JPH11148681A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11148681A
JPH11148681A JP9318597A JP31859797A JPH11148681A JP H11148681 A JPH11148681 A JP H11148681A JP 9318597 A JP9318597 A JP 9318597A JP 31859797 A JP31859797 A JP 31859797A JP H11148681 A JPH11148681 A JP H11148681A
Authority
JP
Japan
Prior art keywords
liquid
indoor unit
outdoor unit
cooling
phase pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9318597A
Other languages
Japanese (ja)
Inventor
Akira Hatayama
朗 畑山
Hiroyuki Takada
浩行 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9318597A priority Critical patent/JPH11148681A/en
Publication of JPH11148681A publication Critical patent/JPH11148681A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To quickly discharge bubbles from the liquid-phase pipe, because cooling operation becomes unstable, and condensates from the gase-phase pipe, because heating operation becomes unstable. SOLUTION: An air conditioner is constituted in such a way that an outdoor machine 1 is connected to a plurality of indoor machines 4 positioned at lower levels that the outdoor machine 1 through gaseous-phase pipes 6 and liquid-phase pipes 7 so that each indoor machine 4 may be operated for cooling by introducing a liquid condensed through heat radiation by means of the outdoor machine 1 to the indoor machines 4 for evaporation and returning the evaporated liquid to the outdoor machine 1 or for heating by introducing a gas endothermically evaporated in the outdoor machine 1 to the indoor machines 4 for condensation and returning the condensate to the outdoor machine 1. In the air conditioner, a motor-driven pump 10 and a compressor 12 are respectively connected to a liquid-phase pipe 6 and a gase-phase pipe 7 and a coolant is forcibly carried for both cooling and heating by actuating the pump 10 for cooling and the compressor 12 for heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調装置に関するも
のであり、特に詳しくは室外機と、全数もしくは過半数
が室外機より下方に設置された複数の室内機との間で、
相変化可能な冷媒を循環させ、各室内機において冷暖房
可能に構成した装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to an air conditioner between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit.
The present invention relates to a device configured to circulate a phase-changeable refrigerant so that each indoor unit can be cooled and heated.

【0002】[0002]

【従来の技術】この種の装置として、例えば図2に示し
た構成の空調装置が、例えば特開平7−151359号
公報に開示されている。図中1は冷水または温水が供給
できる室外熱交換器(以下、室外機)、4は室外機1よ
り下層の階に設置された室内機、5は室内機の熱交換
器、8は流量調整弁、27は電動ポンプ、28〜31は
開閉弁であり、これらを液相管6と気相管7とで図のよ
うに配管接続して閉回路3を形成し、閉回路3に封入し
た冷媒が室外機1と室内機4との間で循環して、室内機
4において冷/暖房が行えるようになっている。なお、
32は室外機1の側面に設置された液レベルセンサであ
り、暖房運転時に室外機1に溜った冷媒液が一定となる
ように電動ポンプ27を制御する。
2. Description of the Related Art As this type of apparatus, for example, an air conditioner having the structure shown in FIG. 2 is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-151359. In the figure, 1 is an outdoor heat exchanger capable of supplying cold or hot water (hereinafter referred to as an outdoor unit), 4 is an indoor unit installed on a floor lower than the outdoor unit 1, 5 is a heat exchanger of the indoor unit, and 8 is flow rate adjustment. Valves, 27 are electric pumps, 28 to 31 are on-off valves, and these are connected by piping with a liquid phase pipe 6 and a gas phase pipe 7 as shown in the figure to form a closed circuit 3 and sealed in the closed circuit 3. The refrigerant circulates between the outdoor unit 1 and the indoor unit 4 so that the indoor unit 4 can perform cooling / heating. In addition,
Reference numeral 32 denotes a liquid level sensor installed on the side surface of the outdoor unit 1, and controls the electric pump 27 so that the refrigerant liquid accumulated in the outdoor unit 1 during heating operation is constant.

【0003】すなわち、上記構成の空調装置において
は、室内機4が設置されている室内空気の温度が高いと
きに、電動ポンプ27を停止した状態で、開閉弁28・
29を閉じて開閉弁30・31を開けると共に、流量調
整弁8も開け、室外機1において発生させる冷熱によっ
て閉回路3に封入した冷媒を冷却して凝縮させると、室
外機1で凝縮した冷媒液は液相管6を自重で流下し、開
閉弁30・31および流量調整弁8を介して熱交換器5
に流入する。
That is, in the air conditioner having the above structure, when the temperature of the indoor air in which the indoor unit 4 is installed is high, the on-off valve 28
29 is closed, the on-off valves 30 and 31 are opened, and the flow control valve 8 is also opened to cool and condense the refrigerant sealed in the closed circuit 3 by the cold generated in the outdoor unit 1. The liquid flows down the liquid phase tube 6 by its own weight, and flows through the heat exchanger 5
Flows into.

【0004】そして、熱交換器5に流入した冷媒液は、
熱交換器の管壁を介して室内空気から熱を奪って冷房作
用を行うと共に、冷媒自身は蒸発して気相管7に流入
し、冷媒が凝縮して低圧となっている室外機1に還流す
ると云った自然循環が起こるので、電力消費量が年間を
通じて最大となる夏期に電動ポンプ27を駆動する電力
が不要であり、ランニングコストが削減できると云った
利点がある。
[0004] The refrigerant liquid flowing into the heat exchanger 5 is:
The heat is taken from the indoor air through the pipe wall of the heat exchanger to perform a cooling action, and the refrigerant itself evaporates and flows into the gas phase pipe 7 to condense the refrigerant to the outdoor unit 1 at a low pressure. Since natural circulation such as reflux occurs, there is no need for power to drive the electric pump 27 in summer when power consumption is maximum throughout the year, and there is an advantage that running costs can be reduced.

【0005】また、開閉弁28・31を閉じて開閉弁2
9・30を開けると共に、流量調整弁8も開け、電動ポ
ンプ27を起動して、室外機1において発生させる冷熱
によって閉回路3に封入した冷媒を冷却して凝縮させる
と、室外機1で凝縮した冷媒液は自重と電動ポンプ27
の吐出力とで液相管6を流下し、流量調整弁8を通って
熱交換器5に入り、冷房作用を行う冷媒の循環が強制的
に行われる。
The on-off valves 28 and 31 are closed and the on-off valves 2
9 and 30, the flow control valve 8 is also opened, and the electric pump 27 is started to cool and condense the refrigerant sealed in the closed circuit 3 by the cold generated in the outdoor unit 1. The cooled refrigerant liquid has its own weight and the electric pump 27
With the discharge force, the liquid flows down the liquid phase tube 6, enters the heat exchanger 5 through the flow control valve 8, and forcibly circulates the refrigerant that performs the cooling action.

【0006】このように、電動ポンプ27を起動して冷
房を行う場合は、室外機1の直ぐ下に当たる上層階に設
置した熱交換器5にも十分な量の冷媒液が供給できると
云った利点がある。
As described above, when the electric pump 27 is started to perform cooling, a sufficient amount of refrigerant liquid can be supplied to the heat exchanger 5 installed on the upper floor immediately below the outdoor unit 1. There are advantages.

【0007】一方、室内機4が設置されている室内空気
の温度が低いときに、開閉弁29・30を閉じて開閉弁
28・31を開けると共に、流量調整弁8も開け、電動
ポンプ27を起動した状態で、室外機1において発生さ
せる温熱によって閉回路3に封入した冷媒を加熱して蒸
発させると、室外機1で蒸発した冷媒蒸気は気相管7を
介して熱交換器5に流入する。
On the other hand, when the temperature of the indoor air in which the indoor unit 4 is installed is low, the on-off valves 29 and 30 are closed and the on-off valves 28 and 31 are opened, and the flow control valve 8 is also opened, so that the electric pump 27 is opened. When the refrigerant sealed in the closed circuit 3 is heated and evaporated by the heat generated in the outdoor unit 1 in the activated state, the refrigerant vapor evaporated in the outdoor unit 1 flows into the heat exchanger 5 through the gas phase pipe 7. I do.

【0008】そして、熱交換器5に流入した冷媒蒸気
は、熱交換器の管壁を介して室内空気に放熱して暖房作
用を行うと共に、冷媒自身は凝縮して液相管6に流入
し、開閉弁31・28を介して電動ポンプ27により室
外機1に還流すると云った循環が起こり、室内機4にお
ける暖房運転が継続されるようになっている。
[0008] The refrigerant vapor flowing into the heat exchanger 5 radiates heat to room air through the pipe wall of the heat exchanger to perform a heating action, and the refrigerant itself condenses and flows into the liquid phase pipe 6. In addition, circulation such as reflux to the outdoor unit 1 by the electric pump 27 via the on-off valves 31 and 28 occurs, and the heating operation in the indoor unit 4 is continued.

【0009】[0009]

【発明が解決しようとする課題】しかし、上記構成の空
調装置の冷房運転においては、相変化可能な冷媒の閉回
路内圧力は冷房の負荷変動などにより絶えず変化してお
り、圧力が低下したときには液相管内で液相冷媒の一部
が気化して気泡が発生することがある。
However, in the cooling operation of the air conditioner having the above structure, the pressure in the closed circuit of the phase-changeable refrigerant is constantly changing due to the load fluctuation of the cooling and the like. A part of the liquid-phase refrigerant may evaporate in the liquid-phase tube to generate bubbles.

【0010】特に、冷房運転を開始する時などは、液相
管が断熱材によって被覆されていても、液相冷媒の温度
は外気により加熱されて比較的高くなっているので、室
外機が冷却を開始して回路内圧力が急激に低下すると、
液相管内で一斉に泡立つことがある。このため、液相冷
媒の本来のスムースな循環が望めないので、室内機では
液相冷媒の継続した蒸発による冷房作用が速やかには起
こり難いと云った問題点があった。
[0010] In particular, when the cooling operation is started, even if the liquid phase pipe is covered with a heat insulating material, the temperature of the liquid phase refrigerant is relatively high because it is heated by the outside air. Starts and the pressure in the circuit drops rapidly,
Bubbles may occur all at once in the liquid phase tube. For this reason, since the original smooth circulation of the liquid-phase refrigerant cannot be expected, there has been a problem that the cooling action due to the continuous evaporation of the liquid-phase refrigerant is unlikely to occur quickly in the indoor unit.

【0011】一方、暖房運転においては、室外機で加熱
蒸発させた気相冷媒が気相管内で冷却されて凝縮・液化
することがある。特に、暖房運転を開始する時などは、
気相管は断熱材によって被覆されていてもかなりの低温
度となっているので、室外機で加熱して蒸発させた気相
冷媒は気相管の内部で容易に凝縮・液化する。
On the other hand, in the heating operation, the gas-phase refrigerant heated and evaporated by the outdoor unit may be cooled and condensed and liquefied in the gas-phase tube. Especially when starting the heating operation,
Even if the gas-phase tube is covered with a heat insulating material, it has a considerably low temperature, so that the gas-phase refrigerant heated and evaporated by the outdoor unit easily condenses and liquefies inside the gas-phase tube.

【0012】そして、このようにして気相管内で発生し
た液相冷媒は、室内機への気相冷媒の循環を不安定にし
たり、各室内機への気相冷媒の分流を不確実なものにし
て、速やかな暖房作用が起こり難くすると云った問題点
があった。
The liquid-phase refrigerant generated in the gas-phase pipe in this manner makes the circulation of the gas-phase refrigerant to the indoor unit unstable or uncertainly branches the gas-phase refrigerant to each indoor unit. Thus, there is a problem that it is difficult for a quick heating action to occur.

【0013】[0013]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、室外機と、全数もしくは過半数が
室外機より下方に設置された複数の室内機とを、気相管
と液相管とで接続し、室外機で放熱して凝縮した液体を
室内機に導入して室内機で吸熱・蒸発させて各室内機に
おいて冷房可能に構成すると共に、流路切り替えによ
り、室外機で吸熱して蒸発した気体を室内機に導入して
放熱・凝縮させて各室内機において暖房可能に構成した
空調装置において、液相管の室外機側に室外機で凝縮し
た液体を室内機に搬送するための液体ポンプを設けると
共に、気相管の室外機側に室外機で蒸発した気体を室内
機に昇圧して搬送するための圧縮搬送手段を設け、且
つ、この圧縮搬送手段の吐出側に接続する気相管を吸入
側に接続する気相管より細くするようにした第1の構成
の空調装置と、
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention comprises an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. Connected with the phase tube, the liquid condensed by radiating heat in the outdoor unit is introduced into the indoor unit, and absorbed and evaporated by the indoor unit to allow cooling in each indoor unit. In an air-conditioning system in which the gas absorbed and vaporized is introduced into the indoor unit and radiated and condensed to allow heating in each indoor unit, the liquid condensed by the outdoor unit on the outdoor unit side of the liquid phase pipe is transported to the indoor unit. And a compressing and conveying means for pressurizing and evaporating the gas evaporated by the outdoor unit to the indoor unit on the outdoor unit side of the gas phase pipe, and on the discharge side of the compressing and conveying unit. Connect the gas pipe to the suction side And the air conditioning apparatus of the first configuration so as to narrow,

【0014】前記第1の構成の空調装置において、液体
ポンプの吐出側と室内機とを接続している液相管の下部
から、液体ポンプの吸入側に至る液相管を延設するよう
にした第2の構成の空調装置と、を提供するものであ
る。
In the air conditioner of the first configuration, a liquid phase pipe extending from a lower portion of the liquid phase pipe connecting the discharge side of the liquid pump and the indoor unit to a suction side of the liquid pump is provided. And an air conditioner having the second configuration described above.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1を参照して説明する。なお、理解を容易にする
ため、図1においても前記図2において説明した部分と
同様の機能を有する部分には、同一の符号を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. For easy understanding, the same reference numerals in FIG. 1 denote portions having the same functions as those described in FIG.

【0016】図1は、本発明の空調装置の一構成例を示
したものであり、1は冷熱または温熱を選択的に発生さ
せることができる、例えば吸収式冷凍機などからなる室
外機であり、建物の例えば屋上にある機械室などに設置
され、例えば蒸発器の内部に配管した熱交換器2を介し
て、閉回路3に封入した液体と気体との二相に相変化が
可能な冷媒、例えば低温度でも圧力が低下すると容易に
蒸発し得る、冷媒のR−134aと熱の授受を行う。
FIG. 1 shows an example of the configuration of an air conditioner according to the present invention. Reference numeral 1 denotes an outdoor unit which can selectively generate cold or hot heat, such as an absorption refrigerator. A refrigerant that is installed in a machine room or the like on the roof of a building and that can change into two phases of a liquid and a gas sealed in a closed circuit 3 via a heat exchanger 2 piped inside an evaporator, for example. For example, heat is exchanged with the refrigerant R-134a, which can easily evaporate when the pressure drops even at a low temperature.

【0017】なお、蒸発器に配管した熱交換器2から冷
熱を供給したり、温熱を供給することができる吸収式冷
凍機としては、例えば特開平7−318189号公報な
どに開示されたものが使用できる。
As an absorption refrigerator capable of supplying cold or warm heat from the heat exchanger 2 connected to the evaporator, for example, one disclosed in Japanese Patent Application Laid-Open No. 7-318189 is disclosed. Can be used.

【0018】5は、建物の各部屋に設置した室内機4の
熱交換器であり、室外機1の熱交換器2とは、図のよう
に液相管6・気相管7および流量調整弁8によって配管
・接続されて、前記閉回路3を形成している。
Reference numeral 5 denotes a heat exchanger of the indoor unit 4 installed in each room of the building. The heat exchanger 2 of the outdoor unit 1 is different from the heat exchanger 2 of FIG. The closed circuit 3 is formed by piping and connection by a valve 8.

【0019】そして、液相管6は、室外機1の熱交換器
2で放熱し、凝縮して流れ出た液体のR−134aを溜
めるためのレシーバタンク9と、このタンクに溜ったR
−134aを室内機4に搬送するための電動ポンプ10
と、冷暖切替弁11とを直列に、室外機1に片寄せて備
えて、冷房運転時に液体のR−134aを流下させる流
下液相管6Aと、この流下液相管6Aから水平方向に延
設され、流量調整弁8を介して各室内機4の熱交換器5
に至る横引液相管6Bと、流下液相管6Aの下端から延
設されてレシーバタンク9に至る流上液相管6Cとから
なっている。
The liquid phase tube 6 radiates heat in the heat exchanger 2 of the outdoor unit 1, and receives a R-134a of the liquid condensed and discharged, and a receiver tank 9 for storing the R-134a.
Electric pump 10 for transferring −134a to the indoor unit 4
And a cooling / heating switching valve 11 in series with the outdoor unit 1 being biased in the outdoor unit 1 to flow down the liquid R-134a during the cooling operation, and a falling liquid phase pipe 6A extending horizontally from the falling liquid phase pipe 6A. And the heat exchanger 5 of each indoor unit 4 through the flow control valve 8.
And a rising liquid phase pipe 6C extending from the lower end of the falling liquid phase pipe 6A and reaching the receiver tank 9.

【0020】一方、気相管7の室外機1の側には、コン
プレッサ12と冷暖切替弁13とが並列に設置されてい
る。なお、冷暖切替弁11・13は、共に冷房運転時に
開弁し、暖房運転時に閉弁するように制御される。
On the other hand, a compressor 12 and a cooling / heating switching valve 13 are installed in parallel on the side of the outdoor unit 1 of the gas phase pipe 7. The cooling / heating switching valves 11 and 13 are both controlled to open during the cooling operation and to close during the heating operation.

【0021】また、14はレシーバタンク9の気相部と
気相管7とを接続している細い均圧管、15は図示しな
い吸収液を加熱して冷媒蒸気を蒸発分離するためのバー
ナ16に接続した燃料管に設けた燃料調整弁、17〜2
0は閉回路3を循環しているR−134aの温度を検出
するための温度センサであり、温度センサ17と18は
熱交換器2の出入口部に、温度センサ19と20は熱交
換器5の出口部に、それぞれ設けられている。また、2
1は室内空気を熱交換器5に吹き付けて室内に還流させ
るための送風機である。
Reference numeral 14 denotes a thin pressure equalizing pipe connecting the gas phase part of the receiver tank 9 and the gas phase pipe 7, and 15 denotes a burner 16 for heating the absorbing liquid (not shown) to evaporate and separate the refrigerant vapor. Fuel regulating valve provided in connected fuel pipe, 17-2
Numeral 0 is a temperature sensor for detecting the temperature of R-134a circulating in the closed circuit 3, temperature sensors 17 and 18 are at the entrance and exit of the heat exchanger 2, and temperature sensors 19 and 20 are Are provided at the outlets. Also, 2
Reference numeral 1 denotes a blower for blowing indoor air to the heat exchanger 5 to recirculate the indoor air.

【0022】さらに、室外機1と室内機4には、相互に
通信可能な室外制御装置22と室内制御装置23とを設
けてある。そして、室外制御装置22は、電動ポンプ1
0とコンプレッサ12の運転と、冷暖切替弁12・13
の開閉とを制御すると共に、冷房運転中は温度センサ1
8が検出するR−134aの温度、すなわち熱交換器2
で冷却作用を受けて凝縮し、液相管6に吐出するR−1
34aの温度が所定温度、例えば7℃になるように、燃
料調整弁15の開度を調節する機能を備え、暖房運転中
は温度センサ17が検出するR−134aの温度、すな
わち熱交換器2で加熱作用を受けて蒸発し、気相管6に
吐出するR−134aの温度が所定温度、例えば55℃
になるように、燃料調整弁15の開度を調節する機能を
備えている。
Further, the outdoor unit 1 and the indoor unit 4 are provided with an outdoor controller 22 and an indoor controller 23 which can communicate with each other. The outdoor control device 22 controls the electric pump 1
0 and operation of the compressor 12 and the cooling / heating switching valves 12 and 13
And the temperature sensor 1 during the cooling operation.
8 detects the temperature of R-134a, ie, the heat exchanger 2
R-1 which is condensed by receiving a cooling action and discharged to the liquid phase pipe 6
A function of adjusting the opening of the fuel control valve 15 is provided so that the temperature of the fuel control valve 34a becomes a predetermined temperature, for example, 7 ° C., and the temperature of the R-134a detected by the temperature sensor 17 during the heating operation, that is, the heat exchanger 2 At a predetermined temperature, for example, 55 ° C.
A function of adjusting the opening of the fuel adjustment valve 15 is provided so that

【0023】一方、室内制御装置23は、冷房運転中は
温度センサ20が検出するR−134aの温度、すなわ
ち熱交換器5を介して冷房作用を行って蒸発し、温度上
昇して気相管7に吐出するR−134aの温度が所定温
度、例えば12℃になるように流量調整弁8の開度を調
節する機能を備え、暖房運転中は温度センサ19が検出
するR−134aの温度、すなわち熱交換器5を介して
暖房作用を行って凝縮し、温度低下して液相管6に吐出
するR−134aの温度が所定温度、例えば50℃にな
るように流量調整弁8の開度を調節する機能を備えてい
る。
On the other hand, during the cooling operation, the indoor control device 23 evaporates by performing the cooling operation via the heat exchanger 5, that is, the temperature of the R-134a detected by the temperature sensor 20, and evaporates, and the temperature rises. 7 is provided with a function of adjusting the opening of the flow control valve 8 so that the temperature of the R-134a discharged to 7 becomes a predetermined temperature, for example, 12 ° C., and the temperature of the R-134a detected by the temperature sensor 19 during the heating operation. That is, the opening degree of the flow control valve 8 is adjusted so that the temperature of the R-134a, which is condensed by performing a heating action via the heat exchanger 5 and is lowered to be discharged to the liquid phase pipe 6 to a predetermined temperature, for example, 50 ° C., becomes 50 ° C. It has the function of adjusting

【0024】また、室内制御装置23と通信可能で、冷
暖房の指定、運転の開始と停止、送風の強弱選択、温度
設定などが行えるリモコン24を各室内機4に対応して
設置してある。
A remote controller 24, which can communicate with the indoor controller 23 and can specify the cooling and heating, start and stop the operation, select the intensity of the air blow, and set the temperature, is provided for each indoor unit 4.

【0025】そして、室外機1においては、冷房モード
での運転中に燃料調整弁15の開度を大きくし、バーナ
16に供給する燃料を増やして火力を増加すると、図示
しない吸収液から蒸発分離する冷媒の量が増加する。こ
の増加した冷媒蒸気が、図示しない凝縮器で放熱して凝
縮し、液体となって熱交換器2の周囲に供給され、熱交
換器2内を流れるR−134aから熱を奪って蒸発する
ので、熱交換器2内を流れるR−134aを冷却する機
能が強化され、流量が同じであればその温度低下幅が拡
大する。逆に、燃料調整弁15の開度を小さくしてバー
ナ16の火力を減じると、熱交換器2内を流れるR−1
34aを冷却する機能が弱まり、その温度低下幅は縮小
する。
In the outdoor unit 1, when the opening of the fuel regulating valve 15 is increased during the operation in the cooling mode, the fuel supplied to the burner 16 is increased, and the thermal power is increased. The amount of refrigerant flowing increases. The increased refrigerant vapor radiates heat in a condenser (not shown) and condenses, becomes a liquid, is supplied to the periphery of the heat exchanger 2, and takes heat from the R-134a flowing in the heat exchanger 2 to evaporate. The function of cooling the R-134a flowing in the heat exchanger 2 is strengthened, and if the flow rate is the same, the range of temperature decrease is increased. Conversely, when the opening of the fuel control valve 15 is reduced to reduce the thermal power of the burner 16, the R-1 flowing through the heat exchanger 2 is reduced.
The function of cooling 34a is weakened, and the temperature reduction width is reduced.

【0026】一方、暖房モードでの運転中に燃料調整弁
15の開度を大きくし、バーナ16に供給する燃料を増
やして火力を増加すると、図示しない吸収液から蒸発分
離する冷媒の量が増加する。この増加した冷媒蒸気と、
加熱されて冷媒を蒸発分離した吸収液とが、熱交換器2
の周囲に供給され、熱交換器2内を流れるR−134a
に放熱するので、熱交換器2内を流れるR−134aを
加熱する機能が強化され、流量が同じであればその温度
上昇幅が拡大する。逆に、燃料調整弁15の開度を小さ
くしてバーナ16の火力を減じると、熱交換器2内を流
れるR−134aを加熱する機能が弱まり、その温度上
昇幅は縮小する。
On the other hand, if the opening of the fuel regulating valve 15 is increased during operation in the heating mode to increase the amount of fuel supplied to the burner 16 to increase the thermal power, the amount of refrigerant that evaporates and separates from the absorbent (not shown) increases. I do. With this increased refrigerant vapor,
The absorbed liquid that has been heated and evaporates and separates the refrigerant is combined with the heat exchanger 2
R-134a supplied around the heat exchanger and flowing through the heat exchanger 2.
, The function of heating the R-134a flowing in the heat exchanger 2 is strengthened, and if the flow rate is the same, the temperature rise width increases. Conversely, when the opening of the fuel regulating valve 15 is reduced to reduce the thermal power of the burner 16, the function of heating the R-134a flowing in the heat exchanger 2 is weakened, and the temperature rise is reduced.

【0027】一方、室内機4においては、流量調整弁8
の開度が同じであれば、空調負荷が大きいほど温度セン
サ19と20が検出するR−134aの温度差は拡大
し、空調負荷が小さいほど前記温度差は縮小する。
On the other hand, in the indoor unit 4, the flow control valve 8
Are the same, the larger the air conditioning load, the larger the temperature difference of R-134a detected by the temperature sensors 19 and 20 increases, and the smaller the air conditioning load, the smaller the temperature difference.

【0028】次に、閉回路3に封入したR−134aの
循環サイクルを説明すると、冷房運転においては、冷暖
切替弁11・13が開弁し、コンプレッサ12が停止
し、電動ポンプ10が起動された状態で、室外機1では
前記のようにして冷熱が発生している。そして、この冷
熱によって熱交換器2の管壁を介して冷却されたR−1
34aは凝縮して液相管6に吐出し、レシーバタンク9
に溜り、電動ポンプ10による搬送力によって冷暖切替
弁11を経由して流下液相管6Aを流下し、一部は横引
液相管6Bと流量調整弁8とを経由して室内機4に供給
され、残部は流上液相管6Cを経由してレシーバタンク
9に戻る。
Next, the circulation cycle of the R-134a sealed in the closed circuit 3 will be described. In the cooling operation, the cooling / heating switching valves 11 and 13 are opened, the compressor 12 is stopped, and the electric pump 10 is started. In this state, cold heat is generated in the outdoor unit 1 as described above. Then, R-1 cooled by the cold heat through the tube wall of the heat exchanger 2
34a is condensed and discharged to the liquid phase pipe 6, and the receiver tank 9
And flows down the flowing liquid phase pipe 6A via the cooling / heating switching valve 11 by the transfer force of the electric pump 10, and partly flows to the indoor unit 4 via the horizontal drawing liquid phase pipe 6B and the flow regulating valve 8. The remaining part is supplied to the receiver tank 9 via the upstream liquid phase pipe 6C.

【0029】したがって、冷房運転の起動時や冷房負荷
の変動により圧力低下した液相管6において、液体のR
−134aに気泡が発生しても、発生した気泡は液体の
R−134aと共に流量調整弁8を経由して室内機4に
流入・気相管7に排出されるか、流上液相管6Cを経由
してレシーバタンク9に戻され、ここで室外機1から供
給される温度の低いR−134aと混合されて気泡が消
滅したり、均圧管14を経由して気相管7に排出される
ので、何れにしても液相管6におけるR−134aの気
泡は速やかに消滅する。このため、各室内機4へのR−
134aの循環供給が常に安定した状態で行われる。
Therefore, in the liquid-phase pipe 6 whose pressure has dropped due to the start of the cooling operation or the fluctuation of the cooling load, the R
-134a flows into the indoor unit 4 via the flow control valve 8 and is discharged to the gas phase pipe 7 together with the liquid R-134a, or the rising liquid phase pipe 6C Is returned to the receiver tank 9 and mixed with the low-temperature R-134a supplied from the outdoor unit 1 to eliminate bubbles or discharged to the gas phase pipe 7 via the pressure equalizing pipe 14. Therefore, in any case, the bubbles of R-134a in the liquid phase tube 6 quickly disappear. For this reason, the R-
The circulation supply of 134a is always performed in a stable state.

【0030】そして、各室内機4においては、送風機2
1によって温度の高い室内空気が熱交換器5に強制的に
供給されているので、室外機1から7℃で供給された液
体のR−134aは室内空気から熱を奪って蒸発し、冷
房作用を行う。
Then, in each indoor unit 4, the blower 2
1, the high-temperature indoor air is forcibly supplied to the heat exchanger 5, so that the liquid R-134a supplied at 7 ° C. from the outdoor unit 1 deprives the indoor air of heat and evaporates, thereby performing a cooling operation. I do.

【0031】室内機4で冷房作用を行って気体となった
R−134aは、R−134aが冷却されて凝縮・液化
し、低圧になっている室外機1の熱交換器2に、気相管
7と冷暖切替弁12とを経由して流入する。
The R-134a, which has been converted into a gas by performing the cooling operation in the indoor unit 4, is condensed and liquefied by cooling the R-134a, and is supplied to the heat exchanger 2 of the outdoor unit 1, which has a low pressure, in a gas phase. It flows in via the pipe 7 and the cooling / heating switching valve 12.

【0032】そして、このR−134aの循環におい
て、ある室内機4における冷房負荷が増加(または減
少)し、その室内機4の温度センサ20が検出するR−
134aの温度が上昇(または低下)すると、その温度
上昇(または温度低下)が解消するように、その室内制
御装置23からの制御信号を受けて該当する流量調整弁
8の開度が増加(または減少)し、冷房負荷が増加した
室内機4の熱交換器5に流入するR−134aの量が増
加(または減少)するので、その温度センサ20が検出
するR−134aの温度上昇(または低下)はその内解
消する。
Then, in the circulation of R-134a, the cooling load in a certain indoor unit 4 increases (or decreases), and the temperature of the R-134a detected by the temperature sensor 20 of the indoor unit 4 increases.
When the temperature of 134a increases (or decreases), the opening of the corresponding flow control valve 8 increases (or decreases) in response to a control signal from the indoor control device 23 so that the increase in temperature (or decrease in temperature) is canceled. Since the amount of R-134a flowing into the heat exchanger 5 of the indoor unit 4 whose cooling load has increased increases (or decreases), the temperature of the R-134a detected by the temperature sensor 20 increases (or decreases). ) Will be resolved.

【0033】また、冷房負荷の変動に起因する温度が変
化したR−134aが室外機1に流入したり、室外機1
に流入するR−134aの流量が変化して、温度センサ
18が検出するR−134aの温度に変化が生じると、
その変化を解消するように、燃料調整弁15の開度が室
外制御装置22によって制御される。
Further, the R-134a whose temperature has changed due to the fluctuation of the cooling load flows into the outdoor unit 1,
When the flow rate of R-134a flowing into the sensor changes and the temperature of R-134a detected by the temperature sensor 18 changes,
The outdoor control device 22 controls the opening degree of the fuel adjustment valve 15 so as to eliminate the change.

【0034】次に、暖房運転時におけるR−134aの
循環サイクルを説明すると、冷暖切替弁11・13が閉
弁し、電動ポンプが停止し、コンプレッサ12が起動さ
れた状態で、室外機1では前記のようにして温熱が発生
している。そして、この温熱によって熱交換器2の管壁
を介して加熱されたR−134aは蒸発して気相管7に
吐出し、コンプレッサ12により圧縮されて室内機4に
供給される。このときにコンプレッサ12がR−134
aを圧縮することによって、R−134aの温度はさら
に高くなる。
Next, the circulation cycle of R-134a during the heating operation will be described. In the state where the cooling / heating switching valves 11 and 13 are closed, the electric pump is stopped, and the compressor 12 is started, the outdoor unit 1 Heat is generated as described above. The R-134a heated by the heat via the tube wall of the heat exchanger 2 evaporates and is discharged to the gas phase pipe 7, compressed by the compressor 12 and supplied to the indoor unit 4. At this time, the compressor 12 is connected to the R-134
By compressing a, the temperature of R-134a is further increased.

【0035】したがって、気相管7の温度が低いときな
どの暖房運転の起動時において、気体のR−134aが
凝縮・液化したり、室内機4が追加運転されて気相管7
の圧力が多少低下しても、気体のR−134aはコンプ
レッサ12によって室内機4側に加圧搬送されているの
で、凝縮した液体のR−134aは流量調整弁8を経由
して液相管6に速やかに排出される。このため。各室内
機4へのR−134aの循環供給は常に安定した状態で
行われる。
Therefore, when the heating operation is started, for example, when the temperature of the gas phase pipe 7 is low, the gas R-134a is condensed and liquefied, or the indoor unit 4 is additionally operated and the gas phase pipe 7
Even if the pressure of R-134a slightly decreases, the gaseous R-134a is conveyed under pressure to the indoor unit 4 by the compressor 12, so that the condensed liquid R-134a passes through the flow control valve 8 through the liquid phase pipe 8. 6. Discharged immediately. For this reason. The circulation supply of R-134a to each indoor unit 4 is always performed in a stable state.

【0036】そして、各室内機4においては、送風機2
1によって温度の低い室内空気が熱交換器5に強制的に
供給されているので、室外機1から55℃で供給された
気体のR−134aは室内空気に放熱して凝縮し、暖房
作用を行う。
Then, in each indoor unit 4, the blower 2
1, the indoor air having a low temperature is forcibly supplied to the heat exchanger 5, so that the gas R-134a supplied from the outdoor unit 1 at 55 ° C. radiates heat to the indoor air and condenses to perform a heating operation. Do.

【0037】室内機4で暖房作用を行って凝縮・液化し
たR−134aは、コンプレッサ12の圧力によって、
流上液相管6Cとレシーバタンク9を経由して室外機1
まで戻される。
The R-134a condensed and liquefied by performing the heating action in the indoor unit 4 generates
The outdoor unit 1 via the upstream liquid phase pipe 6C and the receiver tank 9
Returned to

【0038】そして、このR−134aの循環におい
て、ある室内機4における暖房負荷が増加(または減
少)し、その室内機4の温度センサ19が検出するR−
134aの温度が低下(または上昇)すると、その温度
低下(または温度上昇)が解消するように、その室内制
御装置23からの制御信号を受けて該当する流量調整弁
8の開度が増加(または減少)し、暖房負荷が増加した
室内機4の熱交換器5に流入するR−134aの量が増
加(または減少)するので、その温度センサ20が検出
するR−134aの温度低下(または上昇)はその内解
消する。
In the circulation of the R-134a, the heating load in a certain indoor unit 4 increases (or decreases), and the R-134 detected by the temperature sensor 19 of the indoor unit 4 increases.
When the temperature of 134a decreases (or rises), the opening of the corresponding flow control valve 8 increases (or receives a control signal from the indoor control device 23) so that the temperature decrease (or temperature rise) disappears. Since the amount of R-134a flowing into the heat exchanger 5 of the indoor unit 4 whose heating load has increased increases (or decreases), the temperature of the R-134a detected by the temperature sensor 20 decreases (or increases). ) Will be resolved.

【0039】また、暖房負荷の変動に起因する、温度が
変化したR−134aが室外機1に流入したり、室外機
1に流入するR−134aの流量が変化して、温度セン
サ18が検出するR−134aの温度に変化が生じる
と、その変化を解消するように、燃料調整弁15の開度
が室外制御装置22によって制御される。
The R-134a whose temperature has changed due to a change in the heating load flows into the outdoor unit 1 or the flow rate of the R-134a flowing into the outdoor unit 1 changes, and the temperature sensor 18 detects the change. When the temperature of the R-134a changes, the outdoor control device 22 controls the opening of the fuel adjustment valve 15 so as to eliminate the change.

【0040】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the appended claims.

【0041】例えば、破線で示したように開閉弁25を
流上液相管6Cに設け、液相管6に気泡が発生したと
き、あるいは気泡の発生の懸念があるときに開閉弁25
を開弁して冷房運転し、それ以外の冷房運転時は開閉弁
25を閉弁して、電動ポンプ10が搬送するR−134
aの全てが室内機4に供給されるようにしても良い。
For example, as shown by a broken line, an on-off valve 25 is provided in the upstream liquid-phase pipe 6C, and when air bubbles are generated in the liquid-phase pipe 6, or when there is a concern that air bubbles may be generated, the on-off valve 25
Is opened to perform the cooling operation, and in other cooling operations, the on-off valve 25 is closed and the R-134 conveyed by the electric pump 10 is conveyed.
All of a may be supplied to the indoor unit 4.

【0042】また、閉回路3に封入する相変化可能な冷
媒としては、R−134aの他にも、温度と圧力の制御
によって容易に相変化するR−407c、R−404
A、R−410cなどであっても良い。
In addition to R-134a, R-407c and R-404, which can be easily phase-changed by controlling temperature and pressure, besides R-134a.
A, R-410c or the like.

【0043】なお、本発明の空調装置を製造販売する際
には、破線で囲った冷熱または温熱を選択的に発生する
室外機1と、レシーバタンク9・電動ポンプ10・冷暖
切替弁11・13・コンプレッサ12などをコンパクト
にまとめ、これら全体を室外機として取り扱うことにな
る。
When the air conditioner of the present invention is manufactured and sold, an outdoor unit 1 for selectively generating cold or warm heat surrounded by a broken line, a receiver tank 9, an electric pump 10, and cooling / heating switching valves 11, 13 are provided. -The compressor 12 and the like are compactly arranged, and the entire unit is handled as an outdoor unit.

【0044】[0044]

【発明の効果】以上説明したように、本発明の空調装置
においては、冷房運転の起動時や冷房負荷が変動するな
どして液相管の液体で蒸発が起こって気泡が発生して
も、気泡は室内機を介して気相管に排出されるか、室外
機から供給される温度の低い液体と混合されて消滅した
り、均圧管を経由して気相管に排出されるなどして速や
かに消滅するので、相変化可能な冷媒の各室内機への循
環供給が安定する。したがって、空調負荷が変動するな
どしても常に安定した冷房運転が行える。
As described above, in the air conditioner of the present invention, even when the liquid in the liquid phase tube evaporates due to the start of the cooling operation or the fluctuation of the cooling load, bubbles are generated. Bubbles are discharged to the gas phase tube through the indoor unit, mixed with the low-temperature liquid supplied from the outdoor unit to disappear, or discharged to the gas phase tube via the equalizing tube. Since the refrigerant quickly disappears, the circulating supply of the phase-changeable refrigerant to each indoor unit is stabilized. Therefore, stable cooling operation can always be performed even if the air conditioning load fluctuates.

【0045】また、室内機で放熱して凝縮した凝縮液を
室外機に戻すための暖房運転時に起動する暖房用ポンプ
を液相管の下部に設置した空調装置は、暖房用ポンプの
吸入口側にレシーバタンクを設置する必要があるが、本
発明の空調装置ではこのレシーバタンクの設置が不要に
なるため、冷媒の所要量が減少すると云った利点があ
る。また、本発明の空調装置では冷房運転時にこのレシ
ーバタンクに溜っていた液体が沸騰して発生するフラッ
シュガスが冷媒の循環に悪影響を及ぼすと云ったことも
ないので、冷房運転が安定すると云った利点もある。
An air conditioner in which a heating pump which starts during a heating operation for returning the condensed liquid radiated and condensed by the indoor unit to the outdoor unit is provided at a lower portion of the liquid phase pipe is provided on the suction side of the heating pump. However, the air conditioner of the present invention does not require the installation of the receiver tank, and thus has the advantage of reducing the required amount of refrigerant. Further, in the air conditioner of the present invention, the cooling operation is stabilized because the flash gas generated by boiling the liquid stored in the receiver tank during cooling operation does not adversely affect the circulation of the refrigerant. There are advantages too.

【0046】また、暖房運転においても、室内機側の液
相管には圧縮搬送手段によって生成された所定の大きな
圧力が作用しているため、気相管で生じた凝縮液は気相
管から液相管に速やかに排出され、相変化可能な冷媒の
各室内機への循環供給が安定するので、常に正常は暖房
運転が行える。
Also, in the heating operation, since the predetermined large pressure generated by the compression / transport means acts on the liquid phase pipe on the indoor unit side, the condensate generated in the gas phase pipe is discharged from the gas phase pipe. Since the refrigerant is quickly discharged to the liquid phase pipe and the circulating supply of the phase-changeable refrigerant to each indoor unit is stabilized, the heating operation can always be normally performed.

【0047】さらに、冷暖房何れの運転においても、冷
媒を加圧して搬送しているので、実施形態の欄で示した
横引液相管の部分などに波打ち配管や鳥居配管があって
も、冷媒の循環に支障を来すことがない。したがって、
施工管理基準が緩やかになり、施工コストが削減でき
る。
Further, in both the cooling and heating operations, the refrigerant is pressurized and conveyed. Therefore, even if there is a wavy pipe or a torii pipe in the horizontal liquid phase pipe shown in the section of the embodiment, the refrigerant is not affected. It does not hinder circulation. Therefore,
Construction management standards are relaxed and construction costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の空調装置の説明図である。FIG. 1 is an explanatory diagram of an air conditioner of the present invention.

【図2】従来技術の説明図である。FIG. 2 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 室外機 2 熱交換器 3 閉回路 4 室内機 5 熱交換器 6 液相管 6A 流下液相管 6B 横引液相管 6C 流上液相管 7 気相管 8 流量調整弁 9 レシーバタンク 10 電動ポンプ 11 冷暖切替弁 12 コンプレッサ 13 冷暖切替弁 14 均圧管 15 燃料調整弁 16 バーナ 17〜20 温度センサ 21 送風機 22 室外制御装置 23 室内制御装置 24 リモコン 25 開閉弁 DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Heat exchanger 3 Closed circuit 4 Indoor unit 5 Heat exchanger 6 Liquid phase tube 6A Descending liquid phase tube 6B Horizontal drawing liquid phase tube 6C Upflow liquid phase tube 7 Gas phase tube 8 Flow control valve 9 Receiver tank 10 Electric pump 11 Cooling / heating switching valve 12 Compressor 13 Cooling / heating switching valve 14 Equalizing pipe 15 Fuel adjustment valve 16 Burner 17-20 Temperature sensor 21 Blower 22 Outdoor control device 23 Indoor control device 24 Remote control 25 Open / close valve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室外機と、全数もしくは過半数が室外機
より下方に設置された複数の室内機とを、気相管と液相
管とで接続し、室外機で放熱して凝縮した液体を室内機
に導入して室内機で吸熱・蒸発させて各室内機において
冷房可能に構成すると共に、流路切り替えにより、室外
機で吸熱して蒸発した気体を室内機に導入して放熱・凝
縮させて各室内機において暖房可能に構成した空調装置
であって、液相管の室外機側に室外機で凝縮した液体を
室内機に搬送するための液体ポンプを設けると共に、気
相管の室外機側に室外機で蒸発した気体を室内機に昇圧
して搬送するための圧縮搬送手段を設け、且つ、この圧
縮搬送手段の吐出側に接続する気相管を吸入側に接続す
る気相管より細くしたことを特徴とする空調装置。
An outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, are connected by a gas-phase tube and a liquid-phase tube. Each indoor unit can be cooled by introducing heat into the indoor unit and absorbing and evaporating heat in the indoor unit. By switching the flow path, the gas absorbed and evaporated by the outdoor unit is introduced into the indoor unit to release heat and condense. An air conditioner configured to be capable of heating in each indoor unit, wherein a liquid pump for transporting liquid condensed in the outdoor unit to the indoor unit is provided on the outdoor unit side of the liquid phase pipe, and the outdoor unit of the gas phase pipe is provided. On the side, there is provided a compression conveying means for pressurizing and conveying the gas evaporated in the outdoor unit to the indoor unit, and a gas phase pipe connected to a discharge side of the compression conveyance means is connected to a gas phase pipe connected to a suction side. An air conditioner characterized by being thin.
【請求項2】 液体ポンプの吐出側と室内機とを接続し
ている液相管の下部から、液体ポンプの吸入側に至る液
相管が延設されたことを特徴とする請求項1記載の空調
装置。
2. A liquid-phase pipe extending from a lower part of a liquid-phase pipe connecting a discharge side of a liquid pump and an indoor unit to a suction side of the liquid pump. Air conditioner.
JP9318597A 1997-11-19 1997-11-19 Air conditioner Pending JPH11148681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9318597A JPH11148681A (en) 1997-11-19 1997-11-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9318597A JPH11148681A (en) 1997-11-19 1997-11-19 Air conditioner

Publications (1)

Publication Number Publication Date
JPH11148681A true JPH11148681A (en) 1999-06-02

Family

ID=18100923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9318597A Pending JPH11148681A (en) 1997-11-19 1997-11-19 Air conditioner

Country Status (1)

Country Link
JP (1) JPH11148681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179452A1 (en) * 2018-03-21 2019-09-26 青岛海信日立空调***有限公司 Outdoor unit, multi-split system and control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179452A1 (en) * 2018-03-21 2019-09-26 青岛海信日立空调***有限公司 Outdoor unit, multi-split system and control method therefor

Similar Documents

Publication Publication Date Title
KR100538557B1 (en) Air conditioning system and method for operating air conditioning system
JPH11148681A (en) Air conditioner
KR100523481B1 (en) Air conditioning system
JP3599980B2 (en) Operating method of air conditioner
JP3448680B2 (en) Absorption air conditioner
JPH10170179A (en) Air conditioning apparatus
JP3594426B2 (en) Air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
JP3594453B2 (en) Operating method of air conditioner
JP3615353B2 (en) Operation control method for air conditioner
JP3568380B2 (en) Operating method of air conditioner
JP3762542B2 (en) Air conditioner
KR100502233B1 (en) Air conditioning system
JPH10339476A (en) Air conditioner
JPH11148738A (en) Air conditioner and air conditioning method
JP3604869B2 (en) Operation control method of air conditioner
JP4219060B2 (en) Air conditioner
JP3663028B2 (en) Air conditioner
JPH11351690A (en) Air conditioner and method for operating it
JPH11148744A (en) Air conditioner
JP3663029B2 (en) Air conditioner
JPH11148680A (en) Air conditioner
JPH11351641A (en) Air conditioning apparatus and its starting method
JP2000179898A (en) Air conditioner and operating method of same
JPH07167461A (en) Refrigerant-circulating type air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621