a substrate surface via a binder layer, an upper layer of the titanium oxide particle layer is exposed from the binder layer so as to be in contact with the outside air. The lower layer portion of the titanium oxide particle layer is partially buried in the binder layer, and in the gap of the titanium oxide particles constituting the surface layer exposed from the binder layer in the titanium oxide particle layer, Particles having a smaller particle size than the gap are filled to sinter the titanium oxide particles, and the particles having a smaller particle size than the gap are any one of tin oxide, zinc oxide, and bismuth oxide. Particles having a smaller particle diameter than the titanium oxide particles are agglomerated at the neck between the titanium oxide particles, and the average particle diameter of the titanium oxide particles constituting the titanium oxide layer is 0. It was set to be less than 3 [mu] m. With this configuration, the upper layer of the photocatalyst layer is exposed, so that the catalytic function can be sufficiently exhibited. The lower layer of the photocatalyst layer is partially embedded in the binder layer, so that the photocatalyst layer is partially buried in the binder layer. Particles are less likely to peel from the substrate.

【0008】ここで、基材としては、タイル、衛生陶
器、ガラス等のセラミック、樹脂、金属、木材またはそ
の複合物等のいずれでもよい。
Here, the substrate may be any of tile, sanitary ware, ceramics such as glass, resin, metal, wood or a composite thereof.

【0009】また、光触媒粒子としては、TiO2、Z
nO、SrTiO3、Fe23、CdS、CdSe、W
3、FeTiO3、GaP、GaAs、RuO2、Mo
3、LaRhO3、CdFeO3、Bi23、MoS2
In23、CdO、SnO2等が挙げられ、これらのう
ちのいずれを用いてもよい。尚、TiO2、SrTi
3、Fe23、CdS、WO3、MoS3、Bi23
MoS2、In23、CdO等は等価電子帯のレドック
ス・ポテンシャルの絶対値が伝導帯のレドックス・ポテ
ンシャルの絶対値よりも大きいため酸化力のほうが還元
力よりも大きく、有機化合物の分解による防臭作用、防
汚作用あるいは抗菌作用に優れている。また原料コスト
の面ではTiO2、Fe23、ZnOが有利である。
The photocatalyst particles include TiO 2 , Z
nO, SrTiO 3 , Fe 2 O 3 , CdS, CdSe, W
O 3 , FeTiO 3 , GaP, GaAs, RuO 2 , Mo
S 3 , LaRhO 3 , CdFeO 3 , Bi 2 O 3 , MoS 2 ,
In 2 O 3 , CdO, SnO 2 and the like can be mentioned, and any of these may be used. TiO 2 , SrTi
O 3 , Fe 2 O 3 , CdS, WO 3 , MoS 3 , Bi 2 O 3 ,
For MoS 2 , In 2 O 3 , CdO, etc., the absolute value of the redox potential of the equivalent electronic band is larger than the absolute value of the redox potential of the conduction band, so that the oxidizing power is larger than the reducing power, and the decomposition of organic compounds is caused. Excellent deodorant, antifouling or antibacterial action. TiO 2 , Fe 2 O 3 , and ZnO are advantageous in terms of raw material cost.

【0010】また、前記バインダー層は、例えば釉薬、
無機ガラス、熱可塑性樹脂、半田等の熱可塑性材料にて
構成する。このようにバインダー層を熱可塑性材料にて
構成することで、バインダー層上にスプレーコティング
法等の簡便且つ安価な方法によって光触媒を常温で塗布
でき、また加熱処理のみで、基材、バインダー層及び光
触媒を強固に結合でき、製造コスト上有利となる。
Further, the binder layer may be made of, for example, a glaze,
It is made of a thermoplastic material such as inorganic glass, thermoplastic resin, and solder. By configuring the binder layer with a thermoplastic material in this manner, a photocatalyst can be applied on the binder layer at a normal temperature by a simple and inexpensive method such as a spray coating method. And the photocatalyst can be firmly bonded, which is advantageous in the production cost.

【0011】また、本発明に係る光触媒機能を有する多
機能材は、光触媒粒子からなる光触媒層を熱可塑性材料
からなるシート状バインダー層の上に積層またはその一
部を埋設して構成される。このようなシート状の多機能
材を、既存のタイル、衛生陶器、建材等の上に貼着後加
熱すれば、既存のタイル等に後から防臭性、防汚性、抗
菌性、抗カビ性等の機能を付加することができる。
Further, the multifunctional material having a photocatalytic function according to the present invention is constituted by laminating a photocatalyst layer made of photocatalyst particles on a sheet-like binder layer made of a thermoplastic material or embedding a part thereof. If such sheet-shaped multifunctional material is heated after pasting it on existing tiles, sanitary ware, building materials, etc., the existing tiles will be deodorized, stainproof, antibacterial, antifungal And other functions can be added.

【0012】前記光触媒層を構成する光触媒粒子の平均
粒径は、比表面積を大きくして光触媒活性を高めるた
め、0.3μm未満とするのが好ましい。
The average particle size of the photocatalyst particles constituting the photocatalyst layer is preferably less than 0.3 μm in order to increase the specific surface area and enhance the photocatalytic activity.

【0013】また、光触媒層の耐摩耗性を高めるため、
光触媒層のうちバインダー層から露出する部分を構成す
る光触媒粒子は互いに結合されていることが好ましい。
Further, in order to enhance the abrasion resistance of the photocatalyst layer,
It is preferable that the photocatalyst particles constituting a portion of the photocatalyst layer exposed from the binder layer are bonded to each other.

【0014】前記光触媒層の厚さは0.1μm〜0.9
μmであることが好ましい。0.1μm未満では局所的
に光触媒粒子がバインダー層内に埋め込まれて、多機能
材表面上触媒活性を発揮できない部分が生じ、その部分
に菌が滞留するようになるので、特に抗菌性が悪化す
る。また0.9μmを越えると、厚みのバラつきが大き
くなり、サンプルに染みが付着した際に汚れが落ちにく
くなる。ここで、光触媒層の厚さとは、最表面からバイ
ンダー層の下層に埋め込まれている部分までを含み、そ
れぞれの凹凸を均した厚みである。
The photocatalyst layer has a thickness of 0.1 μm to 0.9 μm.
μm is preferred. If the thickness is less than 0.1 μm, the photocatalyst particles are locally embedded in the binder layer, and a portion where the catalytic activity cannot be exerted on the surface of the multifunctional material occurs. I do. On the other hand, when the thickness exceeds 0.9 μm, the thickness varies greatly, and it becomes difficult to remove stains when stains adhere to the sample. Here, the thickness of the photocatalyst layer is a thickness including the portion from the outermost surface to the portion embedded in the lower layer of the binder layer, and the thickness of each unevenness.

【0015】ここで、光触媒層の厚さを変化させること
で意匠的な効果も得られる。即ち、厚さを0.2μm以
上0.4μm未満にすれば、光触媒層膜厚部に対する光
の干渉作用により虹彩色模様を付することができ、ま
た、外観上基材の地の色、模様若しくはそれらの結合の
みにしたければ、上記光の干渉作用を生じる部分を除外
した0.1μm以上0.2μm未満もしくは0.4μm
以上1μm未満に光触媒層膜厚部を作製すればよい。斯
かる手法は、タイル、洗面台、浴槽、大・小便器、流し
台、調理台等広範な範囲に応用可能である。
Here, a design effect can be obtained by changing the thickness of the photocatalyst layer. That is, when the thickness is set to 0.2 μm or more and less than 0.4 μm, an iris pattern can be formed by the interference of light with respect to the photocatalyst layer film thickness portion. Alternatively, if only the combination thereof is desired, the portion that causes the light interference action is excluded from 0.1 μm or more and less than 0.2 μm or 0.4 μm.
The thickness of the photocatalyst layer should be less than 1 μm. Such a method can be applied to a wide range of tiles, sinks, bathtubs, large and small urinals, sinks, countertops, and the like.

【0016】光触媒層のうちバインダー層から露出する
部分を構成する光触媒粒子を互いに結合させる方法とし
ては、例えば、光触媒粒子の間隙にその間隙よりも粒径
の小さな粒子を充填する。光触媒粒子のみで互いに結合
する場合には、光触媒粒子同士の吸着または焼結による
しかない。しかしながら光触媒粒子相互の焼結作用を利
用する場合はかなり高温で焼結しなければならず、一方
吸着による場合には光触媒粒子の比表面積をよほど大き
くし且つ充填性をよくしなければ結合性は充分になら
ず、光触媒粒子の活性点吸着分だけ消費する等、充分な
触媒活性と耐摩耗性を有する多機能材を製造するには方
法が制限されることになる。また、光触媒粒子の結合を
強化するために、光触媒粒子の間隙よりも大きな粒子を
用いると、充分な結合力を得られないのみならず、多機
能材表面に露出する光触媒粒子を部分的に覆ってしまう
ことになり、多機能材表面上触媒活性を発揮できない部
分が生じ、その部分に菌が滞留することになるので、抗
菌性が著しく悪化する。尚、ここでいう光触媒粒子間の
間隙とは、図3(a)に示すような、光触媒粒子3b,
3b間のネック部、図3(b)に示すような、光触媒粒
子3b,3b間の気孔の双方を指す。したがって、ここ
でいう光触媒粒子の間隙よりも粒径の小さな粒子3cと
は、光触媒粒子間のネック部、光触媒粒子間の気孔のい
ずれの間隙よりも小さな粒子をいう。
As a method of bonding the photocatalyst particles constituting the portion of the photocatalyst layer exposed from the binder layer, for example, the gap between the photocatalyst particles is filled with particles having a smaller particle size than the gap. In the case where the photocatalyst particles are bonded to each other only by the photocatalyst particles, the only method is to adsorb or sinter the photocatalyst particles. However, when utilizing the sintering action between photocatalyst particles, sintering must be carried out at a considerably high temperature. On the other hand, in the case of adsorption, if the specific surface area of the photocatalyst particles is made very large and the packing property is not improved, the binding property will be high. In order to produce a multifunctional material having sufficient catalytic activity and abrasion resistance, for example, the method consumes only the active site adsorption amount of the photocatalyst particles. Further, if particles larger than the gap between the photocatalyst particles are used to strengthen the bond between the photocatalyst particles, not only a sufficient bonding force cannot be obtained, but also the photocatalyst particles exposed on the surface of the multifunctional material are partially covered. As a result, there is a portion on the surface of the multifunctional material where no catalytic activity can be exerted, and bacteria remain in that portion, so that the antibacterial property is significantly deteriorated. Here, the gap between the photocatalyst particles means the photocatalyst particles 3b and 3b as shown in FIG.
3b and both pores between the photocatalyst particles 3b, 3b as shown in FIG. 3 (b). Therefore, the particles 3c having a particle size smaller than the gap between the photocatalyst particles referred to here are particles smaller than any gap between the neck portion between the photocatalyst particles and the pores between the photocatalyst particles.

【0017】また、光触媒粒子の間隙に充填される小さ
な粒子としては、基本的には材質は制限されないが、吸
着力に優れたものがよい。吸着能が極端に弱い材質では
光触媒粒子同士を互いに結合せしめるという目的を達成
できず、また、吸着能が極端に強い材質では間隙に挿入
されるよりも、光触媒粒子表面の活性点を覆ってしまう
確率が大きくなってしまうからである。この点からみ
て、光触媒粒子の間隙に充填される粒子の材質として好
ましいのは、Sn、Ti、Ag、Cu、Zn、Fe、P
t、Co、Pd、Ni等の金属または酸化物であり、従
来から吸着担体として使用されているゼオライト、活性
炭、粘土等は好ましくない。上記の金属または酸化物の
うち、適度な吸着能を有する点で好ましいのは酸化スズ
であり、またAg、Cu等の金属または酸化物は、光触
媒粒子同士を互いに結合せしめる以外に独自に抗菌性、
防臭性を有するので、この機能を活用する用途における
特に光の照射のないときの光触媒の作用を補助する機能
を合わせ持つ点で好ましい。
The material of the small particles to be filled in the gaps between the photocatalyst particles is not basically limited, but those having excellent adsorption power are preferable. An extremely weak material cannot achieve the purpose of binding the photocatalyst particles to each other, and a material having an extremely strong adsorption capability covers the active points on the surface of the photocatalyst particle rather than being inserted into a gap. This is because the probability increases. In view of this point, Sn, Ti, Ag, Cu, Zn, Fe, P
Metals or oxides such as t, Co, Pd, Ni and the like, and zeolite, activated carbon, clay and the like which have been conventionally used as an adsorption carrier are not preferred. Of the above metals or oxides, tin oxide is preferred in terms of having an appropriate adsorption capacity, and metals or oxides such as Ag and Cu are independently antibacterial in addition to binding photocatalyst particles to each other. ,
Since it has deodorant properties, it is preferable in that it has a function of assisting the action of the photocatalyst in applications utilizing this function, particularly when there is no light irradiation.

【0018】また、前記光触媒粒子の間隙に充填される
粒子の平均粒径は、光触媒粒子の平均粒径の4/5以下
であることが好ましい。光触媒粒子の間隙を埋める粒子
は、現行の製造方法では光触媒粒子同士の間隙のみでな
く、光触媒粒子上にもある程度付着してしまう。そして
間隙を埋める粒子の粒径が光触媒粒子の平均粒径の4/
5を越えると、光触媒粒子の間隙よりも光触媒粒子表面
に付着する確率の方が高くなり、光触媒粒子同士の結合
強度が低下する。また間隙を埋める粒子が光触媒粒子よ
りも大きいと、光触媒粒子を部分的に覆ってしまうこと
になり、多機能材表面上触媒活性を発揮できない部分が
生じ、その部分に菌が滞留し得るようになるので、特に
抗菌性が著しく悪化してしまうおそれもある。
It is preferable that the average particle size of the particles filled in the gaps between the photocatalyst particles is 4/5 or less of the average particle size of the photocatalyst particles. Particles filling the gaps between the photocatalyst particles adhere to not only the gaps between the photocatalyst particles but also onto the photocatalyst particles to some extent in the current manufacturing method. The particle size of the particles filling the gap is 4 / the average particle size of the photocatalyst particles.
If it exceeds 5, the probability of adhering to the surface of the photocatalyst particles is higher than the gap between the photocatalyst particles, and the bonding strength between the photocatalyst particles decreases. Also, if the particles filling the gap are larger than the photocatalyst particles, they will partially cover the photocatalyst particles, and there will be a part on the surface of the multifunctional material that cannot exhibit catalytic activity, so that bacteria can stay in that part. Therefore, the antibacterial property may be significantly deteriorated.

【0019】また、前記光触媒粒子の間隙に充填される
粒子の平均粒径は、0.008μm未満であることが、
比表面積を大きくし、適度の吸着力が得られるので好ま
しい。
The average particle diameter of the particles filled in the gaps between the photocatalyst particles is less than 0.008 μm.
It is preferable because the specific surface area is increased and an appropriate adsorption force can be obtained.

【0020】また、前記光触媒粒子の間隙に充填される
粒子の光触媒粒子に対する量は、モル比で10%以上6
0%以下であることが好ましい。光触媒粒子同士の焼結
が生じない温度領域で熱処理して基材にバインダーを介
して光触媒層を固定する場合、間隙を埋める粒子の量が
少なすぎると、光触媒粒子同士が強固に結合せず、一方
間隙を埋める粒子の量が多すぎると、光触媒粒子を覆う
粒子の量が多くなり、多機能材表面上触媒活性を発揮で
きない部分が生じ、その部分に菌が滞留し得るようにな
るので、特に抗菌性が著しく悪化するので上記範囲が好
ましい。
The amount of the particles filled in the gaps between the photocatalyst particles with respect to the photocatalyst particles is 10% or more and 6% or more in terms of molar ratio.
It is preferably 0% or less. When fixing the photocatalyst layer via a binder to the base material by heat treatment in a temperature range where sintering of the photocatalyst particles does not occur, if the amount of particles filling the gap is too small, the photocatalyst particles do not strongly bind to each other, On the other hand, if the amount of particles that fill the gap is too large, the amount of particles covering the photocatalyst particles will increase, and a portion that cannot exhibit catalytic activity on the surface of the multifunctional material will occur, and bacteria will be able to stay in that portion, Particularly, the above range is preferable because the antibacterial property is significantly deteriorated.

【0021】また、前記光触媒粒子の間隙に充填される
粒子を構成する物質として、その蒸気圧が光触媒粒子を
構成する物質の蒸気圧よりも高いものを選定し、光触媒
粒子の間隙に充填される粒子を光触媒粒子間のネック部
に凝集せしめることが好ましい。これは、より強固な光
触媒粒子同士の結合を得、光触媒層の剥離強度を高める
ためには、充填させるだけでなく焼結させる方がよいか
らである。また、間隙を埋める粒子にこのような蒸気圧
の高い物質を選べば、焼結助剤としても機能し、焼結温
度を低下させることもできる。このような蒸気圧の高い
物質としては、酸化スズ、酸化ビスマス、酸化亜鉛等が
あるが、安全性の点で酸化スズが好ましい。
Further, as the substance constituting the particles to be filled in the gaps between the photocatalyst particles, a substance having a vapor pressure higher than the vapor pressure of the substance constituting the photocatalyst particles is selected and filled in the gap between the photocatalyst particles. Preferably, the particles are aggregated at the neck between the photocatalyst particles. This is because, in order to obtain a stronger bond between the photocatalyst particles and increase the peel strength of the photocatalyst layer, it is better not only to fill but also to sinter. Further, if such a substance having a high vapor pressure is selected as the particles for filling the gap, it functions as a sintering aid and can lower the sintering temperature. Examples of such a substance having a high vapor pressure include tin oxide, bismuth oxide, and zinc oxide, and tin oxide is preferable in terms of safety.

【0022】また、前記光触媒粒子の間隙に充填される
粒子を含む層の厚さは、0.1μm以上あることが好ま
しい。この層の厚さが0.1μm未満では局所的に光触
媒粒子(及び製造方法によっては間隙を埋める粒子)が
バインダー層内に埋め込まれて多機能材表面上触媒活性
を発揮できない部分が生じ、その部分に菌が滞留し得る
ようになるので、特に抗菌性が著しく悪化してしまう。
ここで、光触媒粒子の間隙に充填される粒子を含む層の
厚さとは最表面からバインダーの下層に埋め込まれてい
る部分までを含み、それぞれの凹凸を均した厚みであ
る。
The thickness of the layer containing the particles filled in the gaps between the photocatalyst particles is preferably 0.1 μm or more. If the thickness of this layer is less than 0.1 μm, photocatalyst particles (and particles that fill gaps depending on the manufacturing method) are locally embedded in the binder layer, resulting in a portion where the catalytic activity cannot be exhibited on the surface of the multifunctional material. Since bacteria can be retained in the portion, the antibacterial property is particularly remarkably deteriorated.
Here, the thickness of the layer containing the particles to be filled in the gaps between the photocatalyst particles includes the portion from the outermost surface to the portion embedded in the lower layer of the binder, and is a uniform thickness of each of the irregularities.

【0023】ここで、光触媒層の厚さを変化させること
で意匠的な効果も得られる。即ち、厚さを0.2μm以
上0.4μm未満にすれば、光触媒層膜厚部に対する光
の干渉作用により虹彩色模様を付することができる。ま
た間隙を埋める粒子による着色がなければ、外観上基材
の地の色、模様若しくはそれらの結合のみにしたけれ
ば、上記光の干渉作用を生じる部分を除外した0.1μ
m以上0.2μm未満もしくは0.4μm以上1μm未
満に光触媒層膜厚部を作製すればよい。斯かる手法は、
タイル、洗面台、浴槽、大・小便器、流し台、調理台等
広範な範囲に応用可能である。
Here, a design effect can be obtained by changing the thickness of the photocatalyst layer. That is, when the thickness is set to 0.2 μm or more and less than 0.4 μm, an iris pattern can be provided by the interference effect of light on the photocatalytic layer film thickness portion. Also, if there is no coloring by the particles that fill the gaps, if the appearance only needs to be the ground color of the base material, the pattern, or the combination thereof, the portion that causes the above-described light interference is excluded.
The thickness of the photocatalyst layer may be formed to be not less than m and less than 0.2 μm or not less than 0.4 μm and less than 1 μm. Such an approach is
It can be applied to a wide range of tiles, wash basins, bathtubs, large and small urinals, sinks, countertops, etc.

【0024】また、前記光触媒層の最下層を構成する光
触媒粒子のバインダー層への埋設深さは、粒径の1/2
以上で、かつ光触媒粒子と間隙を埋める粒子を含む層の
厚さ未満だけバインダー層内に埋設されていることが好
ましい。光触媒粒子がバインダー層内に粒径の1/2以
上埋設されることにより、光触媒粒子層の最下層とバイ
ンダー層は強固に結合し、また光触媒粒子と間隙を埋め
る粒子を含む層の厚さ以上埋設されてしまうと、光触媒
粒子が最表面に露出しない部分が生じ、その部分が多機
能材表面上触媒活性を発揮できないために、その部分に
菌が滞留し得るようになるので、特に抗菌性が著しく悪
化してしまう。
The depth of burying the photocatalyst particles constituting the lowermost layer of the photocatalyst layer in the binder layer is 1 / of the particle size.
As described above, it is preferable that the photocatalyst particles are embedded in the binder layer by a thickness less than the thickness of the layer including the particles that fill the gap. By embedding the photocatalyst particles in the binder layer in a size of at least 1/2 of the particle size, the lowermost layer of the photocatalyst particle layer and the binder layer are firmly bonded to each other, and the thickness of the layer containing the particles that fills the gap with the photocatalyst particle If buried, the photocatalyst particles will not be exposed on the outermost surface, which will not be able to exhibit catalytic activity on the surface of the multifunctional material. Becomes significantly worse.

【0025】また、前記基材は、公園やデパートにある
水循環方式の人工的な滝や噴水の敷石として用いられる
タイル、石材として利用することができる。このような
用途に光触媒機能を有する多機能材を利用することによ
り、循環に伴って人工照明や自然光の紫外線を含む光を
利用して水中に堆積する有機系の汚物を分解できる。ま
た、細菌、カビ等の繁殖や藻の発生、それに伴うどぶ水
臭を防ぐことができ、より清潔な環境を作り出すことが
できる。
The base material can be used as a tile or a stone material used as a paving stone for artificial waterfalls or fountains of a water circulation system in parks and department stores. By utilizing a multifunctional material having a photocatalytic function for such an application, it is possible to decompose organic dirt deposited in water using artificial lighting or light including natural ultraviolet rays with circulation. In addition, it is possible to prevent breeding of bacteria, molds and the like, generation of algae, and accompanying water odor, thereby creating a cleaner environment.

【0026】また、本発明に係る光触媒機能を有する多
機能材は、病院内における細菌の感染防止器材として利
用されるが、その他有機物を分解できるので抗カビ、抗
ウイルス器材として利用できる。
The multifunctional material having a photocatalytic function according to the present invention is used as a device for preventing bacterial infection in hospitals, but can be used as an antifungal and antiviral device because it can decompose other organic substances.

【0027】また、本発明に係る光触媒機能を有する多
機能材の製造方法は、セラミック、樹脂或いは金属製等
の基材上に熱可塑性材料からなるバインダー層を形成
し、次いで、このバインダー層の上に光触媒粒子からな
る光触媒層を形成し、この後、前記バインダー層を軟化
させて光触媒層の下層の一部をバインダー層に埋設し、
次いで固化する。ここで、バインダー層の粘性が高すぎ
るとバインダー層と光触媒粒子が充分に結合せず、逆に
粘性が低すぎるとバインダー層内に光触媒粒子が埋まっ
てしまい、それが局所的に生じると菌が滞留するように
なるので抗菌性が著しく悪化してしまうので、これらを
考慮してバインダー層の軟化の度合いを決定する。
Further, according to the method for producing a multifunctional material having a photocatalytic function according to the present invention, a binder layer made of a thermoplastic material is formed on a substrate made of ceramic, resin, metal or the like. A photocatalyst layer made of photocatalyst particles is formed thereon, and thereafter, the binder layer is softened and a part of the lower layer of the photocatalyst layer is embedded in the binder layer,
Then it solidifies. Here, if the viscosity of the binder layer is too high, the binder layer and the photocatalyst particles do not bond sufficiently. Conversely, if the viscosity is too low, the photocatalyst particles are buried in the binder layer. The degree of softening of the binder layer is determined in consideration of these factors, since the antibacterial properties are significantly deteriorated due to the stagnation.

【0028】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、熱可塑性材料からなるシート
状バインダー層の上に光触媒粒子からなる光触媒層を形
成し、このシート状バインダー層をセラミック、樹脂或
いは金属製等の基材上に載置または貼着し、この後、前
記バインダー層をを軟化させて光触媒層の下層の一部を
バインダー層に埋設し、次いで固化する。この方法によ
れば、既存のタイル、衛生陶器、建材等に後から防臭
性、防汚性、抗菌性、抗カビ性等の機能を付加すること
ができる。
Another method for producing a multifunctional material having a photocatalytic function according to the present invention is to form a photocatalyst layer made of photocatalyst particles on a sheet-shaped binder layer made of a thermoplastic material, Is placed or adhered on a substrate made of ceramic, resin, metal or the like, and thereafter, the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then solidified. According to this method, existing tiles, sanitary ware, building materials, and the like can be later provided with functions such as deodorant properties, antifouling properties, antibacterial properties, and antifungal properties.

【0029】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな粒子が充填され、光触媒粒子同士が
互いに結合された光触媒機能を有する多機能材を製造す
る方法であって、この方法は、セラミック、樹脂或いは
金属製等の基材上に熱可塑性材料からなるバインダー層
を形成し、次いで、このバインダー層の上に光触媒粒子
と前記粒径の小さな粒子をゾルまたは前駆体の状態で混
合した混合物を塗布して光触媒層を形成し、この後、前
記バインダー層を軟化させて光触媒層の下層の一部をバ
インダー層に埋設し、次いで固化する。この方法によれ
ば、簡便であるとともに、予め間隙を埋める粒子と光触
媒粒子をゾルまたは前駆体の状態で混合した混合物を塗
布して光触媒層を形成するので、光触媒粒子と間隙を埋
める粒子の混合比率を制御するのに便利である。
Another method for producing a multifunctional material having a photocatalytic function according to the present invention is directed to a photocatalyst in which the gap between the photocatalyst particles is filled with particles having a smaller particle size than the gap and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a function, comprising forming a binder layer made of a thermoplastic material on a substrate such as ceramic, resin or metal, and then forming a photocatalyst on the binder layer. A mixture of particles and the particles having the small particle size in a sol or precursor state is applied to form a photocatalyst layer.After that, the binder layer is softened, and a part of the lower layer of the photocatalyst layer becomes a binder layer. Buried and then solidified. According to this method, the photocatalyst layer is formed by applying a mixture in which the particles for filling the gap and the photocatalyst particles are mixed in a sol or a precursor state in advance, and thus the photocatalyst particles and the particles for filling the gap are mixed. Useful for controlling the ratio.

【0030】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな粒子が充填され、光触媒粒子同士が
互いに結合された光触媒機能を有する多機能材を製造す
る方法であって、この方法は、熱可塑性材料からなるシ
ート状バインダー層の上に、光触媒粒子と前記粒径の小
さな粒子をゾルまたは前駆体の状態で混合した混合物を
塗布して光触媒層を形成し、この光触媒層を形成したシ
ート状バインダー層をセラミック、樹脂或いは金属製等
の基材上に載置または貼着し、この後、前記バインダー
層を軟化させて光触媒層の下層の一部をバインダー層に
埋設し、次いで固化する。
Another method for producing a multifunctional material having a photocatalytic function according to the present invention is directed to a photocatalyst in which the gap between the photocatalyst particles is filled with particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. It is a method of producing a multifunctional material having a function, this method, on a sheet-like binder layer made of a thermoplastic material, the photocatalyst particles and the small particles of the particle size were mixed in a sol or precursor state The mixture is applied to form a photocatalyst layer, and the sheet-like binder layer on which the photocatalyst layer is formed is placed or adhered on a base material such as ceramic, resin, or metal, and thereafter, the binder layer is softened. Then, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then solidified.

【0031】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな粒子が充填され、光触媒粒子同士が
互いに結合された光触媒機能を有する多機能材を製造す
る方法であって、この方法は、セラミック、樹脂或いは
金属製等の基材上に熱可塑性材料からなるバインダー層
を形成し、次いで、このバインダー層の上に光触媒粒子
からなる光触媒層を形成し、この後、前記バインダー層
を軟化させて光触媒層の下層の一部をバインダー層に埋
設し、次いでバインダー層を固化せしめ、更に光触媒層
に前記粒径の小さな粒子を含む溶液を塗布し、熱処理す
ることで前記粒径の小さな粒子を光触媒粒子に固定化す
る。この方法は間隙を埋める粒子が酸化物である場合に
比較的簡便に実施し得る方法であり、且つ比較的多孔質
の光触媒層を作成した場合に間隙を埋める粒子を多量に
付着させることができる。
Another method for producing a multifunctional material having a photocatalytic function according to the present invention is directed to a photocatalyst in which the gap between the photocatalyst particles is filled with particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a function, comprising forming a binder layer made of a thermoplastic material on a substrate such as ceramic, resin or metal, and then forming a photocatalyst on the binder layer. A photocatalyst layer composed of particles is formed, and thereafter, the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified. Is applied and heat-treated to immobilize the small-sized particles on the photocatalyst particles. This method can be carried out relatively easily when the particles filling the gaps are oxides, and can make a large amount of particles filling the gaps when a relatively porous photocatalytic layer is formed. .

【0032】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな粒子が充填され、光触媒粒子同士が
互いに結合された光触媒機能を有する多機能材を製造す
る方法であって、この方法は、熱可塑性材料からなるシ
ート状バインダー層の上に光触媒粒子からなる光触媒層
を形成し、次いでこの光触媒層を形成したシート状バイ
ンダー層をセラミック、樹脂或いは金属製等の基材上に
載置または貼着し、この後、前記バインダー層を軟化さ
せて光触媒層の下層の一部をバインダー層に埋設し、次
いでバインダー層を固化せしめ、更に光触媒層に前記粒
径の小さな粒子を含む溶液を塗布し、熱処理することで
前記粒径の小さな粒子を光触媒粒子に固定化する。
Another method for producing a multifunctional material having a photocatalytic function according to the present invention is directed to a photocatalyst in which the gap between the photocatalyst particles is filled with particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a function, comprising forming a photocatalyst layer made of photocatalyst particles on a sheet-shaped binder layer made of a thermoplastic material, and then forming the photocatalyst layer on the sheet-shaped binder. The layer is placed or adhered on a substrate made of ceramic, resin or metal, and thereafter, the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified. Then, a solution containing the small-sized particles is applied to the photocatalyst layer, and heat treatment is performed to fix the small-sized particles to the photocatalyst particles.

【0033】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな金属粒子が充填され、光触媒粒子同
士が互いに結合された光触媒機能を有する多機能材を製
造する方法であって、この方法は、セラミック、樹脂或
いは金属製等の基材上に熱可塑性材料からなるバインダ
ー層を形成し、次いで、このバインダー層の上に光触媒
粒子からなる光触媒層を形成し、この後、前記バインダ
ー層を軟化させて光触媒層の下層の一部をバインダー層
に埋設し、次いでバインダー層を固化せしめ、更に光触
媒層に前記粒径の小さな金属粒子のイオンを含む溶液を
塗布し、この後紫外線を含む光を照射して金属イオンを
還元して光触媒粒子に固定化することを特徴とする光触
媒機能を有する多機能材の製造方法。この方法は、間隙
を埋める粒子が金属である場合に比較的簡便に実施し得
る方法であり、また金属の固定を極めて短時間(数分)
で行うことができる。また、紫外線照射に用いるランプ
は、紫外線ランプ、BLBランプ、キセノン水銀灯、蛍
光灯のいずれでもよい。
In another method for producing a multifunctional material having a photocatalytic function according to the present invention, a gap between photocatalyst particles is filled with metal particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a photocatalytic function, the method comprising forming a binder layer made of a thermoplastic material on a base material such as ceramic, resin or metal, and then forming a binder layer on the binder layer. A photocatalyst layer composed of photocatalyst particles is formed, and thereafter, the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified. A solution having a photocatalytic function characterized in that a solution containing ions of metal particles is applied, and thereafter, light containing ultraviolet rays is irradiated to reduce the metal ions and immobilize them on the photocatalyst particles. Method of manufacturing capacity material. This method can be carried out relatively easily when the particles filling the gap are metal, and fix the metal in a very short time (several minutes).
Can be done with Further, a lamp used for ultraviolet irradiation may be any of an ultraviolet lamp, a BLB lamp, a xenon mercury lamp, and a fluorescent lamp.

【0034】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな金属粒子が充填され、光触媒粒子同
士が互いに結合された光触媒機能を有する多機能材を製
造する方法であって、この方法は、熱可塑性材料からな
るシート状バインダー層の上に光触媒粒子からなる光触
媒層を形成し、次いでこの光触媒層を形成したシート状
バインダー層をセラミック、樹脂或いは金属製等の基材
上に載置または貼着し、この後、前記バインダー層を軟
化させて光触媒層の下層の一部をバインダー層に埋設
し、次いでバインダー層を固化せしめ、更に光触媒層に
前記粒径の小さな金属粒子のイオンを含む溶液を塗布
し、この後紫外線を含む光を照射して金属イオンを還元
して光触媒粒子に固定化する。
In another method for producing a multifunctional material having a photocatalytic function according to the present invention, a gap between the photocatalyst particles is filled with metal particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a photocatalytic function, which method comprises forming a photocatalyst layer made of photocatalyst particles on a sheet-shaped binder layer made of a thermoplastic material, and then forming the photocatalyst layer on the sheet-like sheet. The binder layer is placed or adhered on a substrate made of ceramic, resin, metal, or the like, and thereafter, the binder layer is softened so that a part of the lower layer of the photocatalyst layer is embedded in the binder layer. After solidification, a solution containing ions of the metal particles having the small particle diameter is applied to the photocatalyst layer, and thereafter, the metal ions are reduced by irradiating light including ultraviolet rays and fixed to the photocatalyst particles. To.

【0035】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな金属粒子が充填され、光触媒粒子同
士が互いに結合された光触媒機能を有する多機能材を製
造する方法であって、この方法は、セラミック、樹脂或
いは金属製等の基材上に熱可塑性材料からなるバインダ
ー層を形成し、次いで、このバインダー層の上に光触媒
粒子からなる光触媒層を形成し、この光触媒層に前記粒
径の小さな金属粒子のイオンを含む溶液を塗布し、この
後紫外線を含む光を照射して金属イオンを還元して光触
媒粒子に固定化し、更に前記バインダー層を軟化させて
光触媒層の下層の一部をバインダー層に埋設し、次いで
バインダー層を固化せしめる。この方法によれば加熱処
理工程を一回で済ますことができるので生産性が向上す
る。
In another method for producing a multifunctional material having a photocatalytic function according to the present invention, the gap between the photocatalyst particles is filled with metal particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a photocatalytic function, the method comprising forming a binder layer made of a thermoplastic material on a base material such as ceramic, resin or metal, and then forming a binder layer on the binder layer. A photocatalyst layer composed of photocatalyst particles is formed, a solution containing the ions of the metal particles having the small particle diameter is applied to the photocatalyst layer, and thereafter, the metal ions are reduced by irradiating light including ultraviolet rays and fixed to the photocatalyst particles. Then, the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified. According to this method, the heat treatment step can be performed only once, so that the productivity is improved.

【0036】また、本発明に係る光触媒機能を有する多
機能材の別の製造方法は、光触媒粒子の間隙にこの間隙
よりも粒径の小さな金属粒子が充填され、光触媒粒子同
士が互いに結合された光触媒機能を有する多機能材を製
造する方法であって、この方法は、熱可塑性材料からな
るシート状バインダー層の上に光触媒粒子からなる光触
媒層を形成し、この光触媒層に前記粒径の小さな金属粒
子のイオンを含む溶液を塗布し、この後紫外線を含む光
を照射して金属イオンを還元して光触媒粒子に固定化
し、更に光触媒層を形成したシート状バインダー層をセ
ラミック、樹脂或いは金属製等の基材上に載置または貼
着し、この後、前記バインダー層を軟化させて光触媒層
の下層の一部をバインダー層に埋設し、次いでバインダ
ー層を固化せしめる。
In another method for producing a multifunctional material having a photocatalytic function according to the present invention, a gap between the photocatalyst particles is filled with metal particles having a smaller particle size than the gap, and the photocatalyst particles are bonded to each other. A method for producing a multifunctional material having a photocatalytic function, the method comprising forming a photocatalyst layer made of photocatalyst particles on a sheet-like binder layer made of a thermoplastic material, A solution containing ions of metal particles is applied, and thereafter, light including ultraviolet rays is applied to reduce the metal ions to be fixed to the photocatalyst particles. Further, the sheet-like binder layer on which the photocatalyst layer is formed is made of ceramic, resin or metal. Or the like, and then the binder layer is softened, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified.

【0037】前記光触媒粒子をZnOとし、この光触媒
粒子の間隙に充填される金属粒子をAgまたはAg2
とすることが可能である。ここで、AgまたはAg2
粒子は、光触媒であるZnO粒子同士の結合を強化する
だけでなく、ZnOの光触媒効果を増進し、且つ自ら抗
菌、防臭の効果も有する。またZnOを光触媒として選
択することにより、Agイオンによる着色を解消するこ
とができ、基材の地の色、模様もしくはそれらの結合に
よる意匠的効果を向上することができる。
The photocatalyst particles are ZnO, and the metal particles filling the gaps between the photocatalyst particles are Ag or Ag 2 O.
It is possible. Here, Ag or Ag 2 O
The particles not only strengthen the bond between the ZnO particles that are photocatalysts, but also enhance the photocatalytic effect of ZnO, and also have antibacterial and deodorant effects themselves. In addition, by selecting ZnO as the photocatalyst, coloring due to Ag ions can be eliminated, and the design effect of the base color, pattern, or combination thereof can be improved.

【0038】また、前記光触媒粒子の間隙に充填される
金属のイオンとの間で不溶性で無色または白色の塩を形
成する塩類を含む溶液を、光触媒層に接触しせしめ、こ
の後紫外線を含む光を照射するようにしてもよい。この
ようにすることで、ZnOとAgまたはAg2Oの組合
せによらなくても、間隙を埋める粒子によるによる着色
を解消することができ、基材の地の色。模様もしくはそ
れらの結合による意匠的効果を向上することができる。
Further, a solution containing a salt which forms a colorless or white salt which is insoluble with a metal ion filled in the gap between the photocatalyst particles is brought into contact with the photocatalyst layer, and thereafter, a light containing ultraviolet light is irradiated. May be irradiated. By doing so, the coloring due to the particles filling the gap can be eliminated without depending on the combination of ZnO and Ag or Ag 2 O, and the background color of the base material can be eliminated. The design effect due to the patterns or their combination can be improved.

【0039】また、前記光触媒粒子をTiO2とし、バ
インダー層を軟化せしめるための熱処理温度を800℃
以上1000℃以下としてもよい。800℃以上ではT
iO2粒子同士の間に初期焼結によるネック部が生成す
るため、TiO2粒子同士の結合強度が向上するが、1
000℃を越えると、中期焼結過程に移行し、TiO2
の固相焼結に伴う光触媒層の体積収縮が顕著になるため
クラックが生じやすくなる。
The photocatalyst particles are made of TiO 2, and the heat treatment temperature for softening the binder layer is 800 ° C.
The temperature may be higher than or equal to 1000 ° C. T above 800 ° C
Since the neck portion by initially sintered between iO 2 grains are produced, the binding strength between TiO 2 particles is improved, 1
If the temperature exceeds 000 ° C., the process shifts to the middle-stage sintering process, and TiO 2
Since the volume shrinkage of the photocatalyst layer due to the solid phase sintering becomes remarkable, cracks are easily generated.

【0040】また、前記光触媒粒子をTiO2とし、こ
の光触媒粒子の間隙に充填される金属粒子をAgとし、
この金属のイオンとの間で不溶性で無色または白色の塩
を形成する塩類を含む溶液をKI、KCl、FeCl3
のハロゲン化物水溶液としてもよい。Agはハロゲン化
アルカリとの間にAgI、AgCl等の不溶性で無色ま
たは白色の塩を形成するので、基材の地の色、模様若し
くはそれらの結合による意匠的な向上を図ることができ
る。
The photocatalyst particles are TiO 2, and the metal particles filling the gaps between the photocatalyst particles are Ag,
The solution containing salts that form an insoluble and colorless or white salt with the metal ions may be used as an aqueous solution of a halide such as KI, KCl, and FeCl 3 . Since Ag forms an insoluble and colorless or white salt such as AgI and AgCl with an alkali halide, it is possible to improve the design of the base color, pattern, or the combination thereof by combining them.

【0041】また、前記バインダー層は基材の軟化温度
よりも低い軟化温度を有するものを選定し、このバイン
ダー層の軟化温度よりも20℃を越え320℃未満の範
囲、好ましくは40℃以上300℃以下の範囲で且つ基
材の軟化温度よりも低い雰囲気温度で加熱処理する。バ
インダー層の軟化温度よりも20℃高い温度よりも加熱
処理温度が低いと、バインダー層の粘性が高すぎるため
バインダー層と光触媒粒子が充分に結合せず、逆にバイ
ンダー層の軟化温度よりも320℃高い温度よりも加熱
処理温度が高いと、バインダー層の粘性が低すぎバイン
ダー層内に光触媒粒子が埋まってしまい、それが局所的
に生じると、そこに菌が滞留する結果、抗菌性が落ちる
ことになることによる。
Further, the binder layer is selected to have a softening temperature lower than the softening temperature of the base material. The softening temperature of the binder layer is more than 20 ° C. and less than 320 ° C., preferably 40 ° C. or more and 300 ° C. or less. The heat treatment is performed at an ambient temperature in the range of not more than ℃ and lower than the softening temperature of the substrate. If the heat treatment temperature is lower than the temperature 20 ° C. higher than the softening temperature of the binder layer, the viscosity of the binder layer is too high, so that the binder layer and the photocatalyst particles are not sufficiently bonded, and conversely, the temperature is 320 ° C. lower than the softening temperature of the binder layer. If the heat treatment temperature is higher than ℃ higher temperature, the viscosity of the binder layer is too low and the photocatalyst particles will be buried in the binder layer, and if it occurs locally, bacteria will stay there, resulting in a decrease in antibacterial properties It depends.

【0042】また、光触媒粒子をバインダー層上に塗布
する工程の前工程として分散工程を備える場合には、こ
の分散工程における光触媒粒子となるべきゾルまたは前
駆体を溶液中に分散させるための分散剤には、バインダ
ー層を軟化せしめるための熱処理温度より低温で気化す
る成分のみを使用するが好ましい。従来技術において、
320℃未満で防臭性がなかったのは、分散工程におい
てTiO2粒子表面に付着した分散剤が充分に気化、蒸
発せずに残留していたために、TiO2粒子表面が基材
最表面に充分に露出されず、光触媒機能が不充分になっ
たためである。尚、低温で気化する分散剤としては、分
子量が1万以下である有機分散剤、リン酸系分散剤が好
ましい。
When a dispersing step is provided as a step prior to the step of applying the photocatalyst particles on the binder layer, a dispersant for dispersing the sol or precursor to be the photocatalyst particles in the dispersion step in the solution. It is preferable to use only components that vaporize at a temperature lower than the heat treatment temperature for softening the binder layer. In the prior art,
Had no deodorant below 320 ° C., the dispersion step the dispersion agent is sufficiently vaporized attached to TiO 2 particle surface in, for remaining in the not evaporate sufficiently TiO 2 particle surface to the substrate top surface Because the photocatalytic function became insufficient. As the dispersant that evaporates at a low temperature, an organic dispersant having a molecular weight of 10,000 or less and a phosphoric acid-based dispersant are preferable.

【0043】更に、光触媒粒子の比重をδt、前記バイ
ンダー層の比重をδbとした場合、0≦δt−δb≦3.
0であることをが好ましい。比重差が小さすぎると、バ
インダー層に光触媒粒子が充分に埋設されずバインダー
層と光触媒粒子が充分に結合せず、比重差が大きすぎる
と、バインダー層内に光触媒粒子が埋まってしまい、そ
れが局所的に生じると、底に菌が滞留して抗菌性が低下
するためである。尚、この方法の応用手法として、δt
−δb>3.0にしなければならない場合でも、バイン
ダー層と光触媒粒子との間に0≦δt−δb≦3.0であ
る第2のバインダー層を介在せしめればよい。またδt
−δb<0のときには、加熱処理時に加圧すれば比重差
δt−δbを増すのと同様の効果がある。したがって、H
IP処理、ホットプレス処理により、0≦δt−δb≦
3.0のときと同様の効果が得られる。
When the specific gravity of the photocatalyst particles is δt and the specific gravity of the binder layer is δb, 0 ≦ δt−δb ≦ 3.
It is preferably 0. If the specific gravity difference is too small, the photocatalyst particles are not sufficiently embedded in the binder layer, and the binder layer and the photocatalyst particles are not sufficiently bonded.If the specific gravity difference is too large, the photocatalyst particles are buried in the binder layer. If it occurs locally, bacteria stay on the bottom and the antibacterial property is reduced. As an application method of this method, δt
Even when −δb> 3.0 is required, a second binder layer satisfying 0 ≦ δt−δb ≦ 3.0 may be interposed between the binder layer and the photocatalyst particles. Also δt
When −δb <0, pressurizing during the heat treatment has the same effect as increasing the specific gravity difference Δt−δb. Therefore, H
By IP processing and hot press processing, 0 ≦ δt−δb ≦
The same effect as in the case of 3.0 can be obtained.

【0044】[0044]

【作用】光触媒層を構成する光触媒粒子のうちバインダ
ー層側の下層を構成する光触媒粒子はその一部がバイン
ダー層内に埋まった状態で保持され、光触媒層のうち外
気に接する表層を構成する光触媒粒子は実質的にその表
面が外部に露出した状態で粒子同士が互いに結合してい
るので、光触媒効果を充分に発揮することになる。
The photocatalyst particles constituting the lower layer on the binder layer side of the photocatalyst particles constituting the photocatalyst layer are partially retained in the binder layer, and the photocatalyst constituting the surface layer of the photocatalyst layer which is in contact with the outside air. Since the particles are bonded to each other with the surface substantially exposed to the outside, the photocatalytic effect is sufficiently exhibited.

【0045】[0045]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る光触媒機能を有
する多機能材の製造方法を説明した図、図2は図1
(d)の要部拡大図であり、本発明にあっては先ず同図
(a)に示すように、基材1を用意する。基材1として
はセラミック、樹脂、金属、ガラス或いは木材等が考え
られる。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a view for explaining a method for producing a multifunctional material having a photocatalytic function according to the present invention, and FIG.
FIG. 3D is an enlarged view of a main part. In the present invention, first, as shown in FIG. As the base material 1, ceramic, resin, metal, glass, wood or the like can be considered.

【0046】そして、同図(b)に示すように基材1の
表面にバインダー層2を形成する。バインダー層2とし
てはその軟化温度が基材1の軟化温度よりも低い材料か
らなるものを選定する。一例を挙げれば、前記基材1が
タイル、ホーローまたは陶磁器である場合には、バイン
ダー層2としては釉薬層または印刷層をそのまま利用す
ることができる。
Then, a binder layer 2 is formed on the surface of the substrate 1 as shown in FIG. The binder layer 2 is selected from a material whose softening temperature is lower than the softening temperature of the substrate 1. For example, when the substrate 1 is a tile, an enamel or a ceramic, the glaze layer or the printed layer can be used as the binder layer 2 as it is.

【0047】次いで、同図(c)に示すようにバインダ
ー層2の上にTiO2粒子等の光触媒粒子からなる光触
媒層3を形成する。この時、光触媒層3は後の焼成の際
にバインダー層2から落ちない程度の結合力でもってバ
インダー層2に載っていればよい。
Next, a photocatalyst layer 3 made of photocatalyst particles such as TiO 2 particles is formed on the binder layer 2 as shown in FIG. At this time, the photocatalyst layer 3 only needs to be mounted on the binder layer 2 with such a bonding force that the photocatalyst layer 3 does not fall off the binder layer 2 in the subsequent baking.

【0048】あるいは、基材1の表面にバインダー層2
を形成する前に同図(b’)に示すようにバインダー層
2上に光触媒層3を形成しておき、このバインダー層2
を基材1上に載置するようにしてもよい。
Alternatively, a binder layer 2
Before forming a photocatalyst layer, a photocatalyst layer 3 is formed on the binder layer 2 as shown in FIG.
May be placed on the substrate 1.

【0049】この後、バインダー層2の軟化温度よりも
20℃を越え320℃未満の範囲で高く且つ基材1の軟
化温度よりも低い雰囲気温度で加熱処理することで、同
図(d)及び図2に示すように、光触媒層3のうち前記
バインダー層側の下層を構成する光触媒粒子3aは溶融
したバインダー層にその一部が沈降しバインダー層が凝
固することで当該一部がバインダー層内に埋まり、強固
に保持される。また、光触媒層3のうち外気に接する表
層を構成する光触媒粒子3bは相互間の分子間力や焼成
による焼結によって図3(a)に示すようにその一部は
結合し、また他の部分では図3(b)に示すように離れ
ている。即ち、実質的に表層において光触媒粒子3bの
表面は外部に露出している。
Thereafter, heat treatment is performed at an ambient temperature higher than the softening temperature of the binder layer 2 and higher than 20 ° C. and lower than 320 ° C. and lower than the softening temperature of the base material 1 to obtain the heat treatment shown in FIG. As shown in FIG. 2, a part of the photocatalyst particles 3 a constituting the lower layer of the photocatalyst layer 3 on the binder layer side is settled in the molten binder layer and the binder layer is solidified, so that the part is in the binder layer. Buried in and firmly held. Further, as shown in FIG. 3A, a part of the photocatalyst particles 3b constituting the surface layer of the photocatalyst layer 3 which is in contact with the outside air is bonded to each other by intermolecular force and sintering by sintering. Are separated from each other as shown in FIG. That is, the surface of the photocatalyst particles 3b is exposed to the outside substantially in the surface layer.

【0050】ここで、加熱処理温度をバインダー層2の
軟化温度よりも20℃を越え320℃未満の範囲で高く
したのは、20℃未満であると、バインダー層の軟化に
時間がかかり且つ光触媒粒子3aの保持が充分になされ
ず、一方320℃を越えると、バインダー層の急激な溶
融により光触媒粒子のバインダー層内への埋まりや凹凸
面の発生、更には切れやピンホールが発生することによ
り、望ましくは40℃以上300℃以下とする。
Here, the reason why the heat treatment temperature is set higher than the softening temperature of the binder layer 2 in the range of more than 20 ° C. and less than 320 ° C. is that if the temperature is lower than 20 ° C., it takes time for the softening of the binder layer and the photocatalyst becomes harder. On the other hand, when the temperature exceeds 320 ° C., the photocatalyst particles are buried in the binder layer due to the rapid melting of the binder layer, and irregularities are generated. Desirably, the temperature is 40 ° C. or more and 300 ° C. or less.

【0051】また、光触媒粒子の比重をδt、バインダ
ー層2の比重をδbとした場合、0≦δt−δb≦3.0
好ましくは0.5≦δt−δb≦2.0の関係になるよう
にする。これは、光触媒粒子とバインダー層との比重差
があまり小さいとバインダー層を溶融させた場合に光触
媒粒子のバインダー層内での垂直方向の移動速度が遅く
なり焼成後に光触媒粒子が剥離しやすくなり、光触媒粒
子とバインダー層との比重差が大きすぎると光触媒粒子
の垂直方向の移動速度が増し、殆どの光触媒粒子がバイ
ンダー層中に埋ってしまうそれがあるからである。ま
た、バインダー層2から露出する部分を構成する光触媒
粒子の間隙、具体的には図3(a)に示す光触媒粒子3
bのネック部、或いは図3(b)に示す光触媒粒子3b
の間に、当該間隙よりも粒径の小さな粒子3c(Sn、
Ti、Ag、Cu、Zn、Fe、Pt、Co、Pd、N
i等の金属または酸化物等)を光触媒粒子3b同士を結
合するために充填してもよい。
When the specific gravity of the photocatalyst particles is δt and the specific gravity of the binder layer 2 is δb, 0 ≦ δt−δb ≦ 3.0.
Preferably, the relationship of 0.5 ≦ δt−δb ≦ 2.0 is satisfied. This is because, when the difference in specific gravity between the photocatalyst particles and the binder layer is too small, when the binder layer is melted, the vertical movement speed of the photocatalyst particles in the binder layer becomes slow, and the photocatalyst particles are easily separated after firing, If the difference in specific gravity between the photocatalyst particles and the binder layer is too large, the moving speed of the photocatalyst particles in the vertical direction increases, and most of the photocatalyst particles may be buried in the binder layer. The gap between the photocatalyst particles constituting the portion exposed from the binder layer 2, specifically, the photocatalyst particles 3 shown in FIG.
b, or the photocatalyst particles 3b shown in FIG.
Between particles 3c (Sn,
Ti, Ag, Cu, Zn, Fe, Pt, Co, Pd, N
(i.e., a metal or an oxide such as i) may be filled to bond the photocatalyst particles 3b to each other.

【0052】以下に具体的な実施例を挙げる。 (参考例1) 150角の陶磁器タイル基材の表面に、SiO2−Al2
3−Na/K2Oフリットからなるバインダー層をスプ
レー・コーティング法により形成し乾燥した後、15%
のTiO2ゾル水溶液をスプレー・コーティング法によ
り塗布し、膜厚が0.8μmのTiO2層を形成し、次
いで、バインダー層とTiO2層が積層された基材をロ
ーラーハースキルンにて雰囲気温度を実施例毎に異なら
せて加熱焼成した後、冷却固化して多機能材を得た。こ
こでTiO2ゾル水溶液とは、例えばTiCl4をオート
クレーブ中100〜200℃の範囲の水熱条件下で加水
分解して得られた結晶子径0.007〜0.2μm程度
のアナターゼ型TiO2をゾル状態で硝酸、塩酸等の酸
性水溶液またはアンモニア等の塩基性水溶液中に、数%
〜数十%分散させたもので、分散性を向上させるために
表面処理剤としてトリエタノールアミン及びトリメチロ
ールアミンの有機酸塩、ペンタエリトリット、トリメチ
ロールプロパン等を0.5%以下の範囲で添加したもの
である。尚、TiO2ゾルの粒径はSEM観察の画像処
理により、結晶子径は粉末X線回析の積分幅から計算
た。また、塗布方法はスプレー・コーティング法で行っ
たが、ディップ・コーティング法、スピン・コーティン
グ法でも同様な結果が得られると予想される。得られた
多機能材について抗菌性及び耐摩耗性についての評価を
行った。抗菌性については大腸菌(Escherichia coli W
3110株)に対する殺菌効果を試験した。予め、70%エ
タノールで殺菌した多機能材の最表面に菌液0.15m
l(1〜5×104CFU)を滴下し、ガラス板(10
×10cm)に載せて基材最表面に密着させ、試料とし
た。白色灯(3500ルクス)を30分間照射した後、
照射した試料と遮光条件下に維持した試料の菌液を滅菌
ガーゼで拭いて生理食塩水10mlに回収し、菌の生存
率を求め、評価の指標とした。耐摩耗性についてはプラ
スチック消しゴムを用いた摺動摩耗を行い、外観の変化
を比較し評価した。以下の(表1)に基材として陶磁器
タイル、バインダーにSiO2−Al23−Na/K2
フリットを用いた時の焼成温度の変化に伴う抗菌性、耐
摩耗性の変化を示す。
Specific examples will be described below. (Reference Example 1) SiO 2 —Al 2 was coated on the surface of a ceramic tile substrate of 150 squares.
After forming a binder layer composed of an O 3 —Na / K 2 O frit by a spray coating method and drying, a 15%
A TiO 2 sol aqueous solution is applied by a spray coating method to form a TiO 2 layer having a thickness of 0.8 μm, and then the base material on which the binder layer and the TiO 2 layer are laminated is heated at an ambient temperature using a roller hearth kiln. Was heated and calcined in different examples, and then cooled and solidified to obtain a multifunctional material. Here, the TiO 2 sol aqueous solution is, for example, an anatase type TiO 2 having a crystallite diameter of about 0.007 to 0.2 μm obtained by hydrolyzing TiCl 4 in an autoclave under hydrothermal conditions in the range of 100 to 200 ° C. In a sol, a few% of the solution is added to an acidic aqueous solution such as nitric acid or hydrochloric acid or a basic aqueous solution such as ammonia.
To improve the dispersibility by adding an organic acid salt of triethanolamine and trimethylolamine, pentaerythritol, trimethylolpropane, etc. in a range of 0.5% or less as a surface treatment agent. It has been added. Incidentally, the particle size of the TiO 2 sol by the image processing of SEM observation, the crystallite size was calculated from the integration width of the powder X-ray diffraction <br/>. In addition, although the coating method was performed by the spray coating method, it is expected that similar results can be obtained by the dip coating method and the spin coating method. The obtained multifunctional material was evaluated for antibacterial properties and abrasion resistance. For antibacterial activity, Escherichia coli W
3110 strain). Bacterial solution 0.15 m on the outermost surface of multifunctional material previously sterilized with 70% ethanol
l (1-5 × 10 4 CFU) was dropped, and a glass plate (10
(× 10 cm) and adhered to the outermost surface of the substrate to obtain a sample. After irradiating a white light (3500 lux) for 30 minutes,
The bacterial solutions of the irradiated sample and the sample maintained under light-shielded conditions were wiped with sterile gauze and collected in 10 ml of physiological saline, and the survival rate of the bacteria was determined and used as an index for evaluation. With respect to abrasion resistance, sliding wear using a plastic eraser was performed, and changes in appearance were compared and evaluated. The following ceramic tile as a substrate in (Table 1), SiO 2 -Al 2 O 3 -Na / K 2 O in the binder
It shows changes in antibacterial properties and abrasion resistance due to changes in firing temperature when frit is used.

【0053】[0053]

【表1】 [Table 1]

【0054】ここで、バインダーとして用いたSiO2
−Al23−Na/K2Oフリットの比重は2.4、塗布
した時の膜厚は200μm、軟化温度は680℃であっ
た。また(表1)において得られたTiO2はNo.1
〜3についてはアナターゼ型であり、比重は3.9、N
o.4,5についてはルチル型であり、比重は4.2で
あった。
Here, SiO 2 used as a binder was used.
The specific gravity of -Al 2 O 3 -Na / K 2 O frit was 2.4, the film thickness when applied was 200 μm, and the softening temperature was 680 ° C. The TiO 2 obtained in (Table 1) was No. 1
~ 3 are anatase type, specific gravity is 3.9, N
o. About 4 and 5, it was a rutile type and specific gravity was 4.2.

【0055】(表1)において、No.1は焼成温度が
バインダーの軟化温度よりも20℃しか高くなく、バイ
ンダーの粘性が充分に低くならなかったために、光触媒
層の最下層を構成するアナターゼ型TiO2粒子がバイ
ンダー層中に充分埋設されず、そのため耐摩耗性試験に
おいて5〜10回の摺動で傷が入り、剥離してしまっ
た。また抗菌性に関しては光触媒活性に優れるアナター
ゼ型であること、および300℃以上ではTiO2ゾル
のTGーDTA観察上有機成分はほぼ分解、気化してお
り、TiO2表面に付着した表面処理剤等の分散剤は帰
化していると解されるが、焼成温度が700℃でそれよ
りはるかに高い処理温度であることより、++という優
れた値となった。
In Table 1, no. In No. 1, since the firing temperature was only 20 ° C. higher than the softening temperature of the binder and the viscosity of the binder did not become sufficiently low, the anatase TiO 2 particles constituting the lowermost layer of the photocatalyst layer were sufficiently embedded in the binder layer. Therefore, in the abrasion resistance test, scratching was caused by 5 to 10 times of sliding and peeled. Regarding antibacterial properties, it is an anatase type excellent in photocatalytic activity, and at 300 ° C. or higher, TG-DTA observation of TiO 2 sol shows that organic components are almost decomposed and vaporized, and surface treatment agents attached to TiO 2 surface It is understood that the dispersant is naturalized. However, since the firing temperature was 700 ° C. and the processing temperature was much higher, an excellent value of ++ was obtained.

【0056】No.3〜5は焼成温度が800℃以上1
000℃以下の場合であるが、いずれも耐久性は、40
回以上の摺動試験でも変化なく、極めて優れたものとな
った。この原因としては、表面のTiO2粒子の初期焼
成に伴うネック部の生成が考えられる。また1100℃
で処理した場合は、冷却固化後ローラハースキルンより
取り出した多機能材表面のTiO2層にクラックが生じ
ていた。これはTiO2テストピースのTMA測定から
判断して、TiO2粒子の顕著な体積収縮を伴う中期焼
結によるものと考えられる。
No. For 3 to 5, the sintering temperature is 800 ° C or higher and 1
000 ° C. or lower, but the durability is 40
It was extremely excellent without any change in the sliding test more than once. This may be due to the formation of a neck due to the initial firing of the TiO 2 particles on the surface. 1100 ° C
In the case of the treatment, the TiO 2 layer on the surface of the multifunctional material removed from the roller hearth kiln after cooling and solidification had cracks. Judging from the TMA measurement of the TiO 2 test piece, this is considered to be due to the medium-term sintering accompanied by significant volume shrinkage of the TiO 2 particles.

【0057】No.4,5では抗菌性がいずれも−と悪
くなった。これには2つの原因が考えられる。1つはT
iO2粒子がルチル型に相転移していることであり、も
う1つは焼成温度がバインダーの軟化温度よりも300
℃を越えて高く、バインダーの粘性が低くなりすぎて光
触媒層を構成するTiO2粒子がバインダー層中に埋設
されてしまったことが考えられる。ここで、TiO2
子がルチル型に相転移していることだけが原因だと考え
ることはできない。ルチル型TiO2においても、アナ
ターゼ型TiO2には劣るものの、光触媒活性は若干あ
るからである。例えば多孔質アルミナ基材に直接TiO
2ゾルをスプレーコートし、950℃で焼成後、冷却固
化した試料の抗菌性は+であった。従って焼成温度がバ
インダーの軟化温度よりも300℃を越えて高く、バイ
ンダーの粘性が低くなりすぎて、光触媒層を構成するT
iO2粒子がバインダー層中に埋設されてしまったこと
も一因をなしていると解される。
No. The antibacterial properties of the samples 4 and 5 were all negative. There are two possible causes for this. One is T
Another reason is that the iO 2 particles have undergone a phase transition to the rutile type.
It is conceivable that the TiO 2 particles constituting the photocatalyst layer were buried in the binder layer because the temperature was too high and the viscosity of the binder was too low. Here, it cannot be considered that the only cause is that the TiO 2 particles undergo a rutile-type phase transition. This is because rutile-type TiO 2 has some photocatalytic activity, though it is inferior to anatase-type TiO 2 . For example, TiO directly on porous alumina substrate
2 The sol was spray-coated, baked at 950 ° C., and then cooled and solidified, and the antibacterial property of the sample was +. Therefore, the sintering temperature is higher than the softening temperature of the binder by more than 300 ° C., and the viscosity of the binder is too low, so that the T
It is understood that the fact that the iO 2 particles are buried in the binder layer is also a factor.

【0058】また、試料の断面方向のEPMA等による
TiおよびSi(バインダーの主成分)の元素分析によ
り、TiとSiの混在した層が観察され、光触媒粒子で
あるTiO2が埋設されていることが確認された。
Further, by elemental analysis of Ti and Si (main component of binder) by EPMA or the like in the cross-sectional direction of the sample, a layer in which Ti and Si are mixed is observed, and TiO 2 as photocatalyst particles is embedded. Was confirmed.

【0059】以上の参考例1、つまり少なくとも光触媒
がTiO2、バインダー層がSiO2−Al23−Na/
2Oフリットのときには以下のことが確認された。
焼成温度がバインダーの軟化温度よりも20℃を越え
て高く、300℃を越えて高くない条件で多機能材を製
造した時、抗菌性も耐摩耗性もともに良好な多機能材を
製作できる。その原因は前記温度範囲においてバインダ
ーの粘性がTiO2がバインダー層中に適度に埋設され
得る値に調整されるためと考えられる。 で作製し
た多機能材は、TiO2粒子のバインダー層への埋設が
確認された。 焼成温度が800℃以上1000℃以
下の場合には、いずれも耐摩耗性は、40回以上の摺動
試験でも変化なく、極めて優れたものとなった。TiO
2粒子間のネック部生成に伴う強固な結合によると考え
られる。
Reference Example 1 described above, that is, at least the photocatalyst was TiO 2 and the binder layer was SiO 2 —Al 2 O 3 —Na /
In the case of the K 2 O frit, the following was confirmed.
When the multifunctional material is manufactured under the condition that the sintering temperature is higher than the softening temperature of the binder by more than 20 ° C. and not higher than 300 ° C., the multifunctional material having good antibacterial property and abrasion resistance can be manufactured. It is considered that the cause is that the viscosity of the binder is adjusted to a value at which the TiO 2 can be appropriately embedded in the binder layer in the above temperature range. In the multifunctional material prepared in the above, embedding of TiO 2 particles in the binder layer was confirmed. When the firing temperature was 800 ° C. or more and 1000 ° C. or less, the abrasion resistance was extremely excellent without any change even in a sliding test of 40 times or more. TiO
This is thought to be due to the strong bond associated with the formation of the neck between the two particles.

【0060】(参考例2) 100×100×5のアルミナ基材(アルミナ純度96
%)の表面に、SiO2−Al23−PbOフリットから
なるバインダー層をスプレー・コーティング法により形
成し乾燥した後、15%のTiO2ゾル水溶液(参考例
1と同じ)をスプレー・コーティング法により塗布し、
膜厚が0.8μmのTiO2層を形成し、次いで、バイ
ンダー層とTiO2層が積層された基材をローラーハー
スキルンにて雰囲気温度を実施例毎に異ならせて加熱焼
成した後、冷却固化して多機能材を得た。
Reference Example 2 A 100 × 100 × 5 alumina base material (alumina purity: 96)
%), A binder layer composed of SiO 2 —Al 2 O 3 —PbO frit is formed by a spray coating method, dried, and then spray-coated with a 15% TiO 2 sol aqueous solution (same as in Reference Example 1). Apply by method,
A TiO 2 layer having a thickness of 0.8 μm is formed, and then the base material on which the binder layer and the TiO 2 layer are laminated is heated and fired with a roller hearth kiln at different ambient temperatures for each example, and then cooled. Solidified to obtain a multifunctional material.

【0061】以下の(表2)に基材としてアルミナ、バ
インダーにSiO2−Al23−PbOフリットを用い
た時の焼成温度の変化に伴う抗菌性、耐摩耗性の変化を
示す。
The following Table 2 shows changes in antibacterial properties and abrasion resistance with changes in firing temperature when alumina was used as the base material and SiO 2 -Al 2 O 3 -PbO frit was used as the binder.

【0062】[0062]

【表2】 [Table 2]

【0063】ここで、バインダーとして用いたSiO2
−Al23−PbOフリットの軟化温度は540℃、比
重は3.8、塗布した時の膜厚は150μmであった。
また得られたTiO2の結晶型はすべてアナターゼ型で
あった。
Here, SiO 2 used as a binder was used.
The softening temperature of the —Al 2 O 3 —PbO frit was 540 ° C., the specific gravity was 3.8, and the film thickness when applied was 150 μm.
The crystal forms of TiO 2 obtained were all anatase.

【0064】(表2)の耐摩耗性試験において、No.
6は10回以下の摺動で傷が入り、剥離してしまった
が、No.7,8は10回以上の摺動でも傷が入らず、
更に、No.9,10は40回以上の摺動でも傷が入ら
ないという良好な結果が得られた。
In the abrasion resistance test of (Table 2), no.
No. 6 was scratched and stripped by sliding less than 10 times, No.7 and 8 were not damaged by sliding more than 10 times.
In addition, No. Good results were obtained in Nos. 9 and 10, in which no damage was caused even after sliding more than 40 times.

【0065】No.9,10で40回以上の摺動でも傷
が入らなかったのは、焼成温度が800℃以上であるた
め、TiO2粒子間にネックが生成し、TiO2粒子同士
が強固に結合したためと考えられる。No.6で10回
以下の摺動で傷が入り、剥離してしまったのは、焼成温
度がバインダーの軟化温度よりも20℃しか高くなく、
バインダーの粘性が充分に低くならなかったために、光
触媒層の最下層を構成するアナターゼ型TiO2粒子が
バインダー層中に充分埋設されなかったためと考えられ
る。それに対し、No.7,8で10回以上の摺動でも
傷が入らなかったのは、ネック部が生成される温度には
至らないものの焼成温度とバインダーの軟化温度との差
が、バインダーの粘性をTiO2がバインダー層中に適
度に埋設され得る値に調整されたからと考えられる。一
方、(表2)の抗菌性試験において、No.6〜9は+
++または++と良好な結果を得たが、No.10は+
になった。これは焼成温度がバインダーの軟化温度より
も320℃も高く、バインダーの粘性が低くなりすぎ
て、光触媒層を構成するTiO2粒子がバインダー層中
に埋設されてしまったためと考えられる。
No. In did not enter scratched even 40 times or more sliding 9,10, because the firing temperature of 800 ° C. or higher, the neck is produced between the TiO 2 particles, probably because TiO 2 particles to each other tightly bound Can be No. The reason for scratching and peeling by sliding 10 times or less at 6 is that the firing temperature is only 20 ° C. higher than the softening temperature of the binder,
It is considered that the anatase TiO 2 particles constituting the lowermost layer of the photocatalyst layer were not sufficiently embedded in the binder layer because the viscosity of the binder did not become sufficiently low. On the other hand, No. The fact that no scratch was found even after 10 or more slides at 7, 8 was that the difference between the firing temperature and the softening temperature of the binder was not reached, but the viscosity of the binder was TiO 2. It is considered that the value was adjusted to a value that can be appropriately embedded in the binder layer. On the other hand, in the antibacterial test of (Table 2), 6-9 is +
++ or ++, good results were obtained. 10 is +
Became. This is probably because the firing temperature was higher than the softening temperature of the binder by 320 ° C. and the viscosity of the binder was too low, so that the TiO 2 particles constituting the photocatalyst layer were embedded in the binder layer.

【0066】(参考例3) SiO2−Al23−BaOフリットを型内で溶融市冷却
固化させた後、加工して100×100×1のガラスシ
ートを作製し、その上に15%のTiO2ゾル水溶液
(参考例1と同じ)をスプレー・コーティング法により
塗布し、膜厚が0.8μmのTiO2層を形成した。そ
の後、ガラスシートをアルミナ基材(100×100×
5)に載せ、シリコニット炉で雰囲気温度を参考例毎に
異ならせて加熱焼成した後、冷却固化して多機能材を得
た。
(Reference Example 3) A SiO 2 —Al 2 O 3 —BaO frit was melted in a mold, cooled and solidified in a mold, and processed to produce a 100 × 100 × 1 glass sheet, on which 15% was formed. the TiO 2 sol solution of (same as in reference example 1) was applied by spray coating method, the film thickness was formed TiO 2 layer of 0.8 [mu] m. Thereafter, the glass sheet was converted to an alumina substrate (100 × 100 ×
5), baked by heating in a siliconit furnace with different ambient temperatures for each reference example, and then cooled and solidified to obtain a multifunctional material.

【0067】以下の(表3)に上記の多機能材の焼成温
度の変化に伴う抗菌性、耐摩耗性の変化を示す。
The following Table 3 shows changes in antibacterial properties and abrasion resistance of the above-mentioned multifunctional materials according to the firing temperature.

【0068】[0068]

【表3】 [Table 3]

【0069】ここで、バインダーとして用いたSiO2
−Al23−BaOフリットの軟化温度は620℃、比
重は2.8、多機能材上のTiO2の結晶型はNo.1
1〜13はアナターゼ型、No.14はルチル型であっ
た。
Here, SiO 2 used as a binder was used.
The softening temperature of the —Al 2 O 3 —BaO frit is 620 ° C., the specific gravity is 2.8, and the crystal form of TiO 2 on the multifunctional material is No. 1
Nos. 1 to 13 are anatase type. 14 was a rutile type.

【0070】(表3)の耐摩耗性試験において、No.
11は10回以下の摺動で傷が入り、剥離してしまった
が、No.12は10回以上の摺動でも傷が入らず、更
に、No.13,14は40回以上の摺動でも傷が入ら
ないという良好な結果が得られた。
In the abrasion resistance test of (Table 3), no.
No. 11 was scratched and stripped by sliding less than 10 times. No. 12 was not damaged even by sliding 10 times or more. In the cases of Nos. 13 and 14, good results were obtained in which no damage was caused even when the slide was performed 40 times or more.

【0071】No.13,14で40回以上の摺動でも
傷が入らなかったのは、焼成温度が800℃以上である
ため、TiO2粒子間にネックが生成し、TiO2粒子同
士が強固に結合したためと考えられる。No.11で1
0回以下の摺動で傷が入り、剥離してしまったのは、焼
成温度がバインダーの軟化温度よりも20℃しか高くな
く、バインダーの粘性が充分に低くならなかったため
に、光触媒層の最下層を構成するアナターゼ型TiO2
粒子がバインダー層中に充分埋設されなかったためと考
えられる。それに対し、No.12で10回以上の摺動
でも傷が入らなかったのは、ネック部が生成される温度
には至らないものの焼成温度とバインダーの軟化温度と
の差が、バインダーの粘性をTiO2がバインダー層中
に適度に埋設され得る値に調整されたからと考えられ
る。一方、(表3)の抗菌性試験において、No.11
〜13は+++または++と良好な結果を得たが、N
o.14は−になった。これはTiO2がルチル型であ
ることと、焼成温度がバインダーの軟化温度よりも32
0℃も高く、バインダーの粘性が低くなりすぎて、光触
媒層を構成するTiO2粒子がバインダー層中に埋設さ
れてしまったことの2つの原因によると考えられる。
No. The reason why no scratch was formed even after the sliding of 40 or more times in 13 and 14 is considered that a neck was formed between the TiO 2 particles because the firing temperature was 800 ° C. or more, and the TiO 2 particles were strongly bonded to each other. Can be No. 11 in 1
Scratching and peeling after 0 or less slides occurred because the firing temperature was only 20 ° C. higher than the softening temperature of the binder, and the viscosity of the binder did not become sufficiently low. Anatase TiO 2 constituting lower layer
This is probably because the particles were not sufficiently embedded in the binder layer. On the other hand, No. The reason that no scratch was made even after sliding 10 times or more in 12 is that the difference between the sintering temperature and the softening temperature of the binder did not reach the temperature at which the neck portion was formed, but the viscosity of the binder was TiO 2. It is considered that the value was adjusted to a value that could be properly buried inside. On the other hand, in the antibacterial test of (Table 3), 11
~ 13 obtained good results as +++ or ++, but N
o. 14 became-. This is because the TiO 2 is rutile and the firing temperature is 32 degrees lower than the softening temperature of the binder.
This is considered to be due to two causes: the temperature was as high as 0 ° C., the viscosity of the binder became too low, and the TiO 2 particles constituting the photocatalyst layer were embedded in the binder layer.

【0072】以上のことから、バインダーに予めTiO
2粒子を塗布後、基材に貼着し焼成して多機能材を得る
方法においても、基材表面にバインダーを塗布し、その
後TiO2粒子を塗布して多機能材を得る方法と同様の
効果が得られることが確認された。
From the above, TiO was previously added to the binder.
After applying the two particles, in the method of obtaining a multifunctional material by sticking to the substrate and firing to obtain a multifunctional material, the same as the method of applying a binder to the surface of the substrate and then applying TiO 2 particles to obtain a multifunctional material It was confirmed that the effect was obtained.

【0073】(参考例4) 100×100×5のポリイミド系樹脂からなる基材の
表面に、アクリル樹脂バインダーを塗布後、15%Ti
2ゾル水溶液をスプレー・コーティング法により塗布
し、膜厚が0.8μmのTiO2層を形成し、次いでバ
インダー層とTiO2層が積層された基材をニクロム炉
にて150℃で焼成し多機能材を得た。
REFERENCE EXAMPLE 4 An acrylic resin binder was applied to the surface of a 100 × 100 × 5 polyimide resin base material, and then 15% Ti
An O 2 sol aqueous solution is applied by a spray coating method to form a TiO 2 layer having a thickness of 0.8 μm, and then the base material on which the binder layer and the TiO 2 layer are laminated is fired at 150 ° C. in a nichrome furnace. Multifunctional material was obtained.

【0074】以下の(表4)に上記の多機能材の焼成温
度の変化に伴う抗菌性、耐摩耗性の変化を示す。
The following Table 4 shows changes in the antibacterial and abrasion resistances of the above-mentioned multifunctional materials according to the firing temperature.

【0075】[0075]

【表4】 [Table 4]

【0076】尚、(表4)において、15%TiO2
ル水溶液の調整方法は下記のように変化させた。 No.15:参考例1使用の15%TiO2ゾル水溶液
をそのまま用いた。 No.16:TiCl4水溶液をオートクレーブ中11
0〜150℃で加水分解後、生成物を硝酸にてpH0.
8に調整して表面改質剤を用いずに分散させ、次いで凝
集物を除去したものを用いた。この場合スプレー・コー
ティングは凝集体除去後直ちに行った。
In Table 4, the method of preparing the 15% TiO 2 sol aqueous solution was changed as follows. No. 15: The 15% TiO 2 sol aqueous solution used in Reference Example 1 was used as it was. No. 16: TiCl 4 aqueous solution in autoclave 11
After hydrolysis at 0-150 ° C., the product is treated with nitric acid to pH 0.
The dispersion was adjusted to 8 without using a surface modifier, and then used after removing aggregates. In this case, spray coating was performed immediately after removing the aggregates.

【0077】ここで、TiO2の比重は3.9、結晶型
はアナターゼ、アクリル樹脂の比重は0.9、ガラス軟
化点に対応する粘性になる温度は70℃である。
Here, the specific gravity of TiO 2 is 3.9, the crystal type is anatase, the specific gravity of the acrylic resin is 0.9, and the temperature at which the viscosity corresponding to the glass softening point is 70 ° C.

【0078】耐摩耗性に関しては、No.15,16の
いずれかの条件でも10回以上の摺動でも傷がはいらな
かった。このことは焼成温度とバインダーの軟化温度と
の差の範囲が、バインダーの粘性をTiO2がバインダ
ー層中に適度に埋設されうる値に調整しうる値であった
ためと考えられる。
Regarding the abrasion resistance, No flaw was found in any of the conditions 15 and 16 even after 10 or more slidings. This is considered to be because the range of the difference between the firing temperature and the softening temperature of the binder was such that the viscosity of the binder could be adjusted to a value at which TiO 2 could be appropriately embedded in the binder layer.

【0079】一方、抗菌性試験に関してはNo.15
は、−になったが、No.16は++と良好な結果を得
たことで、30℃未満においても抗菌性を有する多機能
材が製造可能であることを見出だした。この違いはDT
A−TGにおいて、No.15のTiO2ゾルでは20
0〜350℃で分解、蒸発する成分があるが、No.1
6では認められないことからTiO2を覆う有機成分の
有無が原因となっていると考えられる。またここではア
ナターゼとアクリル樹脂の比重差は3だが、この程度の
差であれば光触媒層を構成するTiO2粒子がバインダ
ー層中に埋設されることなく良好な抗菌性を有すること
も確認された。
On the other hand, regarding the antibacterial test, Fifteen
Was-, but No. 16 obtained ++ and a favorable result, and found that a multifunctional material having antibacterial properties can be produced even at less than 30 ° C. This difference is DT
In A-TG, No. 20 for 15 TiO 2 sols
There are components that decompose and evaporate at 0 to 350 ° C. 1
In No. 6, the presence of an organic component covering TiO 2 is considered to be the cause. Here, the specific gravity difference between the anatase and the acrylic resin was 3, but it was also confirmed that with such a difference, the TiO 2 particles constituting the photocatalyst layer had good antibacterial properties without being embedded in the binder layer. .

【0080】(参考例5) 100×100×5のアルミナ基材の表面に、実施毎に
比重の異なるフリット等からなるバインダー層をスプレ
ー・コーティング法により成形後、乾燥後15%のTi
2ゾル水溶液をスプレー・コーティング法により膜厚
0.8μmのTiO2層を形成し、次いでバインダー層
とTiO2が積層された基材をローラーハースキルンに
て雰囲気温度を750℃として加熱焼成後冷却固化して
多機能材を得た。
REFERENCE EXAMPLE 5 A binder layer made of frit or the like having a different specific gravity is formed by spray coating on the surface of a 100 × 100 × 5 alumina substrate, and dried to form a 15% Ti layer.
A TiO 2 layer having a thickness of 0.8 μm is formed by spray coating an O 2 sol aqueous solution, and then the base material on which the binder layer and TiO 2 are laminated is heated and fired at 750 ° C. with a roller hearth kiln. After cooling and solidification, a multifunctional material was obtained.

【0081】以下の(表5)に上記の多機能材の焼成温
度の変化に伴う抗菌性、耐摩耗性の変化を示す。
The following Table 5 shows changes in antibacterial properties and abrasion resistance of the above multifunctional materials with changes in firing temperature.

【0082】[0082]

【表5】 [Table 5]

【0083】抗菌性試験に関してはNo.17〜20の
いずれも+++と良好な結果を得た。いずれにおいても
焼成温度がバインダーの軟化温度よりも30℃以上30
0℃以下の範囲で高く、焼成温度とバインダーの軟化温
度との差の範囲が、バインダーの粘性をTiO2がバイ
ンダー層中に適度に埋設され得る値に調整された値であ
ったためと考えられる。
Regarding the antibacterial test, no. All of 17 to 20 obtained good results of +++. In any case, the sintering temperature is 30 ° C. or higher than the softening temperature of the binder.
This is considered to be because the range of the difference between the sintering temperature and the softening temperature of the binder was high in the range of 0 ° C. or less, and the viscosity of the binder was adjusted to a value at which TiO 2 could be appropriately embedded in the binder layer. .

【0084】耐摩耗性に関しては、No.17は、5回
以下の摺動で傷が入り、剥離してしまったが、No.1
8〜20は10回以上の摺動でも傷が入らなかった。そ
の原因としては、No.17では他と異なり、バインダ
ーの比重の方がTiO2の比重よりも大きいため、光触
媒層の最下層を構成するアナターゼ型TiO2粒子がバ
インダー層中に充分埋設されなっかたためと考えられ
る。したがって、多機能材の耐摩耗性には、TiO2
バインダーとの比重も影響し、バインダーの比重の方が
TiO2の比重よりも大きいと悪化することが判明し
た。
Regarding the abrasion resistance, No. 17 was scratched and stripped by sliding less than 5 times. 1
Nos. 8 to 20 showed no scratches even after sliding 10 times or more. The cause is as follows. In the case of No. 17, unlike the others, the specific gravity of the binder is larger than that of TiO 2 , and it is considered that the anatase TiO 2 particles constituting the lowermost layer of the photocatalyst layer were not sufficiently embedded in the binder layer. Therefore, it has been found that the abrasion resistance of the multifunctional material is also affected by the specific gravity of TiO 2 and the binder, and is deteriorated when the specific gravity of the binder is larger than the specific gravity of TiO 2 .

【0085】(実施例6) 150角の陶器質タイル基材の表面にSiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバイ
ンダー層を形成し、その上にTiO2ゾルとSnO2ゾル
を混合、攪拌した水溶液をスプレー・コーティング法に
て塗布後、750℃にて焼成し冷却固化して多機能材を
得た。なおTiO2ゾル濃度は4〜6wt%でNH3水溶
液でPH11に調整され、TiO2粒子の結晶子径は
0.01μmであり、SnO2粒子の結晶子経は、0.
0035μmである。
(Example 6) SiO 2 —Al 2 O was applied to the surface of a 150-square ceramic tile base material.
A binder layer composed of 3- BaO frit (softening temperature: 620 ° C.) is formed, a TiO 2 sol and a SnO 2 sol are mixed thereon, and a stirred aqueous solution is applied by a spray coating method, followed by firing at 750 ° C. After cooling and solidification, a multifunctional material was obtained. Note TiO 2 sol concentration was adjusted to PH11 with NH 3 aqueous solution at 4~6Wt%, the crystallite diameter of the TiO 2 particles are 0.01 [mu] m, crystallite through the SnO 2 particles, 0.
0035 μm.

【0086】こうして作製した多機能材についてTiO
2に対するSnO2量(モル比)を種々に変化させたとき
の抗菌性試験および耐摩耗性試験を行った結果を以下の
(表6)に示す。
The multifunctional material thus manufactured was made of TiO.
The results of the antibacterial test and the abrasion resistance test when the amount of SnO 2 to 2 (molar ratio) was variously changed are shown in Table 6 below.

【0087】[0087]

【表6】 [Table 6]

【0088】耐摩耗性試験についてはSnO2の量の増
加に伴って向上し、10%以上の添加により、40回の
摺動試験においても傷が入ることもなく、変化も生じな
くなった。抗菌性試験については20%以上までの範囲
ならば、無添加のときと同様に+++であり、60%ま
でならば++で止った。それ以上加えると、基材表面の
TiO2粒子を覆う確率が高くなり、抗菌性は悪化し、
100%では−となった。したがってSnO2の添加量
をモル比でTiO2量の10%以上60%以下、好まし
くは10%以上20%以下にすれば抗菌性にも耐摩耗性
にも優れた多機能材を提供できる。
The abrasion resistance test improved with an increase in the amount of SnO 2 , and when added in an amount of 10% or more, no damage was caused and no change occurred even in 40 sliding tests. Regarding the antibacterial test, if the range was up to 20% or more, it was +++ as in the case of no addition, and it stopped at ++ up to 60%. If added more, the probability of covering the TiO 2 particles on the substrate surface increases, the antibacterial property deteriorates,
At 100%, it became-. Therefore, when the amount of SnO 2 added is 10% or more and 60% or less, preferably 10% or more and 20% or less of the TiO 2 amount, a multifunctional material having excellent antibacterial properties and abrasion resistance can be provided.

【0089】ここで耐摩耗性がSnO2の量の増加に伴
い向上するのは以下に示す機構による。即ち、SnO2
はTiO2よりも600℃以上の高温では蒸気圧が高い
ため、焼結前にあってはTiO2粒子3bの間隔は図4
(a)に示すようにLoであるが、TiO2粒子3bの
正の曲率をもつ表面では蒸気圧が高く、負の曲率をもつ
表面、つまり2つのTiO2粒子3bが当接するネック
部の表面は蒸気圧が低くなる。その結果、図4(b)に
示すようにネック部にはTiO2よりも蒸気圧が高いS
nO2が入り込み、図4(c)に示すように凝縮し、気
化−凝縮機構によって焼結が行われている。そして、気
化−凝縮機構によって焼結が行われると、焼結後のTi
2粒子の間隔L2は焼結前の間隔Loと略等しいため、
クラック等は発生しない。このように基材表面にバイン
ダーを介してTiO2粒子層が保持された複合部材にお
いて、最表面に露出しTiO2粒子の間隙にSnO2粒子
を充填して600℃以上で焼成すれば、クラックを発生
することなく、TiO2粒子間のネック部を結合するこ
とができるので、耐摩耗特性が向上する。
Here, the wear resistance is improved with an increase in the amount of SnO 2 by the following mechanism. That is, SnO 2
Figure because of the high vapor pressure at a high temperature of at least 600 ° C. than TiO 2, In the prior sintering interval of the TiO 2 particles 3b 4
As shown in (a), the surface of the TiO 2 particles 3b having a positive curvature has a high vapor pressure and a surface having a negative curvature, that is, the surface of the neck portion where the two TiO 2 particles 3b are in contact with each other. Decreases the vapor pressure. As a result, as shown in FIG. 4 (b), S has a higher vapor pressure than TiO 2 at the neck.
As shown in FIG. 4C, nO 2 enters and condenses, and sintering is performed by a vaporization-condensation mechanism. Then, when sintering is performed by the vaporization-condensation mechanism, the sintered Ti
Since the interval L 2 between O 2 particles is substantially equal to the interval Lo before sintering,
No cracks or the like occur. In the composite member in which the TiO 2 particle layer is held on the base material surface via the binder as described above, if the SnO 2 particles are filled in the gaps between the TiO 2 particles exposed at the outermost surface and fired at 600 ° C. or more, cracks may occur. Since the neck portion between the TiO 2 particles can be bonded without generating cracks, the wear resistance is improved.

【0090】(比較例7) 実施例6と同様に150角の陶器質タイル基材の表面に
SiO2−Al23−BaOフリット(軟化温度620
℃)からなるバインダー層を形成し、その上にTiO2
ゾルとSiO2ゾルを混合、攪拌した水溶液をスプレー
・コーティング法にて塗布後、750℃にて焼成し冷却
固化して多機能材を得た。なおTiO2ゾル濃度は4〜
6wt%でNH3水溶液でPH11に調整され、粒子の結
晶子径は実施例6と同様に0.01μmであるが、Sn
2粒子の結晶子径は0.008μmとやや大きい粒子
を用いた。
[0090] (Comparative Example 7) SiO 2 on the surface of the pottery quality tile substrate 150 corner as in Example 6 -Al 2 O 3 -BaO frit (softening temperature 620
C.) and a TiO 2 layer is formed thereon.
The aqueous solution obtained by mixing and stirring the sol and the SiO 2 sol was applied by a spray coating method, and then baked at 750 ° C. and cooled and solidified to obtain a multifunctional material. The TiO 2 sol concentration is 4 ~
The pH was adjusted to pH 11 with an aqueous NH 3 solution at 6 wt%, and the crystallite size of the particles was 0.01 μm as in Example 6, but Sn
Crystallite size of O 2 particles with somewhat larger particles 0.008 .mu.m.

【0091】こうして作製した多機能材について抗菌性
試験および耐摩耗性試験を行い、実施例6と比較した結
果を以下の(表7)に示す。
An antibacterial test and an abrasion resistance test were performed on the multifunctional material thus produced, and the results of comparison with Example 6 are shown in Table 7 below.

【0092】[0092]

【表7】 [Table 7]

【0093】その結果、0.008μmのSnO2粒子
の耐摩耗性向上の効果は、0.0035μmのSnO2
粒子を用いた場合よりも弱く、TiO2粒子に対するモ
ル比が60%以上でようやく40回の摺動試験において
も傷が入ることもなく、変化も生じなくなった。抗菌性
試験については0.0035μmのSnO2粒子を用い
た場合と同様に、20%以上までの範囲ならば、無添加
のときと同様に+++であり、60%以下ならば++で
止った。それ以上加わると、基材表面のTiO2粒子を
覆う確率が高くなり、抗菌性は悪化し、100%では−
となった。したがって0.01μmのTiO2粒子を用
いた場合には0.008μmのSnO2粒子を添加して
抗菌性にも耐摩耗性にも優れた多機能材を提供するのは
困難である。この原因としてはSnO2粒子の蒸気圧は
粒経が大きくなると小さくなること、気化せずに残存す
るSnO2粒子が0.0035μmの場合はTiO2粒子
間の間隙に存在し、結合強度を向上し得たのに対し、
0.008μmではTiO2粒子間の間隙と比較してS
nO2粒子が大きいために、SnO2粒子が間隙に入れ
ず、むしろTiO2粒子上にくる確率が高くなっている
ためと考えられる。以上のことからTiO2粒子の間隙
を埋めるべきSnO2粒子の大きさは、TiO2粒子径に
対し、4/5未満であることが好ましい。
[0093] As a result, the effect of improving wear resistance of the SnO 2 particles 0.008μm is, SnO of 0.0035Myuemu 2
It was weaker than when the particles were used, and when the molar ratio with respect to the TiO 2 particles was 60% or more, no damage was caused even in the sliding test for 40 times, and no change occurred. In the antibacterial test, as in the case of using the SnO 2 particles of 0.0035 μm, if the range was up to 20% or more, it was +++ as in the case of no addition, and if it was 60% or less, it stopped at ++. If more is added, the probability of covering the TiO 2 particles on the substrate surface increases, and the antibacterial property deteriorates.
It became. Therefore, when 0.01 μm TiO 2 particles are used, it is difficult to add 0.008 μm SnO 2 particles to provide a multifunctional material having excellent antibacterial properties and abrasion resistance. This is because the vapor pressure of the SnO 2 particles decreases as the particle size increases, and when the SnO 2 particles remaining without vaporization are 0.0035 μm, they are present in the gaps between the TiO 2 particles to improve the bonding strength. I did,
At 0.008 μm, compared to the gap between TiO 2 particles, S
This is probably because the large size of the nO 2 particles does not allow the SnO 2 particles to enter the gaps, but rather increases the probability of coming on the TiO 2 particles. The size of the SnO 2 particles should fill the gap of the TiO 2 particles from the above, compared TiO 2 particle size is preferably less than 4/5.

【0094】(参考例8) 150角の陶器質タイル基材の表面に、SnO2−Al2
3−BaOフリット(軟化温度620℃)からなるバイ
ンダー層を形成し、その上にTiO2ゾル水溶液をスプ
レー・コーティング法にて塗布後、750℃にて焼成し
冷却固化した複合部材に、SnO2ゾル水溶液をスプレ
ー・コーティング法にて塗布後、110℃で熱処理し多
機能材を得た。このときTiO2ゾル水溶液には実施例
6と同じものを用い、SnO2ゾルには0.0035μ
mの方を用いた。
(Reference Example 8) On the surface of a 150 square porcelain tile base material, SnO 2 -Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 620 ° C.) is formed, and a TiO 2 sol aqueous solution is applied thereon by a spray coating method, and then baked at 750 ° C. to be cooled and solidified. (2) After applying the sol aqueous solution by a spray coating method, a heat treatment was performed at 110 ° C. to obtain a multifunctional material. At this time, the same TiO 2 sol aqueous solution as in Example 6 was used, and the SnO 2 sol was 0.0035 μm.
m was used.

【0095】こうして作製した多機能材について抗菌製
試験および耐摩耗性試験を行った結果を以下の(表8)
に示す。
The results of the antibacterial test and the abrasion resistance test performed on the multifunctional material thus produced are shown below (Table 8).
Shown in

【0096】[0096]

【表8】 [Table 8]

【0097】耐摩耗性試験についてはSnO2の量の増
加に伴って向上し、モル比20%以上の添加により、4
0回摺動試験においても傷が入ることもなく、変化も生
じなくなった。抗菌性試験については20%以上までの
範囲ならば、無添加のときと同様に+++であり、60
%までならば++で止った。それ以上加わると、基材表
面のTiO2粒子を覆う確率が高くなり、抗菌性は悪化
し、100%では−となった。本試験ではSnO2ゾル
は110℃という低温で熱処理しているので、実施例6
で示した気化−凝縮機構による焼結は生じないにもかか
わらず、耐摩耗性が向上したが、これはTiO2粒子よ
りも粒径が小さい、すなわち比表面積が大きく吸着力に
優れるSnO2粒子がTiO2粒子の間隙を埋めたことに
より、TiO2粒子同士の結合が強化されたためと考え
られる。
The abrasion resistance test improved as the amount of SnO 2 increased, and 4% was added when the molar ratio was 20% or more.
Even in the zero-time sliding test, no damage was found and no change occurred. For the antibacterial test, if it is in the range up to 20% or more, it is +++ as in the case of no addition, and 60%.
Stopped at ++ up to%. When added more, the probability of covering the TiO 2 particles on the surface of the substrate increased, and the antibacterial property deteriorated. In this test, since the SnO 2 sol was heat-treated at a low temperature of 110 ° C.,
Although the sintering by the vaporization-condensation mechanism did not occur, the abrasion resistance was improved, but the particle size was smaller than the TiO 2 particles, that is, SnO 2 particles having a large specific surface area and excellent adsorption power. There by filling the gap of the TiO 2 particles, presumably because bonding of TiO 2 particles was strengthened.

【0098】(参考例9) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバイ
ンダー層を形成し、その上にTiO2ゾル水溶液をスプ
レー・コーティング法にて塗布後、750℃にて焼成し
冷却固化した複合部材に、酢酸銅水溶液を塗布し乾燥さ
せ、その後紫外線を含む光を照射して銅イオンを還元し
つつ光触媒層に固定し、多機能材を得た。ここで照射ラ
ンプには水銀灯ランプを用いた。ここで光触媒層に固定
されたCu粒子の大きさは平均0.004μm程度であ
った。
(Reference Example 9) The surface of a 150 square porcelain tile base material was coated with SiO 2 -Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 620 ° C.) is formed, and a TiO 2 sol aqueous solution is applied thereon by a spray coating method, and then calcined at 750 ° C. to be cooled and solidified. A copper aqueous solution was applied and dried, and then irradiated with light including ultraviolet rays to fix copper ions on the photocatalyst layer while reducing the copper ions, thereby obtaining a multifunctional material. Here, a mercury lamp was used as the irradiation lamp. Here, the average size of the Cu particles fixed to the photocatalyst layer was about 0.004 μm.

【0099】こうして作製した多機能材について抗菌性
試験および耐摩耗性試験を行った結果を(表9)に示
す。
The results of the antibacterial test and the abrasion resistance test performed on the multifunctional material thus produced are shown in Table 9.

【0100】[0100]

【表9】 [Table 9]

【0101】耐摩耗性試験についてはCu量の増加に伴
って向上し、モル比20%以上の添加により、40回の
摺動試験においても傷が入ることもなく、変化も生じな
くなった。抗菌性試験については20%以上までの範囲
ならば、無添加のときと同様に+++であった。Cuの
場合はそれ自体抗菌力を有するので、多量添加すること
による抗菌性の悪化は認められなかった。しかしおそら
くCuの添加量が少量のときはTiO2粒子層による光
触媒作用が支配的であり、Cuの添加量が多量のときは
Cuによる作用が支配的であると考えてよいだろう。C
uのみの作用に期待する場合、Cuは液体中で用いたと
きは徐々に溶出するので、光触媒のない場合と比較して
寿命が短いと考えられる。またCuの添加量が多量にな
るとその分コスト高にもなる。したがってCu量をあま
り多量に設定することは意味がないと思われる。この実
施例によりSnO2のような酸化物だけでなく、Cuの
ような金属もTiO2粒子層の間隙を埋める粒子となり
得ることが確認された。
The wear resistance test improved with an increase in the amount of Cu, and the addition of a molar ratio of 20% or more did not cause any damage or change even in the 40 times of the sliding test. Regarding the antibacterial test, if the range was up to 20% or more, it was +++ as in the case of no addition. Since Cu itself has an antibacterial activity, deterioration of the antibacterial activity by adding a large amount was not observed. However, it may be considered that the photocatalytic action of the TiO 2 particle layer is dominant when the added amount of Cu is small, and the effect of Cu is dominant when the added amount of Cu is large. C
In the case of expecting the action of only u, Cu is gradually eluted when used in a liquid. Therefore, it is considered that the life is shorter than that without the photocatalyst. Also, when the amount of Cu added becomes large, the cost increases accordingly. Therefore, it seems that it is meaningless to set the Cu amount too large. According to this example, it was confirmed that not only an oxide such as SnO 2 but also a metal such as Cu can be a particle that fills the gap of the TiO 2 particle layer.

【0102】(参考例10) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバ
インダー層を形成し、その上にTiO2ゾル水溶液をス
プレー・コーティング法にて塗布後、950℃にて焼成
し冷却固化した複合部材に、酢酸銅水溶液を塗布し、そ
の後紫外線を含む光を照射して銅イオンを還元しつつ光
触媒層に固定し多機能材を得た。このとき照射ランプに
はBLBランプを用い、数分間照射した。TiO2は熱
処理の工程でアナターゼからルチルに相転移した。Ti
2の膜厚はスプレー・コーティングの際に0.4μm
に調整した。
Reference Example 10 A SiO 2 —Al 2 layer was formed on the surface of a 150 square porcelain tile base material.
A binder layer composed of an O 3 —BaO frit (softening temperature: 620 ° C.) is formed, and a TiO 2 sol aqueous solution is applied thereon by a spray coating method, and then calcined at 950 ° C. to be cooled and solidified. A copper aqueous solution was applied, and thereafter, irradiation with light including ultraviolet rays was performed to fix copper ions on the photocatalyst layer while reducing the copper ions, thereby obtaining a multifunctional material. At this time, irradiation was performed for several minutes using a BLB lamp as an irradiation lamp. TiO 2 undergoes a phase transition from anatase to rutile during the heat treatment process. Ti
O 2 film thickness 0.4 μm for spray coating
Was adjusted.

【0103】こうして作製した多機能材について抗菌性
試験および耐摩耗性試験を行った。耐摩耗性試験につい
ては、無添加でもこの温度域では良好な結果を示す。C
uを添加しても無添加のときと同様に40回の摺動試験
においても傷が入ることもなく、変化を生じなかった。
抗菌性試験については図5に示す。無添加のときはTi
2がルチルのため+と悪い。それにCuを添加してい
く抗菌性が増した。そしてBLBランプ照射時のみなら
ず、照射していない時もCu担持量が0.7μg/cm
2以上になれば抗菌活性が++となり、Cu担持量が
1.2μg/cm2以上になれば抗菌活性が+++とな
る。以上のことから抗菌性にも耐摩耗性にも優れた多機
能材を提供するには、Cu担持量は0.7μg/cm2
以上がよく、より好ましくは1.2μg/cm2以上が
よい。
The multifunctional material thus produced was subjected to an antibacterial test and an abrasion resistance test. Regarding the abrasion resistance test, good results are shown in this temperature range even without addition. C
Even in the case where u was added, no damage was caused in the sliding test for 40 times as in the case of no addition, and no change occurred.
The antibacterial test is shown in FIG. When not added, Ti
O 2 is bad because it is rutile. The antibacterial property of adding Cu increased. The Cu loading amount is 0.7 μg / cm not only when the BLB lamp is irradiated but also when the irradiation is not performed.
When it becomes 2 or more, the antibacterial activity becomes ++, and when the amount of supported Cu becomes 1.2 μg / cm 2 or more, the antibacterial activity becomes +++. From the above, in order to provide a multifunctional material excellent in both antibacterial properties and abrasion resistance, the amount of supported Cu is 0.7 μg / cm 2.
And more preferably 1.2 μg / cm 2 or more.

【0104】ところでCu担持量は酢酸銅水溶液塗布後
BLBランプ照射前に乾燥工程を入れると飛躍的に向上
する。その関係については図6に示す。これは乾燥させ
た場合の方が光還元するときの金属イオン濃度が高いか
らと考えられる。
Incidentally, the amount of supported Cu is dramatically improved when a drying step is performed after the application of the aqueous solution of copper acetate and before the irradiation with the BLB lamp. FIG. 6 shows the relationship. This is presumably because the concentration of metal ions when photoreduced is higher when dried.

【0105】またCu担持量はCu塗布量を最適にした
ときに最大となる(図7はCu濃度1wt%の酢酸銅の
例)、この図7の場合、Cu消費量を0.7μg/cm
2以上にするにはCu塗布量を0.2mg/cm 2 以上
2.7mg/cm 2 以下に、Cu消費量を1.2μg/
cm2以上にするにはCu塗布量を0.3mg/cm 2
上2.4mg/cm 2 以下にすればよい。
The amount of supported Cu is maximized when the amount of applied Cu is optimized (FIG. 7 is an example of copper acetate having a Cu concentration of 1 wt%). In the case of FIG. 7, the amount of consumed Cu is 0.7 μg / cm.
For 2 or more, the amount of Cu applied is 0.2 mg / cm 2 or more
Cu consumption is reduced to 1.2 μg / cm 2 or less to 2.7 mg / cm 2 or less.
To cm 2 or more is a Cu coating weight 0.3 mg / cm 2 or more
The upper limit may be 2.4 mg / cm 2 or less.

【0106】(参考例11) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度680℃)からなるバ
インダー層を形成し、その上にTiO2ゾル水溶液をス
プレー・コーティング法にて塗布後、950℃にて焼成
し冷却固化した複合部材に、硝酸銀水溶液を塗布、乾燥
し、その後紫外線を含む光を照射して銀イオンを還元し
つつ光触媒層に固定し多機能材を得た。このとき照射ラ
ンプにはBLBランプを用い、数分間照射した。またT
iO2は熱処理の工程でアナターゼからルチルに相転移
した。TiO2の膜厚はスプレー・コーティングの際に
0.4μmに調整した。
(Reference Example 11) The surface of a 150 square porcelain tile base material was coated with SiO 2 -Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 680 ° C.) was formed, and a TiO 2 sol aqueous solution was applied thereon by a spray coating method, and then calcined at 950 ° C. to be cooled and solidified. An aqueous solution was applied, dried, and then irradiated with light including ultraviolet rays to reduce silver ions and fix the silver ions on the photocatalyst layer to obtain a multifunctional material. At this time, irradiation was performed for several minutes using a BLB lamp as an irradiation lamp. Also T
iO 2 undergoes a phase transition from anatase to rutile during the heat treatment process. The thickness of TiO 2 was adjusted to 0.4 μm during spray coating.

【0107】こうして作製した多機能材について抗菌性
試験および耐摩耗性試験を行った。耐摩耗性試験につい
ては、無添加でもこの温度域では良好な結果を示す。A
gを添加しても無添加のときと同様に40回の摺動試験
においても傷が入ることもなく、変化も生じなかった。
The multifunctional material thus produced was subjected to an antibacterial test and an abrasion resistance test. Regarding the abrasion resistance test, good results are shown in this temperature range even without addition. A
Even when g was added, no damage was caused and no change occurred in 40 sliding tests as in the case where no g was added.

【0108】抗菌性試験については、無添加のときはT
iO2がルチルのため+と悪い。それにAgを添加して
いくと抗菌性が増した。そしてBLBランプ照射時のみ
ならず、照射していない時もAg担持量が0.05μg
/cm2以上になれば抗菌活性が++となり、Ag担持
量が0.1μg/cm2以上になれば抗菌活性が+++
となる。したがって抗菌性にも耐摩耗性にも優れた多機
能材を提供するには、Ag担持量は0.05μg/cm
2以上がよく、より好ましくは0.1μg/cm2以上が
よい。ただしAg担持量が多いと茶色から黒色に着色さ
れ、外観上見栄えが悪い。しかしAg担持量が1μg/
cm2以下ならば着色はない。以上のことからAg担持
量は0.05μg/cm2以上1μg/cm2以下がよ
く、より好ましくは0.1μg/cm2以上1μg/c
2以下がよい。
[0108] For the antibacterial test, T is the time of the additive-free
Poor because iO 2 is rutile. The addition of Ag increased the antibacterial properties. The Ag loading amount is 0.05 μg not only when the BLB lamp is irradiated but also when the irradiation is not performed.
/ Cm 2 or more, the antibacterial activity becomes ++, and the Ag carrying amount becomes 0.1 μg / cm 2 or more, the antibacterial activity becomes +++.
Becomes Therefore, in order to provide a multifunctional material excellent in both antibacterial properties and abrasion resistance, the amount of Ag supported is 0.05 μg / cm.
It is preferably at least 2 , more preferably at least 0.1 μg / cm 2 . However, when the amount of Ag carried is large, the color is changed from brown to black, and the appearance is poor. However, the amount of Ag carried was 1 μg /
If it is less than cm 2, there is no coloring. From the above, the Ag carrying amount is preferably 0.05 μg / cm 2 or more and 1 μg / cm 2 or less, more preferably 0.1 μg / cm 2 or more and 1 μg / c.
m 2 or less is good.

【0109】(参考例12) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度680℃)からなるバ
インダー層を形成し、その上にTiO2ゾル水溶液をス
プレー・コーティング法にて塗布後、950℃にて焼成
し冷却固化した複合部材に、硝酸銀水溶液を塗布、乾燥
し、その後紫外線を含む光を照射して銀イオンを還元し
つつ光触媒層に固定し多機能材を得た。このとき照射ラ
ンプにはBLBランプを用い、数分間照射した。またT
iO2は熱処理の工程でアナターゼからルチルに相転移
した。
Reference Example 12 The surface of a 150-square earthenware tile substrate was coated with SiO 2 —Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 680 ° C.) was formed, and a TiO 2 sol aqueous solution was applied thereon by a spray coating method, and then calcined at 950 ° C. to be cooled and solidified. An aqueous solution was applied, dried, and then irradiated with light including ultraviolet rays to reduce silver ions and fix the silver ions on the photocatalyst layer to obtain a multifunctional material. At this time, irradiation was performed for several minutes using a BLB lamp as an irradiation lamp. Also T
iO 2 undergoes a phase transition from anatase to rutile during the heat treatment process.

【0110】こうして作製した多機能材について、Ti
2の膜厚を種々の値に変化させて耐摩耗試験、抗菌性
試験および耐汚染性試験を行った。耐摩耗試験について
は今回試験した2μm以内の範囲ではいずれも良好な結
果を示し、40回の摺動試験においても傷が入ることも
なく、変化も生じなかった。抗菌性試験については膜厚
0.1μm以上で++、0.2μm以上で+++とな
る。したがってTiO2の膜厚は0.1μm以上がよ
く、好ましくは0.2μm以上がよい。
For the multifunctional material thus produced, Ti
The abrasion resistance test, antibacterial test and stain resistance test were carried out by changing the thickness of O 2 to various values. Regarding the abrasion resistance test, good results were obtained in the range of 2 μm or less tested this time, and no damage was caused and no change occurred in the 40 times of the sliding test. In the antibacterial test, the film thickness becomes ++ when the film thickness is 0.1 μm or more and ++ when the film thickness is 0.2 μm or more. Therefore, the thickness of TiO 2 is preferably 0.1 μm or more, and more preferably 0.2 μm or more.

【0111】(参考例13) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバ
インダー層を形成し、その上に塩化亜鉛水溶液あるいは
TiO2ゾル水溶液をスプレー・コーティング法にて塗
布し乾燥後、硝酸銀水溶液を塗布し、その後紫外線を含
む光を照射して銀イオンを還元しつつ光触媒層に固定し
た。その後900℃以上1000℃以下にて焼成し冷却
固化し多機能材を得た。このとき照射ランプにはBLB
ランプを用い、数分間照射した。またTiO2は熱処理
の工程でアナターゼからルチルに相転移した。また表面
の固定されたAgは熱処理に伴い、茶黒色から白色に変
化したことから、焼成中に酸化銀に変化したと考えられ
る。ただしAgの付着固定は離散的になされており、観
察により焼成前後におけるAg粒子の成長はほとんど認
められなかった。
(Reference Example 13) The surface of a 150 square ceramic porcelain tile base material was coated with SiO 2 -Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 620 ° C.) is formed, a zinc chloride aqueous solution or a TiO 2 sol aqueous solution is applied thereon by a spray coating method, dried, and then a silver nitrate aqueous solution is applied, and then ultraviolet rays are applied. And fixed to the photocatalyst layer while reducing silver ions by irradiation with light. Thereafter, it was baked at 900 ° C. or more and 1000 ° C. or less and solidified by cooling to obtain a multifunctional material. At this time, the irradiation lamp is BLB
Irradiation was performed for several minutes using a lamp. Also, TiO 2 changed its phase from anatase to rutile during the heat treatment process. Further, the Ag whose surface was fixed changed from brown-black to white with the heat treatment, and it is considered that it changed to silver oxide during firing. However, the fixation of Ag was discretely performed, and almost no growth of Ag particles before and after firing was observed.

【0112】こうして作製した多機能材について抗菌性
試験および耐摩耗性試験を行った。耐摩耗性試験につい
ては、無添加でもこの温度域では良好な結果を示す。A
gを添加しても無添加のときと同様に40回の摺動試験
においても傷が入ることもなく、変化も生じなくなっ
た。抗菌性試験については、無添加のときはTiO2
ルチルのため+と悪い。それにAgを添加していくと抗
菌性が増した。
The multifunctional material thus produced was subjected to an antibacterial test and an abrasion resistance test. Regarding the abrasion resistance test, good results are shown in this temperature range even without addition. A
Even in the case where g was added, no damage was caused even in the sliding test for 40 times as in the case where no g was added, and no change occurred. For antimicrobial tests, when no additives bad because TiO 2 is rutile +. The addition of Ag increased the antibacterial properties.

【0113】(参考例14) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバ
インダー層を形成し、その上にTiO2ゾル水溶液をス
プレー・コーティング法にて塗布後、900℃以上10
00℃以下にて焼成し冷却固化した複合部材に、硝酸銀
水溶液を塗布し、その後紫外線を含む光を照射して銀イ
オンを還元しつつ光触媒層に固定し、さらにその上に
0.1mol/lのKI水溶液を0.1cc/cm2
割合で塗布し、更に紫外線を5秒程度照射し多機能材を
得た。その際Agの担持量は2μg/cm2とした。0.
1mol/lのKI水溶液を0.1cc/cm2の割合
で塗布し、更に紫外線を5秒程度照射したことにより、
茶黒色だった多機能材は白色に脱色され、外観上の見栄
えが向上した。
Reference Example 14 The surface of a 150 square porcelain tile base material was coated with SiO 2 —Al 2
A binder layer made of O 3 —BaO frit (softening temperature: 620 ° C.) is formed, and a TiO 2 sol aqueous solution is applied thereon by a spray coating method.
An aqueous solution of silver nitrate is applied to the composite member which has been baked at a temperature of 00 ° C. or less and cooled and solidified, and then irradiated with light including ultraviolet rays to fix silver ions on the photocatalyst layer while reducing the silver ions. KI aqueous solution was applied at a rate of 0.1 cc / cm 2 and further irradiated with ultraviolet rays for about 5 seconds to obtain a multifunctional material. At this time, the loading amount of Ag was 2 μg / cm 2 . 0.
By applying a 1 mol / l KI aqueous solution at a rate of 0.1 cc / cm 2 and further irradiating ultraviolet rays for about 5 seconds,
The brown-black multifunctional material was decolorized to white, and the appearance was improved.

【0114】(参考例15) 150角の陶器質タイル基材の表面に、SiO2−Al2
3−BaOフリット(軟化温度620℃)からなるバ
インダー層を形成し、その上にTiO2ゾル水溶液をス
プレー・コーティング法にて塗布後、820℃にて焼成
し冷却固化して得た多機能材を傾斜させて配置し、紫外
線を含む光を多機能材上に照射しながら、多機能材の上
に公衆浴場で採取した風呂水を循環させながら、連続的
に滴下し、風呂水の変化を観察した。同様の装置を比較
のため、光触媒層を設けていない基材の上にも滴下し
た。14日後の観察では、前記多機能材上に滴下してい
た風呂水は光触媒層を設けていない基材の上に滴下して
いた風呂水と比較して、濁り具合には特異な差が認めら
れないものの、どぶ水臭に差が認められた。すなわち光
触媒層を設けていない基材の上に滴下していた風呂水で
はかなり強いどぶ水臭が認められ、また基材上にスライ
ム状のぬめりおよび有機系沈殿物が観察されたのに対
し、前記多機能材上に滴下していた風呂水ではそのいず
れもが認められなかった。以上の模擬実験により、この
多機能材は公園、デパート等にある水循環方式の人工的
な滝や噴水の敷石として利用できると考えられる。
(Reference Example 15) On the surface of a ceramic tile substrate of 150 squares, SiO 2 —Al 2
A binder layer composed of an O 3 -BaO frit (softening temperature: 620 ° C.) is formed, a TiO 2 sol aqueous solution is applied thereon by a spray coating method, and then baked at 820 ° C. to be cooled and solidified to obtain a multi-function. The material is placed at an angle, and while irradiating the light containing ultraviolet rays onto the multi-functional material, the bath water collected in the public bath is continuously dropped on the multi-functional material while circulating, changing the bath water. Was observed. For comparison, a similar device was dropped on a substrate having no photocatalyst layer. In the observation 14 days later, the bath water dropped on the multifunctional material showed a unique difference in the degree of turbidity as compared with the bath water dropped on the substrate not provided with the photocatalytic layer. Although it was not possible, there was a difference in the water odor. That is, in the bath water that was dropped on the substrate without the photocatalyst layer, a quite strong water odor was observed, and slime-like slime and organic precipitates were observed on the substrate, None of the bath water was dropped on the multifunctional material. According to the above simulation experiments, it is considered that this multifunctional material can be used as an artificial waterfall or water fountain paving stone in a water circulation system in parks, department stores, and the like.

【0115】[0115]

【発明の効果】以上の説明から明らかなように本発明に
よれば、基材の軟化温度よりも低い材料からなるバイン
ダ層を介して光触媒粒子を固定するようにし、特に光触
媒層の表層部を構成する光触媒粒子はバインダ層に埋も
れないようにしたので、光触媒粒子は実質的にその表面
が外部に露出した状態となり、光触媒効果を充分に発揮
することができる。また、光触媒粒子のうち光触媒層の
下層を構成する粒子はその一部がバインダ層内に埋設さ
れるので、光触媒層の保持力が大幅に向上し、剥離等が
生じにくくなる。
As is apparent from the above description, according to the present invention, the photocatalyst particles are fixed via the binder layer made of a material lower than the softening temperature of the base material. Since the photocatalyst particles constituting the photocatalyst particles are not buried in the binder layer, the surface of the photocatalyst particles is substantially exposed to the outside, and the photocatalytic effect can be sufficiently exhibited. Further, among the photocatalyst particles, some of the particles constituting the lower layer of the photocatalyst layer are buried in the binder layer, so that the holding power of the photocatalyst layer is greatly improved, and peeling or the like hardly occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光触媒機能を有する多機能材の製
造方法を説明した図
FIG. 1 is a diagram illustrating a method for producing a multifunctional material having a photocatalytic function according to the present invention.

【図2】図1(d)の要部拡大図FIG. 2 is an enlarged view of a main part of FIG. 1 (d).

【図3】TiO2粒子間の拡大図FIG. 3 is an enlarged view between TiO 2 particles.

【図4】(a)〜(c)はTiO2粒子の焼結の機構を
説明した図
FIGS. 4A to 4C are diagrams for explaining a mechanism of sintering of TiO 2 particles.

【図5】抗菌性試験についての試験結果を示すグラフFIG. 5 is a graph showing test results of an antibacterial test.

【図6】BLBランプ照射前に乾燥工程を入れた場合の
Cu担持量についての試験結果を示すグラフ
FIG. 6 is a graph showing test results on the amount of supported Cu when a drying step is performed before irradiation with a BLB lamp.

【図7】Cu担持量とCu塗布量との関係を示すグラフFIG. 7 is a graph showing the relationship between the amount of Cu carried and the amount of Cu applied;

【符号の説明】[Explanation of symbols]

1…基材、 2…バインダー層、 3…光触媒層、 3
a…光触媒層のうちバインダー層側の下層を構成する光
触媒粒子、 3b…光触媒層のうち外気と接する表層を
構成する光触媒粒子、 3c…光触媒粒子同士を結合す
るために充填された粒子。
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Binder layer, 3 ... Photocatalyst layer, 3
a: photocatalyst particles constituting the lower layer of the binder layer side of the photocatalyst layer; 3b: photocatalyst particles constituting the surface layer of the photocatalyst layer which is in contact with the outside air; 3c: particles filled for bonding the photocatalyst particles.

フロントページの続き (72)発明者 小島 栄一 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 町田 光義 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 佐伯 義光 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 久我 辰彦 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (72)発明者 中島 靖 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (56)参考文献 特開 平5−253544(JP,A) 特開 平1−288321(JP,A) 特開 平2−503(JP,A) 特開 平5−309267(JP,A) 特開 平1−218635(JP,A) 特開 昭61−146345(JP,A) 特開 平7−265714(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 Continuation of the front page (72) Eiichi Kojima 2-1-1, Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Totoki Co., Ltd. (72) Mitsuyoshi Machida 2-1-1, Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka No. 1 Toto Kiki Co., Ltd. (72) Yoshimitsu Saeki 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture 1-1 Touchi Kiki Co., Ltd. (72) Tatsuhiko Kuga Nakajima, Kitakyushu-shi, Fukuoka 2-1-1, Totoki Kiki Co., Ltd. (72) Yasushi Nakajima 2-1-1, Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Prefecture Totoki Kiki Co., Ltd. (56) References JP-A-5-253544 (JP, A) JP-A-1-288321 (JP, A) JP-A-2-503 (JP, A) JP-A-5-309267 (JP, A) JP-A-1-218635 (JP, A) JP-A-61-146345 (JP, A) JP-A-7-265714 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材表面にバインダー層を介して光触媒
である酸化チタン粒子層が保持された光触媒機能を有す
る多機能材において、前記酸化チタン粒子層の上層部は
外気と接するようにバインダー層から露出され、また前
記酸化チタン粒子層の下層部はその一部がバインダー層
内に埋設されており、また前記酸化チタン粒子層のうち
バインダー層から露出する表層を構成する酸化チタン粒
子の間隙に、当該間隙よりも粒径の小さな粒子が酸化チ
タン粒子同士を焼結するために充填されており、かつ前
記間隙よりも粒径の小さな粒子は酸化スズ、酸化亜鉛、
酸化ビスマスのいずれかであり前記間隙よりも粒径の小
さな粒子は酸化チタン粒子間のネック部に凝集して存在
しており、かつ前記酸化チタン層を構成する酸化チタン
粒子の平均粒径は0.3μm未満であることを特徴とす
る光触媒機能を有する多機能材。
1. A multifunctional material having a photocatalytic function in which a titanium oxide particle layer as a photocatalyst is held on a base material surface via a binder layer, wherein the upper layer of the titanium oxide particle layer is in contact with the outside air. The lower layer portion of the titanium oxide particle layer is partially buried in the binder layer, and in the gap between the titanium oxide particles constituting the surface layer exposed from the binder layer in the titanium oxide particle layer. Particles smaller than the gap are filled to sinter the titanium oxide particles, and particles smaller than the gap are tin oxide, zinc oxide,
Particles which are any of bismuth oxides and have a particle size smaller than the gap are present at the neck portion between the titanium oxide particles, and the average particle size of the titanium oxide particles constituting the titanium oxide layer is 0. A multifunctional material having a photocatalytic function, which is less than 3 μm.
【請求項2】 前記基材はタイルであることを特徴とす
る請求項1に記載の光触媒機能を有する多機能材。
2. The multifunctional material having a photocatalytic function according to claim 1, wherein the base material is a tile.
JP25424294A 1993-10-12 1994-09-22 Multifunctional material with photocatalytic function Expired - Lifetime JP3309591B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP25424294A JP3309591B2 (en) 1993-12-28 1994-09-22 Multifunctional material with photocatalytic function
CA 2155822 CA2155822C (en) 1993-12-10 1994-12-09 Multi-functional material with photocatalytic functions and method of manufacturing same
ES95902937T ES2191043T3 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL EQUIPPED WITH PHOTOCATALITIC FUNCTION AND METHOD TO PRODUCE IT.
US08/501,110 US5853866A (en) 1993-12-10 1994-12-09 Multi-functional material with photocalytic functions and method of manufacturing same
EP95902937A EP0684075B1 (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
AU11998/95A AU1199895A (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
AT95902937T ATE235314T1 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR PRODUCING SAME
PCT/JP1994/002077 WO1995015816A1 (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
CN94191730A CN1102445C (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
DE69432348T DE69432348T8 (en) 1993-12-10 1994-12-09 MULTIFUNCTIONAL MATERIAL WITH PHOTOCATALYTIC FUNCTION AND METHOD FOR THE PRODUCTION THEREOF
CN 02122422 CN1289195C (en) 1993-12-10 1994-12-09 Multifunctional material with optical catalytic function and its mfg. method
KR1019950703331A KR100357482B1 (en) 1993-12-10 1994-12-09 Multi-functional material with photo-catalytic functions and method of manufacturing same
US09/167,325 US6294246B1 (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,324 US6027797A (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,327 US6294247B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,323 US6268050B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,326 US6210779B1 (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
HK98113672A HK1017810A1 (en) 1993-12-10 1998-12-16 Multi-functional material having photo-catalytic function and production method therefor
KR1019990055032A KR100361563B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and producing method therefor
KR1019990055034A KR100361564B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and producing method therefor
KR1019990055031A KR100358851B1 (en) 1993-12-10 1999-12-04 Multi-functional material having photo-catalytic function and produing method of thereof
HK06105716A HK1085719A1 (en) 1993-12-10 2006-05-17 Multi-functional tile having photocatalytic function and production method therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35189293 1993-12-28
JP5-351892 1993-12-28
JP25424294A JP3309591B2 (en) 1993-12-28 1994-09-22 Multifunctional material with photocatalytic function

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000322232A Division JP2001200627A (en) 1993-12-28 2000-10-23 Tile having photocatalyst function and manufacturing method for the tile
JP2001248877A Division JP2002119865A (en) 1993-12-28 2001-08-20 Method for manufacturing multifunctional material having photocatalytic function

Publications (2)

Publication Number Publication Date
JPH07232080A JPH07232080A (en) 1995-09-05
JP3309591B2 true JP3309591B2 (en) 2002-07-29

Family

ID=26541592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25424294A Expired - Lifetime JP3309591B2 (en) 1993-10-12 1994-09-22 Multifunctional material with photocatalytic function

Country Status (1)

Country Link
JP (1) JP3309591B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE391553T1 (en) * 1995-06-19 2008-04-15 Nippon Soda Co SUPPORT STRUCTURE WITH PHOTOCATALYST AND PHOTOCATALYTIC COATING MATERIAL
JPH0977574A (en) * 1995-07-08 1997-03-25 Toto Ltd Concrete structure
JPH09173783A (en) * 1995-10-27 1997-07-08 Matsushita Electric Ind Co Ltd Sheet glass and resin plate and their production and method for removing contaminant
JPH09248468A (en) * 1996-03-18 1997-09-22 Toto Ltd Photocatalyst material, polyfunctional material using the same and its production
JP3798060B2 (en) * 1996-04-05 2006-07-19 松下エコシステムズ株式会社 Method for supporting photocatalyst particles
JPH09299462A (en) * 1996-05-17 1997-11-25 Risuta Kk Deodorant
JP3761248B2 (en) * 1996-06-13 2006-03-29 小松精練株式会社 Fiber fabric having deodorant, antibacterial and antifouling functions
JP3758245B2 (en) * 1996-07-12 2006-03-22 東陶機器株式会社 Photocatalyst functional material
JP3726366B2 (en) * 1996-08-06 2005-12-14 昭和電工株式会社 Fluorescent lamp
JP3863599B2 (en) 1996-08-06 2006-12-27 株式会社ティオテクノ Amorphous titanium peroxide coating method
JP4187632B2 (en) * 1996-08-30 2008-11-26 昭和電工株式会社 Method for forming titanium dioxide thin film and catalyst having the titanium dioxide thin film
EP0866101B1 (en) * 1996-10-08 2004-07-28 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JP3759806B2 (en) * 1997-02-28 2006-03-29 積水化学工業株式会社 Method for forming thin film having photocatalytic activity
JPH10249210A (en) * 1997-03-14 1998-09-22 Titan Kogyo Kk Photocatalyst, its manufacture and applications
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
EP1327475A3 (en) * 1997-12-10 2003-08-13 Toto Ltd. Formulation for forming the surface layer of a composite material
JP3781888B2 (en) * 1998-02-13 2006-05-31 日産自動車株式会社 Hydrophilic substrate and method for producing the same
TWI229617B (en) * 1998-07-30 2005-03-21 Toto Ltd Method for manufacturing functional material having photo-catalystic functional and apparatus therefor
WO2000034146A1 (en) * 1998-12-09 2000-06-15 Showa Denko K.K. Food container utilizing titanium oxide particles and method for preparing the same
JP4512883B2 (en) * 1998-12-11 2010-07-28 株式会社潤工社 Photocatalyst carrier
JP2000301055A (en) * 1999-04-14 2000-10-31 Sharp Corp Photocatalyst coating film and method for formation thereof
JP2000334308A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Cafrrier for photocatalyst and photocatalyst using the same
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
JP4513141B2 (en) * 1999-06-21 2010-07-28 パナソニック株式会社 air purifier
JP2001080974A (en) * 1999-09-08 2001-03-27 Fuji Photo Film Co Ltd Composite base plate material and method for producing the same
WO2001023483A1 (en) * 1999-09-30 2001-04-05 Showa Denko Kabushiki Kaisha Photocatalytic coating composition and product having thin photocatalytic film
US6479141B1 (en) 1999-09-30 2002-11-12 Showa Denko K.K. Photocatalytic coating composition and product having photocatalytic thin film
EP1477466A1 (en) 1999-11-19 2004-11-17 Central Glass Company, Limited Article with antifogging film and process for producing same
US6531215B2 (en) 1999-11-19 2003-03-11 Central Glass Company, Limited Article with antifogging film and process for producing same
JP4549477B2 (en) * 2000-02-25 2010-09-22 日本曹達株式会社 Photocatalyst carrying structure having antibacterial and antifungal effects
KR20010105694A (en) * 2000-05-17 2001-11-29 김석용 film coated with photochemical active catalyst layer
JP2002301378A (en) * 2001-04-04 2002-10-15 Mitsui Eng & Shipbuild Co Ltd Photocatalyst module, method for producing the same and photocatalytic reactor
JP4613021B2 (en) * 2004-03-10 2011-01-12 大日本印刷株式会社 Photocatalyst-containing composition and photocatalyst-containing layer
DE102007034683A1 (en) * 2007-07-25 2009-01-29 BSH Bosch und Siemens Hausgeräte GmbH layer body

Also Published As

Publication number Publication date
JPH07232080A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
JP3309591B2 (en) Multifunctional material with photocatalytic function
KR100357482B1 (en) Multi-functional material with photo-catalytic functions and method of manufacturing same
JP2006021994A (en) Method of manufacturing multifunctional material having photocatalytic function
EP0684075A1 (en) Multi-functional material having photo-catalytic function and production method therefor
JP3559892B2 (en) Photocatalytic film and method for forming the same
EP1157742B1 (en) Process for removing deleterious materials
JP3852284B2 (en) Method for producing functional material having photocatalytic function and apparatus therefor
EP0804877A1 (en) Antibacterial solid, process for producing the same, and method of utilizing the same
CZ301921B6 (en) Use of composite material for removing nitrogen oxides, ammonia gas, carbon monooxide and/or sulfur oxides from air
JP3136918B2 (en) Multifunctional material having antibacterial properties and method for producing the same
CN100378038C (en) Multi-functional material with photocatalytic functions and method of manufacturing same
JP3246235B2 (en) Multifunctional material having photocatalytic function and method for producing the same
JPH08131524A (en) Multi-functional material having photocatalytic function and manufacture thereof
JP2002119865A (en) Method for manufacturing multifunctional material having photocatalytic function
JP2001200627A (en) Tile having photocatalyst function and manufacturing method for the tile
JPH08131834A (en) Titanium oxide sol for photocatalyst and multifunctional member having photocatalytic action
JP3147710B2 (en) Antifouling material
JPH08131842A (en) Formation of member having photocatalytic action
JP2004154779A (en) Substrate coated with photocatalytic film and method for forming photocatalytic film thereon
JP3465018B2 (en) Antibacterial laminate
JPH08103488A (en) Multifunctional material having photocatalyst function
JPH11157966A (en) Pottery with photocataytic function and its production
TW406031B (en) Multi-functional material having photo-catalytic function and production method therefor
JPH11188266A (en) Photoactive coating film-carrying body and its production
JPH11314963A (en) Multifunctional material having antibacterial property

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

EXPY Cancellation because of completion of term