JPH11126626A - Pressurized reforming device - Google Patents

Pressurized reforming device

Info

Publication number
JPH11126626A
JPH11126626A JP9289897A JP28989797A JPH11126626A JP H11126626 A JPH11126626 A JP H11126626A JP 9289897 A JP9289897 A JP 9289897A JP 28989797 A JP28989797 A JP 28989797A JP H11126626 A JPH11126626 A JP H11126626A
Authority
JP
Japan
Prior art keywords
chamber
reforming
gas
permeation
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9289897A
Other languages
Japanese (ja)
Other versions
JP3928674B2 (en
Inventor
Moto Takei
意 武井
Kazunori Kobayashi
和典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP28989797A priority Critical patent/JP3928674B2/en
Publication of JPH11126626A publication Critical patent/JPH11126626A/en
Application granted granted Critical
Publication of JP3928674B2 publication Critical patent/JP3928674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a pressurized reforming device capable of giving high reforming efficiency in a pressurized state without raising operation temperature of a plate reformer. SOLUTION: This device comprises a reforming chamber 12 filled with reforming catalysts 3 and supplied with hydrocarbon gas 2 including steam, a combustion chamber 14 separated from the reforming chamber by a highly heat-conductive thin plate 14a for burning fuel gas 1, and a permeation chamber 16 separated from the reforming chamber by a hydrogen separating film 16a and supplied with anode exhaust gas 11 coming out of a fuel cell. The flow rate of the anode exhaust gas supplied to the permeation chamber is set up to cause hydrogen partial pressure in the reforming chamber to be always higher than that in the permeation chamber, and gas combing out of the permeation chamber is joinned with gas coming out of the reforming chamber and supplied to the anode side of the fuel cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧下で高い改質
率を維持する加圧改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure reformer for maintaining a high reforming rate under pressure.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図3に模式的に示す天然
ガス等の原料ガスを水素を含むガスに改質するために改
質器が用いられる。改質器は、隔壁で分離された燃焼室
Coと改質室Reからなり、燃焼室Coで燃料ガス1
(例えば燃料電池からのアノード排ガス)を燃焼させ、
その熱で改質室Reを加熱し、その内部に充填された改
質触媒3により改質室を流れる原料ガス2を水素を含む
ガス4(以下、改質ガスという)に改質するようになっ
ている。
2. Description of the Related Art Molten carbonate fuel cells have features not found in conventional power generation equipment, such as high efficiency and little impact on the environment, and are attracting attention as power generation systems following hydro, thermal and nuclear power. Are being researched and developed in various countries around the world. In particular, in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a reformer is used to reform a source gas such as natural gas schematically shown in FIG. 3 into a gas containing hydrogen. . The reformer includes a combustion chamber Co and a reforming chamber Re separated by a partition wall.
(For example, anode exhaust gas from a fuel cell),
The reforming chamber Re is heated by the heat, and the raw material gas 2 flowing through the reforming chamber is reformed into a gas 4 containing hydrogen (hereinafter, referred to as a reformed gas) by the reforming catalyst 3 filled therein. Has become.

【0003】かかる改質器として、従来のプラント用の
チューブラー型を発展させたものとしては、特公平3−
35778号,特公平5−9362号,特開昭62−2
7303号等が燃料電池用として既に提案されている。
[0003] As such a reformer, a tubular type developed for a conventional plant has been developed as disclosed in
No. 35778, JP-B-5-9362, JP-A-62-2
No. 7303 has already been proposed for use in fuel cells.

【0004】一方、上述した従来のチューブラー改質器
とは全く異なる構成のプレート改質器が本願出願人から
既に提案され一部で用いられている。このプレート改質
器は、図4の原理図に例示するように、改質室Reと燃
焼室Coをそれぞれ平板状に構成して交互に積層したも
のであり、この燃焼室Coには、粒子状の燃焼触媒5が
平板状に充填され、外部マニホールド6a,6bから供
給される燃料ガス1と燃焼用空気7とが、図に破線で示
すように流れ、燃焼触媒5の作用により反応(燃焼)し
て発熱し、燃焼排ガス8が反対側の外部マニホールド6
cから排出される。一方、改質室Reには、粒子状の改
質触媒3が同様に平板状に充填され、外部マニホールド
6dから供給される原料ガス2が、図に実線で示すよう
に流れ、改質触媒3の作用により原料ガス2を改質し、
改質ガス4が、反対側の外部マニホールド6eから排出
されるようになっている。
On the other hand, a plate reformer having a configuration completely different from the above-mentioned conventional tubular reformer has already been proposed by the applicant of the present invention and is partially used. As illustrated in the principle diagram of FIG. 4, the plate reformer is configured such that a reforming chamber Re and a combustion chamber Co are each configured in a plate shape and are alternately stacked, and the combustion chamber Co includes particles. The combustion catalyst 5 is filled in a flat plate shape, and the fuel gas 1 and the combustion air 7 supplied from the external manifolds 6a and 6b flow as indicated by broken lines in FIG. ) And heat is generated, and the flue gas 8 is discharged to the external manifold 6 on the opposite side.
discharged from c. On the other hand, the reforming chamber Re is similarly filled with a particulate reforming catalyst 3 in a plate shape, and the raw material gas 2 supplied from the external manifold 6d flows as shown by a solid line in the drawing, and The raw material gas 2 is reformed by the action of
The reformed gas 4 is discharged from the external manifold 6e on the opposite side.

【0005】更に、図4の燃料室Coを高温ガスが流れ
る加熱室Hに置き換え、別の独立した燃焼器(例えば触
媒燃焼器)からこの加熱室Hに高温の燃焼排ガスを供給
する燃焼器別置きのプレート改質器も開発されている。
かかるプレート改質器はチューブラー改質器と比較する
と、体積当たりの伝熱面積が大きく、非常に小型軽量に
できる特徴を有しており、燃料電池用ばかりでなく、そ
の他の分野(例えば水素製造等)への適用が要望されて
いる。
Further, the fuel chamber Co shown in FIG. 4 is replaced with a heating chamber H through which a high-temperature gas flows, and a separate combustion chamber (for example, a catalytic combustor) for supplying high-temperature combustion exhaust gas to the heating chamber H from another combustor. Other plate reformers have also been developed.
Compared with the tubular reformer, such a plate reformer has a large heat transfer area per volume and has a feature that it can be made very small and lightweight, and is not only used for fuel cells but also used in other fields (for example, hydrogen). Application).

【0006】[0006]

【発明が解決しようとする課題】上述したプレート改質
器において、運転圧力の高圧化はプラント効率の向上と
コンパクト化に有効である。このため、プレート改質器
の運転圧力を燃料電池の運転圧力に併せて、数ata程
度まで高めることが望まれている。しかし、メタンの改
質反応は、CH4 +H2 O→3H2 +CO..(式)
の主反応式で表され、反応によりモル数(体積)が増加
する反応であるため、高圧化により平衡定数が低くな
り、従って改質率が低下する問題点がある。
In the plate reformer described above, increasing the operating pressure is effective for improving plant efficiency and reducing the size. Therefore, it is desired to increase the operating pressure of the plate reformer to about several ata in accordance with the operating pressure of the fuel cell. However, the reforming reaction of methane is CH 4 + H 2 O → 3H 2 + CO. . (formula)
And the number of moles (volume) is increased by the reaction, the equilibrium constant is reduced by increasing the pressure, and the reforming rate is reduced.

【0007】一方、改質温度の上昇で改質率の改善を図
ることは原理的には可能であるが、プレート改質器で
は、隔壁の温度制限から、改質温度を高くすると、高価
で加工性の悪い耐熱材料(例えばセラミックス材)を用
いる必要が生じ、実用的ではない。
On the other hand, it is possible in principle to improve the reforming rate by increasing the reforming temperature. However, in a plate reformer, if the reforming temperature is increased due to the temperature limitation of the partition walls, it is expensive. It is necessary to use a heat-resistant material (for example, a ceramic material) having poor workability, which is not practical.

【0008】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、運転
温度を高めることなく、加圧下において高い改質効率を
得ることができる加圧改質装置を提供することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a pressurized reforming apparatus capable of obtaining high reforming efficiency under pressure without increasing the operating temperature.

【0009】[0009]

【課題を解決するための手段】本発明によれば、改質触
媒が充填されかつ水蒸気を含む炭化水素ガスが供給され
る改質室と、改質室との間を熱伝導性の高い薄板で仕切
られかつ燃料ガスを燃焼させる燃焼室と、改質室との間
を水素分離膜で仕切られかつ燃料電池を出たアノード排
ガスが供給される透過室とからなり、透過室を出たガス
を改質室を出たガスに合流させて燃料電池のアノード側
に供給する、ことを特徴とする加圧改質装置が提供され
る。
According to the present invention, a thin plate having high thermal conductivity is provided between a reforming chamber filled with a reforming catalyst and supplied with a hydrocarbon gas containing steam. And a permeation chamber which is partitioned by a hydrogen separation membrane between the reforming chamber and the anode exhaust gas which has exited the fuel cell, and which has exited the permeation chamber. Is combined with the gas exiting the reforming chamber and supplied to the anode side of the fuel cell.

【0010】この構成により、水素分離膜で改質室と透
過室の隔壁が構成されるので、改質室で改質された改質
ガス中の水素がその場で水素分離膜を通して選択的に分
離され、改質室内の水素濃度が低下し、これにより、改
質室におけるメタン改質反応(式)が促進され、比較
的低い温度でも平衡定数に制限されずに高い改質率を達
成することができる。
[0010] With this configuration, since the partition walls of the reforming chamber and the permeation chamber are constituted by the hydrogen separation membrane, hydrogen in the reformed gas reformed in the reforming chamber is selectively passed through the hydrogen separation membrane in situ. It is separated and the hydrogen concentration in the reforming chamber is reduced, thereby promoting the methane reforming reaction (formula) in the reforming chamber, and achieving a high reforming rate even at a relatively low temperature without being limited to the equilibrium constant. be able to.

【0011】従来は、水素分離膜を用いる場合でも、透
過室にスイープガスを供給しない場合には、透過室内を
減圧又は真空にして改質室との間に差圧(1ata程
度)を発生させる必要があり、減圧/真空設備が必要に
なり設備費が高くなる。また、スイープガスとして水蒸
気や不活性ガス(窒素ガス等)等の第3流体を用いると
大量の第3流体を必要とするので、プラント効率の低下
やランニングコストの上昇を招く問題があった。
Conventionally, even when a hydrogen separation membrane is used, if the sweep gas is not supplied to the permeation chamber, the pressure in the permeation chamber is reduced or evacuated to generate a differential pressure (about 1 ata) between the permeation chamber and the reforming chamber. This requires a decompression / vacuum facility, which increases equipment costs. In addition, when a third fluid such as steam or an inert gas (such as nitrogen gas) is used as a sweep gas, a large amount of the third fluid is required, which causes a problem of lowering plant efficiency and increasing running costs.

【0012】これに対して、本発明では、スイープガス
としてアノード排ガスをリサイクルして用いるため、第
3流体を用いることによる効率低下をなくすことがで
き、改質反応温度低下、電池燃料利用率上昇、出力増加
に伴うプラント効率の上昇が期待できる。また、スイー
プガスとするアノード排ガスはH2 の分圧が低くC
2 ,H2 Oの分圧が高いガスであるから、リサイクル
量を増加することにより流量の確保は容易であり、かつ
反応側(改質室)との分圧差も大きくとれるので、改質
室に対して僅かに減圧するだけで、水素透過膜の水素透
過速度を上げることができる。
On the other hand, in the present invention, since the anode exhaust gas is recycled and used as the sweep gas, the decrease in efficiency due to the use of the third fluid can be eliminated, the reforming reaction temperature decreases, and the fuel efficiency of the cell increases. In addition, an increase in plant efficiency with an increase in output can be expected. Also, the anode exhaust gas used as a sweep gas has a low partial pressure of H 2 and a low C pressure.
Since the partial pressure of O 2 and H 2 O is high, it is easy to secure the flow rate by increasing the amount of recycle, and the partial pressure difference between the reaction side (reforming chamber) and the reaction side can be increased. The hydrogen permeation rate of the hydrogen permeable membrane can be increased by slightly reducing the pressure in the chamber.

【0013】本発明の好ましい実施形態によれば、前記
透過室に供給されるアノード排ガスの流量は改質室の水
素分圧が、透過室より常に高くなるように設定される。
この構成により、改質室の水素分圧が透過室より低い場
合に生じる逆透過を回避し、水素の透過率を高めると共
に、改質率を高めることができる。
According to a preferred embodiment of the present invention, the flow rate of the anode exhaust gas supplied to the permeation chamber is set so that the hydrogen partial pressure in the reforming chamber is always higher than that in the permeation chamber.
With this configuration, it is possible to avoid reverse permeation that occurs when the hydrogen partial pressure of the reforming chamber is lower than that of the permeation chamber, increase the hydrogen permeability, and increase the reforming rate.

【0014】前記水素分離膜は、前記改質室出口には減
圧装置が設けられ、場合によっては、改質室を出たガス
に透過室を出たガスが圧力差により合流することもでき
る。この構成により、アノード排ガスのリサイクルライ
ンにコンプレッサ等を用いることなく、透過室を出たガ
ス圧を改質器側より高く保持でき、ガスの合流をスムー
スに行うことができる。
In the hydrogen separation membrane, a decompression device is provided at the outlet of the reforming chamber, and in some cases, the gas exiting the permeation chamber can be combined with the gas exiting the reforming chamber due to a pressure difference. With this configuration, the gas pressure exiting the permeation chamber can be kept higher than the reformer side without using a compressor or the like in the anode exhaust gas recycling line, and the gas can be smoothly merged.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明による加圧改質装置の構成図である。この図におい
て、本発明の加圧改質装置10は、水蒸気を含む炭化水
素ガス(原料ガス2)が供給される改質室12と、燃料
ガス1と空気7が供給され、これを燃焼させる燃焼室1
4と、アノード排ガス11が供給される透過室16とか
らなる。改質室12、燃焼室14及び透過室16は、改
質室12を中心にその両側に燃焼室14と透過室16が
位置した状態で、複数が積層され、前述したプレート改
質器を構成するようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a configuration diagram of a pressure reformer according to the present invention. In FIG. 1, a pressurized reforming apparatus 10 of the present invention is supplied with a reforming chamber 12 to which a hydrocarbon gas containing water vapor (raw material gas 2) is supplied, and a fuel gas 1 and air 7, which are burned. Combustion chamber 1
4 and a permeation chamber 16 to which the anode exhaust gas 11 is supplied. A plurality of the reforming chambers 12, the combustion chambers 14, and the permeation chambers 16 are stacked with the combustion chambers 14 and the permeation chambers 16 positioned on both sides of the reforming chambers 12 to constitute the above-described plate reformer. It is supposed to.

【0016】また、図に示すように、加圧改質装置10
の下流側には燃料電池20が設置されており、燃料電池
のカソード側に燃焼室14を出た燃焼ガス8がカソード
ガスとして供給され、アノード側に透過室16を出たガ
スと改質室12を出たガス(改質ガス4)が合流してア
ノードガスとして燃料電池20のアノード側に供給され
るようになっている。
Further, as shown in FIG.
A fuel cell 20 is installed downstream of the fuel cell. The combustion gas 8 exiting the combustion chamber 14 is supplied as a cathode gas to the cathode side of the fuel cell, and the gas exiting the permeation chamber 16 and the reforming chamber are supplied to the anode side. The gas (reformed gas 4) that has exited 12 merges and is supplied to the anode side of the fuel cell 20 as an anode gas.

【0017】更に、燃料電池のアノード側を出たアノー
ド排ガス11の一部は、加圧改質装置10の燃焼室14
に燃料ガス1として供給され、残りは、透過室16にス
イープガスとしてリサイクルするようになっている。使
用する炭化水素ガスは、例えばメタンを主成分とする都
市ガスである。
Further, part of the anode exhaust gas 11 that has exited the anode side of the fuel cell is supplied to the combustion chamber 14 of the pressurized reformer 10.
Is supplied to the permeation chamber 16 as a sweep gas. The hydrocarbon gas used is, for example, city gas containing methane as a main component.

【0018】図1において、改質室12には改質触媒3
が充填され、燃焼室14には燃焼触媒5が充填されてい
る。また、燃焼室14と改質室12との間は熱伝導性の
高い薄板14a(熱伝導板)で仕切られている。この熱
伝導板14aは、気密性を有する金属板、例えば耐熱鋼
板、銅合金、ステンレイ等であるのがよい。更に、透過
室16と改質室12との間は水素分離膜16aで仕切ら
れている。この水素分離膜16aは、例えば温度約40
0℃以上に保持された膜厚20μm以上のバラジウム合
金膜であり、透過性を有するセラミックス等の表面に設
けられ、耐圧性を有するようになっている。
In FIG. 1, a reforming catalyst 3 is provided in a reforming chamber 12.
And the combustion chamber 14 is filled with the combustion catalyst 5. The combustion chamber 14 and the reforming chamber 12 are partitioned by a thin plate 14a (heat conductive plate) having high thermal conductivity. The heat conductive plate 14a is preferably an airtight metal plate, for example, a heat-resistant steel plate, a copper alloy, stainless steel, or the like. Further, the permeation chamber 16 and the reforming chamber 12 are partitioned by a hydrogen separation membrane 16a. The hydrogen separation membrane 16a has a temperature of about 40, for example.
A palladium alloy film having a film thickness of 20 μm or more maintained at 0 ° C. or higher, provided on a surface of a transparent ceramic or the like, and having a pressure resistance.

【0019】図1の実施形態において、更に、改質室出
口には減圧装置18(例えばオリフィス)が設けられ、
改質室12を出たガスに透過室16を出たガスが圧力差
により合流するようになっている、また、透過室16に
供給されるアノード排ガス11の流量は改質室12の水
素分圧が、透過室16より常に高くなるように設定され
る。なお、本発明はこの構成に限定されず、透過室16
を出たガスをブロア等を用いて吸引し、改質室12を出
たガスに合流させるようにしてもよい。
In the embodiment of FIG. 1, a pressure reducing device 18 (for example, an orifice) is provided at the outlet of the reforming chamber.
The gas that has exited the permeation chamber 16 is merged with the gas that has exited the reforming chamber 12 due to a pressure difference. The flow rate of the anode exhaust gas 11 supplied to the permeation chamber 16 depends on the hydrogen content of the reforming chamber 12. The pressure is set to be always higher than the permeation chamber 16. Note that the present invention is not limited to this configuration.
The gas that has exited the chamber may be sucked using a blower or the like, and may be combined with the gas that has exited the reforming chamber 12.

【0020】上述した構成により、改質室12内で炭化
水素ガス2を水素を含む改質ガス4に改質し、発生した
水素9を水素分離膜16aを通して透過室16からアノ
ード排ガス11と共に排出することができる。
With the above-described structure, the hydrocarbon gas 2 is reformed into the reformed gas 4 containing hydrogen in the reforming chamber 12, and the generated hydrogen 9 is discharged from the permeation chamber 16 together with the anode exhaust gas 11 through the hydrogen separation membrane 16a. can do.

【0021】図2は、水素分離膜の原理図である。バラ
ジウム及びバラジウム合金膜が水素を選択的に透過する
特性を有していることが知られている。この水素透過機
構は、以下のように考えられている。 水素分子がバラジウム膜に吸着する。 吸着水素分子が水素原子に解離する。吸熱反応なの
で、膜を加熱するか、原料ガスを加熱して用いると容易
に原子状水素を膜の表面で作り得る。 水素原子がイオン化しプロトンとエレクトロンに分か
れる。原子状水素はプロトン(陽子)とエレクトロン
(電子)であり、バラジウムは最外周殻に電子が2個不
足しているので、容易に水素の電子を奪いとることがで
きる。 プロトンがバラジウムの表面から裏面へと拡散する。
この移動のためには表面/原料ガス側の水素濃度(水素
分圧)が裏面/精製水素側の水素濃度(水素分圧)より
大きくなければならない。 裏面に到達したプロトンがバラジウム膜面でエレクト
ロンと再結合して水素原子となる。 水素原子が結合して水素分子となる。バラジウム膜面
の触媒能力によって分子状に会合される。 水素分子がパレット膜より脱着する。以上の過程を経
て水素が透過する。
FIG. 2 shows the principle of the hydrogen separation membrane. It is known that palladium and palladium alloy films have a property of selectively transmitting hydrogen. This hydrogen permeation mechanism is considered as follows. Hydrogen molecules are adsorbed on the palladium film. The adsorbed hydrogen molecules dissociate into hydrogen atoms. Since the reaction is an endothermic reaction, atomic hydrogen can be easily formed on the surface of the film when the film is heated or the raw material gas is heated and used. Hydrogen atoms are ionized and split into protons and electrons. Atomic hydrogen is a proton (proton) and an electron (electron), and since palladium lacks two electrons in the outermost shell, it can easily take off hydrogen electrons. Protons diffuse from the front surface of the palladium to the back surface.
For this movement, the hydrogen concentration (hydrogen partial pressure) on the front surface / source gas side must be higher than the hydrogen concentration (hydrogen partial pressure) on the back surface / purified hydrogen side. The protons that have reached the back surface recombine with the electrons on the palladium film surface to become hydrogen atoms. Hydrogen atoms combine to form hydrogen molecules. It is molecularly associated with the catalytic ability of the palladium film surface. Hydrogen molecules are desorbed from the pallet membrane. Hydrogen permeates through the above process.

【0022】このようにプロトンの状態となり得る水素
のみがバラジウム膜を透過することから、このような状
態となり得ない他の分子はバラジウム膜を透過できな
い。見かけ上、水素が原子状で透過するので、原子篩
(Atomic Sieves )とも言われている。バラジウム膜の
水素透過速度は、圧力、温度、膜厚などの因子によって
変化するが、分圧差が大きいほど、温度が高いほど、膜
厚が薄いほど透過量が大きい。
Since only hydrogen which can be in a proton state permeates the palladium film in this way, other molecules which cannot be in such a state cannot permeate the palladium film. It is also called atomic sieves because hydrogen appears to be transmitted in atomic form. The hydrogen permeation rate of the palladium film changes depending on factors such as pressure, temperature, and film thickness. The permeation amount increases as the partial pressure difference increases, as the temperature increases, and as the film thickness decreases.

【0023】上述した本発明の構成により、水素分離膜
16aで改質室12と透過室16の隔壁が構成されるの
で、改質室12で改質された改質ガス中の水素9がその
場で水素分離膜16aを通して選択的に分離され、改質
室12内の水素濃度が低下し、これにより、改質室にお
けるメタン改質反応(式)が促進され、比較的低い温
度でも平衡定数に制限されずに高い改質率を達成するこ
とができる。
According to the above-described structure of the present invention, since the partition walls of the reforming chamber 12 and the permeation chamber 16 are constituted by the hydrogen separation membrane 16a, the hydrogen 9 in the reformed gas reformed in the reforming chamber 12 is removed. In the reforming chamber, the hydrogen is selectively separated through the hydrogen separation membrane 16a, and the hydrogen concentration in the reforming chamber 12 is reduced, whereby the methane reforming reaction (formula) in the reforming chamber is promoted. It is possible to achieve a high reforming rate without being limited to.

【0024】また、本発明では、スイープガスとしてア
ノード排ガス11をリサイクルして用いるため、第3流
体を用いることによる効率低下をなくすことができ、改
質反応温度低下、電池燃料利用率上昇、出力増加に伴う
プラント効率の上昇が期待できる。また、スイープガス
とするアノード排ガス11はH2 の分圧が低くCO2
2 Oの分圧が高いガスであるから、リサイクル量を増
加することにより流量の確保は容易であり、かつ反応側
(改質室)との分圧差も大きくとれるので、改質室に対
して僅かに減圧するだけで、水素透過膜の水素透過速度
を上げることができる。
In the present invention, the sweep gas is
Because the node exhaust gas 11 is recycled and used, the third stream
Efficiency can be eliminated by using
Temperature reaction, cell fuel utilization rise, output increase
An increase in plant efficiency can be expected. Also, sweep gas
The anode exhaust gas 11 is HTwoLow partial pressure of COTwo,
H TwoIncrease the amount of recycling because the gas has a high partial pressure of O
It is easy to secure the flow rate by adding
(Partial pressure difference with the reforming chamber)
The hydrogen permeation rate of the hydrogen permeable membrane can be
Can be raised.

【0025】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0026】[0026]

【発明の効果】【The invention's effect】

【0027】上述したように、本発明の加圧改質装置
は、プレート改質器の運転温度を高めることなく、加圧
下において高い改質効率を得ることができる等の優れた
効果を有する。
As described above, the pressurized reforming apparatus of the present invention has excellent effects such as obtaining a high reforming efficiency under pressure without increasing the operating temperature of the plate reformer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加圧改質装置の構成図である。FIG. 1 is a configuration diagram of a pressure reformer according to the present invention.

【図2】水素分離膜の原理図である。FIG. 2 is a principle view of a hydrogen separation membrane.

【図3】従来の改質器の模式的構成図である。FIG. 3 is a schematic configuration diagram of a conventional reformer.

【図4】従来のプレート改質器の原理図である。FIG. 4 is a principle view of a conventional plate reformer.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 原料ガス(プロセスガス) 3 改質触媒 4 改質ガス 5 燃焼触媒 6a〜6e 外部マニホールド 7 燃焼用空気 8 燃焼ガス 9 水素ガス 10 加圧改質装置 11 アノード排ガス 12 改質室 14 燃焼室 14a 熱伝導板 16 透過室 16a 水素透過膜 18 減圧装置(オリフィス) REFERENCE SIGNS LIST 1 fuel gas 2 raw material gas (process gas) 3 reforming catalyst 4 reforming gas 5 combustion catalyst 6 a to 6 e external manifold 7 combustion air 8 combustion gas 9 hydrogen gas 10 pressurized reformer 11 anode exhaust gas 12 reforming chamber 14 Combustion chamber 14a Heat conduction plate 16 Permeation chamber 16a Hydrogen permeable membrane 18 Pressure reducing device (orifice)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 改質触媒が充填されかつ水蒸気を含む炭
化水素ガスが供給される改質室と、改質室との間を熱伝
導性の高い薄板で仕切られかつ燃料ガスを燃焼させる燃
焼室と、改質室との間を水素分離膜で仕切られかつ燃料
電池を出たアノード排ガスが供給される透過室とからな
り、透過室を出たガスを改質室を出たガスに合流させて
燃料電池のアノード側に供給する、ことを特徴とする加
圧改質装置。
Combustion in which a reforming chamber filled with a reforming catalyst and supplied with a hydrocarbon gas containing water vapor is separated from a reforming chamber by a thin plate having high thermal conductivity and burns fuel gas. And a permeation chamber which is separated from the reforming chamber by a hydrogen separation membrane and is supplied with anode exhaust gas exiting the fuel cell, and joins the gas exiting the permeation chamber with the gas exiting the reforming chamber. A pressurized reformer characterized in that it is supplied to the anode side of a fuel cell.
【請求項2】 前記透過室に供給されるアノード排ガス
の流量は改質室の水素分圧が、透過室より常に高くなる
ように設定される、ことを特徴とする請求項1に記載の
加圧改質装置。
2. The process according to claim 1, wherein the flow rate of the anode exhaust gas supplied to the permeation chamber is set such that the hydrogen partial pressure in the reforming chamber is always higher than that in the permeation chamber. Pressure reformer.
【請求項3】 前記改質室出口には減圧装置が設けら
れ、改質室を出たガスに透過室を出たガスが圧力差によ
り合流するようになっている、ことを特徴とする請求項
1又は2に記載の加圧改質装置。
3. A pressure reducing device is provided at an outlet of the reforming chamber, and a gas exiting the permeation chamber is joined to a gas exiting the reforming chamber by a pressure difference. Item 3. A pressure reformer according to item 1 or 2.
JP28989797A 1997-10-22 1997-10-22 Pressure reformer Expired - Fee Related JP3928674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28989797A JP3928674B2 (en) 1997-10-22 1997-10-22 Pressure reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28989797A JP3928674B2 (en) 1997-10-22 1997-10-22 Pressure reformer

Publications (2)

Publication Number Publication Date
JPH11126626A true JPH11126626A (en) 1999-05-11
JP3928674B2 JP3928674B2 (en) 2007-06-13

Family

ID=17749194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28989797A Expired - Fee Related JP3928674B2 (en) 1997-10-22 1997-10-22 Pressure reformer

Country Status (1)

Country Link
JP (1) JP3928674B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen-forming unit
JP2003517185A (en) * 1999-12-17 2003-05-20 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Cryogenic fuel cell assembly and method of operation
JP2004531440A (en) * 2001-03-05 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Apparatus and method for producing hydrogen
JP2020061293A (en) * 2018-10-11 2020-04-16 日本碍子株式会社 Fuel cell device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517185A (en) * 1999-12-17 2003-05-20 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Cryogenic fuel cell assembly and method of operation
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen-forming unit
JP2004531440A (en) * 2001-03-05 2004-10-14 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Apparatus and method for producing hydrogen
JP2020061293A (en) * 2018-10-11 2020-04-16 日本碍子株式会社 Fuel cell device

Also Published As

Publication number Publication date
JP3928674B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4184037B2 (en) Hydrogen production equipment
US7686856B2 (en) Method and apparatus for producing synthesis gas
US20110142722A1 (en) Method and apparatus for producing synthesis gas
JP3614686B2 (en) Method for reducing carbon formation in solid electrolyte ionic conduction systems
JP2016513867A5 (en)
JPH0364866A (en) Fuel cell system
KR20000005650A (en) Ceramic Membrane Reformer
MX2014000291A (en) Method and apparatus for producing synthesis gas.
JPH11312527A (en) Molten carbonate type fuel cell power generation-exhaust gas recovery combined system using by-product gas in production of iron
JP4056755B2 (en) Integrated catalytic heat exchanger for solid oxide fuel cells
JP2004502623A (en) Power generation by heat exchange membrane reactor
JP2007128680A (en) Fuel cell system
NO317382B1 (en) Method for carrying out a catalytic or non-catalytic process
KR101243767B1 (en) Hydrogen production system for pemfc
JP3928674B2 (en) Pressure reformer
JP2007524553A (en) Fuel processing system having a membrane separator
JPH08287932A (en) Power generation method with heat utilization system
JP4008051B2 (en) Power generation method
JPH11116202A (en) Pressure reforming device
JP2755685B2 (en) Hydrogen production method for fuel cell
JP2004075439A (en) Hydrogen generating apparatus
JPH1171101A (en) High-pressure reformer
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP3934928B2 (en) Hydrogen separation reforming gas turbine system
JP4443968B2 (en) Hydrogen production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees