JPH1112737A - Electrochemical vapor deposition device, and solid electrolyte film forming method using it - Google Patents

Electrochemical vapor deposition device, and solid electrolyte film forming method using it

Info

Publication number
JPH1112737A
JPH1112737A JP9165902A JP16590297A JPH1112737A JP H1112737 A JPH1112737 A JP H1112737A JP 9165902 A JP9165902 A JP 9165902A JP 16590297 A JP16590297 A JP 16590297A JP H1112737 A JPH1112737 A JP H1112737A
Authority
JP
Japan
Prior art keywords
vapor
vapor deposition
raw material
electrochemical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9165902A
Other languages
Japanese (ja)
Inventor
Shinji Takeuchi
伸二 竹内
Junichi Fujita
淳一 藤田
Namiko Kaneda
波子 兼田
Mikiyuki Ono
幹幸 小野
Masataka Mochizuki
正孝 望月
Masakatsu Nagata
雅克 永田
Tsutomu Iwazawa
力 岩澤
Michio Takaoka
道雄 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Kansai Electric Power Co Inc
Original Assignee
Fujikura Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Kansai Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP9165902A priority Critical patent/JPH1112737A/en
Publication of JPH1112737A publication Critical patent/JPH1112737A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To form a solid electrolyte film of the uniform composition on an inner circumferential surface of an air electrode support pipe. SOLUTION: In an electrochemical vapor deposition device, the raw vapor deposition material powder is vaporized at the high-temperature atmosphere in a vaporization chamber 37, and the raw material vapor 25 is introduced into the vapor deposition base material 23 in a reaction chamber 21 from the vaporization chamber 37 through a raw material vapor feed pipe 38 to achieve the electrochemical vapor deposition. When the raw material vapor 25 is introduced in the vapor deposition base material 23 through the raw material vapor feed pipe 38, the raw material vapor is discharged inside the vapor deposition base material through a large number of discharge holes formed all over the pipe wall of the raw material vapor feed pipe, and the vapor concentration is approximately uniform in upper and lower parts inside the vapor deposition base material to enable the electrochemical vapor deposition, and as a result, the solid electrochemical film of the constant composition can be formed over the whole inner circumferential surface of the vapor deposition base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学蒸着装置
及びそれを用いた固体電解質成膜方法に関する。
The present invention relates to an electrochemical deposition apparatus and a solid electrolyte film forming method using the same.

【0002】[0002]

【従来の技術】近年、固体電解質型燃料電池の研究、開
発が鋭意に行われている。この固体電解質型燃料電池に
は平板方式と円筒方式とがあり、さらに円筒方式には縦
縞方式と横縞方式とがある。そして特に、円筒縦縞の固
体電解質型燃料電池は図4〜図6に示すような構造であ
る。単電池106は図4に示すように、内側から順に多
孔質ランタンマンガネート系酸化物(LaMnOx)の
空気極支持管101、イットリア安定化ジルコニア(Y
SZ)製の固体電解質102、ニッケル又はニッケル合
金とYSZとのサーメット製の燃料極103の積層構造
にして、外周面の一部にインタコネクタ104を燃料極
103から絶縁し、かつ内部の空気極支持管101に接
続する形で配置している。
2. Description of the Related Art In recent years, research and development of solid oxide fuel cells have been earnestly carried out. The solid oxide fuel cell includes a flat plate type and a cylindrical type, and the cylindrical type includes a vertical stripe type and a horizontal stripe type. In particular, the solid oxide fuel cell having the vertical cylindrical stripes has a structure as shown in FIGS. As shown in FIG. 4, the unit cell 106 has a cathode support tube 101 of porous lanthanum manganate-based oxide (LaMnOx) and a yttria-stabilized zirconia (Y
SZ), a solid electrolyte 102, a cermet fuel electrode 103 of nickel or a nickel alloy and YSZ, and an interconnector 104 is partially insulated from the fuel electrode 103 on a part of the outer peripheral surface, and an internal air electrode is formed. It is arranged so as to be connected to the support tube 101.

【0003】そしてこの単電池106は、図5に示すよ
うにニッケルフェルト107によって直並列接続してバ
ンドル108を構成し、これを複数体つないでモジュー
ルとして発電設備に組み込んで使用する。発電の際には
図6に示すように、各単電池106の外側に燃料ガス1
09を流し、内側に空気110を流し込む方法をとる。
すなわち、各単電池106の開口側端部から導管111
によって空気を内部に供給すると、単電池106の閉塞
端部側で空気の流れが反転し、発電部112で外側を流
れる燃料ガス109と並行する流れとなり、後述する反
応によって発電に寄与する。なお、発電に消費されなか
った余剰燃料ガス109aは燃焼室113で余剰空気1
10aと混合して燃され、空気110の予熱に使われ
る。
[0005] As shown in FIG. 5, the unit cells 106 are connected in series and parallel by nickel felt 107 to form a bundle 108, and a plurality of these are connected to each other as a module and used in a power generation facility. At the time of power generation, as shown in FIG.
09 and the air 110 inside.
That is, the conduit 111 extends from the open end of each cell 106.
When the air is supplied to the inside, the flow of the air is reversed on the closed end side of the unit cell 106, becomes a flow parallel to the fuel gas 109 flowing outside in the power generation unit 112, and contributes to the power generation by a reaction described later. The surplus fuel gas 109a not consumed for power generation is supplied to the combustion chamber 113 by the surplus air 1
10a is mixed and burned, and is used for preheating the air 110.

【0004】固体電解質型燃料電池の発電作用について
説明すると、各単電池106の外側を流れる天然ガス、
メタン、石炭ガス化ガスなどの燃料ガス109は燃料極
103の多孔質の管壁を通じて固体電解質と接触し、高
温度条件下、通常、650℃〜1000℃の条件下で、
次式の改質反応を起こす。
[0004] The power generation operation of the solid oxide fuel cell will be described. Natural gas flowing outside each cell 106,
Fuel gas 109 such as methane and coal gasification gas comes into contact with the solid electrolyte through the porous tube wall of the fuel electrode 103, and under high temperature conditions, usually 650 to 1000 ° C.
The reforming reaction of the following formula occurs.

【0005】[0005]

【化1】 この改質反応で発生する水素に対して、固体電解質10
2を介して対極する空気極支持管101と燃料極103
との部分で次の化2式の発電反応を起こし、遊離した電
子を集電することによって発電力を得る。
Embedded image The solid electrolyte 10 reacts with hydrogen generated by this reforming reaction.
2 and the cathode 103 and the anode 103
A power generation reaction of the following formula (2) is caused in the part (1), and the generated electrons are collected by collecting the released electrons to generate power.

【0006】[0006]

【化2】 つまり、燃料極103においては化2(a)式に示すよ
うに、改質反応で生成された水素が、固体電解質102
から供給される酸化物イオンと反応して水蒸気と電子を
生成する。そして燃料極103で生成された電子がニッ
ケルフェルト107を経て陰極121から外部回路に回
り、陽極122とインタコネクタ104を経て空気極支
持管101に到達すると、この空気極支持管101にお
いて、化2(b)式に示すように空気110中の酸素と
反応して酸化物イオンを生成し、これが固体電解質10
2に放出され、燃料極103側に到達して化2(a)式
の反応に供されるのである。
Embedded image That is, in the fuel electrode 103, as shown in Formula 2 (a), hydrogen generated by the reforming reaction
Reacts with the oxide ions supplied from the gas to generate water vapor and electrons. Then, when the electrons generated at the fuel electrode 103 pass from the cathode 121 to the external circuit via the nickel felt 107 and reach the cathode support tube 101 via the anode 122 and the interconnector 104, As shown in equation (b), it reacts with oxygen in the air 110 to generate oxide ions, which are
2 and reaches the fuel electrode 103 side to be subjected to the reaction of the chemical formula 2 (a).

【0007】このような発電機構の燃料電池において、
燃料電池電極基体を構成する空気極支持管101、固体
電解質102及び燃料極103の部分は次にようにして
形成している。まず空気極支持管101となるランタン
マンガネート系の多孔質の基体に対して電気化学蒸着
法、つまり、CVD(Chemical Vapor Deposition )−
EVD(Electrocheical Vapor Deposition )法を用い
て薄く、かつ緻密なYSZ膜を固体電解質102として
形成し、さらにこの外側にニッケル、ニッケル合金ある
いはニッケルジルコニアサーメットの粉末をスラリーコ
ートし、同じように電気化学蒸着法を施して多孔質の燃
料極103を成膜し、あるいは溶射法を用いて成膜する
のである。そして固体電解質102の成膜を行う電気化
学蒸着装置としては、図7に示す構造のものが使用され
ている。
In such a fuel cell of a power generation mechanism,
The air electrode support tube 101, the solid electrolyte 102, and the fuel electrode 103, which constitute the fuel cell electrode base, are formed as follows. First, a lanthanum manganate-based porous substrate to be the cathode support tube 101 is electrochemically deposited, that is, CVD (Chemical Vapor Deposition)-
A thin and dense YSZ film is formed as a solid electrolyte 102 using an EVD (Electrocheical Vapor Deposition) method, and a nickel, nickel alloy or nickel zirconia cermet powder is slurry-coated on the outside of the YSZ film. In this case, the porous fuel electrode 103 is formed by applying a spraying method, or the film is formed by using a thermal spraying method. As an electrochemical deposition apparatus for forming a film of the solid electrolyte 102, one having a structure shown in FIG. 7 is used.

【0008】この従来の電気化学蒸着装置は、塩化イッ
トリウムYCl3 、塩化ジルコニウムZrCl4 の原料
微粉末をパウダーフィーダ(MPF)31,32に貯溜
しておき、マスフローコントローラ(MFC)33,3
4によって所定の流量でアルゴンキャリアガス35を供
給することによってキャリアガス35に原料微粉末が混
入した原料蒸気を配管36を通じて気化室37に供給
し、この気化室37でヒータ22の加熱によって気化
し、原料蒸気25にして反応室21内に原料蒸気供給管
38を通じて供給する構造である。
In this conventional electrochemical vapor deposition apparatus, raw material powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 are stored in powder feeders (MPF) 31 and 32, and mass flow controllers (MFC) 33 and 3 are used.
By supplying the argon carrier gas 35 at a predetermined flow rate by 4, the raw material vapor in which the raw material fine powder is mixed into the carrier gas 35 is supplied to the vaporizing chamber 37 through the pipe 36, and vaporized by heating the heater 22 in the vaporizing chamber 37. Is supplied to the reaction chamber 21 through the raw material vapor supply pipe 38 as the raw material vapor 25.

【0009】そして反応室21内を真空に近い状態、約
1Torrにして、かつヒータ22によって約1000
〜1200℃の温度条件下で、空気極支持管となる多孔
質のLSM基体23の外側には酸素O2 、水蒸気H2
の混合酸化ガス24を導入し、内側にはYSZ膜の原料
となるイットリウム、ジルコニウムの塩化物YCl3
ZrCl4 の蒸気25をキャリアガスであるアルゴン
(Ar)ガスに混入して原料蒸気供給管38の下端放出
孔から供給する。
The inside of the reaction chamber 21 is set to a state close to a vacuum, about 1 Torr, and the heater 22
Under a temperature condition of ~ 1200 ° C, oxygen O 2 and water vapor H 2 O are provided on the outside of the porous LSM substrate 23 serving as an air electrode support tube.
And a mixed oxide gas 24 of yttrium and zirconium as raw materials of the YSZ film, YCl 3 ,
The vapor 25 of ZrCl 4 is mixed with argon (Ar) gas, which is a carrier gas, and supplied from the lower discharge hole of the raw material vapor supply pipe 38.

【0010】これによって図8(a)に示すように、最
初は基体23の多数の孔27を通ってくる酸化ガス24
と原料蒸気25とが化3式に示す反応をして図8(b)
に示すようにYSZ膜28を基体23の表面に生成し、
徐々に基体23の多数の孔27を閉塞していく。これが
CVD段階である。
As a result, as shown in FIG. 8 (a), the oxidizing gas
8 reacts with the raw material vapor 25 as shown in chemical formula (3).
A YSZ film 28 is formed on the surface of the base 23 as shown in FIG.
Many holes 27 of the base 23 are gradually closed. This is the CVD stage.

【0011】[0011]

【化3】 このCVD段階が終了すると、原料蒸気25と酸化ガス
24とは直接に反応することはなくなり、酸化ガス24
からの酸素がYSZ面上で還元されてYSZ膜28中を
酸化物イオンO2-として拡散し、化4式に示す反応を原
料塩化物蒸気と行うEVD段階へ進み、同図(c)に示
すようにYSZ膜28が成長する。
Embedded image When the CVD step is completed, the raw material vapor 25 and the oxidizing gas 24 do not directly react with each other, and the oxidizing gas 24
Is reduced on the YSZ surface and diffuses in the YSZ film 28 as oxide ions O 2− , and proceeds to the EVD stage in which the reaction represented by the chemical formula 4 is performed with the raw material chloride vapor, as shown in FIG. As shown, the YSZ film 28 grows.

【0012】[0012]

【化4】 こうして電気化学蒸着法によって固体電解質膜102と
してYSZ膜28を成膜した後は、さらに上述した燃料
極103をスラリーコーティングした後に電気化学蒸着
法によって形成し燃料電池を作製することになる。
Embedded image After the YSZ film 28 is formed as the solid electrolyte film 102 by the electrochemical deposition method in this manner, the above-described fuel electrode 103 is further subjected to slurry coating and then formed by the electrochemical deposition method to manufacture a fuel cell.

【0013】[0013]

【発明が解決しようとする課題】ところが、このような
構造の電気化学蒸着装置では、図9に示すように原料蒸
気供給管38が延長されて長くなり、原料蒸気25は原
料蒸気供給管38の内部を通過して下端放出孔のみから
放出され、原料蒸気25は蒸発した順に成膜に使用され
るために空気極支持管の下部内周面に気化しやすい原料
が成膜されやすく、結果的に空気極支持管の内周面の上
下で組成がずれ、内周面全体で一定組成の固体電解質膜
を成膜することが困難である問題点があった。
However, in the electrochemical vapor deposition apparatus having such a structure, the raw material vapor supply pipe 38 is extended and elongated as shown in FIG. The raw material vapor 25 passes through the inside and is released only from the lower end discharge hole, and the raw material vapor 25 is used for film formation in the order of evaporation, so that a raw material that is easily vaporized is easily formed on the lower inner peripheral surface of the cathode support tube, and as a result, In addition, there is a problem that the composition shifts above and below the inner peripheral surface of the cathode support tube, and it is difficult to form a solid electrolyte membrane having a constant composition on the entire inner peripheral surface.

【0014】本発明はこのような技術的な課題を解決す
るために発明されたもので、基体の内周面全体に組成一
定の固体電解質膜を成膜することができる電気化学蒸着
装置およびそれを用いた固体電解質成膜方法を提供する
ことを目的とする。
The present invention has been made to solve such a technical problem, and an electrochemical vapor deposition apparatus capable of forming a solid electrolyte film having a constant composition on the entire inner peripheral surface of a substrate, and an electrochemical vapor deposition apparatus therefor. It is an object of the present invention to provide a solid electrolyte film forming method using the same.

【0015】[0015]

【課題を解決するための手段】請求項1の発明の電気化
学蒸着装置は、蒸着原料粉末を高温雰囲気で気化させる
気化室と、円管状の蒸着基体を内部に収容し、かつ前記
気化室で気化された蒸着原料蒸気を原料蒸気供給管を通
じて前記蒸着基体の内部に導入し、かつ前記蒸着基体の
外部に酸化ガスを導入して、前記蒸着基体の内周面に電
気化学蒸着膜を形成する反応室とを備え、前記原料蒸気
供給管の管壁に前記蒸着原料蒸気を一定放出量、一定放
出濃度で放出するように分布態様と孔径とが調整された
多数の放出孔を形成したものである。
According to a first aspect of the present invention, there is provided an electrochemical vapor deposition apparatus comprising: a vaporization chamber for vaporizing a raw material powder in a high-temperature atmosphere; The vaporized source vapor is introduced into the deposition substrate through a source vapor supply pipe, and an oxidizing gas is introduced outside the deposition substrate to form an electrochemical deposition film on the inner peripheral surface of the deposition substrate. A reaction chamber, and a plurality of discharge holes whose distribution mode and hole diameter are adjusted to form a constant release amount and a constant release concentration of the vapor deposition raw material vapor on the tube wall of the raw material vapor supply pipe. is there.

【0016】請求項1の発明の電気化学蒸着装置では、
気化室において高温雰囲気で蒸着原料粉末を気化させ、
この原料蒸気を気化室から反応室の蒸着基体の内部に原
料蒸気供給管を通じて導入して電気化学蒸着を実行す
る。この原料蒸気供給管を通じて原料蒸気を蒸着基体の
内部に導入する際、原料蒸気は原料蒸気供給管の全長に
多数形成されている放出孔を通して蒸着基体の内部に放
出されることになって蒸着基体の内部の上下各部で均一
な蒸気濃度にして電気化学蒸着が可能となり、結果的に
蒸着基体の内周面全体に渡り、組成一定の固体電解質膜
を形成することができる。
In the electrochemical vapor deposition apparatus according to the first aspect of the present invention,
In the vaporization chamber, vaporize the raw material powder in a high temperature atmosphere,
The raw material vapor is introduced from the vaporization chamber into the inside of the deposition substrate of the reaction chamber through a raw material vapor supply pipe to perform electrochemical vapor deposition. When the raw material vapor is introduced into the inside of the deposition substrate through the raw material vapor supply pipe, the raw material vapor is discharged into the interior of the vapor deposition substrate through a large number of emission holes formed over the entire length of the raw material vapor supply pipe. It is possible to perform electrochemical vapor deposition with a uniform vapor concentration at each of the upper and lower portions inside the substrate, and as a result, it is possible to form a solid electrolyte membrane having a constant composition over the entire inner peripheral surface of the vapor deposition substrate.

【0017】請求項2の発明の電気化学蒸着装置は、蒸
着原料粉末を希釈剤と混合した混合液を貯溜する混合液
貯溜部と、前記混合液貯溜部から導出する前記混合液か
ら前記希釈剤を高温雰囲気で蒸発分解させると共に、前
記蒸着原料粉末を気化させる気化室と、円管状の蒸着基
体を内部に収容し、かつ前記気化室で気化された蒸着原
料蒸気を原料蒸気供給管を通じて前記蒸着基体の内部に
導入し、かつ前記蒸着基体の外部に酸化ガスを導入し
て、前記蒸着基体の内周面に電気化学蒸着膜を形成する
反応室とを備え、前記原料蒸気供給管の管壁に前記蒸着
原料蒸気を一定放出量、一定放出濃度で放出するように
分布態様と孔径とが調整された多数の放出孔を形成した
ものである。
According to a second aspect of the present invention, there is provided an electrochemical vapor deposition apparatus comprising: a mixed liquid storage section for storing a mixed liquid obtained by mixing a raw material powder with a diluent; and a diluent from the mixed liquid derived from the mixed liquid storage section. Is vaporized and decomposed in a high-temperature atmosphere, and a vaporization chamber for vaporizing the vapor-deposited raw material powder, a cylindrical vapor-deposited substrate is housed inside, and the vapor-deposited raw material vapor vaporized in the vaporization chamber is vapor-deposited through a raw material vapor supply pipe. A reaction chamber for introducing an oxidizing gas into the inside of the base and introducing an oxidizing gas to the outside of the base to form an electrochemical deposition film on the inner peripheral surface of the base; In addition, a number of discharge holes whose distribution mode and hole diameter are adjusted so as to discharge the vapor deposition material vapor at a constant discharge amount and a constant discharge concentration are formed.

【0018】請求項2の発明の電気化学蒸着装置では、
混合液貯溜部に蒸着原料粉末を希釈剤と混合した混合液
を貯溜しておき、蒸着に際しては、気化室においてまず
混合液貯溜部から導出する混合液から希釈剤を高温雰囲
気で蒸発分解させると共に、蒸着原料粉末を気化させ、
不活性ガスと混合し、この原料蒸気を気化室から反応室
に原料蒸気供給管を通じて導入し、蒸着基体の内周面に
電気化学蒸着を実行する。
In the electrochemical vapor deposition apparatus according to the second aspect of the present invention,
A liquid mixture obtained by mixing the raw material powder for vapor deposition with a diluent is stored in the liquid mixture reservoir, and at the time of vapor deposition, the diluent is first evaporated and decomposed in a high-temperature atmosphere from the liquid mixture derived from the liquid mixture reservoir in the vaporization chamber. , Vaporize the raw material powder,
The raw material vapor is mixed with an inert gas, and the raw material vapor is introduced from the vaporization chamber to the reaction chamber through a raw material vapor supply pipe, and electrochemical deposition is performed on the inner peripheral surface of the deposition substrate.

【0019】このため、電気化学蒸着を実施する前の準
備段階では蒸着原料粉末を希釈剤と混合した混合液状態
で取り扱うことができ、吸湿しないように注意する必要
が無くなって取り扱いが容易となり、技術者の負担が軽
減し、また供給原料の定量が正確に行える。そしてこれ
と共に、請求項1の発明と同様に蒸着基体の内部の上下
各部でほぼ均一な蒸気濃度にして電気化学蒸着が可能と
なり、結果的に蒸着基体の内周面全体に渡り、組成一定
の固体電解質膜を形成することができる。
For this reason, in the preparatory stage before performing the electrochemical vapor deposition, the vapor deposition raw material powder can be handled in a mixed liquid state in which the powder is mixed with a diluent. The burden on the technician is reduced, and the feedstock can be accurately quantified. Along with this, electrochemical vapor deposition can be performed with substantially uniform vapor concentrations in the upper and lower portions of the inside of the vapor deposition substrate as in the invention of claim 1, and as a result, the composition is constant over the entire inner peripheral surface of the vapor deposition substrate. A solid electrolyte membrane can be formed.

【0020】請求項3の発明は、請求項1または2の電
気化学蒸着装置において、前記原料蒸気供給管に焼結多
孔質管を用いたものであり、これにより、蒸着基体の内
部の上下各部で均一な蒸気濃度にして蒸着原料蒸気を放
出することができ、結果的に蒸着基体の内周面全体に渡
り、組成一定の固体電解質膜を形成することができる。
According to a third aspect of the present invention, there is provided the electrochemical vapor deposition apparatus according to the first or second aspect, wherein a sintered porous tube is used as the raw material vapor supply tube. Thus, the vapor of the deposition source can be discharged with a uniform vapor concentration, and as a result, a solid electrolyte membrane having a constant composition can be formed over the entire inner peripheral surface of the deposition substrate.

【0021】請求項4の発明の固体電解質成膜方法は、
請求項1または3の電気化学蒸着装置を用いて、塩化イ
ットリウム粉末、塩化ジルコニウム粉末それぞれを所定
の割合、所定の流量で前記気化室に導入して高温雰囲気
で気化させて蒸着原料蒸気を生成し、この蒸着原料蒸気
を前記反応室の前記原料蒸気供給管に導入して前記蒸着
基体の内周面に電気化学蒸着膜を形成するものである。
According to a fourth aspect of the present invention, there is provided a solid electrolyte film forming method comprising:
The yttrium chloride powder and the zirconium chloride powder are each introduced into the vaporization chamber at a predetermined ratio and a predetermined flow rate by using the electrochemical vapor deposition apparatus according to claim 1 or 2, and vaporized in a high-temperature atmosphere to generate a vapor for vapor deposition. The vapor deposition source is introduced into the source vapor supply pipe of the reaction chamber to form an electrochemical vapor deposition film on the inner peripheral surface of the deposition base.

【0022】請求項4の発明の固体電解質成膜方法で
は、請求項1または3の電気化学蒸着装置を用いて蒸着
基体の内周面に固体電解質膜を成膜するので、蒸着基体
の内周面全体に渡り、組成一定の固体電解質膜を形成す
ることができる。
According to the solid electrolyte film forming method of the present invention, the solid electrolyte film is formed on the inner peripheral surface of the vapor deposition substrate by using the electrochemical vapor deposition apparatus of the first or third aspect. A solid electrolyte membrane having a constant composition can be formed over the entire surface.

【0023】請求項5の発明の固体電解質成膜方法は、
請求項2または3の電気化学蒸着装置を用いて、塩化イ
ットリウム粉末、塩化ジルコニウム粉末それぞれを希釈
剤と混合した混合液を前記混合液貯溜部に用意し、前記
塩化イットリウム混合液、塩化ジルコニウム混合液それ
ぞれを所定の割合、所定の流量で前記気化室に導入して
前記希釈剤を高温雰囲気で蒸発分解させると共に、前記
蒸着原料粉末を気化させて蒸着原料蒸気を生成し、この
蒸着原料蒸気を前記反応室の前記原料蒸気供給管に導入
して前記蒸着基体の内周面に電気化学蒸着膜を形成する
ものである。
According to a fifth aspect of the invention, there is provided a solid electrolyte film forming method,
A mixed solution obtained by mixing each of yttrium chloride powder and zirconium chloride powder with a diluent using the electrochemical vapor deposition apparatus according to claim 2 or 3, is prepared in the mixed solution storage section, and the yttrium chloride mixed solution and zirconium chloride mixed solution are prepared. Each is introduced into the vaporization chamber at a predetermined ratio and a predetermined flow rate, and the diluent is vaporized and decomposed in a high-temperature atmosphere, and the vapor deposition source powder is vaporized to generate vapor deposition source vapor. It is introduced into the raw material vapor supply pipe of the reaction chamber to form an electrochemical vapor deposition film on the inner peripheral surface of the vapor deposition substrate.

【0024】請求項5の発明の固体電解質成膜方法で
は、請求項2または3の電気化学蒸着装置を用いるの
で、基体に蒸着させる固体電解質原料が混合液の状態に
して取り扱いやすく、それだけ固体電解質の成膜作業が
容易であり、また蒸着基体の内周面全体に渡り、組成一
定の固体電解質膜を形成することができる。
In the solid electrolyte film forming method according to the fifth aspect of the present invention, since the electrochemical deposition apparatus according to the second or third aspect is used, the solid electrolyte raw material to be deposited on the substrate is easy to handle in the form of a mixed liquid, and the solid electrolyte is accordingly reduced. Is easy, and a solid electrolyte film having a constant composition can be formed over the entire inner peripheral surface of the deposition substrate.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。図1は本発明の1つの実施の形態の
電気化学蒸着装置を示しており、図7に示した従来例の
装置の構造とほぼ共通するが、原料蒸気供給管38が図
2に示す構造である点に特徴を有する。すなわち、原料
蒸気供給管38の管壁の上下各部に、そこから放出され
る原料蒸気25の放出量、放出濃度が一定になるように
分布態様、孔径が調整された多数の放出孔71が形成さ
れている。そして図1に示すように、反応室21の上部
の配管36との接続部に形成されている気化室37にこ
の原料供給管38を接続してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an electrochemical vapor deposition apparatus according to one embodiment of the present invention, which has almost the same structure as that of the conventional apparatus shown in FIG. 7, except that the raw material vapor supply pipe 38 has the structure shown in FIG. It has a characteristic in a certain point. That is, a large number of discharge holes 71 whose distribution mode and hole diameter are adjusted are formed in upper and lower portions of the tube wall of the raw material vapor supply pipe 38 so that the amount and concentration of the raw material vapor 25 released therefrom are constant. Have been. As shown in FIG. 1, the raw material supply pipe 38 is connected to a vaporization chamber 37 formed at a connection portion of the upper part of the reaction chamber 21 with the pipe 36.

【0026】この図1に示した電気化学蒸着装置による
固体電解質成膜は次の手順による。塩化イットリウムY
Cl3 、塩化ジルコニウムZrCl4 の原料微粉末をパ
ウダーフィーダ(MPF)31,32に貯溜しておき、
マスフローコントローラ(MFC)33,34によって
所定の流量でアルゴンキャリアガス35を供給すること
によってキャリアガス35に原料微粉末が混入した原料
蒸気を配管36を通じて気化室37に供給し、この気化
室37でヒータ22の加熱によって気化し、原料蒸気2
5にして反応室21内に原料蒸気供給管38を通じて供
給する。
The solid electrolyte film formation by the electrochemical vapor deposition apparatus shown in FIG. 1 is performed according to the following procedure. Yttrium chloride Y
The raw material powders of Cl 3 and zirconium chloride ZrCl 4 are stored in powder feeders (MPF) 31 and 32,
By supplying an argon carrier gas 35 at a predetermined flow rate by mass flow controllers (MFCs) 33 and 34, the raw material vapor in which the raw material fine powder is mixed into the carrier gas 35 is supplied to a vaporization chamber 37 through a pipe 36, and the vaporization chamber 37 The raw material vapor 2 is vaporized by heating the heater 22.
5, and supplied into the reaction chamber 21 through the raw material vapor supply pipe 38.

【0027】反応室21内は真空に近い状態、約1To
rrにして、かつヒータ22によって約1000〜12
00℃の温度条件下で、空気極支持管となる多孔質のL
SM基体23の外側には酸素O2 、水蒸気H2 Oの混合
酸化ガス24を導入し、内側にはYSZ膜の原料となる
イットリウム、ジルコニウムの塩化物YCl3 ,ZrC
4 の蒸気25をキャリアガスであるアルゴン(Ar)
ガスに混入して原料蒸気供給管38の下端放出孔から供
給する。
The inside of the reaction chamber 21 is close to a vacuum, about 1 To
rr and about 1000 to 12
Under a temperature condition of 00 ° C., a porous L serving as an air electrode support tube
A mixed oxidizing gas 24 of oxygen O 2 and water vapor H 2 O is introduced to the outside of the SM base 23, and yttrium and zirconium chlorides YCl 3 and ZrC, which are raw materials of the YSZ film, are introduced to the inside of the SM base 23.
Argon vapor 25 of l 4 as a carrier gas (Ar)
It is mixed with the gas and supplied from the lower end discharge hole of the raw material vapor supply pipe 38.

【0028】これによって、図8に示したCVD−EV
D作用により、気体23の内側面に固体電解質膜として
YSZ膜28が成膜される。そしてこの実施の形態の場
合、基体23の中心部に挿入した原料蒸気供給管38に
下端放出孔だけでなく、管壁の全体に多数の放出孔71
を形成しているので、気化室37から供給される原料蒸
気25を各放出孔71を通して基体23の内部の上下各
部にほぼ均一な濃度で供給することができ、結果的に基
体23の内周面の各部に一定組成の固体電解質膜28を
形成することができる。
Thus, the CVD-EV shown in FIG.
By the action D, the YSZ film 28 is formed on the inner surface of the gas 23 as a solid electrolyte film. In the case of this embodiment, the raw material vapor supply pipe 38 inserted into the center of the base 23 has not only a lower end discharge hole but also a large number of discharge holes 71 throughout the pipe wall.
Is formed, the raw material vapor 25 supplied from the vaporization chamber 37 can be supplied to the upper and lower portions of the inside of the substrate 23 through the respective discharge holes 71 at a substantially uniform concentration. A solid electrolyte membrane 28 having a constant composition can be formed on each part of the surface.

【0029】なお、上記の実施の形態において原料蒸気
供給管38に形成する放出孔71の分布形態、孔径の調
整は装置の仕様によって大きく異なるものであり、原料
蒸気供給管38の上下各所にほぼ一定の放出量、一定の
濃度で原料蒸気25が放出できるように実験的に決定す
るものである。
In the above embodiment, the distribution pattern and the adjustment of the diameter of the discharge holes 71 formed in the raw material vapor supply pipe 38 differ greatly depending on the specifications of the apparatus. It is determined experimentally so that the raw material vapor 25 can be released at a constant release amount and a constant concentration.

【0030】次に、本発明の第2の実施の形態の電気化
学蒸着装置について、図3に基づいて説明する。この第
2の実施の形態の電気化学蒸着装置は原料液貯溜部5
1,52を備え、原料微粉末である塩化イットリウムY
Cl3 と塩化ジルコニウムZrCl4 それぞれを希釈剤
としてのエタノールによって希釈して混合液にしてここ
に一時的に貯溜する。この原料液貯溜部51,52に貯
溜される原料液はマスフローコントローラ(MFC)5
3,54それぞれによって一定時間に一定量を排出する
ように制御する。
Next, an electrochemical deposition apparatus according to a second embodiment of the present invention will be described with reference to FIG. The electrochemical deposition apparatus according to the second embodiment has a raw material liquid storage 5
Yttrium Chloride Y
Each of Cl 3 and zirconium chloride ZrCl 4 is diluted with ethanol as a diluent to form a mixed solution, which is temporarily stored. The raw material liquid stored in the raw material liquid storage units 51 and 52 is supplied to a mass flow controller (MFC) 5.
Control is performed so that a fixed amount is discharged in a fixed time by each of 3, 54.

【0031】反応室55の上流側に気化室56が設置し
てある。この気化室56は、反応室55の部分よりも高
い温度に加熱する気化用ヒータ57を備えていて、気化
室56にマスフローコントローラ53,54によって単
位時間当たり一定量ずつ送込まれてくる原料液を不活性
ガスであるアルゴンガス中で1000〜1200℃の温
度に加熱して希釈剤であるエタノールを蒸発分解させ、
さらに原料微粉末を気化させる。
A vaporization chamber 56 is provided upstream of the reaction chamber 55. The vaporization chamber 56 is provided with a vaporization heater 57 for heating to a temperature higher than that of the reaction chamber 55, and the raw material liquid fed into the vaporization chamber 56 by the mass flow controllers 53 and 54 at a constant rate per unit time. Was heated to a temperature of 1000 to 1200 ° C. in argon gas as an inert gas to evaporate and decompose ethanol as a diluent,
Further, the raw material powder is vaporized.

【0032】反応室55の外側にはヒータ61が設置さ
れ、反応室55の内部には、固体電解質を内周面に成膜
するために空気極支持管をなす基体63が取り付けら
れ、さらに基体63内に原料蒸気供給管67が挿入され
ていて、気化室56から原料蒸気65がこの原料蒸気供
給管67を通じて基体63内に供給され、また反応室5
5内の基体63の外側に水蒸気及び酸素の混合酸化ガス
66が供給されるようになっている。
A heater 61 is provided outside the reaction chamber 55, and a base 63 serving as an air electrode support tube for depositing a solid electrolyte on the inner peripheral surface is mounted inside the reaction chamber 55. A raw material vapor supply pipe 67 is inserted into the base 63, and a raw material vapor 65 is supplied from the vaporization chamber 56 into the base 63 through the raw material vapor supply pipe 67.
The mixed oxidizing gas 66 of water vapor and oxygen is supplied to the outside of the base 63 in 5.

【0033】原料蒸気供給管67は図2に示した第1の
実施の形態と同様の構造であり、下端が開口していると
共に、管壁の全体に多数の放出孔71が形成されてい
る。
The raw material vapor supply pipe 67 has the same structure as that of the first embodiment shown in FIG. 2, and has a lower end opened and a large number of discharge holes 71 formed in the entire pipe wall. .

【0034】この第2の実施の形態の電気化学蒸着装置
による固体電解質膜成膜方法は、次の手順による。塩化
イットリウムYCl3 と塩化ジルコニウムZrCl4
の微粉末それぞれを適当な量のエタノールと混合して原
料混合液を作成してこれらを原料液貯溜部51,52そ
れぞれに貯溜させる。塩化イットリウムと塩化ジルコニ
ウムとの重量比は1:5程度である。
The method of forming a solid electrolyte film by the electrochemical vapor deposition apparatus according to the second embodiment is performed according to the following procedure. Each of fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 is mixed with an appropriate amount of ethanol to prepare a raw material mixture, and these are stored in the raw material liquid storage units 51 and 52, respectively. The weight ratio between yttrium chloride and zirconium chloride is about 1: 5.

【0035】気化室56は気化用ヒータ57によって原
料微粉末が完全に気化する温度である1000〜120
0℃の温度に加熱しておく。反応室55は真空に近い圧
力、1Torr程度まで低下させ、さらにヒータ61に
よって1000〜1200℃の温度まで加熱する。そし
て水蒸気と酸素の混合酸化ガス66を0.4〜0.7m
m/minの流量で反応室55内の基体63の外側に供
給する。
The vaporizing chamber 56 has a temperature at which the raw material fine powder is completely vaporized by the vaporizing heater 57, ie, 1000 to 120.
Heat to a temperature of 0 ° C. The pressure in the reaction chamber 55 is reduced to a pressure close to vacuum, about 1 Torr, and further heated to a temperature of 1000 to 1200 ° C. by the heater 61. And the mixed oxidizing gas 66 of steam and oxygen is 0.4 to 0.7 m
It is supplied to the outside of the base 63 in the reaction chamber 55 at a flow rate of m / min.

【0036】こうした予備工程の後、原料液貯溜部5
1,52に貯溜されている原料液に対して、マスフロー
コントローラ53,54によってアルゴンガスを所定の
流量で供給して気化室56にこれらの原料液を所定流
量、たとえば、両方の原料液の供給量がその中に含まれ
ている原料粉末の重量に換算して両方の合計で50g/
hr程度となる流量で供給し、ここで希釈剤であるエタ
ノールを蒸発分解させると共に、残った塩化イットリウ
ム、塩化ジルコニウム微粉末それぞれを完全に気化させ
る。そして、キャリアガスであるアルゴンガスと共に原
料蒸気65を気化室56から反応室55の基体63内へ
原料蒸気供給管67を通じて供給する。原料蒸気供給管
67に供給される原料蒸気65は、上下各位置の蒸気放
出孔71,71,…と下端放出孔から基体63内におい
て放出される。
After such preliminary steps, the raw material liquid storage 5
Argon gas is supplied at a predetermined flow rate to the raw material liquids stored in the storage tanks 1 and 52 by the mass flow controllers 53 and 54, and these raw material liquids are supplied to the vaporization chamber 56 at a predetermined flow rate, for example, supply of both raw material liquids. The amount is converted to the weight of the raw material powder contained therein and the total of both is 50 g /
At a flow rate of about hr, ethanol as a diluent is vaporized and decomposed, and the remaining fine powder of yttrium chloride and zirconium chloride is completely vaporized. Then, the raw material vapor 65 is supplied from the vaporization chamber 56 into the base 63 of the reaction chamber 55 through the raw material vapor supply pipe 67 together with the argon gas as the carrier gas. The raw material vapor 65 supplied to the raw material vapor supply pipe 67 is discharged in the base 63 from the vapor discharge holes 71, 71,...

【0037】この手順を所定時間、たとえば5時間継続
することにより、従来例で説明したように、基体63の
内周面にCVD−EVD作用によってYSZの緻密な固
体電解質膜68が成膜される。そしてこの実施の形態に
よれば、基体63の中心部に挿入した原料蒸気供給管6
7の管壁の全体に多数の放出孔71を形成しているの
で、気化室56から供給される原料蒸気65を各放出孔
71を通して基体63の内部の上下各部にほぼ均一な濃
度で供給することができ、結果的に基体63の内周面の
各部に一定組成の固体電解質膜68を形成することがで
きる。
By continuing this procedure for a predetermined time, for example, 5 hours, a dense YSZ solid electrolyte film 68 is formed on the inner peripheral surface of the substrate 63 by the CVD-EVD action as described in the conventional example. . According to this embodiment, the raw material vapor supply pipe 6 inserted in the center of the base 63 is used.
Since a large number of discharge holes 71 are formed in the entire tube wall of No. 7, the raw material vapor 65 supplied from the vaporizing chamber 56 is supplied to each of the upper and lower portions inside the base 63 at a substantially uniform concentration through each discharge hole 71. As a result, a solid electrolyte membrane 68 having a constant composition can be formed on each part of the inner peripheral surface of the base 63.

【0038】なお、上記のいずれの実施の形態において
も、原料蒸気供給管38,67として、内部に供給され
る蒸着原料蒸気を全面からほぼ均一な放出量、放出濃度
で放出することができる多孔質焼結管を用いることがで
きる。
In each of the above embodiments, the raw material vapor supply pipes 38 and 67 are provided with a porous material capable of discharging the vaporized raw material vapor supplied therein from the entire surface with a substantially uniform discharge amount and discharge concentration. A quality sintered tube can be used.

【0039】[0039]

【実施例】【Example】

<実施例1>図1に示した電気化学蒸着装置を用いて固
体電解質膜の成膜を行った。そのために、外径12mm
φ、内径9mmφ、長さ100cm、アルミナ製の原料
蒸気供給管38の管壁に多数の放出孔71(平均孔径5
mmφ程度)をほぼ均一に分布するように形成し、この
原料蒸気供給管38を気化室37の下部に接続した。そ
して空気極支持管をなす基体23のLSM管(外径21
mmφ、内径17mmφ、長さ50cm)を反応室21
内に取り付け、その中心部に上記原料蒸気供給管38を
挿入し、気化室37と反応室21を1Torr程度まで
真空にし、ヒータ22によって両室を共に1200℃に
設定し、さらに反応室21の基体23の外側に水蒸気/
酸素の酸化ガス24を0.5ml/minの流量で供給
しておいた。
Example 1 A solid electrolyte film was formed using the electrochemical vapor deposition apparatus shown in FIG. Therefore, the outer diameter is 12mm
φ, inner diameter 9 mmφ, length 100 cm, a number of discharge holes 71 (average hole diameter 5
(approximately mmφ) so as to be distributed substantially uniformly, and this raw material vapor supply pipe 38 was connected to the lower part of the vaporization chamber 37. The LSM tube (outside diameter 21) of the base 23 forming the cathode support tube
mmφ, inner diameter 17mmφ, length 50cm)
The raw material vapor supply pipe 38 is inserted into the center of the inside, the vaporization chamber 37 and the reaction chamber 21 are evacuated to about 1 Torr, and both the chambers are set to 1200 ° C. by the heater 22. The water vapor /
Oxygen oxidizing gas 24 was supplied at a flow rate of 0.5 ml / min.

【0040】そしてマスフローコントローラ(MFC)
33,34によって塩化イットリウム、塩化ジルコニウ
ムそれぞれの微粉末を1:5の重量割合で、かつ原料粉
末重量に換算して両方で50g/hr程度となる流量で
気化室81に供給し、気化室81でヒータ82によって
1200℃程度に加熱して気化させ、原料蒸気25にし
て原料蒸気供給管67を通じて反応室21の基体23内
に供給し、5時間の電気化学蒸着により、50μmのY
SZ固体電解質膜28を成膜した。
And a mass flow controller (MFC)
The fine powders of yttrium chloride and zirconium chloride are supplied to the vaporization chamber 81 at a weight ratio of 1: 5 and at a flow rate of about 50 g / hr in terms of the weight of the raw material powder by both 33 and 34. Is heated to about 1200 ° C. by a heater 82 to vaporize the raw material, and the raw material vapor 25 is supplied into the substrate 23 of the reaction chamber 21 through the raw material vapor supply pipe 67, and the 50 μm Y is formed by electrochemical deposition for 5 hours.
The SZ solid electrolyte membrane 28 was formed.

【0041】このYSZ固体電解質膜の組織状態はCV
D−EVD法特有の緻密なものであり、しかも基体内周
面の上下各部でほぼ均一な組成であった。
The structure of this YSZ solid electrolyte membrane is CV
It was a dense material peculiar to the D-EVD method, and had a substantially uniform composition at each of the upper and lower portions of the inner peripheral surface of the substrate.

【0042】<実施例2>図3に示した電気化学蒸着装
置を用いてYSZ固体電解質膜の成膜を行った。そのた
めに、実施例1と同じ仕様の原料蒸気供給管67を用
い、気化室56の下部に接続した。そして空気極支持管
をなす基体63のLSM管(外径21mmφ、内径17
mmφ、長さ50cm)を反応室55内に取り付け、そ
の中心部に上記原料蒸気供給管67を挿入し、気化室5
6と反応室55を1Torr程度まで真空にし、ヒータ
57,61によって両室を共に1200℃に設定し、さ
らに反応室55の基体63の外側に水蒸気/酸素の酸化
ガス66を0.5ml/minの流量で供給しておい
た。
Example 2 A YSZ solid electrolyte film was formed using the electrochemical vapor deposition apparatus shown in FIG. For this purpose, a raw material vapor supply pipe 67 having the same specifications as in Example 1 was used and connected to the lower part of the vaporization chamber 56. The LSM tube (outside diameter 21 mmφ, inside diameter 17 mm) of the base 63 forming the cathode support tube
mmφ, length 50 cm) is installed in the reaction chamber 55, and the raw material vapor supply pipe 67 is inserted into the center of the reaction chamber 55.
6 and the reaction chamber 55 are evacuated to about 1 Torr, both the chambers are set to 1200 ° C. by the heaters 57 and 61, and the oxidizing gas 66 of water vapor / oxygen is added to the outside of the base 63 of the reaction chamber 55 at 0.5 ml / min. Was supplied at a flow rate of

【0043】そして塩化イットリウム、塩化ジルコニウ
ムそれぞれの微粉末をエタノールと重量比で1:1に混
合した原料液を1:5の割合で、かつ原料粉末重量に換
算して両方で50g/hr程度となる流量で気化室56
に供給した。気化室56には別に、0.8ml/min
程度でキャリアガスアルゴンArを供給しておいた。
The raw material liquid obtained by mixing the fine powders of yttrium chloride and zirconium chloride with ethanol at a weight ratio of 1: 1 was used at a ratio of 1: 5 and converted to the weight of the raw material powder, and both were about 50 g / hr. Vaporization chamber 56
Supplied. 0.8 ml / min separately in vaporization chamber 56
The carrier gas argon Ar was supplied at about the same level.

【0044】これによって気化室56で1200℃の高
温に加熱された原料液からエタノールが蒸発分解し、さ
らに原料微粉末が完全に気化して原料蒸気供給管67を
通じて反応室55の基体63内に供給され、約5時間の
電気化学蒸着により、約50μmのYSZ固体電解質膜
68を成膜することができた。
As a result, ethanol is vaporized and decomposed from the raw material liquid heated to a high temperature of 1200 ° C. in the vaporization chamber 56, and the raw material fine powder is completely vaporized and enters the base 63 of the reaction chamber 55 through the raw material vapor supply pipe 67. The YSZ solid electrolyte membrane 68 having a thickness of about 50 μm was supplied and electrochemically deposited for about 5 hours.

【0045】このYSZ固体電解質膜の組織状態はCV
D−EVD法特有の緻密なものであり、しかも基体内周
面の上下各部でほぼ均一な組成であった。
The structure of this YSZ solid electrolyte membrane is CV
It was a dense material peculiar to the D-EVD method, and had a substantially uniform composition at each of the upper and lower portions of the inner peripheral surface of the substrate.

【0046】[0046]

【発明の効果】以上のように請求項1の発明によれば、
気化室において高温雰囲気で蒸着原料粉末を気化させ、
この原料蒸気を気化室から反応室の蒸着基体の内部に原
料蒸気供給管を通じて導入する際、原料蒸気は原料蒸気
供給管の管壁全体に形成されている多数の放出孔を通し
て蒸着基体の内部に放出されることになって蒸着基体の
内部の上下各部でほぼ均一な蒸気濃度にして電気化学蒸
着が可能であり、結果的に蒸着基体の内周面全体に渡
り、組成一定の固体電解質膜を形成することができる。
As described above, according to the first aspect of the present invention,
In the vaporization chamber, vaporize the raw material powder in a high temperature atmosphere,
When this raw material vapor is introduced from the vaporization chamber into the inside of the vapor deposition substrate of the reaction chamber through the raw material vapor supply pipe, the raw material vapor is introduced into the vapor deposition base through a number of discharge holes formed on the entire wall of the raw material vapor supply pipe. As a result, electrochemical vapor deposition can be performed with a substantially uniform vapor concentration in the upper and lower portions of the inside of the deposition substrate, and as a result, a solid electrolyte membrane having a constant composition is formed over the entire inner peripheral surface of the deposition substrate. Can be formed.

【0047】請求項2の発明によれば、混合液貯溜部に
蒸着原料粉末を希釈剤と混合した混合液を貯溜してお
き、蒸着に際しては、気化室においてまず混合液貯溜部
から導出する混合液から希釈剤を高温雰囲気で蒸発分解
させると共に、蒸着原料粉末を気化させ、不活性ガスと
混合し、この原料蒸気を気化室から反応室に原料蒸気供
給管を通じて導入し、蒸着基体の内周面に電気化学蒸着
を実行するので、電気化学蒸着を実施する前の準備段階
では蒸着原料粉末を希釈剤と混合した混合液状態で取り
扱うことができ、吸湿しないように注意する必要が無く
なって取り扱いが容易となり、供給原料の定量が正確に
行え、また、請求項1の発明と同様に蒸着基体の内部の
上下各部でほぼ均一な蒸気濃度にして電気化学蒸着が可
能であり、結果的に蒸着基体の内周面全体に渡り、組成
一定の固体電解質膜を形成することができる。
According to the second aspect of the present invention, the mixed liquid obtained by mixing the vapor-deposited raw material powder with the diluent is stored in the mixed liquid storage section, and at the time of vapor deposition, the mixed liquid first discharged from the mixed liquid storage section in the vaporization chamber. The diluent is vaporized and decomposed from the liquid in a high-temperature atmosphere, and the raw material powder for vaporization is vaporized and mixed with an inert gas. This raw material vapor is introduced from the vaporization chamber into the reaction chamber through a raw material vapor supply pipe. Since electrochemical deposition is performed on the surface, it can be handled in a mixed liquid state in which the raw material powder is mixed with a diluent in the preparation stage before performing the electrochemical deposition, so there is no need to take care to prevent moisture absorption and handling , The amount of the feedstock can be accurately determined, and, similarly to the invention of claim 1, electrochemical vapor deposition can be performed with substantially uniform vapor concentrations at the upper and lower portions inside the deposition substrate. Over the entire inner peripheral surface of Chakukitai, it is possible to form a constant composition of the solid electrolyte membrane.

【0048】請求項3の発明によれば、請求項1または
2の発明において、原料蒸気供給管に焼結多孔質管を用
いたので、蒸着基体の内部の上下各部で均一な蒸気濃度
にして蒸着原料蒸気を放出することができ、結果的に蒸
着基体の内周面全体に渡り、組成一定の固体電解質膜を
形成することができる。
According to the third aspect of the present invention, in the first or second aspect of the present invention, since a sintered porous tube is used as the raw material vapor supply pipe, a uniform vapor concentration is provided at each of the upper and lower portions inside the deposition substrate. The vapor of the vapor for vapor deposition can be released, and as a result, a solid electrolyte membrane having a constant composition can be formed over the entire inner peripheral surface of the vapor deposition substrate.

【0049】請求項4の発明によれば、請求項1または
3の電気化学蒸着装置を用いて蒸着基体の内周面に固体
電解質膜を成膜するので、蒸着基体の内周面全体に渡
り、組成一定の固体電解質膜を形成することができる。
According to the fourth aspect of the present invention, the solid electrolyte film is formed on the inner peripheral surface of the deposition substrate by using the electrochemical vapor deposition apparatus of the first or third aspect. Thus, a solid electrolyte membrane having a constant composition can be formed.

【0050】請求項5の発明によれば、請求項2または
3の電気化学蒸着装置を用いるので、基体に蒸着させる
固体電解質原料が混合液の状態にして取り扱いやすく、
それだけ固体電解質の成膜作業が容易であり、また蒸着
基体の内周面全体に渡り、組成一定の固体電解質膜を形
成することができる。
According to the fifth aspect of the present invention, since the electrochemical vapor deposition apparatus according to the second or third aspect is used, the solid electrolyte raw material to be deposited on the substrate can be easily handled in a mixed liquid state.
As a result, the solid electrolyte film forming operation is easy, and a solid electrolyte film having a constant composition can be formed over the entire inner peripheral surface of the deposition substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学蒸着装置の1つの実施の形態
を示す概略系統図。
FIG. 1 is a schematic system diagram showing one embodiment of an electrochemical deposition apparatus of the present invention.

【図2】上記実施の形態で用いる原料蒸気供給管の斜視
図。
FIG. 2 is a perspective view of a raw material steam supply pipe used in the embodiment.

【図3】本発明の電気化学蒸着装置の他の実施の形態を
示す概略系統図。
FIG. 3 is a schematic system diagram showing another embodiment of the electrochemical deposition apparatus of the present invention.

【図4】一般的な円筒縦縞の固体電解質型燃料電池の単
電池構造を示す断面図。
FIG. 4 is a cross-sectional view showing a unit cell structure of a general solid oxide fuel cell having vertical cylindrical stripes.

【図5】上記の一般的な固体電解質型燃料電池バンドル
の構造を示す断面図。
FIG. 5 is a sectional view showing the structure of the above-mentioned general solid oxide fuel cell bundle.

【図6】上記の一般的な固体電解質型燃料電池の発電動
作を示す説明図。
FIG. 6 is an explanatory diagram showing a power generation operation of the above-mentioned general solid oxide fuel cell.

【図7】従来の電気化学蒸着装置の概略系統図。FIG. 7 is a schematic system diagram of a conventional electrochemical deposition apparatus.

【図8】一般的な電気化学蒸着作用を示す説明図。FIG. 8 is an explanatory view showing a general electrochemical deposition operation.

【図9】従来の電気化学蒸着装置に用いられている原料
蒸気供給管の斜視図。
FIG. 9 is a perspective view of a raw material vapor supply pipe used in a conventional electrochemical vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

21 反応室 22 ヒータ 23 基体 24 酸化ガス 25 原料蒸気 28 固体電解質 37 気化室 38 原料供給管 51,52 原料液貯溜部 53,54 マスフローコントローラ 55 反応室 56 気化室 57 ヒータ 61 ヒータ 63 基体 65 原料蒸気 66 酸化ガス 67 原料蒸気供給管 68 固体電解質膜 71 放出孔 DESCRIPTION OF SYMBOLS 21 Reaction chamber 22 Heater 23 Substrate 24 Oxidizing gas 25 Raw material vapor 28 Solid electrolyte 37 Vaporization chamber 38 Raw material supply pipe 51, 52 Raw material liquid storage 53, 54 Mass flow controller 55 Reaction chamber 56 Vaporization chamber 57 Heater 61 Heater 63 Substrate 65 Raw material vapor 66 Oxidizing gas 67 Raw material vapor supply pipe 68 Solid electrolyte membrane 71 Release hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼田 波子 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 (72)発明者 小野 幹幸 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 (72)発明者 望月 正孝 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 (72)発明者 永田 雅克 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 (72)発明者 岩澤 力 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 (72)発明者 高岡 道雄 東京都江東区木場1ー5ー1 株式会社フ ジクラ内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Namiko Kaneda 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura (72) Inventor Mikiyuki Ono 1-5-1, Kiba, Koto-ku, Tokyo Inside the Zikura (72) Inventor Masataka Mochizuki 1-5-1 Kiba, Koto-ku, Tokyo Intra-Fujikura Inc. (72) Inventor Masakatsu Nagata 1-5-1, Kiba, Koto-ku, Tokyo Intra-Fujikura Inc. (72) Invention Person Iwasawa Riki 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Corporation (72) Inventor Michio Takaoka 1-5-1 Kiba, Koto-ku Tokyo

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸着原料粉末を高温雰囲気で気化させる
気化室と、 円管状の蒸着基体を内部に収容し、かつ前記気化室で気
化された蒸着原料蒸気を原料蒸気供給管を通じて前記蒸
着基体の内部に導入し、かつ前記蒸着基体の外部に酸化
ガスを導入して、前記蒸着基体の内周面に電気化学蒸着
膜を形成する反応室とを備え、 前記原料蒸気供給管の管壁に前記蒸着原料蒸気を一定放
出量、一定放出濃度で放出するように分布態様と孔径と
が調整された多数の放出孔を形成したことを特徴とする
電気化学蒸着装置。
1. A vaporization chamber for vaporizing a vapor deposition source powder in a high-temperature atmosphere, a cylindrical vapor deposition substrate accommodated therein, and a vapor deposition source vapor vaporized in the vaporization chamber is supplied to the vapor deposition substrate through a source vapor supply pipe. And a reaction chamber for introducing an oxidizing gas into the inside of the deposition substrate and introducing an oxidizing gas to the outside of the deposition substrate to form an electrochemical deposition film on the inner peripheral surface of the deposition substrate. An electrochemical vapor deposition apparatus characterized by forming a large number of discharge holes whose distribution mode and hole diameter are adjusted so as to discharge a vapor for vapor deposition at a constant release amount and a constant release concentration.
【請求項2】 蒸着原料粉末を希釈剤と混合した混合液
を貯溜する混合液貯溜部と、 前記混合液貯溜部から導出する前記混合液から前記希釈
剤を高温雰囲気で蒸発分解させると共に、前記蒸着原料
粉末を気化させる気化室と、 円管状の蒸着基体を内部に収容し、かつ前記気化室で気
化された蒸着原料蒸気を原料蒸気供給管を通じて前記蒸
着基体の内部に導入し、かつ前記蒸着基体の外部に酸化
ガスを導入して、前記蒸着基体の内周面に電気化学蒸着
膜を形成する反応室とを備え、 前記原料蒸気供給管の管壁に前記蒸着原料蒸気を一定放
出量、一定放出濃度で放出するように分布態様と孔径と
が調整された多数の放出孔を形成したことを特徴とする
電気化学蒸着装置。
2. A mixed liquid storage section for storing a mixed liquid obtained by mixing a deposition raw material powder with a diluent, and the diluent is evaporated and decomposed in a high-temperature atmosphere from the mixed liquid derived from the mixed liquid storage section, A vaporization chamber for vaporizing the vapor deposition raw material powder, a tubular vapor deposition substrate accommodated therein, and vapor deposition raw material vapor vaporized in the vaporization chamber introduced into the vapor deposition substrate through a raw material vapor supply pipe; A reaction chamber for introducing an oxidizing gas to the outside of the substrate to form an electrochemical vapor deposition film on the inner peripheral surface of the vapor deposition substrate; and An electrochemical vapor deposition apparatus wherein a number of emission holes whose distribution mode and hole diameter are adjusted so as to emit at a constant emission concentration are formed.
【請求項3】 前記原料蒸気供給管に焼結多孔質管を用
いたことを特徴とする請求項1又は2に記載の電気化学
蒸着装置。
3. The electrochemical vapor deposition apparatus according to claim 1, wherein a sintered porous tube is used as the raw material vapor supply tube.
【請求項4】 塩化イットリウム粉末、塩化ジルコニウ
ム粉末それぞれを所定の割合、所定の流量で前記気化室
に導入して高温雰囲気で気化させて蒸着原料蒸気を生成
し、 この蒸着原料蒸気を前記反応室の前記原料蒸気供給管に
導入して前記蒸着基体の内周面に電気化学蒸着膜を形成
することを特徴とする請求項1または3に記載の電気化
学蒸着装置を用いた固体電解質成膜方法。
4. A vapor deposition source vapor is generated by introducing each of yttrium chloride powder and zirconium chloride powder into the vaporization chamber at a predetermined ratio and a predetermined flow rate, and vaporizing the vapor in a high temperature atmosphere. 4. A method for forming a solid electrolyte film using an electrochemical vapor deposition apparatus according to claim 1, wherein an electrochemical vapor deposition film is formed on the inner peripheral surface of the vapor deposition substrate by introducing the vapor into the raw material vapor supply pipe. .
【請求項5】 塩化イットリウム粉末、塩化ジルコニウ
ム粉末それぞれを希釈剤と混合した混合液を前記混合液
貯溜部に用意し、 前記塩化イットリウム混合液、塩化ジルコニウム混合液
それぞれを所定の割合、所定の流量で前記気化室に導入
して前記希釈剤を高温雰囲気で蒸発分解させると共に、
前記蒸着原料粉末を気化させて蒸着原料蒸気を生成し、 この蒸着原料蒸気を前記反応室の前記原料蒸気供給管に
導入して前記蒸着基体の内周面に電気化学蒸着膜を形成
することを特徴とする請求項2または3に記載の電気化
学蒸着装置を用いた固体電解質成膜方法。
5. A mixed solution obtained by mixing each of yttrium chloride powder and zirconium chloride powder with a diluent is prepared in the mixed solution storage section, and the yttrium chloride mixed solution and the zirconium chloride mixed solution are respectively mixed at a predetermined ratio and a predetermined flow rate. And introduced into the vaporization chamber to evaporate the diluent in a high-temperature atmosphere,
Vaporizing the vapor deposition source powder to generate vapor deposition source vapor, introducing the vapor deposition source vapor into the source vapor supply pipe of the reaction chamber to form an electrochemical vapor deposition film on the inner peripheral surface of the deposition substrate. A method for forming a solid electrolyte film using the electrochemical deposition apparatus according to claim 2.
JP9165902A 1997-06-23 1997-06-23 Electrochemical vapor deposition device, and solid electrolyte film forming method using it Pending JPH1112737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9165902A JPH1112737A (en) 1997-06-23 1997-06-23 Electrochemical vapor deposition device, and solid electrolyte film forming method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9165902A JPH1112737A (en) 1997-06-23 1997-06-23 Electrochemical vapor deposition device, and solid electrolyte film forming method using it

Publications (1)

Publication Number Publication Date
JPH1112737A true JPH1112737A (en) 1999-01-19

Family

ID=15821173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9165902A Pending JPH1112737A (en) 1997-06-23 1997-06-23 Electrochemical vapor deposition device, and solid electrolyte film forming method using it

Country Status (1)

Country Link
JP (1) JPH1112737A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114882A2 (en) * 1999-12-30 2001-07-11 Applied Materials, Inc. Apparatus and method for depositing an electroless solution
WO2004085723A1 (en) * 2003-03-07 2004-10-07 Yamanashi Tlo Co., Ltd. Oriented sheath core type filament
CN116590689A (en) * 2023-05-08 2023-08-15 韶山汇达新材料有限公司 Preparation method of SiC-ZrC composite coating in inner hole of slender metal tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1114882A2 (en) * 1999-12-30 2001-07-11 Applied Materials, Inc. Apparatus and method for depositing an electroless solution
EP1114882A3 (en) * 1999-12-30 2002-07-24 Applied Materials, Inc. Apparatus and method for depositing an electroless solution
WO2004085723A1 (en) * 2003-03-07 2004-10-07 Yamanashi Tlo Co., Ltd. Oriented sheath core type filament
CN116590689A (en) * 2023-05-08 2023-08-15 韶山汇达新材料有限公司 Preparation method of SiC-ZrC composite coating in inner hole of slender metal tube
CN116590689B (en) * 2023-05-08 2023-12-01 韶山汇达新材料有限公司 Preparation method of SiC-ZrC composite coating in inner hole of slender metal tube

Similar Documents

Publication Publication Date Title
US7303834B2 (en) Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom
US5085742A (en) Solid oxide electrochemical cell fabrication process
US5080689A (en) Method of bonding an interconnection layer on an electrode of an electrochemical cell
US5391440A (en) Method of forming a leak proof plasma sprayed interconnection layer on an electrode of an electrochemical cell
US6787264B2 (en) Method for manufacturing fuel cells, and articles made therewith
US8309272B2 (en) Solid oxide cell
JP2005044601A (en) Solid acid oxide fuel cell
US5989634A (en) Process of manufacturing solid oxygen ion conducting oxide layers
JPH1112737A (en) Electrochemical vapor deposition device, and solid electrolyte film forming method using it
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
JP3423874B2 (en) Solid electrolyte film formation method
JPH10312816A (en) Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell
KR102467992B1 (en) Method for in-situ healing of electrolyte defects during operation of high-temperature electrochemical device and high-temperature electrochemical device thereby
JPH08293310A (en) Manufacture of solid electrolytic film
Sasaki et al. Reaction mechanism of electrochemical‐vapor deposition of yttria‐stabilized zirconia film
JPH11323557A (en) Raw material vaporizer for electrochemical vapor-deposition, electrochemical vapor deposition device and solid electrolytic film forming method using the device
JPH11162499A (en) Solid electrolyte fuel cell
JP3131077B2 (en) Manufacturing method of metal oxide film
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
EP1749321B1 (en) System and method for forming a membrane electrode assembly for fuel cells
JPH07316819A (en) Production of metal oxide film
JPH0718451A (en) Method and device for forming oxide film on porous substrate
JP3758818B2 (en) Method for depositing solid electrolyte, method for depositing fuel electrode, and method for depositing solid electrolyte and fuel electrode
JP3924199B2 (en) Manufacturing method of fuel cell
JPH09263961A (en) Formation of lanthanum chromite dense thin film