JPH10312816A - Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell - Google Patents

Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell

Info

Publication number
JPH10312816A
JPH10312816A JP9122522A JP12252297A JPH10312816A JP H10312816 A JPH10312816 A JP H10312816A JP 9122522 A JP9122522 A JP 9122522A JP 12252297 A JP12252297 A JP 12252297A JP H10312816 A JPH10312816 A JP H10312816A
Authority
JP
Japan
Prior art keywords
raw material
vapor deposition
mixed
electrochemical
diluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9122522A
Other languages
Japanese (ja)
Inventor
Shinji Takeuchi
伸二 竹内
Junichi Fujita
淳一 藤田
Namiko Kaneda
波子 兼田
Mikiyuki Ono
幹幸 小野
Masataka Mochizuki
正孝 望月
Masakatsu Nagata
雅克 永田
Tsutomu Iwazawa
力 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Kansai Electric Power Co Inc
Original Assignee
Fujikura Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Kansai Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP9122522A priority Critical patent/JPH10312816A/en
Publication of JPH10312816A publication Critical patent/JPH10312816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To facilitate handling raw material fine powder in electrochemical deposition. SOLUTION: In this equipment for electrochemical vapor deposition, mixed liquid of raw material powder for deposing and diluent is stored in mixed liquid reservoir parts 51, 52, and, when depositing, while vaporizing and dissolving at first under a high temperature atmosphere the diluent out of the mixed liquid introduced from the reservoir parts at a vaporizing part 56, the raw material powder for depositing is vaporized and mixed with inactive gas, and this raw material vapor is introduced into an electromechanical vapor deposition chamber 55 from the vaporizing part 56 in order to perform electrochemical vapor deposition. Thereby, at a preparatory stage before the electrochemical vapor deposition is carried out, the raw material for depositing can be handled in a liquid condition mixed with the diluent, handling is facilitated since no attention not to absorb moisture is required, burden on an engineer is reduced and a quantity of raw material to supply can be measured accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学蒸着装置
及びそれを用いた固体電解質型燃料電池の固体電解質成
膜方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an electrochemical deposition apparatus and a solid electrolyte film forming method for a solid oxide fuel cell using the same.

【0002】[0002]

【従来の技術】近年、固体電解質型燃料電池の研究、開
発が鋭意に行われている。この固体電解質型燃料電池に
は平板方式と円筒方式とがあり、さらに円筒方式には縦
縞方式と横縞方式とがある。そして特に、円筒縦縞の固
体電解質型燃料電池は図3〜図5に示すような構造であ
る。単電池106は図3に示すように、内側から順に多
孔質ランタンマンガネート系酸化物(LaMnOn)の
空気極支持管101、イットリア安定化ジルコニア(Y
SZ)製の固体電解質102、ニッケル又はニッケル合
金とYSZとのサーメット製の燃料極103の積層構造
にして、外周面の一部にインタコネクタ104を燃料極
103から絶縁し、かつ内部の空気極支持管101に接
続する形で配置している。
2. Description of the Related Art In recent years, research and development of solid oxide fuel cells have been earnestly carried out. The solid oxide fuel cell includes a flat plate type and a cylindrical type, and the cylindrical type includes a vertical stripe type and a horizontal stripe type. In particular, the solid oxide fuel cell having the cylindrical vertical stripes has a structure as shown in FIGS. As shown in FIG. 3, the unit cell 106 has a cathode support tube 101 of porous lanthanum manganate-based oxide (LaMnOn) and a yttria-stabilized zirconia (Y
SZ), a solid electrolyte 102, a cermet fuel electrode 103 of nickel or a nickel alloy and YSZ, and an interconnector 104 is partially insulated from the fuel electrode 103 on a part of the outer peripheral surface, and an internal air electrode is formed. It is arranged so as to be connected to the support tube 101.

【0003】そしてこの単電池106は、図4に示すよ
うにニッケルフェルト107によって直並列接続してバ
ンドル108を構成し、これを複数体つないでモジュー
ルとして発電設備に組み込んで使用する。発電の際には
図5に示すように、各単電池106の外側に燃料ガス1
09を流し、内側に空気110を流し込む方法をとる。
すなわち、各単電池106の開口側端部から導管111
によって空気を内部に供給すると、単電池106の閉塞
端部側で空気の流れが反転し、発電部112で外側を流
れる燃料ガス109と並行する流れとなり、後述する反
応によって発電に寄与する。なお、発電に消費されなか
った余剰燃料ガス109aは燃焼室113で余剰空気1
10aと混合して燃され、空気110の予熱に使われ
る。
[0003] As shown in FIG. 4, the unit cells 106 are connected in series and parallel by nickel felts 107 to form a bundle 108, and a plurality of the bundles 108 are connected and used as a module in a power generation facility. At the time of power generation, as shown in FIG.
09 and the air 110 inside.
That is, the conduit 111 extends from the open end of each cell 106.
When the air is supplied to the inside, the flow of the air is reversed on the closed end side of the unit cell 106, becomes a flow parallel to the fuel gas 109 flowing outside in the power generation unit 112, and contributes to the power generation by a reaction described later. The surplus fuel gas 109a not consumed for power generation is supplied to the combustion chamber 113 by the surplus air 1
10a is mixed and burned, and is used for preheating the air 110.

【0004】固体電解質型燃料電池の発電作用について
説明すると、各単電池106の外側を流れる天然ガス、
メタン、石炭ガス化ガスなどの燃料ガス109は燃料極
103の多孔質の管壁を通じて固体電解質と接触し、高
温度条件下、通常、650℃〜1000℃の条件下で、
次式の改質反応を起こす。
[0004] The power generation operation of the solid oxide fuel cell will be described. Natural gas flowing outside each cell 106,
Fuel gas 109 such as methane and coal gasification gas comes into contact with the solid electrolyte through the porous tube wall of the fuel electrode 103, and under high temperature conditions, usually 650 to 1000 ° C.
The reforming reaction of the following formula occurs.

【0005】[0005]

【化1】 この改質反応で発生する水素に対して、固体電解質10
2を介して対極する空気極支持管101と燃料極103
との部分で次の化2式の発電反応を起こし、遊離した電
子を集電することによって発電力を得る。
Embedded image The solid electrolyte 10 reacts with hydrogen generated by this reforming reaction.
2 and the cathode 103 and the anode 103
A power generation reaction of the following formula (2) is caused in the part (1), and the generated electrons are collected by collecting the released electrons to generate power.

【0006】[0006]

【化2】 つまり、燃料極103においては化2(a)式に示すよ
うに、改質反応で生成された水素が、固体電解質102
から供給される酸化物イオンと反応して水蒸気と電子を
生成する。そして燃料極103で生成された電子がニッ
ケルフェルト107を経て陰極121から外部回路に回
り、陽極122とインタコネクタ104を経て空気極支
持管101に到達すると、この空気極支持管101にお
いて、化2(b)式に示すように空気110中の酸素と
反応して酸化物イオンを生成し、これが固体電解質10
2に放出され、燃料極103側に到達して化2(a)式
の反応に供されるのである。
Embedded image That is, in the fuel electrode 103, as shown in Formula 2 (a), hydrogen generated by the reforming reaction
Reacts with the oxide ions supplied from the gas to generate water vapor and electrons. Then, when the electrons generated at the fuel electrode 103 pass from the cathode 121 to the external circuit via the nickel felt 107 and reach the cathode support tube 101 via the anode 122 and the interconnector 104, As shown in equation (b), it reacts with oxygen in the air 110 to generate oxide ions, which are
2 and reaches the fuel electrode 103 side to be subjected to the reaction of the chemical formula 2 (a).

【0007】このような発電機構の燃料電池において、
燃料電池電極基体を構成する空気極支持管101、固体
電解質102及び燃料極103の部分は次にようにして
形成している。まず空気極支持管101となるランタン
マンガネート系の多孔質の基体に対して電気化学蒸着
法、つまり、CVD(Chemical Vapor Deposition )−
EVD(Electrocheical Vapor Deposition )法を用い
て薄く、かつ緻密なYSZ膜を固体電解質102として
形成し、さらにこの外側にニッケル、ニッケル合金ある
いはニッケルジルコニアサーメットの粉末をスラリーコ
ートし、同じように電気化学蒸着法を施して多孔質の燃
料極103を成膜し、あるいは溶射法を用いて成膜する
のである。そして固体電解質102の成膜を行う電気化
学蒸着装置としては、図6に示す構造のものが使用され
ている。
In such a fuel cell of a power generation mechanism,
The air electrode support tube 101, the solid electrolyte 102, and the fuel electrode 103, which constitute the fuel cell electrode base, are formed as follows. First, a lanthanum manganate-based porous substrate to be the cathode support tube 101 is electrochemically deposited, that is, CVD (Chemical Vapor Deposition)-
A thin and dense YSZ film is formed as a solid electrolyte 102 using an EVD (Electrocheical Vapor Deposition) method, and a nickel, nickel alloy or nickel zirconia cermet powder is slurry-coated on the outside of the YSZ film. In this case, the porous fuel electrode 103 is formed by applying a spraying method, or the film is formed by using a thermal spraying method. As an electrochemical vapor deposition apparatus for forming a film of the solid electrolyte 102, one having a structure shown in FIG. 6 is used.

【0008】この従来の電気化学蒸着装置は、反応室2
1内を真空に近い状態、約1Torrにして、かつヒー
タ22によって約1000〜1200℃の温度条件下
で、空気極支持管となる多孔質のLSM基体23の外側
には酸素O2 、水蒸気H2 Oの混合酸化ガス24を導入
し、他側面にはYSZ膜の原料となるイットリウム、ジ
ルコニウムの塩化物YCl3 ,ZrCl4 の蒸気25を
キャリアガスであるアルゴン(Ar)ガスに混入して原
料供給管26から供給する。
[0008] This conventional electrochemical deposition apparatus comprises a reaction chamber 2
The inside of the porous LSM substrate 23 serving as an air electrode support tube is provided with oxygen O 2 and water vapor H under a condition in which the inside of the LSM 1 is close to a vacuum, about 1 Torr, and a temperature of about 1000 to 1200 ° C. by a heater 22. A mixed oxidizing gas 24 of 2 O is introduced, and vapors 25 of yttrium and zirconium chlorides YCl 3 and ZrCl 4 , which are raw materials of the YSZ film, are mixed with argon (Ar) gas as a carrier gas on the other side. Supply from the supply pipe 26.

【0009】これによって図7(a)に示すように、最
初は基体23の多数の孔27を通ってくる酸化ガス24
と原料蒸気25とが化3式に示す反応をして図7(b)
に示すようにYSZ膜28を基体23の表面に生成し、
徐々に基体23の多数の孔27を閉塞していく。これが
CVD段階である。
As a result, as shown in FIG. 7 (a), the oxidizing gas
7 reacts with the raw material vapor 25 as shown in the chemical formula (3).
A YSZ film 28 is formed on the surface of the base 23 as shown in FIG.
Many holes 27 of the base 23 are gradually closed. This is the CVD stage.

【0010】[0010]

【化3】 このCVD段階が終了すると、原料蒸気25と酸化ガス
24とは直接に反応することはなくなり、酸化ガス24
からの酸素がYSZ面上で還元されてYSZ膜28中を
酸化物イオンO2-として拡散し、化4式に示す反応を原
料塩化物蒸気と行うEVD段階へ進み、同図(c)に示
すようにYSZ膜28が成長する。
Embedded image When the CVD step is completed, the raw material vapor 25 and the oxidizing gas 24 do not directly react with each other, and the oxidizing gas 24
Is reduced on the YSZ surface and diffuses in the YSZ film 28 as oxide ions O 2− , and proceeds to the EVD stage in which the reaction represented by the chemical formula 4 is performed with the raw material chloride vapor, as shown in FIG. As shown, the YSZ film 28 grows.

【0011】[0011]

【化4】 こうして電気化学蒸着法によって固体電解質膜102と
してYSZ膜28を成膜した後は、さらに上述した燃料
極103をスラリーコーティングした後に電気化学蒸着
法によって形成し燃料電池を作製することになる。
Embedded image After the YSZ film 28 is formed as the solid electrolyte film 102 by the electrochemical deposition method in this manner, the above-described fuel electrode 103 is further subjected to slurry coating and then formed by the electrochemical deposition method to manufacture a fuel cell.

【0012】[0012]

【発明が解決しようとする課題】ところが、従来の電気
化学蒸着装置の場合、図6に示したように塩化イットリ
ウムYCl3 、塩化ジルコニウムZrCl4 の原料微粉
末をパウダーフィーダ(MPF)31,32に貯溜して
おき、マスフローコントローラ(MFC)33,34に
よって所定の流量でアルゴンキャリアガス35を供給す
ることによってキャリアガス35に原料微粉末が混入し
た原料蒸気を配管36を通じて反応室21の原料供給管
26まで供給し、この原料供給管26内でヒータ22の
加熱によって気化し、原料蒸気25にして反応室21内
に供給する構造にしていたので、次のような問題点があ
った。
However, in the case of the conventional electrochemical vapor deposition apparatus, as shown in FIG. 6, raw material fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 are supplied to powder feeders (MPF) 31 and 32. By storing argon gas at a predetermined flow rate by mass flow controllers (MFC) 33 and 34, the raw material vapor mixed with the raw material fine powder into the carrier gas 35 is supplied to the raw material supply pipe of the reaction chamber 21 through the pipe 36. 26, and is vaporized by heating of the heater 22 in the raw material supply pipe 26, and is supplied as raw material vapor 25 into the reaction chamber 21. Therefore, the following problems are involved.

【0013】すなわち、電気化学蒸着を開始するまでの
準備段階で常に、膜原料である塩化イットリウム、塩化
ジルコニウムを微粉末状態で取り扱う必要があるが、微
粉末であるが故に吸湿性が大きく、慎重に取り扱わなけ
れば容易に湿気ってしまい、湿気ってしまうとパウダー
フィーダ31,32においてアルゴンキャリアガス35
と混合させることができず、またパウダーフィーダまで
は湿気らさずに投入できたとしても、配管途中のバルブ
の内部や配管36の曲がり部分に原料微粉末が付着して
しまうこともあり、定量の原料供給ができない問題点が
あった。
In other words, it is necessary to always treat the film raw materials yttrium chloride and zirconium chloride in the form of fine powder in the preparation stage before the start of electrochemical vapor deposition. If it is not handled, it will easily get wet, and if it gets wet, the argon carrier gas 35
Even if the powder feeder can be charged without moisture, the raw material powder may adhere to the inside of the valve in the middle of the pipe or to the bent part of the pipe 36. There was a problem that the raw material could not be supplied.

【0014】このキャリアガス中でのそれぞれの原料の
定量化は大変重要であり、出来上がった電解質中の塩化
イットリウムと塩化ジルコニウムとの組成比が狂うと燃
料電池性能に大きな影響を与えてしまう。そこでこれを
避けるためには、常に窒素ガスのような不活性ガス中で
取り扱う必要があり、取り扱いに細心の注意を要して技
術者の労力負担が大きくなる問題点があった。
It is very important to quantify each raw material in the carrier gas. If the composition ratio of yttrium chloride and zirconium chloride in the completed electrolyte is incorrect, the performance of the fuel cell will be greatly affected. Therefore, in order to avoid this, it is necessary to always handle the gas in an inert gas such as nitrogen gas.

【0015】本発明はこのような従来の問題点に鑑みて
なされたもので、これら塩化イットリウム粉末、塩化ジ
ルコニウム粉末の取り扱いにそれほど注意を要せず、か
つ定量供給も容易な電気化学蒸着装置及びそれを用いた
固体電解質型燃料電池の固体電解質成膜方法を提供する
ことを目的とする。
The present invention has been made in view of such conventional problems, and an electrochemical vapor deposition apparatus which does not require much care in handling these yttrium chloride powders and zirconium chloride powders and which is easy to supply quantitatively. It is an object of the present invention to provide a solid electrolyte film forming method for a solid oxide fuel cell using the same.

【0016】[0016]

【課題を解決するための手段】請求項1の発明の電気化
学蒸着装置は、蒸着原料粉末を希釈剤と混合した混合液
を貯溜する混合液貯溜部と、前記混合液貯溜部から導出
する前記混合液から前記希釈剤を高温雰囲気で蒸発分解
させると共に、前記蒸着原料粉末を気化させ、不活性ガ
スと混合する気化部と、前記気化部から前記蒸着原料蒸
気を導入して電気化学蒸着を実行する電気化学蒸着室と
を備えたものである。
According to a first aspect of the present invention, there is provided an electrochemical deposition apparatus for storing a mixed liquid storing a mixed liquid obtained by mixing a raw material powder for vapor deposition with a diluent, and extracting the mixed liquid from the mixed liquid storing section. The diluent is evaporated and decomposed in a high temperature atmosphere from the mixed solution, and the vapor deposition material powder is vaporized, and a vaporizer for mixing with an inert gas, and the vapor deposition material vapor is introduced from the vaporizer to perform electrochemical vapor deposition. And an electrochemical deposition chamber.

【0017】この請求項1の発明の電気化学蒸着装置で
は、混合液貯溜部に蒸着原料粉末を希釈剤と混合した混
合液を貯溜しておき、蒸着に際しては、気化部において
まず混合液貯溜部から導出する混合液から希釈剤を高温
雰囲気で蒸発分解させると共に、蒸着原料粉末を気化さ
せ、不活性ガスと混合し、この原料蒸気を気化部から電
気化学蒸着室に導入して電気化学蒸着を実行する。
In the electrochemical vapor deposition apparatus according to the first aspect of the present invention, a mixed liquid obtained by mixing a raw material powder for vapor deposition with a diluent is stored in a mixed liquid storage section. The diluent is vaporized and decomposed in a high-temperature atmosphere from the mixed liquid derived from the above, and the raw material powder for vaporization is vaporized and mixed with an inert gas. Run.

【0018】このため、電気化学蒸着を実施する前の準
備段階では蒸着原料粉末を希釈剤と混合した混合液状態
で取り扱うことができ、吸湿しないように注意する必要
が無くなって取り扱いが容易となり、技術者の負担が軽
減し、また供給原料の定量が正確に行えるようになる。
For this reason, in the preparation stage before performing the electrochemical vapor deposition, the vapor deposition raw material powder can be handled in a mixed liquid state in which it is mixed with a diluent. The burden on the technician is reduced, and the feedstock can be accurately quantified.

【0019】請求項2の発明の電気化学蒸着装置を用い
た固体電解質型燃料電池の固体電解質成膜方法は、塩化
イットリウム粉末、塩化ジルコニウム粉末それぞれを希
釈剤と混合した混合液を前記混合液貯溜部に用意し、前
記塩化イットリウム混合液、塩化ジルコニウム混合液そ
れぞれを所定の割合、所定の流量で前記気化部に導入し
て前記希釈剤を高温雰囲気で蒸発分解させると共に、前
記蒸着原料粉末を気化させ、不活性ガスと混合し、この
混合ガスを前記電気化学蒸着室に導入して基体に電気化
学蒸着させるものである。
A solid electrolyte film forming method for a solid oxide fuel cell using an electrochemical vapor deposition apparatus according to a second aspect of the present invention is a method for forming a solid electrolyte, comprising mixing a mixture of yttrium chloride powder and zirconium chloride powder with a diluent. The mixture is prepared by introducing the yttrium chloride mixed solution and the zirconium chloride mixed solution into the vaporizing section at a predetermined ratio and a predetermined flow rate to vaporize and decompose the diluent in a high-temperature atmosphere, and vaporize the deposition raw material powder. Then, the mixed gas is mixed with an inert gas, and the mixed gas is introduced into the electrochemical deposition chamber to perform electrochemical deposition on the substrate.

【0020】この請求項2の発明の固体電解質型燃料電
池の固体電解質成膜方法では、請求項1の電気化学蒸着
装置を用いるので、基体に蒸着させる固体電解質原料が
混合液の状態にして取り扱いやすく、それだけ固体電解
質の成膜作業が容易となる。
In the solid electrolyte film forming method for a solid oxide fuel cell according to the second aspect of the present invention, since the electrochemical deposition apparatus according to the first aspect is used, the solid electrolyte material to be deposited on the substrate is handled in a mixed liquid state. This facilitates the solid electrolyte film-forming operation.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。図1は本発明の1つの実施の形態の
電気化学蒸着装置を示しており、特徴的な構成要素とし
て原料液貯溜部51,52を備え、原料微粉末である塩
化イットリウムYCl3 と塩化ジルコニウムZrCl4
それぞれを希釈剤としてのエタノールによって希釈して
混合液にしてここに一時的に貯溜する。この原料液貯溜
部51,52に貯溜される原料液はますフローコントロ
ーラ(MFC)53,54それぞれによって一定時間に
一定量を排出するように制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an electrochemical vapor deposition apparatus according to one embodiment of the present invention, which is provided with raw material liquid reservoirs 51 and 52 as characteristic components, and raw material fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl. Four
Each of them is diluted with ethanol as a diluent to make a mixed solution and temporarily stored therein. The raw material liquids stored in the raw material liquid storage units 51 and 52 are controlled by a flow controller (MFC) 53 and 54 so as to discharge a predetermined amount in a predetermined time.

【0022】反応室55の構成は図6に示した従来の構
成と同じであるが、本発明の場合、この反応室55の上
流側に気化室56を設置してある。この気化室56は、
反応室55の部分よりも高い温度に加熱する気化用ヒー
タ57を備えていて、気化室56にマスフローコントロ
ーラ53,54によって単位時間当たり一定量ずつ送込
まれてくる原料液を不活性ガスであるアルゴンガス中で
1200℃以上の温度に加熱して希釈剤であるエタノー
ルを蒸発分解させ、さらに原料微粉末を気化させる。
The configuration of the reaction chamber 55 is the same as the conventional configuration shown in FIG. 6, but in the case of the present invention, a vaporization chamber 56 is provided upstream of the reaction chamber 55. This vaporization chamber 56
A vaporizing heater 57 for heating to a temperature higher than that of the reaction chamber 55 is provided, and the raw material liquid fed into the vaporization chamber 56 by the mass flow controllers 53 and 54 at a constant rate per unit time is an inert gas. The mixture is heated to a temperature of 1200 ° C. or more in an argon gas to evaporate and decompose ethanol as a diluent, and further vaporize the raw material powder.

【0023】反応室55の外側にはヒータ61が設置さ
れ、反応室55の内部には、固体電解質を外周面に成膜
するために空気極支持管をなす基体63が取り付けら
れ、さらに基体63内に空気供給管64が挿入されてい
て、気化室56から原料蒸気65が反応室55内に供給
され、また基体63内に水蒸気及び酸素の混合酸化ガス
66が供給される。
A heater 61 is provided outside the reaction chamber 55, and a base 63 serving as an air electrode support tube for depositing a solid electrolyte on the outer peripheral surface is mounted inside the reaction chamber 55. An air supply pipe 64 is inserted therein. A raw material vapor 65 is supplied from the vaporization chamber 56 into the reaction chamber 55, and a mixed oxidizing gas 66 of water vapor and oxygen is supplied into the base 63.

【0024】次に、上記構成の電気化学蒸着装置の動作
について説明する。塩化イットリウムYCl3 と塩化ジ
ルコニウムZrCl4 との微粉末それぞれを適当な量の
エタノールと混合して原料混合液を作成してこれらを原
料液貯溜部51,52それぞれに貯溜させる。塩化イッ
トリウムと塩化ジルコニウムとの重量比は1:5程度で
ある。
Next, the operation of the above-described electrochemical vapor deposition apparatus will be described. Each of fine powders of yttrium chloride YCl 3 and zirconium chloride ZrCl 4 is mixed with an appropriate amount of ethanol to prepare a raw material mixture, and these are stored in the raw material liquid storage units 51 and 52, respectively. The weight ratio between yttrium chloride and zirconium chloride is about 1: 5.

【0025】気化室56は気化用ヒータ57によって原
料微粉末が完全に気化する温度である1200℃以上の
温度に加熱しておく。反応室55は真空に近い圧力、1
Torr程度まで低下させ、さらにヒータ61によって
1200℃の温度まで加熱する。そして水蒸気と酸素の
混合酸化ガス66を空気供給管64を通じて0.4〜
0.7ml/minの流量で基体63内に供給する。
The vaporization chamber 56 is heated by a vaporization heater 57 to a temperature of 1200 ° C. or higher, which is a temperature at which the raw material powder is completely vaporized. The reaction chamber 55 has a pressure close to vacuum, 1
The temperature is reduced to about Torr, and further heated to a temperature of 1200 ° C. by the heater 61. Then, a mixed oxidizing gas 66 of water vapor and oxygen is passed through
It is supplied into the base 63 at a flow rate of 0.7 ml / min.

【0026】こうした予備工程の後、原料液貯溜部5
1,52に貯溜されている原料液に対して、マスフロー
コントローラ53,54によってアルゴンガスを所定の
流量で供給して気化室56にこれらの原料液を所定流
量、たとえば、両方の原料液の供給量がその中に含まれ
ている原料粉末の重量に換算して両方の合計で50g/
hr程度となる流量で供給し、ここで希釈剤であるエタ
ノールを蒸発分解させると共に、残った塩化イットリウ
ム、塩化ジルコニウム微粉末それぞれを完全に気化させ
る。そして、キャリアガスであるアルゴンガスと共に原
料蒸気65を気化室56から反応室55の原料供給管6
7に供給し、原料供給管67の下端開口部から反応室5
5内に流出させる。
After such preliminary steps, the raw material liquid storage 5
Argon gas is supplied at a predetermined flow rate to the raw material liquids stored in the storage tanks 1 and 52 by the mass flow controllers 53 and 54, and these raw material liquids are supplied to the vaporization chamber 56 at a predetermined flow rate, for example, supply of both raw material liquids. The amount is converted to the weight of the raw material powder contained therein and the total of both is 50 g /
At a flow rate of about hr, ethanol as a diluent is vaporized and decomposed, and the remaining fine powder of yttrium chloride and zirconium chloride is completely vaporized. Then, the raw material vapor 65 is transferred from the vaporizing chamber 56 to the raw material supply pipe 6 of the reaction chamber 55 together with the argon gas as the carrier gas.
7 from the lower end opening of the raw material supply pipe 67 to the reaction chamber 5.
5. Drain into 5.

【0027】この手順を所定時間、たとえば5時間継続
することにより、従来で説明したように、基体63の外
周面にCVD−EVD作用によってYSZの緻密な固体
電解質膜68が成膜される。
By continuing this procedure for a predetermined time, for example, 5 hours, a dense YSZ solid electrolyte film 68 is formed on the outer peripheral surface of the base 63 by the CVD-EVD action as described above.

【0028】なお、上記実施の形態では基体63の外周
面に固体電解質を成膜したが、これに限定されることは
なく、図2に示すように反応室55の構造を若干変更
し、気化室56から原料供給管67を通じて原料蒸気6
5を基体63の内部に供給し、反応室55内の基体63
の外部には酸化ガス66を供給する構造にすることによ
って、基体63の内周面に緻密な固体電解質68を成膜
することができるようになる。
In the above embodiment, the solid electrolyte is formed on the outer peripheral surface of the base 63. However, the present invention is not limited to this. The structure of the reaction chamber 55 is slightly changed as shown in FIG. The raw material vapor 6 from the chamber 56 through the raw material supply pipe 67
5 is supplied to the inside of the base 63 and the base 63 in the reaction chamber 55 is supplied.
By supplying the oxidizing gas 66 to the outside of the substrate 63, a dense solid electrolyte 68 can be formed on the inner peripheral surface of the base 63.

【0029】[0029]

【実施例】次に本発明の具体的な実施例を説明する。空
気極支持管をなす基体のLSM管(外径φ20mm、内
径φ17mm、長さ20cm)を反応室内に取り付けて
おき、1Torr程度まで真空にし、気化用ヒータによ
って気化室は1200℃、反応室も1200℃に設定
し、さらに基体内には水蒸気/酸素の酸化ガスを0.5
ml/minの流量で供給しておいた。
Next, specific examples of the present invention will be described. A base LSM tube (outside diameter φ20 mm, inside diameter φ17 mm, length 20 cm) forming an air electrode support tube is mounted in the reaction chamber, evacuated to about 1 Torr, the vaporization chamber is 1200 ° C. by the vaporization heater, and the reaction chamber is 1200 ° C, and a steam / oxygen oxidizing gas of 0.5 wt.
It was supplied at a flow rate of ml / min.

【0030】そして塩化イットリウム、塩化ジルコニウ
ムそれぞれの微粉末をエタノールと重量比で1:1に混
合した原料液を1:5の割合で、かつ原料粉末重量に換
算して両方で50g/hr程度となる流量で気化室に供
給した。気化室には別に、0.8ml/min程度でキャリア
ガスを供給しておいた。
The raw material liquid obtained by mixing the fine powder of each of yttrium chloride and zirconium chloride with ethanol at a weight ratio of 1: 1 was used at a ratio of 1: 5 and converted to the weight of the raw material powder, and both were about 50 g / hr. It was supplied to the vaporization chamber at a variable flow rate. A carrier gas was separately supplied to the vaporization chamber at about 0.8 ml / min.

【0031】これによって気化室で1200℃の高温に
加熱された原料液からエタノールが蒸発分解し、さらに
原料微粉末が完全に気化して原料供給管を通じて反応室
内に供給され、約5時間の電気化学蒸着により、50μ
mのYSZ固体電解質膜を成膜することができた。
As a result, ethanol is vaporized and decomposed from the raw material liquid heated to a high temperature of 1200 ° C. in the vaporization chamber, and the raw material fine powder is completely vaporized and supplied to the reaction chamber through the raw material supply pipe. 50μ by chemical vapor deposition
m of YSZ solid electrolyte membrane could be formed.

【0032】このYSZ固体電解質膜の組織状態は従来
方法による組織状態と変わらず、CVD−EVD法特有
の緻密なものであった。
The structure of the YSZ solid electrolyte membrane was the same as that of the conventional method, and was a dense structure unique to the CVD-EVD method.

【0033】[0033]

【発明の効果】以上のように請求項1の発明の電気化学
蒸着装置によれば、混合液貯溜部に蒸着原料粉末を希釈
剤と混合した混合液を貯溜しておき、蒸着に際して、気
化部においてまず混合液貯溜部から導出する混合液から
希釈剤を高温雰囲気で蒸発分解させると共に、蒸着原料
粉末を気化させ、不活性ガスと混合し、この原料蒸気を
気化部から電気化学蒸着室に導入して電気化学蒸着を実
行するので、電気化学蒸着を実施する前の準備段階では
蒸着原料粉末を希釈剤と混合した混合液状態で取り扱う
ことができ、吸湿しないように注意する必要が無くなっ
て取り扱いが容易となり、技術者の負担が軽減し、また
供給原料の定量が正確に行える。
As described above, according to the electrochemical vapor deposition apparatus of the first aspect of the present invention, a mixed liquid obtained by mixing a raw material powder for vapor deposition with a diluent is stored in the mixed liquid storage section. First, the diluent is vaporized and decomposed in a high-temperature atmosphere from the mixed liquid derived from the mixed liquid storage section, and the raw material powder is vaporized and mixed with an inert gas. Since the chemical vapor deposition is performed, in the preparation stage before performing the electrochemical vapor deposition, the raw material powder can be handled in a mixed liquid state mixed with a diluent, and there is no need to take care to prevent moisture absorption. And the burden on the technician is reduced, and the feedstock can be accurately quantified.

【0034】請求項2の発明の固体電解質型燃料電池の
固体電解質成膜方法によれば、請求項1の電気化学蒸着
装置を用いるので、基体に蒸着させる固体電解質原料が
混合液の状態にして取り扱いやすく、固体電解質の成膜
作業が容易である。
According to the solid electrolyte film forming method for a solid oxide fuel cell according to the second aspect of the present invention, since the electrochemical deposition apparatus according to the first aspect is used, the solid electrolyte raw material to be deposited on the substrate is in a mixed liquid state. It is easy to handle and the solid electrolyte film formation work is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気化学蒸着装置の1つの実施の形態
を示す概略系統図。
FIG. 1 is a schematic system diagram showing one embodiment of an electrochemical deposition apparatus of the present invention.

【図2】本発明の電気化学蒸着装置の他の実施の形態を
示す概略系統図。
FIG. 2 is a schematic system diagram showing another embodiment of the electrochemical deposition apparatus of the present invention.

【図3】一般的な円筒縦縞の固体電解質型燃料電池の単
電池構造を示す断面図。
FIG. 3 is a cross-sectional view showing a single-cell structure of a general cylindrical vertical stripe solid oxide fuel cell.

【図4】上記の一般的な固体電解質型燃料電池バンドル
の構造を示す断面図。
FIG. 4 is a sectional view showing the structure of the above-mentioned general solid oxide fuel cell bundle.

【図5】上記の一般的な固体電解質型燃料電池の発電動
作を示す説明図。
FIG. 5 is an explanatory diagram showing a power generation operation of the above-mentioned general solid oxide fuel cell.

【図6】従来の電気化学蒸着装置の概略系統図。FIG. 6 is a schematic system diagram of a conventional electrochemical deposition apparatus.

【図7】一般的な電気化学蒸着方法を示す説明図。FIG. 7 is an explanatory view showing a general electrochemical deposition method.

【符号の説明】[Explanation of symbols]

51,52 原料液貯溜部 53,54 マスフローコントローラ 55 反応室 56 気化室 57 気化用ヒータ 61 ヒータ 63 基体 64 空気供給管 65 原料蒸気 66 酸化ガス 67 原料供給管 68 固体電解質膜 51,52 Raw material liquid storage 53,54 Mass flow controller 55 Reaction chamber 56 Vaporization chamber 57 Vaporization heater 61 Heater 63 Base 64 Air supply pipe 65 Raw material vapor 66 Oxidizing gas 67 Raw material supply pipe 68 Solid electrolyte membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼田 波子 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 小野 幹幸 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 望月 正孝 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 永田 雅克 東京都江東区木場1−5−1 株式会社フ ジクラ内 (72)発明者 岩澤 力 東京都江東区木場1−5−1 株式会社フ ジクラ内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Namiko Kaneda 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Mikiyuki Ono 1-5-1, Kiba, Koto-ku, Tokyo Inside Jikura (72) Inventor Masataka Mochizuki 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Masakatsu Nagata 1-5-1, Kiba, Koto-ku Tokyo Person Iwasawa Riki 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸着原料粉末を希釈剤と混合した混合液
を貯溜する混合液貯溜部と、 前記混合液貯溜部から導出する前記混合液から前記希釈
剤を高温雰囲気で蒸発分解させると共に、前記蒸着原料
粉末を気化させ、不活性ガスと混合する気化部と、 前記気化部から前記蒸着原料蒸気を導入して電気化学蒸
着を実行する電気化学蒸着室とを備えて成る電気化学蒸
着装置。
1. A mixed liquid storage section for storing a mixed liquid obtained by mixing a deposition raw material powder with a diluent, and the diluent is evaporated and decomposed in a high-temperature atmosphere from the mixed liquid derived from the mixed liquid storage section, An electrochemical vapor deposition apparatus comprising: a vaporizing unit that vaporizes a raw material powder and mixes it with an inert gas; and an electrochemical vapor deposition chamber that performs the electrochemical vapor deposition by introducing the vapor of the raw material vapor from the vaporizing unit.
【請求項2】 塩化イットリウム粉末、塩化ジルコニウ
ム粉末それぞれを希釈剤と混合した混合液を前記混合液
貯溜部に用意し、前記塩化イットリウム混合液、塩化ジ
ルコニウム混合液それぞれを所定の割合、所定の流量で
前記気化部に導入して前記希釈剤を高温雰囲気で蒸発分
解させると共に、前記蒸着原料粉末を気化させ、不活性
ガスと混合し、 この混合ガスを前記電気化学蒸着室に導入して基体に電
気化学蒸着させることを特徴とする請求項1に記載の電
気化学蒸着装置を用いた固体電解質型燃料電池の固体電
解質成膜方法。
2. A mixed solution in which each of yttrium chloride powder and zirconium chloride powder is mixed with a diluent is prepared in the mixed solution reservoir, and the yttrium chloride mixed solution and the zirconium chloride mixed solution are respectively mixed at a predetermined ratio and a predetermined flow rate. At the same time, the diluent is vaporized and decomposed in a high temperature atmosphere by introducing the diluent in a high temperature atmosphere, and the vapor deposition raw material powder is vaporized and mixed with an inert gas. A method for forming a solid electrolyte film for a solid oxide fuel cell using the electrochemical deposition apparatus according to claim 1, wherein the electrochemical deposition is performed.
JP9122522A 1997-05-13 1997-05-13 Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell Pending JPH10312816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9122522A JPH10312816A (en) 1997-05-13 1997-05-13 Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9122522A JPH10312816A (en) 1997-05-13 1997-05-13 Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH10312816A true JPH10312816A (en) 1998-11-24

Family

ID=14837941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9122522A Pending JPH10312816A (en) 1997-05-13 1997-05-13 Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH10312816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026155A (en) * 2018-08-31 2020-03-10 폭스바겐 악티엔 게젤샤프트 Method and system for depositing a solid electrolyte material on electrode active material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026155A (en) * 2018-08-31 2020-03-10 폭스바겐 악티엔 게젤샤프트 Method and system for depositing a solid electrolyte material on electrode active material

Similar Documents

Publication Publication Date Title
TWI353680B (en) Fuel cell conditioning layer
US20030224232A1 (en) Method for manufacturing fuel cells, and articles made therewith
US8309272B2 (en) Solid oxide cell
JP4432384B2 (en) Solid oxide fuel cell
US5989634A (en) Process of manufacturing solid oxygen ion conducting oxide layers
JPH10312816A (en) Equipment for electrochemical vapor deposition and method for making solid electrolyte film of solid electrolyte type fuel cell
JPH1112737A (en) Electrochemical vapor deposition device, and solid electrolyte film forming method using it
TW200937710A (en) Electrode for fuel cell having two kinds of hydrophilicity and method for preparing the same and membrane electrode assembly and fuel cell comprising the same
JP3616243B2 (en) Electrochemical vapor deposition apparatus and solid electrolyte film forming method using the same
JP3423874B2 (en) Solid electrolyte film formation method
KR102467992B1 (en) Method for in-situ healing of electrolyte defects during operation of high-temperature electrochemical device and high-temperature electrochemical device thereby
Sasaki et al. Reaction mechanism of electrochemical‐vapor deposition of yttria‐stabilized zirconia film
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPH11323557A (en) Raw material vaporizer for electrochemical vapor-deposition, electrochemical vapor deposition device and solid electrolytic film forming method using the device
JP2004273141A (en) Fuel cell system
JP3152803B2 (en) Method for manufacturing solid oxide fuel cell
Cassir et al. ALD‐Processed Oxides for High‐Temperature Fuel Cells
JP2005071717A (en) Solid oxide type fuel cell and operating method of solid oxide type fuel cell
JP2000182634A (en) Film forming method for solid electrolyte
JP3758818B2 (en) Method for depositing solid electrolyte, method for depositing fuel electrode, and method for depositing solid electrolyte and fuel electrode
JP3131077B2 (en) Manufacturing method of metal oxide film
TW201330373A (en) Power generating apparatus using effluent gases exhausted from process chamber
US20050019637A1 (en) Method for manufacturing fuel cell components by low temperature processing
KR102037938B1 (en) Cathode current collector for solid oxide fuel cells and current collector method using the same
JPH0718451A (en) Method and device for forming oxide film on porous substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417