JPH11148738A - Air conditioner and air conditioning method - Google Patents

Air conditioner and air conditioning method

Info

Publication number
JPH11148738A
JPH11148738A JP31683897A JP31683897A JPH11148738A JP H11148738 A JPH11148738 A JP H11148738A JP 31683897 A JP31683897 A JP 31683897A JP 31683897 A JP31683897 A JP 31683897A JP H11148738 A JPH11148738 A JP H11148738A
Authority
JP
Japan
Prior art keywords
outdoor unit
indoor
refrigerant compressor
indoor unit
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31683897A
Other languages
Japanese (ja)
Inventor
Masashi Izumi
雅士 泉
Hiroyuki Takada
浩行 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31683897A priority Critical patent/JPH11148738A/en
Publication of JPH11148738A publication Critical patent/JPH11148738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption in summer time when the quantity of power consumption increases and enable easy maintenance and inspection of equipment. SOLUTION: A liquid-phase tube 6 and a vapor-phase tube 7 provided with a four-way valve 10 and a power saving type compressor 11 are provided to connect an outdoor machine 1 with all or majority of a plurality of indoor machines 4 installed lower than the outdoor machine 1. In this sir conditioner, two operation modes can be selected, e.g. cooling operation in which an R-134a heat-radiated and condensed by the outdoor machine 1 is led into the indoor machine 4 through the liquid-phase tube 6 and it is allowed to evaporate for cooling by the indoor machine 4 and then it is returned to the outdoor machine l after compressed by the compressor 11, and warming operation in which the R-134a absorbing heat in the outdoor machine 11 evaporates and it is compressed by the compressor 11 and then it is led to the indoor machine 4 to warm the room through heat radiation and is returned to the outdoor machine 1 through the liquid-phase tube 6 therefater. The cooling is operated at low power of the compressure 11 and the warming is operated at high power thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調に関するもので
あり、特に詳しくは室外機と、全数もしくは過半数が室
外機より下方に設置された複数の室内機との間で、相変
化可能な流体を循環させ、各室内機において冷暖房可能
に構成した装置と空調方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to an air conditioner. The present invention relates to a device and an air-conditioning method that are circulated and configured to be able to cool and heat each indoor unit.

【0002】[0002]

【従来の技術】この種の装置として、例えば図4に示し
た構成の空調装置が、例えば特開平7−151359号
公報に開示されている。図中1は冷水または温水が供給
できる室外熱交換器(以下、室外機)、4は室外機1よ
り下層の階に設置された室内機、5は室内機の熱交換
器、8は流量調整弁、30は電動ポンプ、31〜34は
開閉弁であり、これらを液相管6と気相管7とで図のよ
うに配管接続して閉回路3を形成し、閉回路3に封入し
た冷媒が室外機1と室内機4との間で循環して、室内機
4において冷/暖房が行えるようになっている。なお、
35は室外機1の側面に設置された液レベルセンサであ
り、暖房運転時に室外機1に溜った冷媒液が一定となる
ように電動ポンプ30を制御する。
2. Description of the Related Art As this type of apparatus, for example, an air conditioner having the structure shown in FIG. 4 is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-151359. In the figure, 1 is an outdoor heat exchanger capable of supplying cold or hot water (hereinafter referred to as an outdoor unit), 4 is an indoor unit installed on a floor lower than the outdoor unit 1, 5 is a heat exchanger of the indoor unit, and 8 is flow rate adjustment. A valve 30 is an electric pump, and 31 to 34 are on-off valves. These are connected by piping with a liquid phase pipe 6 and a gas phase pipe 7 as shown in the figure to form a closed circuit 3 and sealed in the closed circuit 3. The refrigerant circulates between the outdoor unit 1 and the indoor unit 4 so that the indoor unit 4 can perform cooling / heating. In addition,
Reference numeral 35 denotes a liquid level sensor installed on the side surface of the outdoor unit 1, and controls the electric pump 30 so that the refrigerant liquid accumulated in the outdoor unit 1 during heating operation is constant.

【0003】すなわち、上記構成の空調装置において
は、室内機4が設置されている室内空気の温度が高いと
きに、電動ポンプ30を停止した状態で、開閉弁31・
32を閉じて開閉弁33・34を開けると共に、流量調
整弁8も開け、室外機1において発生させる冷熱によっ
て閉回路3に封入した冷媒を冷却して凝縮させると、室
外機1で凝縮した冷媒液は液相管6を自重で流下し、開
閉弁33・34および流量調整弁8を介して熱交換器5
に流入する。
[0003] That is, in the air conditioner having the above configuration, when the temperature of the indoor air in which the indoor unit 4 is installed is high, the on-off valve 31.
32, the on-off valves 33 and 34 are opened, and the flow control valve 8 is also opened to cool and condense the refrigerant enclosed in the closed circuit 3 by the cold generated in the outdoor unit 1, and the refrigerant condensed in the outdoor unit 1 The liquid flows down the liquid phase tube 6 by its own weight, and flows through the heat exchanger 5
Flows into.

【0004】そして、熱交換器5に流入した冷媒液は、
熱交換器の管壁を介して室内空気から熱を奪って冷房作
用を行うと共に、冷媒自身は蒸発して気相管7に流入
し、冷媒が凝縮して低圧となっている室外機1に還流す
ると云った自然循環が起こるので、電力消費量が年間を
通じて最大となる夏期に電動ポンプ30を駆動する電力
が不要であり、ランニングコストが削減できると云った
利点がある。
[0004] The refrigerant liquid flowing into the heat exchanger 5 is:
The heat is taken from the indoor air through the pipe wall of the heat exchanger to perform a cooling action, and the refrigerant itself evaporates and flows into the gas phase pipe 7 to condense the refrigerant to the outdoor unit 1 at a low pressure. Since natural circulation such as reflux occurs, there is no need for power to drive the electric pump 30 in summer when power consumption is maximum throughout the year, and there is an advantage that running costs can be reduced.

【0005】また、開閉弁31・34を閉じて開閉弁3
2・33を開けると共に、流量調整弁8も開け、電動ポ
ンプ30を起動して、室外機1において発生させる冷熱
によって閉回路3に封入した冷媒を冷却して凝縮させる
と、室外機1で凝縮した冷媒液は自重と電動ポンプ30
の吐出力とで液相管6を流下し、流量調整弁8を通って
熱交換器5に入り、冷房作用を行う冷媒の循環が強制的
に行われる。
The on-off valves 31 and 34 are closed and the on-off valves 3
At the same time as opening 2.33, the flow regulating valve 8 is also opened, and the electric pump 30 is started to cool and condense the refrigerant sealed in the closed circuit 3 by the cold generated in the outdoor unit 1. The cooled refrigerant liquid has its own weight and the electric pump 30
With the discharge force, the liquid flows down the liquid phase tube 6, enters the heat exchanger 5 through the flow control valve 8, and forcibly circulates the refrigerant that performs the cooling action.

【0006】このように、電動ポンプ30を起動して冷
房を行う場合は、室外機1の直ぐ下に当たる上層階に設
置した熱交換器5にも十分な量の冷媒液が供給できると
云った利点がある。
As described above, when the electric pump 30 is started to perform cooling, a sufficient amount of the refrigerant liquid can be supplied to the heat exchanger 5 installed on the upper floor immediately below the outdoor unit 1. There are advantages.

【0007】一方、室内機4が設置されている室内空気
の温度が低いときに、開閉弁32・33を閉じて開閉弁
31・34を開けると共に、流量調整弁8も開け、電動
ポンプ30を起動した状態で、室外機1において発生さ
せる温熱によって閉回路3に封入した冷媒を加熱して蒸
発させると、室外機1で蒸発した冷媒蒸気は気相管7を
介して熱交換器5に流入する。
On the other hand, when the temperature of the indoor air in which the indoor unit 4 is installed is low, the on-off valves 32 and 33 are closed and the on-off valves 31 and 34 are opened, and the flow control valve 8 is also opened, so that the electric pump 30 is opened. When the refrigerant sealed in the closed circuit 3 is heated and evaporated by the heat generated in the outdoor unit 1 in the activated state, the refrigerant vapor evaporated in the outdoor unit 1 flows into the heat exchanger 5 through the gas phase pipe 7. I do.

【0008】そして、熱交換器5に流入した冷媒蒸気
は、熱交換器の管壁を介して室内空気に放熱して暖房作
用を行うと共に、冷媒自身は凝縮して液相管6に流入
し、開閉弁34・31を介して電動ポンプ30により室
外機1に還流すると云った循環が起こり、室内機4にお
ける暖房運転が継続されるようになっている。
[0008] The refrigerant vapor flowing into the heat exchanger 5 radiates heat to room air through the pipe wall of the heat exchanger to perform a heating action, and the refrigerant itself condenses and flows into the liquid phase pipe 6. Then, circulation such as reflux to the outdoor unit 1 by the electric pump 30 via the on-off valves 34 and 31 occurs, and the heating operation in the indoor unit 4 is continued.

【0009】しかし、この特開平7−151359号公
報に開示された空調装置においては、電動ポンプを停止
して冷媒を自然循環させて冷房を行う場合には、電力消
費がピークとなる夏期の電力消費が削減でき、ランニン
グコストの抑制が実現できるが、室外機との上下差が小
さい上層階の室内機には十分な量の冷媒が供給され難い
上に、同一階に設置された室内機であっても、配管の長
さの相違や、引き回し角度などによって冷媒が供給され
易い場合と、供給され難い場合とがあり、室内温度の制
御が正確に行い難いと云った問題点がある。
However, in the air conditioner disclosed in Japanese Patent Application Laid-Open No. Hei 7-151359, when cooling is performed by stopping the electric pump and allowing the refrigerant to circulate spontaneously, the power consumption in summer when peak power consumption occurs. Although it is possible to reduce consumption and reduce running costs, it is difficult to supply a sufficient amount of refrigerant to indoor units on upper floors where the vertical difference with outdoor units is small, and indoor units installed on the same floor Even so, there is a case where the refrigerant is easily supplied or a case where it is difficult to supply the refrigerant due to a difference in the length of the pipe, a routing angle, or the like, and there is a problem that it is difficult to accurately control the indoor temperature.

【0010】一方、電動ポンプを起動すれば、上層階に
設置の室内機にも十分な量の冷媒が供給でき、必要な冷
房作用が確保できるが、ポンプを駆動するための電力が
必要となる。しかも、この場合の電動ポンプは暖房運転
時に室内機で凝縮した冷媒液を上方に設置した室外機ま
で搬送することができる能力を備えた大型のポンプであ
るため、電力消費が一層嵩むと云った問題点がある。
[0010] On the other hand, when the electric pump is started, a sufficient amount of refrigerant can be supplied to the indoor unit installed on the upper floor, and the necessary cooling action can be ensured. However, electric power for driving the pump is required. . Moreover, since the electric pump in this case is a large-sized pump capable of transporting the refrigerant liquid condensed in the indoor unit to the outdoor unit installed above during the heating operation, power consumption is further increased. There is a problem.

【0011】また、室外機と電動ポンプとが上下に分か
れて設置されているため、設備の保守点検が面倒である
と云った問題点もあった。
Further, since the outdoor unit and the electric pump are installed vertically, there is another problem that the maintenance and inspection of the equipment is troublesome.

【0012】さらに、閉回路内の冷媒圧力が急減したと
きに、液相管に設けた電動ポンプが空転したり、破損す
ることがあると云った問題点もあった。すなわち、冷暖
何れの空調運転においても、閉回路内の圧力が急減して
液相管で冷媒が沸騰蒸発すると、ポンプに冷媒液が流入
しなくなるので、冷媒によってベアリング潤滑とモータ
冷却とを行うキャンドタイプのポンプにおいては破損す
ることがあった。
Further, when the refrigerant pressure in the closed circuit suddenly decreases, there is another problem that the electric pump provided in the liquid phase pipe may run idle or break. That is, in both the cooling and heating air conditioning operations, when the pressure in the closed circuit suddenly decreases and the refrigerant boils and evaporates in the liquid phase tube, the refrigerant liquid does not flow into the pump, so that the refrigerant performs bearing lubrication and motor cooling. In some cases, the pump was broken.

【0013】一方、吸収式冷凍機からなる室外機で凝縮
した冷媒を、室外機と室内機とを連結する液相管を介し
て室内機に供給して蒸発させ、このときの蒸発潜熱によ
って室内空気を冷却して冷房を行い、室内機で蒸発した
冷媒を室外機と室内機とを連結する気相管に設けた冷媒
圧縮機で圧縮して室外機に戻す冷房運転と、室外機で蒸
発した冷媒を気相管の冷媒圧縮機で圧縮して室内機に供
給し、室内機で凝縮させてこの凝縮潜熱で室内空気を加
熱して暖房を行い、室内機で凝縮した冷媒を液相管を介
して室外機に戻す暖房運転と、の何れかが選択して行え
るように構成した空調装置が、特公平4−46342号
公報に提案されている。
On the other hand, the refrigerant condensed in the outdoor unit comprising the absorption refrigerator is supplied to the indoor unit via a liquid phase pipe connecting the outdoor unit and the indoor unit to evaporate, and the latent heat of evaporation at this time causes the indoor unit to evaporate. Cooling by cooling the air, refrigerant cooled in the indoor unit is compressed by the refrigerant compressor installed in the gas phase pipe connecting the outdoor unit and the indoor unit, and returned to the outdoor unit. The compressed refrigerant is compressed by a refrigerant compressor in a gas phase tube, supplied to the indoor unit, condensed in the indoor unit, and heated by heating the indoor air with the condensed latent heat. An air conditioner configured to be able to selectively perform a heating operation of returning to an outdoor unit via the air conditioner is proposed in Japanese Patent Publication No. 4-46342.

【0014】この特公平4−46342号公報の冷暖房
装置は、室外機を例えばビルの屋上に設置して各階の冷
房を行うときには、室外機で凝縮した冷媒液をその自重
を利用して液相管により各階に設けた室内機に供給し、
室内機で蒸発した冷媒蒸気を冷媒圧縮機で圧縮して屋上
の室外機に戻す冷媒循環となるので、冷媒圧縮機は小型
でも良いが、暖房運転時には各階の室内機で凝縮した冷
媒液を屋上の室外機まで押し上げる冷媒循環となるの
で、冷媒圧縮機は大型である必要がある。したがって、
現状では暖房運転時の能力を満足する大型の冷媒圧縮機
が設置されてあり、その運転にも工夫がないので、前記
特開平7−151359号公報に開示された空調装置と
同様、冷房運転時における省電力も実現されていない。
In the cooling and heating apparatus disclosed in Japanese Patent Publication No. 4-46342, when an outdoor unit is installed on the roof of a building, for example, and cooling is performed on each floor, the refrigerant liquid condensed by the outdoor unit is used by utilizing its own weight to form a liquid phase. Supply to indoor units provided on each floor by pipes,
Refrigerant vapor compressed in the indoor unit is compressed by the refrigerant compressor and returned to the outdoor unit on the roof, so that the refrigerant circulates.Therefore, the refrigerant compressor may be small, but during the heating operation, the refrigerant liquid condensed in the indoor unit on each floor is rooftop. Therefore, the refrigerant compressor needs to be large because the refrigerant is pushed up to the outdoor unit. Therefore,
At present, a large-sized refrigerant compressor that satisfies the capacity at the time of the heating operation is installed, and there is no contrivance in the operation. Therefore, similar to the air conditioner disclosed in the above-mentioned JP-A-7-151359, the cooling operation is Power saving has not been realized.

【0015】[0015]

【発明が解決しようとする課題】このため、閉回路内の
圧力が急減しても冷媒圧縮機が空転して破損すると云っ
たことが起こらず、しかも発電量が最大となる夏期の消
費電力が削減できる冷暖房可能な空調装置を提供する必
要があった。
Therefore, even if the pressure in the closed circuit drops sharply, the refrigerant compressor does not run idle and break, and the power consumption in summer when the amount of power generation is maximized is reduced. There was a need to provide an air-conditioning system capable of cooling and heating.

【0016】[0016]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、室外機と、全数もしくは過半数が
室外機より下方に設置された複数の室内機との間を、液
相管と、冷媒圧縮機および流路切替機構を備えた気相管
とで環状に連結し、室外機で放熱し凝縮した作動流体を
液相管を介して各室内機に供給し、各室内機で吸熱し蒸
発したガス状の流体を前記冷媒圧縮機により室外機に戻
す冷房運転と、室外機で吸熱し蒸発したガス状の流体を
前記冷媒圧縮機により各室内機に供給し、各室内機で放
熱し凝縮した作動流体を液相管を介して室外機に戻す暖
房運転とが選択できる空調装置において、前記冷媒圧縮
機の運転能力を作動流体の状態に応じて制御するパワー
セーブ機構を備えるようにした空調装置と、この空調装
置において室外機を吸収式冷凍機から構成するようにし
た空調装置と、
In order to solve the above-mentioned problems of the prior art, the present invention provides a liquid phase pipe between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. And a refrigerant compressor and a gas phase tube having a flow path switching mechanism, which are connected in a ring shape, and a working fluid condensed by radiating heat in the outdoor unit is supplied to each indoor unit through a liquid phase tube. A cooling operation in which the absorbed and evaporated gaseous fluid is returned to the outdoor unit by the refrigerant compressor, and a gaseous fluid that has absorbed and evaporated in the outdoor unit is supplied to each indoor unit by the refrigerant compressor. In an air conditioner capable of selecting a heating operation in which a working fluid that has radiated heat and condensed is returned to an outdoor unit via a liquid phase pipe, a power saving mechanism that controls an operating capacity of the refrigerant compressor according to a state of the working fluid may be provided. Air conditioner and the outdoor unit in this air conditioner And the air conditioning apparatus that consist absorption chiller,

【0017】前記構成の空調装置において、冷房運転時
には前記冷媒圧縮機の運転能力を下げて運転し、暖房運
転時には前記冷媒圧縮機の運転能力を上げて運転するよ
うにした空調方法と、を提供するものである。
In the air conditioner having the above-described structure, there is provided an air conditioning method in which the operation capacity of the refrigerant compressor is reduced during cooling operation, and the operation capacity of the refrigerant compressor is increased during heating operation. Is what you do.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図1〜図3を参照して説明する。なお、理解を容易
にするため、これらの図においても前記図4において説
明した部分と同様の機能を有する部分には、同一の符号
を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. In these figures, the same reference numerals are given to the portions having the same functions as the portions described in FIG. 4 for easy understanding.

【0019】図1において、1は冷熱と温熱の何れか一
方を選択的に供給することができる、例えば吸収式冷凍
機などからなる室外機であり、建物の例えば屋上にある
機械室などに設置され、例えば蒸発器の内部に配管した
熱交換器2を介して、閉回路3に封入した相変化が可能
な流体、例えば低温度でも圧力が低下すると容易に蒸発
し得る、冷媒のR−134aと熱の授受を行う。
In FIG. 1, reference numeral 1 denotes an outdoor unit which can selectively supply either cold or hot heat, for example, an absorption refrigerator or the like, which is installed in a machine room, for example, on a rooftop of a building. For example, R-134a of a refrigerant capable of phase change sealed in a closed circuit 3, for example, a refrigerant R-134a that can be easily evaporated when the pressure is reduced even at a low temperature, via a heat exchanger 2 piped inside an evaporator. And exchange heat.

【0020】なお、蒸発器に配管した熱交換器2から冷
熱を供給したり、温熱を供給することができる吸収式冷
凍機としては、例えば特開平7−318189号公報な
どに開示されたものが使用できる。
As an absorption refrigerator capable of supplying cold heat or hot heat from the heat exchanger 2 connected to the evaporator, for example, one disclosed in Japanese Patent Application Laid-Open No. 7-318189 is disclosed. Can be used.

【0021】5は、建物の各部屋に設置した室内機4の
熱交換器であり、室外機1の熱交換器2とは、図のよう
に液相管6・気相管7および流量調整弁8により配管・
接続されて、前記閉回路3を形成している。
Reference numeral 5 denotes a heat exchanger of the indoor unit 4 installed in each room of the building. The heat exchanger 2 of the outdoor unit 1 is connected to the liquid phase pipe 6, the gas phase pipe 7 and the flow rate control as shown in the figure. Piping with valve 8
Connected to form the closed circuit 3.

【0022】そして、液相管6には、室外機1の熱交換
器2で放熱し、凝縮して流れ出た液体のR−134aを
溜めるためのレシーバタンク9を、気相管7には、室外
機1の熱交換器2で吸熱し、蒸発して流れ出た気体のR
−134aを圧縮して室内機4に搬送したり、室内機4
の熱交換器5で吸熱し、蒸発して流れ出た気体のR−1
34aを圧縮して室外機1に搬送したりすることができ
るように、四方弁10と、吐出流体の一部を流入口側に
戻す構成にして吐出量を可変にした、それ自体は従来周
知のいわゆるパワーセーブ型の圧縮機11とを図のよう
に設置し、さらに、気相管7の室外機1に臨む部分と、
レシーバタンク9の気相部とを均圧管12によって連結
し、レシーバタンク9には内部に溜っているR−134
aの量を、圧力・電位差・靜電容量などから検出する液
面センサ13を設けてある。
The liquid phase tube 6 has a receiver tank 9 for storing the R-134a of the liquid radiated and condensed and flowing out in the heat exchanger 2 of the outdoor unit 1, and the gas phase tube 7 has The R of the gas that has absorbed heat in the heat exchanger 2 of the outdoor unit 1, evaporated and flowed out
-134a is compressed and transported to the indoor unit 4,
The heat absorbed by the heat exchanger 5 of FIG.
The four-way valve 10 and a configuration in which a part of the discharge fluid is returned to the inlet side so as to be able to compress and convey the compressed fluid 34a to the outdoor unit 1 to make the discharge amount variable. A so-called power-save type compressor 11 is installed as shown in the figure, and a portion of the gas-phase tube 7 facing the outdoor unit 1;
The gas phase of the receiver tank 9 is connected to the receiver tank 9 by the pressure equalizing tube 12.
A liquid level sensor 13 for detecting the amount of “a” from pressure, potential difference, capacitance, and the like is provided.

【0023】なお、14は、室内空気を熱交換器5に吹
き付けて室内に還流させるための送風機、15は図示し
ない吸収液を加熱して冷媒蒸気を蒸発分離するためのバ
ーナ16に接続した燃料管に設けた燃料調整弁、17〜
20は閉回路3を循環しているR−134aの温度を検
出するための温度センサであり、温度センサ17と18
は熱交換器2の出入口部に、温度センサ19と20は熱
交換器5の出入口部に、それぞれ設けられている。
Reference numeral 14 denotes a blower for blowing indoor air to the heat exchanger 5 to recirculate the indoor air, and 15 denotes a fuel connected to a burner 16 for heating an absorbing liquid (not shown) to evaporate and separate refrigerant vapor. Fuel control valve provided in pipe, 17-
Reference numeral 20 denotes a temperature sensor for detecting the temperature of R-134a circulating in the closed circuit 3, and temperature sensors 17 and 18
Are provided at the entrance and exit of the heat exchanger 2, and the temperature sensors 19 and 20 are provided at the entrance and exit of the heat exchanger 5, respectively.

【0024】また、室外機1には室外制御装置21を、
室内機4には室内制御装置22を設けてある。そして、
室外制御装置21は、冷房運転時に温度センサ18が検
出するR−134aの温度、すなわち熱交換器2で冷却
作用を受けて液相管6に吐出するR−134aの温度が
所定温度、例えば7℃になるように、燃料調整弁15の
開度を調節する機能と、暖房運転時に温度センサ17が
検出するR−134aの温度、すなわち熱交換器2で加
熱作用を受けて気相管7に吐出するR−134aの温度
が所定温度、例えば55℃になるように、燃料調整弁1
5の開度を調節する機能とを備え、室内制御装置22
は、冷房運転時に温度センサ20が検出するR−134
aの温度、すなわち熱交換器5を介して冷房作用を果た
し、温度上昇して気相管7に吐出するR−134aの温
度が所定温度、例えば12℃になるように流量調整弁8
の開度を調節する機能と、暖房運転時に温度センサ20
が検出するR−134aの温度、すなわち熱交換器5を
介して暖房作用を果たし、温度低下して気相管7に吐出
するR−134aの温度が所定温度、例えば45℃にな
るように流量調整弁8の開度を調節する機能とを備えて
いる。
The outdoor unit 1 is provided with an outdoor controller 21.
The indoor unit 4 is provided with an indoor control device 22. And
The outdoor control device 21 determines that the temperature of the R-134a detected by the temperature sensor 18 during the cooling operation, that is, the temperature of the R-134a discharged to the liquid phase pipe 6 after being cooled by the heat exchanger 2 is a predetermined temperature, for example, 7 ° C, the function of adjusting the opening of the fuel regulating valve 15 and the temperature of the R-134a detected by the temperature sensor 17 during the heating operation, that is, the gas-phase pipe 7 The fuel control valve 1 is controlled so that the temperature of the discharged R-134a becomes a predetermined temperature, for example, 55 ° C.
5, the function of adjusting the opening of the indoor control device 22.
Is R-134 detected by the temperature sensor 20 during the cooling operation.
The flow control valve 8 performs a cooling operation through the heat exchanger 5, that is, the temperature of the R-134a discharged to the gas phase pipe 7 to a predetermined temperature, for example, 12 ° C.
Function for adjusting the opening of the air conditioner and the temperature sensor 20 during the heating operation.
The temperature of the R-134a detected by the heat exchanger 5 performs a heating action via the heat exchanger 5, and the flow rate decreases so that the temperature of the R-134a discharged to the gas phase tube 7 drops to a predetermined temperature, for example, 45 ° C. A function of adjusting the opening of the regulating valve 8.

【0025】また、室内制御装置22と通信可能で、冷
房の起動/停止、送風の強弱選択、温度設定などが行え
るリモコン23を各室内機4に対応して設置してある。
A remote controller 23 communicable with the indoor controller 22 and capable of starting / stopping cooling, selecting the level of air blowing, setting a temperature, and the like is provided for each indoor unit 4.

【0026】そして、室外機1においては、冷房運転時
に燃料調整弁15の開度を大きくし、バーナ16に供給
する燃料を増やして火力を増加すると、図示しない吸収
液から蒸発分離する冷媒の量が増加する。この増加した
冷媒蒸気が、図示しない凝縮器で放熱して凝縮し、液体
となって熱交換器2の周囲に供給され、熱交換器2内を
流れるR−134aから熱を奪って蒸発するので、熱交
換器2内を流れるR−134aを冷却する機能が強化さ
れ、流量が同じであればその温度低下幅が拡大する。逆
に、燃料調整弁15の開度を小さくしてバーナ16の火
力を減じると、熱交換器2内を流れるR−134aを冷
却する機能が弱まり、その温度低下幅は縮小する。
In the outdoor unit 1, when the opening of the fuel regulating valve 15 is increased during the cooling operation to increase the fuel supplied to the burner 16 and the thermal power is increased, the amount of refrigerant that evaporates and separates from the absorbent (not shown) is increased. Increase. The increased refrigerant vapor radiates heat in a condenser (not shown) and condenses, becomes a liquid, is supplied to the periphery of the heat exchanger 2, and takes heat from the R-134a flowing in the heat exchanger 2 to evaporate. The function of cooling the R-134a flowing in the heat exchanger 2 is strengthened, and if the flow rate is the same, the range of temperature decrease is increased. Conversely, when the opening of the fuel control valve 15 is reduced to reduce the thermal power of the burner 16, the function of cooling the R-134a flowing in the heat exchanger 2 is weakened, and the temperature reduction width is reduced.

【0027】一方、暖房運転時に燃料調整弁15の開度
を大きくし、バーナ16に供給する燃料を増やして火力
を増加すると、図示しない吸収液から蒸発分離する冷媒
の量が増加し、この増加した冷媒蒸気と、温度が上昇し
た溶液とが熱交換器2の周囲に供給され、熱交換器2内
を流れるR−134aを加熱するので、熱交換器2内を
流れるR−134aを加熱する機能が強化され、流量が
同じであればその温度上昇幅が拡大する。逆に、燃料調
整弁15の開度を小さくしてバーナ16の火力を減じる
と、熱交換器2内を流れるR−134aを加熱する機能
が弱まり、その温度上昇幅は縮小する。
On the other hand, when the opening of the fuel regulating valve 15 is increased during the heating operation to increase the heating power by increasing the fuel supplied to the burner 16, the amount of the refrigerant that evaporates and separates from the absorption liquid (not shown) increases. The heated refrigerant vapor and the solution whose temperature has increased are supplied to the periphery of the heat exchanger 2 and heat the R-134a flowing in the heat exchanger 2, so that the R-134a flowing in the heat exchanger 2 is heated. The function is enhanced, and the temperature rise is increased if the flow rate is the same. Conversely, when the opening of the fuel regulating valve 15 is reduced to reduce the thermal power of the burner 16, the function of heating the R-134a flowing in the heat exchanger 2 is weakened, and the temperature rise is reduced.

【0028】なお、室内機4においては、流量調整弁8
の開度が同じであれば、空調負荷が大きいほど温度セン
サ19と20が検出するR−134aの温度差は拡大
し、空調負荷が小さいほど前記温度差は縮小する。
In the indoor unit 4, the flow control valve 8
Are the same, the larger the air conditioning load, the larger the temperature difference of R-134a detected by the temperature sensors 19 and 20 increases, and the smaller the air conditioning load, the smaller the temperature difference.

【0029】次に、閉回路3に封入したR−134aの
循環サイクルを説明すると、室内機4で冷房を行うとき
には、前記したように、室内機4の熱交換器5で吸熱し
て蒸発した気体のR−134aが圧縮機11に流入し、
圧縮されて圧縮機11から吐出したR−134aが室外
機1に流入するように四方弁10を切り替えて、室外機
1で冷熱を発生させるので、R−134aは熱交換器2
の管壁を介して冷却される。したがって、R−134a
は凝縮して液相管6に吐出し、レシーバタンク10に溜
り、各室内機4の熱交換器5に所定温度、例えば7℃で
供給される。
Next, the circulation cycle of R-134a sealed in the closed circuit 3 will be described. When cooling is performed in the indoor unit 4, as described above, heat is absorbed by the heat exchanger 5 of the indoor unit 4 and evaporated. Gas R-134a flows into the compressor 11,
The four-way valve 10 is switched so that the R-134a that has been compressed and discharged from the compressor 11 flows into the outdoor unit 1, and the outdoor unit 1 generates cold heat.
Is cooled through the tube wall. Therefore, R-134a
Is condensed and discharged to the liquid phase tube 6, accumulates in the receiver tank 10, and is supplied to the heat exchanger 5 of each indoor unit 4 at a predetermined temperature, for example, 7 ° C.

【0030】一方、各室内機4においては、送風機9に
よって温度の高い室内空気が強制的に供給されているの
で、室外機1から7℃で供給された液体のR−134a
は室内空気から熱を奪って蒸発し、冷房作用を行なう。
On the other hand, in each indoor unit 4, since the high temperature indoor air is forcibly supplied by the blower 9, the liquid R-134a supplied from the outdoor unit 1 at 7 ° C.
Removes heat from indoor air and evaporates to perform a cooling operation.

【0031】そして、蒸発して気体となったR−134
aは、冷却されて凝縮・液化し、低圧になっている室外
機1の熱交換器2に圧縮機11により圧縮されて戻る。
Then, R-134 which has evaporated to a gaseous state.
a is cooled, condensed and liquefied, and compressed by the compressor 11 to the low-pressure heat exchanger 2 of the outdoor unit 1 and returned.

【0032】この冷房運転においては、液相管6に流れ
出た液体のR−134aはその自重によって自然に流下
し、気相管7に流れ出た気体のR−134aは気体の特
性により拡散し、上昇するので、外力を作用させなくて
も循環が自然に始まる。したがって、圧縮機11はその
パワーを下げて運転する。例えば、図2に示したよう
に、パワーの最大を定格の50%に抑えて、液面センサ
13が検出するR−134aの液面レベルが低いほどパ
ワーを上げて運転するように制御する。
In this cooling operation, the R-134a of the liquid flowing out of the liquid phase pipe 6 flows down naturally by its own weight, and the R-134a of the gas flowing out of the gas phase pipe 7 diffuses due to the characteristics of the gas. As it rises, circulation starts naturally without any external force. Therefore, the compressor 11 operates with its power reduced. For example, as shown in FIG. 2, control is performed such that the maximum power is suppressed to 50% of the rated value, and the lower the liquid level of R-134a detected by the liquid level sensor 13, the higher the power and the operation is performed.

【0033】なお、このR−134aの循環において、
ある室内機4における冷房負荷が増加(または減少)
し、その室内機4の温度センサ20が検出するR−13
4aの温度が上昇(または低下)すると、その温度上昇
(または温度低下)が解消するように、その室内制御装
置22からの制御信号を受けて該当する流量調整弁8の
開度が増加(または減少)し、冷房負荷が増加した室内
機4の熱交換器5に流入するR−134aの量が増加
(または減少)するので、その温度センサ20が検出す
るR−134aの温度上昇(または低下)はその内解消
する。
In the circulation of R-134a,
The cooling load in a certain indoor unit 4 increases (or decreases)
R-13 detected by the temperature sensor 20 of the indoor unit 4
When the temperature of 4a increases (or decreases), the opening of the corresponding flow control valve 8 increases (or decreases) in response to a control signal from the indoor control device 22 so that the increase in temperature (or decrease in temperature) is canceled. Since the amount of R-134a flowing into the heat exchanger 5 of the indoor unit 4 whose cooling load has increased increases (or decreases), the temperature of the R-134a detected by the temperature sensor 20 increases (or decreases). ) Will be resolved.

【0034】そして、冷房負荷の変動に起因する、温度
が変化したR−134aが室外機1に流入したり、室外
機1に流入するR−134aの流量が変化して、温度セ
ンサ18が検出するR−134aの温度に変化が生じる
と、その変化を解消するように、燃料調整弁15の開度
を室外制御装置21により制御する。
The R-134a whose temperature has changed due to the fluctuation of the cooling load flows into the outdoor unit 1 or the flow rate of the R-134a flowing into the outdoor unit 1 changes, and the temperature sensor 18 detects the change. When the temperature of the R-134a changes, the outdoor control device 21 controls the opening of the fuel adjustment valve 15 so as to eliminate the change.

【0035】一方、室内機4で暖房を行うときには、前
記したように、室外機1の熱交換器2で吸熱して蒸発し
た気体のR−134aが圧縮機11に流入し、圧縮され
て圧縮機11から吐出したR−134aが室内機4に流
入するように四方弁10を切り替えて、室外機1で温熱
を発生させるので、R−134aは熱交換器2の管壁を
介して加熱される。したがって、R−134aは蒸発し
て気相管7に所定温度、例えば55℃で吐出し、圧縮機
11により圧縮されて、各室内機4の熱交換器5に供給
される。
On the other hand, when heating is performed by the indoor unit 4, as described above, the gas R-134a that has absorbed and evaporated in the heat exchanger 2 of the outdoor unit 1 flows into the compressor 11, where it is compressed and compressed. Since the four-way valve 10 is switched so that the R-134a discharged from the unit 11 flows into the indoor unit 4 and the outdoor unit 1 generates heat, the R-134a is heated via the tube wall of the heat exchanger 2. You. Therefore, the R-134a evaporates and is discharged to the gas phase pipe 7 at a predetermined temperature, for example, 55 ° C., compressed by the compressor 11 and supplied to the heat exchanger 5 of each indoor unit 4.

【0036】各室内機4においては、送風機9によって
強制的に供給された温度の低い室内空気にR−134a
が放熱して凝縮・液化し、この凝縮・液化時に暖房作用
を行ない、さらに、凝縮したR−134aの液体が流量
調整弁8を通って液相管6に流れ出る。
In each indoor unit 4, R-134a is added to the low-temperature indoor air forcibly supplied by the blower 9.
Dissipates heat and condenses and liquefies, performs a heating action during this condensing and liquefaction, and the condensed R-134a liquid flows out to the liquid phase pipe 6 through the flow control valve 8.

【0037】この暖房運転においては、液相管6に流れ
出た液体のR−134aを圧縮機11の吐出圧により押
し上げて室外機1に戻す必要があるので、圧縮機11は
そのパワーを上げて運転する。例えば、図3に示したよ
うに、パワーの最大を定格の100%にして、液面セン
サ13Aが検出する熱交換器2内のR−134aの液面
レベルが低いほどパワーを上げて運転するように制御す
る。
In this heating operation, it is necessary to push up the R-134a of the liquid flowing out to the liquid phase pipe 6 by the discharge pressure of the compressor 11 and return it to the outdoor unit 1, so that the compressor 11 increases its power. drive. For example, as shown in FIG. 3, the maximum power is set to 100% of the rating, and the lower the liquid level of R-134a in the heat exchanger 2 detected by the liquid level sensor 13A, the higher the power and the operation is performed. Control.

【0038】なお、このR−134aの循環において
も、ある室内機4における暖房負荷が増加(または減
少)し、その室内機4の温度センサ19が検出するR−
134aの温度が低下(または上昇)すると、その温度
低下(または温度上昇)が解消するように、その室内制
御装置22からの制御信号を受けて該当する流量調整弁
8の開度が増加(または減少)し、暖房負荷が増加した
室内機4の熱交換器5に流入するR−134aの量が増
加(または減少)するので、その温度センサ19が検出
するR−134aの温度低下(または上昇)はその内解
消する。
In the circulation of R-134a, the heating load in a certain indoor unit 4 also increases (or decreases), and the temperature of the R-134a detected by the temperature sensor 19 of the indoor unit 4 increases.
When the temperature of 134a decreases (or increases), the opening of the corresponding flow control valve 8 increases (or decreases) in response to a control signal from the indoor control device 22 so that the temperature decrease (or temperature increase) is eliminated. Since the amount of R-134a flowing into the heat exchanger 5 of the indoor unit 4 whose heating load has increased increases (or decreases), the temperature of the R-134a detected by the temperature sensor 19 decreases (or increases). ) Will be resolved.

【0039】そして、暖房負荷の変動に起因する、温度
が変化したR−134aが室外機1に流入したり、室外
機1に流入するR−134aの流量が変化して、温度セ
ンサ17が検出するR−134aの温度に変化が生じる
と、その変化を解消するように、燃料調整弁15の開度
を室外制御装置21により制御する。
The R-134a whose temperature has changed due to a change in the heating load flows into the outdoor unit 1 or the flow rate of the R-134a flowing into the outdoor unit 1 changes, and the temperature sensor 17 detects the change. When the temperature of the R-134a changes, the outdoor control device 21 controls the opening of the fuel adjustment valve 15 so as to eliminate the change.

【0040】上記したように、本発明の空調装置および
空調方法は、圧縮機11をパワーセーブ型で構成すると
共に、夏期の冷房を圧縮機11のパワーを定格より落と
して行うので、電力消費量がピークとなる夏期の電力消
費が削減できるし、レシーバタンク9・四方弁10・圧
縮機11を室外機1と同じ高所に設置してあるので、設
備の保守点検が容易に行える。
As described above, according to the air conditioner and the air conditioning method of the present invention, the compressor 11 is configured as a power save type, and the cooling in summer is performed with the power of the compressor 11 being lower than the rated power. The peak power consumption can be reduced in summer, and the receiver tank 9, the four-way valve 10, and the compressor 11 are installed at the same height as the outdoor unit 1, so that maintenance and inspection of the equipment can be easily performed.

【0041】ところで、本発明は上記実施形態に限定さ
れるものではないので、特許請求の範囲に記載の趣旨か
ら逸脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the present invention.

【0042】例えば、温度センサ19・20は、熱交換
器5に吹き付ける室内空気の温度変化が検出できるよう
に設置したり、温度センサ19・20に代えて、熱交換
器5の出入口部におけるR−134aの圧力差が検出で
きる圧力センサを設置して、室内制御装置22に空調負
荷として出力するように構成することもできる。
For example, the temperature sensors 19 and 20 are installed so as to be able to detect a change in the temperature of the indoor air blown to the heat exchanger 5, and the temperature sensors 19 and 20 are replaced with the R at the entrance and exit of the heat exchanger 5. A pressure sensor capable of detecting the pressure difference of -134a may be provided and output to the indoor control device 22 as an air conditioning load.

【0043】そして、閉回路3に封入する相変化可能な
流体としては、R−134aの他にも、温度と圧力の制
御によって容易に相変化するR−407c、R−404
A、R−410cなどであっても良い。
The phase-changeable fluid sealed in the closed circuit 3 is not only R-134a but also R-407c and R-404, which can easily change phase by controlling temperature and pressure.
A, R-410c or the like.

【0044】また、レシーバタンク9・四方弁10・圧
縮機11などを、室外機1に併設したり、その内部に組
み込むことで、装置構成が一層簡略化できるし、設備の
保守点検はさらに容易に行えるようになる。
Further, by installing the receiver tank 9, four-way valve 10, compressor 11, etc. in the outdoor unit 1 or by incorporating them inside the outdoor unit 1, the apparatus configuration can be further simplified, and maintenance and inspection of the equipment can be further facilitated. Will be able to do it.

【0045】[0045]

【発明の効果】以上説明したように、本発明の空調装置
とその空調方法によれば、電力消費量がピークとなる夏
期の電力消費が削減できる。また、気相管に設置する圧
縮機と流路切替機構とを、室外機と同じ高所に設置する
ことで、設備の保守点検が容易に行えるようになる。
As described above, according to the air conditioner and the air conditioning method of the present invention, it is possible to reduce the power consumption in summer when the power consumption peaks. Further, by installing the compressor and the flow path switching mechanism installed in the gas phase tube at the same height as the outdoor unit, maintenance and inspection of the equipment can be easily performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装置構成を示す説明図である。FIG. 1 is an explanatory diagram showing an apparatus configuration.

【図2】冷房運転時における圧縮機の制御例を示す説明
図である。
FIG. 2 is an explanatory diagram showing a control example of a compressor during a cooling operation.

【図3】暖房運転時における圧縮機の制御例を示す説明
図である。
FIG. 3 is an explanatory diagram showing a control example of a compressor during a heating operation.

【図4】従来技術の説明図である。FIG. 4 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 室外機 2 熱交換器 3 閉回路 4 室内機 5 熱交換器 6 液相管 7 気相管 8 流量調整弁 9 レシーバタンク 10 四方弁 11 圧縮機 12 均圧管 13・13A 液面センサ 14 送風機 15 燃料調整弁 16 バーナ 17〜20 温度センサ 21 室外制御装置 22 室内制御装置 23 リモコン DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Heat exchanger 3 Closed circuit 4 Indoor unit 5 Heat exchanger 6 Liquid phase tube 7 Gas phase tube 8 Flow control valve 9 Receiver tank 10 Four-way valve 11 Compressor 12 Pressure equalizing tube 13 / 13A Liquid level sensor 14 Blower 15 Fuel control valve 16 Burner 17-20 Temperature sensor 21 Outdoor control device 22 Indoor control device 23 Remote control

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 室外機と、全数もしくは過半数が室外機
より下方に設置された複数の室内機との間を、液相管
と、冷媒圧縮機および流路切替機構を備えた気相管とで
環状に連結し、室外機で放熱し凝縮した作動流体を液相
管を介して各室内機に供給し、各室内機で吸熱し蒸発し
たガス状の流体を前記冷媒圧縮機により室外機に戻す冷
房運転と、室外機で吸熱し蒸発したガス状の流体を前記
冷媒圧縮機により各室内機に供給し、各室内機で放熱し
凝縮した作動流体を液相管を介して室外機に戻す暖房運
転とが選択できる空調装置であって、前記冷媒圧縮機の
運転能力を作動流体の状態に応じて制御するパワーセー
ブ機構を備えたことを特徴とする空調装置。
A liquid-phase pipe and a gas-phase pipe provided with a refrigerant compressor and a flow path switching mechanism, between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. The working fluid condensed and radiated by the outdoor unit is supplied to each indoor unit via the liquid phase pipe, and the gaseous fluid absorbed and evaporated by each indoor unit is sent to the outdoor unit by the refrigerant compressor. Cooling operation to return, and a gaseous fluid that has absorbed heat and evaporated in the outdoor unit is supplied to each indoor unit by the refrigerant compressor, and the working fluid condensed by releasing heat in each indoor unit is returned to the outdoor unit via the liquid phase pipe. An air conditioner capable of selecting a heating operation, the air conditioner including a power save mechanism for controlling an operation capability of the refrigerant compressor according to a state of a working fluid.
【請求項2】 室外機が吸収式冷凍機からなることを特
徴とする請求項1記載の空調装置。
2. The air conditioner according to claim 1, wherein the outdoor unit comprises an absorption refrigerator.
【請求項3】 室外機と、全数もしくは過半数が室外機
より下方に設置された複数の室内機との間を、液相管
と、冷媒圧縮機および流路切替機構を備えた気相管とで
環状に連結し、室外機で放熱し凝縮した作動流体を液相
管を介して各室内機に供給し、各室内機で吸熱し蒸発し
たガス状の流体を前記冷媒圧縮機により室外機に戻す冷
房運転と、室外機で吸熱し蒸発したガス状の流体を前記
冷媒圧縮機により各室内機に供給し、各室内機で放熱し
凝縮した作動流体を液相管を介して室外機に戻す暖房運
転とが選択できる空調装置であって、前記冷媒圧縮機の
運転能力を作動流体の状態に応じて制御するパワーセー
ブ機構を備えると共に、冷房運転時には前記冷媒圧縮機
の運転能力を下げて運転し、暖房運転時には前記冷媒圧
縮機の運転能力を上げて運転することを特徴とする空調
方法。
3. A liquid-phase pipe and a gas-phase pipe provided with a refrigerant compressor and a flow path switching mechanism, between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. The working fluid condensed and radiated by the outdoor unit is supplied to each indoor unit via the liquid phase pipe, and the gaseous fluid absorbed and evaporated by each indoor unit is sent to the outdoor unit by the refrigerant compressor. Cooling operation to return, and a gaseous fluid that has absorbed heat and evaporated in the outdoor unit is supplied to each indoor unit by the refrigerant compressor, and the working fluid condensed by releasing heat in each indoor unit is returned to the outdoor unit via the liquid phase pipe. An air conditioner that can select between heating operation and a power save mechanism that controls the operating capacity of the refrigerant compressor according to the state of the working fluid, and operates while reducing the operating capacity of the refrigerant compressor during cooling operation. During the heating operation, the operating capacity of the refrigerant compressor is increased. An air-conditioning method characterized in that the air conditioner is operated.
【請求項4】 室外機が吸収式冷凍機からなることを特
徴とする請求項3記載の空調方法。
4. The air conditioning method according to claim 3, wherein the outdoor unit comprises an absorption refrigerator.
JP31683897A 1997-11-18 1997-11-18 Air conditioner and air conditioning method Pending JPH11148738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31683897A JPH11148738A (en) 1997-11-18 1997-11-18 Air conditioner and air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31683897A JPH11148738A (en) 1997-11-18 1997-11-18 Air conditioner and air conditioning method

Publications (1)

Publication Number Publication Date
JPH11148738A true JPH11148738A (en) 1999-06-02

Family

ID=18081487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31683897A Pending JPH11148738A (en) 1997-11-18 1997-11-18 Air conditioner and air conditioning method

Country Status (1)

Country Link
JP (1) JPH11148738A (en)

Similar Documents

Publication Publication Date Title
US4569207A (en) Heat pump heating and cooling system
US20140000300A1 (en) Cooling system and cooling method
JP4885481B2 (en) Cooling device operation method
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
JPH1019305A (en) Cooling system
JPH11148738A (en) Air conditioner and air conditioning method
JP3164079B2 (en) Refrigeration equipment
JPH11316038A (en) Air conditioning system
JPH01174834A (en) Air conditioning system for building
JP3615353B2 (en) Operation control method for air conditioner
JPH10170179A (en) Air conditioning apparatus
JP3594426B2 (en) Air conditioner
JP3599980B2 (en) Operating method of air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
KR200291600Y1 (en) control device for air conditioning and heating apparatus refrigerant-pressure
JP3762542B2 (en) Air conditioner
JPH11148681A (en) Air conditioner
JP3594453B2 (en) Operating method of air conditioner
JP3568380B2 (en) Operating method of air conditioner
JPH09243198A (en) Absorption type heat pump
JPH11148744A (en) Air conditioner
KR20020015561A (en) Method for controlling fan of airconditioner
KR0164883B1 (en) Airconditioner with refrigerating cycle by non-azeotropic mixture of high and low boiling coolants
JPH10132331A (en) Air conditioner
JPH10132334A (en) Air conditioner