JPH10170179A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH10170179A
JPH10170179A JP8324232A JP32423296A JPH10170179A JP H10170179 A JPH10170179 A JP H10170179A JP 8324232 A JP8324232 A JP 8324232A JP 32423296 A JP32423296 A JP 32423296A JP H10170179 A JPH10170179 A JP H10170179A
Authority
JP
Japan
Prior art keywords
liquid
outdoor unit
pump
indoor
indoor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8324232A
Other languages
Japanese (ja)
Inventor
Hidetoshi Arima
秀俊 有馬
Hiroyuki Takada
浩行 高田
Masashi Izumi
雅士 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8324232A priority Critical patent/JPH10170179A/en
Priority to US08/984,017 priority patent/US5966954A/en
Priority to KR1019970065880A priority patent/KR100502283B1/en
Priority to CNB971208352A priority patent/CN1149357C/en
Publication of JPH10170179A publication Critical patent/JPH10170179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize power consumption while accurately achieving an air conditioning regardless of a floor where room units are installed in an apparatus which is so constructed to allow air conditioning in the room units by circulating a phase variable fluid between an outdoor unit and the plurality of room units installed therebelow depending on a specified weight difference between a liquid phase and a gaseous phase and a delivery output of a liquid pump installed on a liquid phase pipe. SOLUTION: An outdoor unit 1 and a plurality of room units 4 installed therebelow are linked by a liquid phase tube 6 and a gaseous phase tube 7 to form a closed circuit 3 and the rotation of an electric pump 10 in common to air conditioning provided on the liquid phase tube 6 by which a liquid of R-134a condensed by the outdoor unit 1 is sent to the room units 4 in the cooling operation and the liquid of R-134a condensed by the room units 4 is sent to the outdoor unit 1 in the heating operation is controlled based on a liquid level in a receiver tank 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空調装置に関するも
のであり、特に詳しくは室外機と、全数もしくは過半数
が室外機より下方に設置された複数の室内機との間で、
相変化可能な流体を液体ポンプにより循環させ、各室内
機において冷暖房可能に構成した装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly, to an air conditioner between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit.
The present invention relates to an apparatus configured to circulate a phase-changeable fluid by a liquid pump so that each indoor unit can be cooled and heated.

【0002】[0002]

【従来の技術】この種の装置として、例えば図5に示し
た構成の空調装置が、例えば特開平7−151359号
公報に開示されている。図中1は冷水または温水が供給
できる室外熱交換器(以下、室外機)、4は室外機1よ
り下層の階に設置された室内機、5は室内機の熱交換
器、8は流量調整弁、10は電動ポンプ、11〜14は
開閉弁であり、これらを液相管6と気相管7とで図のよ
うに配管接続して閉回路3を形成し、閉回路3に封入し
た冷媒が室外機1と室内機4との間で循環して、室内機
4において冷/暖房が行えるようになっている。なお、
21は室外機1の側面に設置された液レベルセンサであ
り、暖房運転時に室外機1に溜った冷媒液が一定となる
ように電動ポンプ10を制御する。
2. Description of the Related Art As this type of device, for example, an air conditioner having the structure shown in FIG. 5 is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 7-151359. In the figure, 1 is an outdoor heat exchanger capable of supplying cold or hot water (hereinafter referred to as an outdoor unit), 4 is an indoor unit installed on a floor lower than the outdoor unit 1, 5 is a heat exchanger of the indoor unit, and 8 is flow rate adjustment. Valves 10 are electric pumps and 11 to 14 are on-off valves, which are connected by piping with a liquid phase pipe 6 and a gas phase pipe 7 as shown in the figure to form a closed circuit 3 and sealed in the closed circuit 3. The refrigerant circulates between the outdoor unit 1 and the indoor unit 4 so that the indoor unit 4 can perform cooling / heating. In addition,
Reference numeral 21 denotes a liquid level sensor installed on the side surface of the outdoor unit 1, which controls the electric pump 10 so that the refrigerant liquid accumulated in the outdoor unit 1 during heating operation is constant.

【0003】すなわち、上記構成の空調装置において
は、室内機4が設置されている室内空気の温度が高いと
きに、電動ポンプ10を停止した状態で、開閉弁11・
12を閉じて開閉弁13・14を開けると共に、流量調
整弁8も開け、室外機1において発生させる冷熱によっ
て閉回路3に封入した冷媒を冷却して凝縮させると、室
外機1で凝縮した冷媒液は液相管6を自重で流下し、開
閉弁13・14および流量調整弁8を介して熱交換器5
に流入する。
That is, in the air conditioner having the above structure, when the temperature of the indoor air in which the indoor unit 4 is installed is high, the open / close valve 11 /
When the refrigerant enclosed in the closed circuit 3 is cooled and condensed by the cold generated in the outdoor unit 1, the refrigerant condensed in the outdoor unit 1 is closed. The liquid flows down the liquid phase tube 6 by its own weight, and flows through the heat exchanger 5 through the on-off valves 13 and 14 and the flow control valve 8.
Flows into.

【0004】そして、熱交換器5に流入した冷媒液は、
熱交換器の管壁を介して室内空気から熱を奪って冷房作
用を行うと共に、冷媒自身は蒸発して気相管7に流入
し、冷媒が凝縮して低圧となっている室外機1に還流す
ると云った自然循環が起こるので、電力消費量が年間を
通じて最大となる夏期に電動ポンプ10を駆動する電力
が不要であり、ランニングコストが削減できると云った
利点がある。
[0004] The refrigerant liquid flowing into the heat exchanger 5 is:
The heat is taken from the indoor air through the pipe wall of the heat exchanger to perform a cooling action, and the refrigerant itself evaporates and flows into the gas phase pipe 7 to condense the refrigerant to the outdoor unit 1 at a low pressure. Since natural circulation such as reflux occurs, there is an advantage that power for driving the electric pump 10 is not required in summer when power consumption is maximum throughout the year, and running costs can be reduced.

【0005】また、開閉弁11・14を閉じて開閉弁1
2・13を開けると共に、流量調整弁8も開け、電動ポ
ンプ10を起動して、室外機1において発生させる冷熱
によって閉回路3に封入した冷媒を冷却して凝縮させる
と、室外機1で凝縮した冷媒液は自重と電動ポンプ10
の吐出力とで液相管6を流下し、流量調整弁8を通って
熱交換器5に入り、冷房作用を行う冷媒の循環が強制的
に行われる。
The on-off valves 11 and 14 are closed and the on-off valves 1
2 and 13 are opened, the flow control valve 8 is also opened, and the electric pump 10 is started to cool and condense the refrigerant sealed in the closed circuit 3 by the cold generated in the outdoor unit 1. The refrigerant liquid that has been used is self-weight and the electric pump 10.
With the discharge force, the liquid flows down the liquid phase tube 6, enters the heat exchanger 5 through the flow control valve 8, and forcibly circulates the refrigerant that performs the cooling action.

【0006】このように、電動ポンプ10を起動して冷
房を行う場合は、室外機1の直ぐ下に当たる上層階に設
置した熱交換器5にも十分な量の冷媒液が供給できると
云った利点がある。
As described above, when the electric pump 10 is started to perform cooling, a sufficient amount of the refrigerant liquid can be supplied to the heat exchanger 5 installed on the upper floor immediately below the outdoor unit 1. There are advantages.

【0007】一方、室内機4が設置されている室内空気
の温度が低いときに、開閉弁12・13を閉じて開閉弁
11・14を開けると共に、流量調整弁8も開け、電動
ポンプ10を起動した状態で、室外機1において発生さ
せる温熱によって閉回路3に封入した冷媒を加熱して蒸
発させると、室外機1で蒸発した冷媒蒸気は気相管7を
介して熱交換器5に流入する。
On the other hand, when the temperature of the indoor air in which the indoor unit 4 is installed is low, the on / off valves 12 and 13 are closed and the on / off valves 11 and 14 are opened, and the flow control valve 8 is also opened, so that the electric pump 10 is opened. When the refrigerant sealed in the closed circuit 3 is heated and evaporated by the heat generated in the outdoor unit 1 in the activated state, the refrigerant vapor evaporated in the outdoor unit 1 flows into the heat exchanger 5 through the gas phase pipe 7. I do.

【0008】そして、熱交換器5に流入した冷媒蒸気
は、熱交換器の管壁を介して室内空気に放熱して暖房作
用を行うと共に、冷媒自身は凝縮して液相管6に流入
し、開閉弁14・11を介して電動ポンプ10により室
外機1に還流すると云った循環が起こり、室内機4にお
ける暖房運転が継続されるようになっている。
[0008] The refrigerant vapor flowing into the heat exchanger 5 radiates heat to room air through the pipe wall of the heat exchanger to perform a heating action, and the refrigerant itself condenses and flows into the liquid phase pipe 6. In addition, circulation such as reflux to the outdoor unit 1 by the electric pump 10 via the on-off valves 14 and 11 occurs, and the heating operation in the indoor unit 4 is continued.

【0009】[0009]

【発明が解決しようとする課題】しかし、特開平7−1
51359号公報に開示された上記構成の空調装置にお
いては、電動ポンプを停止して冷媒を自然循環させて冷
房を行う場合には、電力消費がピークとなる夏期の電力
消費が削減でき、ランニングコストの抑制が実現できる
が、室外機との上下差が小さい上層階の室内機には十分
な量の冷媒が供給され難いため、この部分では冷房作用
が不足すると云った問題点がある。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No. 7-1
In the air conditioner having the above-described configuration disclosed in Japanese Patent No. 51359, when the electric pump is stopped to perform cooling by naturally circulating the refrigerant, power consumption in summer when power consumption peaks can be reduced, and running costs can be reduced. However, since it is difficult to supply a sufficient amount of refrigerant to the indoor units on the upper floor where the vertical difference from the outdoor units is small, there is a problem that the cooling operation is insufficient in this part.

【0010】一方、電動ポンプを起動すれば、上層階に
設置の室内機にも十分な量の冷媒が供給でき、必要な冷
房作用が確保できるが、ポンプを駆動するための電力が
必要となる。しかも、この場合の電動ポンプは暖房運転
時に室内機で凝縮した冷媒液を上方に設置した室外機ま
で搬送することができる能力を備えた大型のポンプであ
るため、電力消費が一層嵩むと云った問題点がある。
[0010] On the other hand, when the electric pump is started, a sufficient amount of refrigerant can be supplied to the indoor unit installed on the upper floor, and the necessary cooling action can be ensured. However, electric power for driving the pump is required. . Moreover, since the electric pump in this case is a large-sized pump capable of transporting the refrigerant liquid condensed in the indoor unit to the outdoor unit installed above during the heating operation, power consumption is further increased. There is a problem.

【0011】したがって、十分な冷暖房作用が発揮で
き、しかも発電量が年間を通じて最大となる盛夏時の電
力消費が抑制できる空調装置にする必要があった。
Therefore, there is a need for an air conditioner capable of exerting a sufficient cooling / heating effect and suppressing power consumption during the high summer months when the amount of power generation is maximized throughout the year.

【0012】[0012]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するため、室外機と、全数もしくは過半数が
室外機より下方に設置された複数の室内機との間を、気
相管とポンプを備えた液相管とで連結し、室外機で吸熱
して蒸発した気体を室内機に導入して放熱・凝縮させ、
この凝縮した液体を前記ポンプの吐出力によって室外機
に戻し、各室内機において暖房可能に構成すると共に、
液相管の流路切り替えにより、室外機で放熱して凝縮し
た液体を、蒸気との比重差と、前記ポンプの吐出力とを
利用して室内機に搬送し、室内機で吸熱・蒸発させて各
室内機において冷房可能に構成した装置において、前記
ポンプの回転をポンプの極数変換またはポンプに供給す
る電力の周波数を変換して制御する制御手段を備えるよ
うにした空調装置を提供するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention provides a gas phase tube between an outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit. And a liquid-phase pipe equipped with a pump, which absorbs heat from the outdoor unit and introduces the evaporated gas into the indoor unit to release and condense it.
The condensed liquid is returned to the outdoor unit by the discharge force of the pump, and each indoor unit is configured to be heatable,
By switching the flow path of the liquid phase pipe, the liquid radiated and condensed by the outdoor unit is conveyed to the indoor unit using the specific gravity difference from the vapor and the discharge force of the pump, and is absorbed and evaporated by the indoor unit. Providing an air conditioner comprising a control means for controlling the rotation of the pump by converting the number of poles of the pump or the frequency of electric power supplied to the pump in a device configured to be capable of cooling in each indoor unit. It is.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態につい
て、図1〜図4を参照して説明する。なお、理解を容易
にするため、これらの図においても前記図5において説
明した部分と同様の機能を有する部分には、同一の符号
を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. In addition, in order to facilitate understanding, in these figures, parts having the same functions as the parts described in FIG. 5 are denoted by the same reference numerals.

【0014】図中1は所望時に冷熱または温熱を発生さ
せることができる、例えば吸収式冷凍機などからなる室
外機であり、建物の例えば屋上にある機械室などに設置
され、例えば蒸発器の内部に配管した熱交換器2を介し
て、閉回路3に封入した相変化が可能な流体、例えば低
温度でも圧力が低下すると容易に蒸発し得る、R−13
4aと熱の授受を行って、相変化を起こさせる。
In the figure, reference numeral 1 denotes an outdoor unit which can generate cold or warm heat when desired, such as an absorption refrigerator, which is installed in a machine room, for example, on a rooftop of a building, for example, inside an evaporator. R-13, which can be easily vaporized when the pressure is reduced even at a low temperature, such as a fluid capable of phase change, sealed in the closed circuit 3 through the heat exchanger 2 piped to R-13.
Transfer of heat with 4a causes a phase change.

【0015】室外機1の熱交換器2と、建物の各部屋に
設置した室内機4の熱交換器5とは、図1のように液相
管6・気相管7・流量調整弁8・レシーバタンク9・電
動ポンプ10・開閉弁11〜14を介して配管・接続さ
れ、閉回路3を形成している。
As shown in FIG. 1, the heat exchanger 2 of the outdoor unit 1 and the heat exchanger 5 of the indoor unit 4 installed in each room of the building are composed of a liquid phase pipe 6, a gas phase pipe 7, and a flow control valve 8, as shown in FIG. The receiver tank 9, the electric pump 10, and the piping and connection via the on-off valves 11 to 14 form a closed circuit 3.

【0016】なお、15は、電動ポンプ10を駆動する
ために供給する電力の周波数を変換する周波数変換器、
16は室内空気を熱交換器5に吹き付けて室内に還流さ
せるための送風機、S1とS2はR−134aの温度を
検出するために熱交換器5のR−134aの出入口に設
けた温度センサで、空調負荷が大きいほど入口側の温度
センサS1と出口側の温度センサS2との温度差が大き
くなり、空調負荷が小さいほど前記温度差は小さくな
る。
A frequency converter 15 converts the frequency of electric power supplied to drive the electric pump 10;
Reference numeral 16 denotes a blower for blowing indoor air to the heat exchanger 5 to recirculate the indoor air, and S1 and S2 denote temperature sensors provided at the entrance and exit of the R-134a of the heat exchanger 5 to detect the temperature of the R-134a. The temperature difference between the inlet-side temperature sensor S1 and the outlet-side temperature sensor S2 increases as the air-conditioning load increases, and decreases as the air-conditioning load decreases.

【0017】また、S3はレシーバタンク9に溜ったR
−134aの液面レベルを検出するための液面センサ、
S4はR−134aを凝縮させるために室外機1に投入
する熱量のレベルを検出する熱量センサである。
S3 is the value of R accumulated in the receiver tank 9.
A liquid level sensor for detecting the liquid level of -134a,
S4 is a calorie sensor for detecting the level of the calorie input to the outdoor unit 1 to condense R-134a.

【0018】さらに、この室外機1には室外制御装置1
7を、室内機4には室内制御装置18を設けてある。そ
して、室内制御装置18には、流量調整弁8の弁開度お
よび温度センサS1・S2が検出した温度情報を通信信
号に変換可能であると共に、外部から受信した通信信号
を所要の制御信号に変換することのできる信号変換器
(図示せず)を内蔵して、室外制御装置17と室内制御
装置18とを通信線19によって接続し、室外制御装置
17が出力する制御信号を室内制御装置18が受けて流
量調整弁8の開度が制御されるように構成してある。
Further, the outdoor unit 1 has an outdoor control device 1
The indoor unit 4 is provided with an indoor control device 18. The indoor control device 18 can convert the valve opening of the flow control valve 8 and the temperature information detected by the temperature sensors S1 and S2 into a communication signal, and convert the communication signal received from the outside into a required control signal. A signal converter (not shown) capable of conversion is built in, the outdoor control device 17 and the indoor control device 18 are connected by a communication line 19, and the control signal output from the outdoor control device 17 is transmitted to the indoor control device 18 And the opening degree of the flow control valve 8 is controlled.

【0019】また、室内制御装置18と通信可能で、冷
暖房の起動/停止、送風の強弱選択、温度設定などが行
えるリモコン20を各室内機4に対応して設置してあ
り、室外制御装置17は液面センサS3・熱量センサS
4・周波数変換器15とも図示しない信号線を介して接
続され、それぞれの機器との間で信号の授受ができるよ
うになっている。
A remote controller 20 communicable with the indoor controller 18 and capable of starting / stopping cooling / heating, selecting the intensity of air blowing, setting a temperature, and the like is provided for each indoor unit 4. Is the liquid level sensor S3 and the calorific value sensor S
4. The frequency converter 15 is also connected via a signal line (not shown) so that signals can be exchanged with each device.

【0020】上記構成になる本発明の空調装置において
は、例えば室内温度が高いときに、室外機1において冷
熱を発生させながら、開閉弁11・14を閉じ、開閉弁
12・13を開いた状態で電動ポンプ10を運転する
と、室外機1の冷熱によって閉回路3のR−134aは
熱交換器2の管壁を介して冷却されるので、R−134
aは凝縮して下流側の液相管6に流出し、液相管6に溜
っているR−134aの重みに助成された電動ポンプ1
0の吐出力によって、室内機4の熱交換器5それぞれに
十分な量のR−134aが供給できる。
In the air conditioner of the present invention having the above-described configuration, for example, when the indoor temperature is high, the on-off valves 11 and 14 are closed and the on-off valves 12 and 13 are opened while generating cold heat in the outdoor unit 1. When the electric pump 10 is operated at R, the R-134a of the closed circuit 3 is cooled via the tube wall of the heat exchanger 2 by the cold heat of the outdoor unit 1, so that the R-134
a is condensed and flows out to the liquid phase pipe 6 on the downstream side, and the electric pump 1 assisted by the weight of R-134a stored in the liquid phase pipe 6
With a discharge force of 0, a sufficient amount of R-134a can be supplied to each of the heat exchangers 5 of the indoor unit 4.

【0021】そして、各熱交換器5においては、送風機
16によって温度の高い室内空気が強制的に供給されて
いるので、R−134aは室内空気から熱を奪って蒸発
し、冷房作用を行ない、その後、R−134aが冷却さ
れて凝縮・液化し、低圧になっている室外機1の熱交換
器2に気相管7を通って戻る。
In each of the heat exchangers 5, since the high-temperature indoor air is forcibly supplied by the blower 16, the R-134a removes heat from the indoor air and evaporates to perform a cooling operation. Thereafter, the R-134a is cooled and condensed and liquefied, and returns to the low-pressure heat exchanger 2 of the outdoor unit 1 through the gas-phase tube 7.

【0022】上記冷房運転において、本発明の空調装置
においては電動ポンプ10の回転数を、例えば液面セン
サS3が出力するレシーバタンク9の中のR−134a
の液面レベルに基づいて室外制御装置17が制御する。
In the cooling operation, in the air conditioner of the present invention, the number of revolutions of the electric pump 10 is set to, for example, R-134a in the receiver tank 9 output from the liquid level sensor S3.
Is controlled by the outdoor controller 17 on the basis of the liquid level.

【0023】すなわち、液面センサS3が検出して出力
するR−134aの液面レベルH(上下2位置間を0〜
100等分して百分率表示)に基づいて、室外制御装置
17は電動ポンプ10に供給する電力の周波数Nを、周
波数変換器15において、例えば図2に示すように周波
数変換して、電動ポンプ10の回転数を制御する。
That is, the liquid level H of the R-134a detected and output by the liquid level sensor S3 (0 between the upper and lower positions is 0 to 0).
The outdoor control device 17 converts the frequency N of the electric power supplied to the electric pump 10 into a frequency converter 15 based on the frequency of the electric pump 10 as shown in FIG. To control the number of revolutions.

【0024】したがって、本発明の空調装置において
は、R−134aの液体と気体の比重差に、電動ポンプ
10による搬送力が加算されてR−134aの液体が搬
送されるので、室内機4の一部を室外機1と同じフロア
もしくは室外機1より高い位置に設置しても、冷房運転
のためのR−134aの循環が確実に行われ、しかも電
動ポンプ10の回転数を周波数制御しているので、電力
消費量が抑制できる。
Therefore, in the air conditioner of the present invention, the transport force of the electric pump 10 is added to the specific gravity difference between the liquid and the gas of the R-134a to transport the liquid of the R-134a. Even if a part is installed on the same floor as the outdoor unit 1 or on a position higher than the outdoor unit 1, the circulation of the R-134a for the cooling operation is reliably performed, and the frequency of the rotation speed of the electric pump 10 is controlled. Power consumption can be reduced.

【0025】また、電動ポンプ10の回転数は、液面セ
ンサS3が検出して出力するR−134aの液面レベル
Hが所定より低い場合には、電動ポンプ10の全ての電
極を機能させることで低下させ、液面レベルHが所定よ
り高い場合には、電動ポンプ10の電極の一部を機能さ
せないように配線を切り替えて増加させる、極数変換制
御によって回転数制御を行うようにすることもできる。
If the liquid level H of the R-134a detected and output by the liquid level sensor S3 is lower than a predetermined value, all the electrodes of the electric pump 10 are allowed to function. When the liquid level H is higher than a predetermined value, the wiring is switched to increase so that some of the electrodes of the electric pump 10 do not function, and the rotation speed is controlled by the pole number conversion control. Can also.

【0026】さらに、電動ポンプ10の回転数は、温度
センサS1・S2が出力する温度情報に基づいて求めた
空調負荷、あるいは熱量センサS4が出力する室外機1
における投入熱量の情報に基づいて制御しても良い。
Further, the rotation speed of the electric pump 10 is determined by the air-conditioning load determined based on the temperature information output from the temperature sensors S1 and S2, or the outdoor unit
May be controlled based on the information on the amount of heat input.

【0027】すなわち、全室内機4の温度センサS1・
S2が検出して出力するR−134aの温度情報から演
算算出した全空調負荷W(百分率表示)に基づいて、室
外制御装置17が電動ポンプ10に供給する電力の周波
数Nを、周波数変換器15において、例えば図3に示す
ように周波数変換して、電動ポンプ10の回転数を制御
したり、前記液面レベルHの場合と同様に、電動ポンプ
10の極数変換を行って回転数制御することも可能であ
る。
That is, the temperature sensors S 1 ·
Based on the total air-conditioning load W (expressed as a percentage) calculated from the temperature information of R-134a detected and output by S2, the outdoor controller 17 converts the frequency N of the electric power supplied to the electric pump 10 to a frequency converter 15 In FIG. 3, for example, the frequency is converted as shown in FIG. 3 to control the number of rotations of the electric pump 10, or similarly to the case of the liquid level H, the number of poles of the electric pump 10 is converted to control the number of rotations. It is also possible.

【0028】あるいは、熱量センサS4が検出して出力
する室外機1における投入熱量Q(燃料弁の開度などを
百分率表示)に基づいて、室外制御装置17が電動ポン
プ10に供給する電力の周波数Nを、周波数変換器15
において、例えば図4に示すように周波数変換して制御
したり、前記液面レベルHの場合と同様に、電動ポンプ
10の極数変換を行って回転数制御することもできる。
Alternatively, the frequency of the electric power supplied to the electric pump 10 by the outdoor control device 17 based on the input heat amount Q (the opening degree of the fuel valve and the like is displayed as a percentage) in the outdoor unit 1 detected and output by the heat amount sensor S4. N to the frequency converter 15
For example, as shown in FIG. 4, control may be performed by converting the frequency, or similarly to the case of the liquid level H, the number of poles of the electric pump 10 may be converted to control the rotation speed.

【0029】電動ポンプ10の回転数を、上記何れの方
法によって制御しても、冷房運転のためのR−134a
の循環が確実に行え、しかも電力消費量の抑制ができ
る。
Regardless of whether the number of revolutions of the electric pump 10 is controlled by any of the above methods, the R-134a for cooling operation is controlled.
Circulation can be reliably performed, and the power consumption can be suppressed.

【0030】なお、温度センサS1・S2は、熱交換器
5に吹き付ける室内空気の温度変化が検出できるように
設置したり、温度センサS1・S2に代えて、熱交換器
5の出入口部におけるR−134aの圧力差が検出でき
る圧力センサを設置して、室外制御装置17に空調負荷
として出力するように構成することもできる。
The temperature sensors S1 and S2 are installed so as to detect a change in the temperature of the indoor air blown to the heat exchanger 5, and the temperature sensors S1 and S2 are replaced with the R at the entrance and exit of the heat exchanger 5 instead of the temperature sensors S1 and S2. A pressure sensor capable of detecting a pressure difference of −134a may be provided and output to the outdoor control device 17 as an air conditioning load.

【0031】そして、その空調負荷に係わる情報、例え
ば流量調整弁8の開度の総和などに基づいて、電動ポン
プ10の回転数を制御するようにしても良い。
Then, the rotation speed of the electric pump 10 may be controlled based on information on the air-conditioning load, for example, a total sum of the opening degrees of the flow control valve 8.

【0032】この場合、上層階に設置した室内機4の熱
交換器5と、下層階に設置した室内機4の熱交換器5と
では、流量調整弁8の開度が同じであっても、下層階に
設置した室内機4の熱交換器5には多くのR−134a
が流入し、上層階に設置した室内機4の熱交換器5には
R−134aが流入し難いので、室内機4が設置されて
いる階を考慮した弁開度の補正総和を求めて、例えば電
動ポンプ10に供給する電力の周波数Nを決定するのが
好ましい。
In this case, the heat exchanger 5 of the indoor unit 4 installed on the upper floor and the heat exchanger 5 of the indoor unit 4 installed on the lower floor have the same opening degree of the flow control valve 8. The heat exchanger 5 of the indoor unit 4 installed on the lower floor has many R-134a.
Flows, and it is difficult for R-134a to flow into the heat exchanger 5 of the indoor unit 4 installed on the upper floor, so that the correction sum of the valve opening in consideration of the floor on which the indoor unit 4 is installed is obtained, For example, it is preferable to determine the frequency N of the electric power supplied to the electric pump 10.

【0033】すなわち、温度センサ10・11が検出し
た温度情報が同じであっても、流量調整弁8に同じ制御
信号を出力してその開度制御を行ったのでは、設置階が
違えば冷房負荷に応じた適量のR−134aが供給でき
ないので、室内機4が設置されている階によって異なっ
た制御信号、すなわち上の階に設置されている室内機4
ほど流量調整弁8の開度を大きく開ける所定の制御プロ
グラム、例えば室内機4を10の階に分けて設置した空
調装置の場合には、例えば一番低い階に設置した室内機
4の補正係数を1とし、1階上がる毎に1に0.1を加
えた数値をその階の補正係数とし、温度センサ10・1
1が検出した温度情報に基づいて先ず無補正時の流量調
整弁8の開度を求め、さらにこの開度に所要の補正係数
を乗算して室内機4に実際に出力する流量調整弁8の開
度を求め、このようにして求めた開度に室内機4の流量
調整弁8の開度を調整するための制御信号を室内制御装
置18に出力する制御プログラムを室外制御装置17に
記憶しておき、この制御プログラムに基づいて室内機4
それぞれの流量調整弁8の開度を制御する。
That is, even if the temperature information detected by the temperature sensors 10 and 11 is the same, if the same control signal is output to the flow regulating valve 8 and the opening degree is controlled, if the installation floor is different, cooling is performed. Since an appropriate amount of R-134a cannot be supplied according to the load, the control signal differs depending on the floor where the indoor unit 4 is installed, that is, the indoor unit 4 installed on the upper floor.
For example, in the case of an air conditioner in which the indoor unit 4 is divided into ten floors and installed, the correction coefficient of the indoor unit 4 installed in the lowest floor is increased. Is set to 1 and a value obtained by adding 0.1 to 1 each time the floor rises is used as a correction coefficient for that floor.
First, the opening of the flow control valve 8 at the time of non-correction is obtained based on the temperature information detected by 1, and the opening is multiplied by a required correction coefficient, and the opening of the flow control valve 8 which is actually output to the indoor unit 4 is obtained. The control program for obtaining the opening degree and outputting a control signal for adjusting the opening degree of the flow control valve 8 of the indoor unit 4 to the opening degree thus obtained to the indoor control device 18 is stored in the outdoor control device 17. In advance, based on this control program, the indoor unit 4
The opening of each flow control valve 8 is controlled.

【0034】そして、室外制御装置17には同時に、例
えば一番低い階に設置した室内機4の補正係数を1と
し、1階上がる毎に1に0.1を加えた数値をその階の
補正係数とし、実際に検知した流量調整弁8の開度を所
要の補正係数で除算してその補正開度を求め、このよう
にして求めた全補正開度を基づいて、電動ポンプ10に
供給する電力の周波数Nを決定する制御プログラムを室
外制御装置17に記憶しておき、この制御プログラムに
基づいて電動ポンプ10の回転数を制御する。
At the same time, the outdoor control unit 17 sets the correction coefficient of the indoor unit 4 installed at the lowest floor to 1, for example, and adds a value obtained by adding 0.1 to 1 every time the floor is raised. The correction opening is obtained by dividing the actually detected opening of the flow control valve 8 by a required correction coefficient, and is supplied to the electric pump 10 based on the total correction opening thus obtained. A control program for determining the power frequency N is stored in the outdoor control device 17, and the rotation speed of the electric pump 10 is controlled based on the control program.

【0035】なお、上層階を除く室内機4においてのみ
冷房運転を行う場合には、電動ポンプ10を起動しなく
ても、開閉弁11・12を閉じ、開閉弁13・14を開
けるだけで、液相管6に溜っているR−134aの液の
重みで室内機4の熱交換器5に十分な量のR−134a
が供給できるので、電動ポンプ10を停止した一層経済
的な冷房運転が行える。
When the cooling operation is performed only in the indoor unit 4 excluding the upper floor, the on-off valves 11 and 12 are closed and the on-off valves 13 and 14 are opened without starting the electric pump 10. A sufficient amount of R-134a is supplied to the heat exchanger 5 of the indoor unit 4 by the weight of the R-134a liquid stored in the liquid phase pipe 6.
Can be supplied, so that more economical cooling operation with the electric pump 10 stopped can be performed.

【0036】また、室内空気が低いときに、開閉弁12
・13を閉じ、開閉弁11・14を開いた状態で室外機
1で温熱を発生させ、この熱と熱交換器2で熱交換して
蒸発し、気相管7を介して供給された各室内機4の熱交
換器5で送風機16から供給される温度の低い室内空気
に放熱して暖房作用を行い、凝縮・液化した閉回路3の
R−134aを室外機1に戻す暖房運転時の電動ポンプ
10の回転数も、上記冷房運転のときと同様に周波数変
換制御したり、極数変換して制御する。
When the room air is low, the on-off valve 12
With the closed unit 13 and the on-off valves 11 and 14 opened, heat is generated in the outdoor unit 1, and heat is exchanged with the heat in the heat exchanger 2 to evaporate, and the heat is supplied through the gas phase pipe 7. At the time of the heating operation, the heat exchanger 5 of the indoor unit 4 radiates heat to the low-temperature indoor air supplied from the blower 16 to perform a heating action and returns the condensed and liquefied R-134a of the closed circuit 3 to the outdoor unit 1. The rotation speed of the electric pump 10 is controlled by frequency conversion control or pole number conversion similarly to the cooling operation.

【0037】なお、温度センサS1・S2が検出する温
度情報から算出した全空調負荷W、液面レベルセンサS
3が検出するR−134aの液面レベルH、熱量センサ
S4が検出する室外機1における投入熱量Qに基づく電
動ポンプ10の周波数変換制御、極数変換制御は冷房運
転のときと全く同様に行うことができるが、流量調整弁
8の開度に基づく場合は、補正方向が逆となるので注意
が必要である。
The total air conditioning load W and the liquid level sensor S calculated from the temperature information detected by the temperature sensors S1 and S2.
3, the frequency conversion control and the number of poles conversion control of the electric pump 10 based on the input heat quantity Q in the outdoor unit 1 detected by the heat quantity sensor S4 detected by the liquid level H of the R-134a are performed in exactly the same manner as in the cooling operation. However, when the flow rate adjustment valve 8 is based on the opening degree, the correction direction is reversed, so care must be taken.

【0038】すなわち、熱交換器5で凝縮したR−13
4aの液体は、下層階に設置されている熱交換器5ほど
レシーバタンク9との上下差が小さいため、レシーバタ
ンク9の側に排出され難い。また、下層階に設置されて
いる熱交換器5ほど、室外機1の熱交換器2で蒸発した
R−134aは圧力低下した状態で作用するので、下層
階に設置されている熱交換器5ほど凝縮したR−134
aの液体は排出され難い。このため、暖房負荷が同じで
あれば、下層階に設置されている熱交換器5ほど、流量
調整弁8の開度を大きく開いて暖房運転を行う必要があ
る。
That is, R-13 condensed in the heat exchanger 5
The liquid 4a is less likely to be discharged to the receiver tank 9 side because the vertical difference between the liquid and the receiver tank 9 is smaller in the heat exchanger 5 installed on the lower floor. In addition, since the R-134a evaporated in the heat exchanger 2 of the outdoor unit 1 acts in a reduced pressure state, the heat exchanger 5 installed on the lower floor operates on the lower floor. R-134
The liquid a is difficult to be discharged. Therefore, if the heating load is the same, the heat exchanger 5 installed on the lower floor needs to perform the heating operation by opening the opening of the flow control valve 8 more widely.

【0039】したがって、温度センサS1・S2が検出
した温度情報が同じであっても、室外制御装置17には
室内機4が設置されている階によって異なった制御信
号、すなわち下の階に設置されている室内機4ほど流量
調整弁8の開度を大きく開ける所定の制御プログラム、
例えば室内機4を10の階に分けて設置した空調装置の
場合には、例えば一番高い階に設置した室内機4の補正
係数を1とし、1階下がる毎に1に0.05を加えた数
値をその階の補正係数とし、温度センサS1・S2が検
出した温度情報に基づいて先ず無補正時の流量調整弁8
の開度を求め、さらにこの開度に所要の補正係数を乗算
して室内機4に実際に出力する流量調整弁8の開度を求
め、このようにして求めた開度に室内機4の流量調整弁
8の開度を調整するための制御信号を室内制御装置18
に出力する制御プログラムを記憶しておき、この制御プ
ログラムに基づいて室内機4それぞれの流量調整弁8の
開度は室外制御装置17によって制御される。
Therefore, even if the temperature information detected by the temperature sensors S1 and S2 is the same, the outdoor controller 17 is provided with different control signals depending on the floor on which the indoor unit 4 is installed, that is, installed on the lower floor. A predetermined control program for opening the opening of the flow control valve 8 to a greater extent as the indoor unit 4 is
For example, in the case of an air conditioner in which the indoor units 4 are installed on 10 floors, for example, the correction coefficient of the indoor unit 4 installed on the highest floor is set to 1, and 0.05 is added to 1 every time the floor goes down. The corrected value is used as a correction coefficient for the floor, and based on the temperature information detected by the temperature sensors S1 and S2, first, the flow control valve 8 at the time of no correction
Of the flow control valve 8 that is actually output to the indoor unit 4 by multiplying the opening by a required correction coefficient. A control signal for adjusting the opening of the flow control valve 8 is transmitted to the indoor control device 18.
Is stored, and the opening degree of the flow control valve 8 of each indoor unit 4 is controlled by the outdoor control device 17 based on the control program.

【0040】このため、この場合は例えば一番高い階に
設置した室内機4の補正係数を1とし、1階下がる毎に
1に0.05を加えた数値をその階の補正係数とし、実
際に検知した流量調整弁8の開度を所要の補正係数で除
算してその補正開度を求め、このようにして求めた全補
正開度を基づいて、電動ポンプ10に供給する電力の周
波数Nを決定し、電動ポンプ10の回転数を制御するよ
うにする。
For this reason, in this case, for example, the correction coefficient of the indoor unit 4 installed on the highest floor is 1, and a value obtained by adding 0.05 to 1 every time the floor goes down is set as the correction coefficient of that floor. The corrected opening degree is obtained by dividing the detected opening degree of the flow control valve 8 by a required correction coefficient, and the frequency N of the electric power supplied to the electric pump 10 is determined based on the total corrected opening degree thus obtained. Is determined, and the rotation speed of the electric pump 10 is controlled.

【0041】なお、蒸発器に配管した熱交換器2から冷
熱を供給したり、温熱を供給することができる吸収式冷
凍機としては、例えば特開平7−318189号公報な
どに開示されたものが使用できる。
As an absorption refrigerator capable of supplying cold heat or warm heat from the heat exchanger 2 connected to the evaporator, for example, the one disclosed in Japanese Patent Application Laid-Open No. 7-318189 is disclosed. Can be used.

【0042】また、閉回路3に封入する相変化可能な流
体としては、R−134aの他にも、R−407c、R
−404A、R−410cなど、潜熱による熱移動が可
能なものであっても良い。
The phase-changeable fluid sealed in the closed circuit 3 includes R-407a, R-407c and R-134a in addition to R-134a.
-404A, R-410c, etc., which can transfer heat by latent heat may be used.

【0043】[0043]

【発明の効果】以上説明したように、本発明の空調装置
によれば、室内機の設置階に関係無く十分な冷暖房能力
が確保でき、しかも発電量が年間を通じて最大となる盛
夏時の電力消費が効果的に削減できる。
As described above, according to the air conditioner of the present invention, sufficient cooling and heating capacity can be ensured irrespective of the floor where the indoor units are installed, and the power consumption during the high summer months, when the amount of power generation becomes maximum throughout the year. Can be effectively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施形態の説明図である。FIG. 1 is an explanatory diagram of one embodiment.

【図2】電動ポンプに供給する電力の周波数を、液面レ
ベルに基づいて変換する際の説明図である。
FIG. 2 is an explanatory diagram when a frequency of electric power supplied to an electric pump is converted based on a liquid level.

【図3】電動ポンプに供給する電力の周波数を、空調負
荷に基づいて変換する際の説明図である。
FIG. 3 is an explanatory diagram when a frequency of electric power supplied to an electric pump is converted based on an air conditioning load.

【図4】電動ポンプに供給する電力の周波数を、投入熱
量に基づいて変換する際の説明図である。
FIG. 4 is an explanatory diagram when a frequency of electric power supplied to the electric pump is converted based on the amount of input heat.

【図5】従来技術の説明図である。FIG. 5 is an explanatory diagram of a conventional technique.

【符号の説明】[Explanation of symbols]

1 室外機 2 熱交換器 3 閉回路 4 室内機 5 熱交換器 6 液相管 6A 液相管共通部 6B バイパス管 6C バイパス管 7 気相管 8 流量調整弁 9 レシーバタンク 10 電動ポンプ 11 冷暖切替弁 12 レシーバタンク 13 電動ポンプ 14 冷暖切替弁 15 周波数変換器 16 送風機 17 室外制御装置 18 室内制御装置 19 通信線 20 リモコン S1・S2 温度センサ S3 液面センサ S4 熱量センサ DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Heat exchanger 3 Closed circuit 4 Indoor unit 5 Heat exchanger 6 Liquid phase pipe 6A Liquid phase pipe common part 6B Bypass pipe 6C Bypass pipe 7 Gas phase pipe 8 Flow control valve 9 Receiver tank 10 Electric pump 11 Cooling / heating switching Valve 12 Receiver tank 13 Electric pump 14 Cooling / heating switching valve 15 Frequency converter 16 Blower 17 Outdoor control device 18 Indoor control device 19 Communication line 20 Remote control S1 ・ S2 Temperature sensor S3 Liquid level sensor S4 Heat quantity sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 室外機と、全数もしくは過半数が室外機
より下方に設置された複数の室内機との間を、気相管と
ポンプを備えた液相管とで連結し、室外機で吸熱して蒸
発した気体を室内機に導入して放熱・凝縮させ、この凝
縮した液体を前記ポンプの吐出力によって室外機に戻
し、各室内機において暖房可能に構成すると共に、液相
管の流路切り替えにより、室外機で放熱して凝縮した液
体を、蒸気との比重差と、前記ポンプの吐出力とを利用
して室内機に搬送し、室内機で吸熱・蒸発させて各室内
機において冷房可能に構成した装置において、前記ポン
プの回転をポンプの極数変換またはポンプに供給する電
力の周波数を変換して制御する制御手段を備えたことを
特徴とする空調装置。
An outdoor unit and a plurality of indoor units, all or a majority of which are installed below the outdoor unit, are connected by a gas phase pipe and a liquid phase pipe having a pump, and the outdoor unit absorbs heat. The vaporized gas is introduced into the indoor unit to radiate and condense the liquid, and the condensed liquid is returned to the outdoor unit by the discharge force of the pump. By switching, the liquid radiated and condensed by the outdoor unit is conveyed to the indoor unit using the specific gravity difference with the steam and the discharge force of the pump, and the indoor unit absorbs heat and evaporates to cool the indoor unit. An air conditioner, comprising: a control unit for controlling the rotation of the pump by converting the number of poles of the pump or the frequency of electric power supplied to the pump.
JP8324232A 1996-12-04 1996-12-04 Air conditioning apparatus Pending JPH10170179A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8324232A JPH10170179A (en) 1996-12-04 1996-12-04 Air conditioning apparatus
US08/984,017 US5966954A (en) 1996-12-04 1997-12-03 Air conditioning system
KR1019970065880A KR100502283B1 (en) 1996-12-04 1997-12-04 Air conditioning system
CNB971208352A CN1149357C (en) 1996-12-04 1997-12-04 Air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8324232A JPH10170179A (en) 1996-12-04 1996-12-04 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH10170179A true JPH10170179A (en) 1998-06-26

Family

ID=18163521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8324232A Pending JPH10170179A (en) 1996-12-04 1996-12-04 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH10170179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309032A (en) * 2003-04-08 2004-11-04 Hiroshi Ogawa Central air conditioning and heating equipment and its operation control method
JP2007240062A (en) * 2006-03-08 2007-09-20 Japan Steel Works Ltd:The Cold/hot heat output method and device for absorption cooling/heating machine
GB2464984A (en) * 2008-11-03 2010-05-05 Laing O Rourke Plc Energy efficient zonal climate control system for commercial buildings

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309032A (en) * 2003-04-08 2004-11-04 Hiroshi Ogawa Central air conditioning and heating equipment and its operation control method
JP2007240062A (en) * 2006-03-08 2007-09-20 Japan Steel Works Ltd:The Cold/hot heat output method and device for absorption cooling/heating machine
GB2464984A (en) * 2008-11-03 2010-05-05 Laing O Rourke Plc Energy efficient zonal climate control system for commercial buildings
GB2464984B (en) * 2008-11-03 2010-09-15 Laing O Rourke Plc Environmental climate control for commercial buildings

Similar Documents

Publication Publication Date Title
KR100502283B1 (en) Air conditioning system
JPH10170179A (en) Air conditioning apparatus
JP3630892B2 (en) Air conditioner
US5924480A (en) Air conditioning system
JP3318505B2 (en) Control device for absorption air conditioner
JP3594426B2 (en) Air conditioner
JP3599980B2 (en) Operating method of air conditioner
JPH11148694A (en) Method for controlling operation of air conditioner
JP3663029B2 (en) Air conditioner
JP3663028B2 (en) Air conditioner
JPH10132331A (en) Air conditioner
JP3615353B2 (en) Operation control method for air conditioner
JP3568380B2 (en) Operating method of air conditioner
JP3762542B2 (en) Air conditioner
JP3594453B2 (en) Operating method of air conditioner
JPH07151359A (en) Refrigerant circulation type air conditioning system
JPH11148681A (en) Air conditioner
JPH10132334A (en) Air conditioner
JPH10132333A (en) Air conditioner
JPH10132332A (en) Air conditioner
JPH0638246Y2 (en) Refrigerant natural circulation type cooling system
JP3604869B2 (en) Operation control method of air conditioner
JPH11351690A (en) Air conditioner and method for operating it
JPH11148744A (en) Air conditioner
JPH11148738A (en) Air conditioner and air conditioning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802