JPH11116295A - Carbon fiber for reinforcing cement based inorganic material and its production - Google Patents

Carbon fiber for reinforcing cement based inorganic material and its production

Info

Publication number
JPH11116295A
JPH11116295A JP9272690A JP27269097A JPH11116295A JP H11116295 A JPH11116295 A JP H11116295A JP 9272690 A JP9272690 A JP 9272690A JP 27269097 A JP27269097 A JP 27269097A JP H11116295 A JPH11116295 A JP H11116295A
Authority
JP
Japan
Prior art keywords
carbon fiber
cement
fiber
inorganic material
based inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9272690A
Other languages
Japanese (ja)
Other versions
JP3895842B2 (en
Inventor
Toyokazu Mizuguchi
豊和 水口
Tetsuyuki Kyono
哲幸 京野
Hiroshi Okata
浩 岡太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Toray Industries Inc filed Critical Asahi Glass Co Ltd
Priority to JP27269097A priority Critical patent/JP3895842B2/en
Publication of JPH11116295A publication Critical patent/JPH11116295A/en
Application granted granted Critical
Publication of JP3895842B2 publication Critical patent/JP3895842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • C04B20/1033Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Abstract

PROBLEM TO BE SOLVED: To improve the dispersibility and the adhesiveness of a fiber bundle in a cement-based inorganic material by specifying the flatness and the entangling degree of the fiber bundle. SOLUTION: In a carbon fiber, the flatness of the fiber bundle is controlled to >=3 to <=500 and the entangling degree is controlled to >=1 to <=25. As a result, the dispersibility of the fiber and the reinforced effect of the mortal are improved at the time of spray molding simultaneously with the mortal. And the carbon filter has preferably >=1 sec to <=30 sec underwater sedimentation time. Further, the carbon fiber has preferably >=50 cm<2> to <=400 cm<2> diffusion surface of fiber when the fiber bundle is sprayed to a molding flask by a compressed air of >=0.1 MPa to <=1 MPa pressure. A sizing agent to be stuck to the fiber bundle is preferably water and/or a polyethylene glycol having a molecular weight of 100-600. The sticking weight is preferably 0.1-20 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セメント系無機質
材補強用炭素繊維と炭素繊維補強セメント系無機質材成
形物およびその製造方法に関するものである。さらに詳
しくは、セメント系無機質材中での繊維の分散性が優
れ、力学的特性に優れたセメント系無機質材成形物を提
供するセメント系無機質材補強用炭素繊維とその製造方
法および該炭素繊維によって補強されたセメント系無機
質材製部材およびその製造方法に関する。
The present invention relates to a carbon fiber for reinforcing a cement-based inorganic material, a molded article of the carbon-fiber-reinforced cement-based inorganic material, and a method for producing the same. More specifically, the carbon fiber for reinforcing a cement-based inorganic material, which provides a cement-based inorganic material molded article having excellent dispersibility of fibers in the cement-based inorganic material and excellent mechanical properties, a method for producing the same, and the carbon fiber The present invention relates to a reinforced cement-based inorganic material member and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、炭素繊維はそのすぐれた力学的性
質、特にすぐれた比強度および比弾性率を利用した複合
材料の補強繊維として工業的に広く利用され、セメント
類を用いた建築構造物、土木材料などにも広く利用され
つつある。
2. Description of the Related Art Conventionally, carbon fiber has been widely used industrially as a reinforcing fiber for composite materials utilizing its excellent mechanical properties, especially its excellent specific strength and specific elastic modulus, and is used for building structures using cements. It is also being widely used for civil engineering materials.

【0003】一般的に炭素繊維は、エポキシ樹脂に代表
される熱硬化性樹脂の補強用に処理されているのでセメ
ント系無機質材中での分散性が悪く、セメント系無機質
材をマトリックスとしたものでは炭素繊維の優れた特徴
である高強度、高弾性率という性質が十分発揮されてい
ない。
[0003] In general, carbon fibers are treated for reinforcing a thermosetting resin typified by an epoxy resin, and therefore have poor dispersibility in a cement-based inorganic material, and are made of a cement-based inorganic material as a matrix. However, the properties of high strength and high elastic modulus, which are excellent characteristics of carbon fibers, are not sufficiently exhibited.

【0004】すなわち、炭素繊維の多くはエポキシ系サ
イジング剤が付与され、十分な集束性を有するためにセ
メント系無機質材中での繊維の分散性が良くない。
That is, most of the carbon fibers are provided with an epoxy sizing agent and have sufficient convergence, so that the dispersibility of the fibers in the cement inorganic material is poor.

【0005】そこで、炭素繊維のセメント系無機質材の
補強効果を高めるための手段として特開平6−1665
54号公報には、メソフェーズピッチ系炭素繊維のモノ
フィラメント100〜1000本の集合体からなるスト
ランドにサイジング剤を付与し、このストランド5〜1
00本を一つの集合体としたコンクリート補強用炭素繊
維が提案されている。
Therefore, Japanese Patent Application Laid-Open No. 6-1665 discloses a means for enhancing the reinforcing effect of carbon fiber on cement-based inorganic materials.
No. 54 discloses that a sizing agent is applied to a strand consisting of an aggregate of 100 to 1000 monofilaments of mesophase pitch-based carbon fiber,
A carbon fiber for concrete reinforcement using 00 pieces as one aggregate has been proposed.

【0006】ピッチ系炭素繊維の場合、通常の製造プロ
セスによって、単繊維本数が100〜1000本の集合
体を製造できるが、モルタルに投入して混合するとき
に、剪断応力により繊維が脆いため破断して短くなり、
成形物の曲げ強度はポリアクリロニトリル系炭素繊維に
比べると低い。
[0006] In the case of pitch-based carbon fiber, an aggregate having 100 to 1000 single fibers can be produced by a normal production process. However, when the fibers are put into a mortar and mixed, the fibers are fragile due to shear stress and are broken. And become shorter,
The bending strength of the molded product is lower than that of polyacrylonitrile-based carbon fiber.

【0007】また、特開平6−166553号公報、特
開平6−166554号公報では、炭素繊維表面にポリ
エーテルエステル系、ポリオキシアルキレンビスフェノ
ールエーテルからなるサイジング剤を付与することによ
り、解舒性が良好となり、セメントとの接着性に優れ、
かつダイレクトスプレーガンに対する工程通過性がよい
上、曲げ強度の高いセメント複合体を提供するものが開
示されている。
[0007] Further, in JP-A-6-166553 and JP-A-6-166554, the unwinding property is improved by applying a sizing agent composed of a polyetherester or polyoxyalkylenebisphenol ether to the surface of carbon fiber. Good, excellent adhesion to cement,
Further, there is disclosed a cement composite which has a high processability with respect to a direct spray gun and a high flexural strength.

【0008】しかし、ポリエーテルエステル系、ポリオ
キシアルキレンビスフェノールエーテルを付与した炭素
繊維は、ダイレクトスプレーガンに対する工程通過性は
良いが、繊維の集束性が良すぎて、より細かい繊維束に
分散しにくく、炭素繊維による十分な補強効果を発揮で
きないという欠点がある。
[0008] However, carbon fibers to which a polyetherester-based or polyoxyalkylenebisphenol ether has been imparted have a good process-passing property with respect to a direct spray gun, but have too good a convergence of the fibers and are difficult to disperse into finer fiber bundles. However, there is a disadvantage that the carbon fiber cannot exert a sufficient reinforcing effect.

【0009】[0009]

【発明が解決しようとする課題】この発明の目的は、従
来の上述した問題点を解決し、セメント系無機質材中で
繊維束の分散性を向上させ、かつ、セメント系無機質材
との接着性に優れたセメント系無機質材補強用炭素繊維
およびそれを使った炭素繊維補強セメント系無機質材成
形物を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems, improve the dispersibility of fiber bundles in a cement-based inorganic material, and improve the adhesiveness with the cement-based inorganic material. Another object of the present invention is to provide a carbon fiber for reinforcing a cement-based inorganic material, and a molded article of carbon fiber-reinforced cement-based inorganic material using the same.

【0010】また、この発明の他の目的は、吹き付け成
形時、カットされた繊維束がより小さい繊維束に分離、
分散でき、成形物の補強効果が上がり、曲げ強度が向上
するセメント系無機質材補強用炭素繊維の製造方法を提
供するにある。
Another object of the present invention is to separate the cut fiber bundle into smaller fiber bundles at the time of spray molding.
An object of the present invention is to provide a method for producing a carbon fiber for reinforcing a cement-based inorganic material, which can be dispersed, enhances the reinforcing effect of a molded product, and improves bending strength.

【0011】[0011]

【課題を解決するための手段】上記のような目的を達成
するために、この発明は、次の構成からなる。すなわ
ち、繊維束の扁平度が3以上500以下で、その交絡度
が1以上25以下であることを特徴とするセメント系無
機質材補強用炭素繊維である。
In order to achieve the above object, the present invention has the following arrangement. That is, the carbon fiber for reinforcing a cement-based inorganic material is characterized in that the flatness of the fiber bundle is 3 or more and 500 or less and the degree of entanglement is 1 or more and 25 or less.

【0012】また、炭素繊維にサイジング剤として水を
付着せしめた後、温度70〜250℃に加熱したローラ
の表面に接触通過させることによって水分の一部を除去
しながら繊維形態をテープ状に扁平化して芯材に巻き上
げること、またはサイジング剤として下記一般式〔1〕
で示される化合物を付着せしめた後、温度70〜250
℃に加熱したローラの表面に接触通過させることによっ
て水分の一部を除去しながら繊維形態をテープ状に扁平
化し、次いで温度70〜250℃の乾燥機内を通過させ
て残水分を除去し繊維形態を固定した後、芯材に巻き上
げることによって製造できる。
Further, after water is adhered to the carbon fiber as a sizing agent, it is passed through the surface of a roller heated to a temperature of 70 to 250 ° C. to remove a part of the water while flattening the fiber form into a tape shape. The following general formula [1]
After adhering the compound represented by
The fiber form is flattened into a tape shape while removing a part of the moisture by contacting and passing through the surface of the roller heated to a temperature of 70 ° C., and then passed through a dryer at a temperature of 70 to 250 ° C. to remove residual moisture to remove the fiber form. After fixing, it can be manufactured by winding up on a core material.

【0013】R1 O−POA−R2 …〔1〕 (ここで、POA:炭素数2〜4の少なくとも1種類以
上のアルキレンオキサイドからなるポリオキシアルキレ
ン、R1 :アルキル基、アリール基、アルキルアリール
基、アルケニル基のいずれか1種、R2 :アルキル基、
アリール基、アルキルアリール基、アルケニル基のいず
れか1種または水素原子)。
R 1 O-POA-R 2 (1) (where POA is a polyoxyalkylene comprising at least one or more alkylene oxides having 2 to 4 carbon atoms; R 1 is an alkyl group, an aryl group, an alkyl Any one of an aryl group and an alkenyl group, R 2 : an alkyl group,
Any one of an aryl group, an alkylaryl group and an alkenyl group or a hydrogen atom).

【0014】[0014]

【発明の実施の形態】本発明の炭素繊維は、繊維束の扁
平度が3以上500以下で、その交絡度が1以上25以
下であることを特徴とするセメント系無機質材補強用炭
素繊維である。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon fiber of the present invention is a carbon fiber for reinforcing a cement-based inorganic material, characterized in that the flatness of the fiber bundle is 3 or more and 500 or less and the degree of entanglement is 1 or more and 25 or less. is there.

【0015】本発明の炭素繊維は、モルタルと同時に吹
き付け成形する際、繊維の分散性が良くなり、モルタル
の補強効果を向上させる。
When the carbon fiber of the present invention is spray-formed simultaneously with the mortar, the dispersibility of the fiber is improved, and the reinforcing effect of the mortar is improved.

【0016】繊維束の扁平度が3より小さくなると圧縮
空気の抵抗を受けにくくなり、繊維束がより小さい繊維
束に分離しにくく、分散性が悪くなる。また、扁平度が
500を超えると、ボビンからの解舒性が悪く、繊維の
集束性が悪い上に圧縮空気の抵抗を大きく受けすぎて吹
き付け時ファイバーボール状になり、分散斑が原因でモ
ルタルの補強効果が低下する。繊維束のより好ましい扁
平度は、5〜100である。繊維束の扁平度は、次式で
求められる。
If the flatness of the fiber bundle is less than 3, it becomes difficult to receive the resistance of the compressed air, the fiber bundle is hardly separated into smaller fiber bundles, and the dispersibility becomes poor. On the other hand, if the flatness exceeds 500, the unwinding property from the bobbin is poor, the convergence of the fiber is poor, and the resistance of the compressed air is too large to form a fiber ball at the time of spraying. The effect of reinforcing the steel decreases. The more preferable flatness of the fiber bundle is 5 to 100. The flatness of the fiber bundle is obtained by the following equation.

【0017】扁平度=W/T ただし、T:繊維束の厚み、W:繊維束の幅 さらに、その繊維束の交絡度は1以上25以下である。
1より低いと繊維の集束性が悪く開繊しやすくなり、ボ
ビンからの解舒性が悪く、糸切れ、吹き付け時のファイ
バーボール、ガン内での詰まりの原因となる。逆に、繊
維の交絡度が25を超えると集束性が強すぎて吹き付け
た際、繊維束がより小さい繊維束に分離しにくく、分散
性が低下し、モルタルの補強効果が低下するため成形物
の曲げ強度が低下する。繊維束のより好ましい交絡度
は、1以上10以下である。
Flatness = W / T where T: thickness of fiber bundle, W: width of fiber bundle Further, the degree of entanglement of the fiber bundle is 1 or more and 25 or less.
If the ratio is less than 1, the fiber is poor in convergence and tends to be opened, the unwinding property from the bobbin is poor, and yarn breakage, fiber balls during spraying, and clogging in the gun are caused. Conversely, if the degree of entanglement of the fibers exceeds 25, the bunching properties are too strong, and when sprayed, the fiber bundles are difficult to separate into smaller fiber bundles, the dispersibility is reduced, and the reinforcing effect of the mortar is reduced. The bending strength of the steel decreases. The more preferable degree of entanglement of the fiber bundle is 1 or more and 10 or less.

【0018】繊維束の交絡度は、JIS−L1013化
学繊維フィラメント糸試験方法の交絡度測定方法に準じ
て測定した。その測定方法は、試料の一端を適当な性能
を有する垂下装置の上部つかみ部に取り付け、つかみ部
より1m下方の位置に荷重(100gf)を吊り下げ、
試料を垂直に垂らす。試料の上部つかみ部より1cm下
部の点に糸束を2分割するようにフック(直径1mmの
針金状)を挿入する。フックの他端には所定の荷重(1
0gf)を取り付け、約2cm/秒の速度でフックを下
降させる。フックが糸の絡みにより停止した点までのフ
ックの下降距離を求め、次式により求める。試験回数は
50回とし、その平均値で表す。
The degree of entanglement of the fiber bundle was measured according to the method of measuring the degree of entanglement in the JIS-L1013 chemical fiber filament yarn test method. The measuring method is as follows. One end of the sample is attached to the upper grip portion of a hanging device having appropriate performance, a load (100 gf) is suspended at a position 1 m below the grip portion,
Hang the sample vertically. A hook (a wire having a diameter of 1 mm) is inserted so as to divide the yarn bundle into two at a point 1 cm below the upper grip portion of the sample. The other end of the hook has a predetermined load (1
0 gf) and lower the hook at a speed of about 2 cm / sec. The descending distance of the hook up to the point where the hook stops due to the entanglement of the thread is obtained, and is obtained by the following equation. The number of tests is 50 times, and the average value is shown.

【0019】交絡度=L/1000 L:フックが下降した距離(mm) 本発明の炭素繊維は、繊維の水中沈降時間が1秒以上3
0秒以下であることが好ましい。詳しくは、深さ10c
m、温度25℃の水の表面に長さ25cmの繊維束を置
いた時点から自然沈降で底に着くまでの時間を測定し、
沈降時間が1秒以上30秒以下であるセメント系無機質
材補強用炭素繊維である。水中沈降時間が30秒を超え
ると水との馴染みが悪く、結果的にモルタルとの馴染み
が悪くなり、繊維束の中にセメント粒子が入りにくく、
モルタルとの接触面積が小さくなり、補強効果が低下す
る。より好ましくは水中沈降時間が4秒以上15秒以下
が良い。
Degree of entanglement = L / 1000 L: Distance (mm) at which the hook descends The carbon fiber of the present invention has a sedimentation time of the fiber in water of 1 second or more.
It is preferably 0 seconds or less. Specifically, depth 10c
m, the time from when the fiber bundle having a length of 25 cm is placed on the surface of water at a temperature of 25 ° C. to the time when it reaches the bottom by natural settling is measured,
It is a carbon fiber for reinforcing a cement-based inorganic material having a sedimentation time of 1 second or more and 30 seconds or less. If the sedimentation time in water exceeds 30 seconds, familiarity with water is poor, and as a result, familiarity with mortar is poor, and cement particles are less likely to enter the fiber bundle,
The contact area with the mortar is reduced, and the reinforcing effect is reduced. More preferably, the sedimentation time in water is 4 seconds or more and 15 seconds or less.

【0020】さらに本発明の炭素繊維は、繊維束を圧力
0.1MPa以上1MPa以下、好ましくは圧力0.1
MPa以上0.3MPa以下の圧縮空気で型枠に吹き付
けたとき繊維の拡散面積が50cm2 以上400cm2
以下であることが好ましい。圧縮空気の圧力が1MPa
を超えると吹き付けた繊維が不規則に分離分散し、型枠
からはみ出る繊維束が発生するため正確な評価ができな
い。また、圧力が0.1MPaより低いと吹き付けるす
べての繊維が分離しないため、分散性の正確な評価がで
きない。
Further, the carbon fiber of the present invention is obtained by applying a pressure of 0.1 MPa or more to 1 MPa or less, preferably 0.1 MPa or less.
Diffusion area of the fiber when blown into a mold at 0.3MPa less compressed air over MPa is 50 cm 2 or more 400 cm 2
The following is preferred. Compressed air pressure is 1MPa
When the value exceeds, the sprayed fibers are irregularly separated and dispersed, and a fiber bundle protruding from the mold is generated, so that accurate evaluation cannot be performed. On the other hand, if the pressure is lower than 0.1 MPa, all the sprayed fibers do not separate, so that accurate evaluation of dispersibility cannot be performed.

【0021】また、繊維束を圧力0.1MPa以上1M
Pa以下の圧縮空気で型枠に吹き付けたとき繊維の拡散
面積が50cm2 より低いと繊維の集束性が強いため、
繊維は分離分散しにくく、モルタルとの接触面積が小さ
くなり、繊維束の中にセメント粒子が入り込みにくくな
り、補強効果が低下する。逆に繊維の拡散面積が500
cm2 を超えると繊維束の分散斑が発生し、均等に分散
させることが難しく、成形物の強度が低下する。
Further, the fiber bundle is kept at a pressure of 0.1 MPa or more and 1 M
When the diffusion area of the fibers is less than 50 cm 2 when sprayed on the form with compressed air of Pa or less, the convergence of the fibers is strong,
The fibers are difficult to separate and disperse, the contact area with the mortar is reduced, cement particles are less likely to enter the fiber bundle, and the reinforcing effect is reduced. Conversely, the diffusion area of the fiber is 500
When it exceeds cm 2 , dispersion unevenness of the fiber bundle occurs, and it is difficult to uniformly disperse the fiber bundle, and the strength of the molded product decreases.

【0022】繊維の拡散面積とは、固定したダイレクト
スプレー装置で1辺が100cmの鉄板の周囲を高さ2
cmの角材で囲んだ鉄製型枠(容器)に0.1MPa以
上1MPa以下の圧縮空気で繊維束とモルタルを同時に
円形ノズルで50cmの高さから垂直真下の鉄製型枠面
中央部に吹き付けると繊維とモルタルが一緒に円状に拡
散付着するが、その時の最外周に存在する繊維間距離
(直径)を測定し、円の面積(πr2 )として計算した
ものである。
The diffusion area of the fiber is defined as the height of the circumference of an iron plate having a side of 100 cm in a fixed direct spray device.
When a fiber nozzle and a mortar are simultaneously sprayed from a height of 50 cm from a height of 50 cm onto the iron formwork (container) surrounded by a square timber from a height of 50 cm using a compressed air of 0.1 MPa or more and 1 MPa or less to the center of the iron formwork surface directly below. And the mortar are diffused and adhered together in a circular shape. The distance (diameter) between the fibers present at the outermost periphery at that time is measured and calculated as the area of the circle (πr 2 ).

【0023】本発明の炭素繊維束に付着させるサイジン
グ剤は、水および/または分子量が100〜600のポ
リエチレングリコールであることが好ましい。付着させ
る水は安価でモルタルの水と馴染みやすいため、モルタ
ル中で繊維の分散性が良くなる。また、ポリエチレング
リコールも安価で水との馴染みが良いことから、モルタ
ルとの馴染みが良く、繊維の集束性が良いことから扁平
糸の形態保持性が良い。
The sizing agent adhered to the carbon fiber bundle of the present invention is preferably water and / or polyethylene glycol having a molecular weight of 100 to 600. Since the water to be attached is inexpensive and easily compatible with the water of the mortar, the dispersibility of the fibers in the mortar is improved. Polyethylene glycol is also inexpensive and has good familiarity with water, has good familiarity with mortar, and has good shape retention of flat yarn because of good fiber convergence.

【0024】ポリエチレングリコールは、単独または水
で希釈して用いても良い。サイジング剤としての水は、
通常の飲料水、地下水、イオン交換水、フィルター濾過
水等いずれでも良い。サイジング剤の付着量は、0.1
〜20重量%が好ましく、0.5〜10重量%がより好
ましい。0.1重量%未満になるとダイレクトスプレー
法での工程通過性が悪くなり、スプレーガン内で繊維束
が開繊するため詰まりが発生する。また、吹き付けても
繊維束の集束性が弱いためファイバーボール状になり、
繊維の分散性が悪く、成形物の強度が低下する。付着量
が20重量%を越えると繊維の水分率が高いため、集束
性が強くなり、スプレーガンで吹き付けた時、繊維束が
より小さい繊維束に分離せず元の繊維束の状態でモルタ
ル中に存在し、繊維束の分散性が著しく悪くなり、成形
物の強度が低下するため好ましくない。水には他に平滑
剤、柔軟剤、希釈剤等の添加剤を加えるとより好まし
い。
Polyethylene glycol may be used alone or diluted with water. Water as a sizing agent
Any of ordinary drinking water, groundwater, ion-exchanged water, filtered water, etc. may be used. The amount of sizing agent attached is 0.1
-20% by weight is preferred, and 0.5-10% by weight is more preferred. When the amount is less than 0.1% by weight, the processability in the direct spray method is deteriorated, and the fiber bundle is opened in the spray gun, so that clogging occurs. Also, even when sprayed, the fiber bundles are weak in convergence and become fiber balls,
The dispersibility of the fibers is poor, and the strength of the molded product is reduced. When the adhesion amount exceeds 20% by weight, the water content of the fiber is high, so that the bunching property becomes strong. When sprayed with a spray gun, the fiber bundle does not separate into smaller fiber bundles and remains in the original fiber bundle in the mortar. And the dispersibility of the fiber bundles becomes extremely poor, and the strength of the molded product decreases, which is not preferable. It is more preferable to add other additives such as a leveling agent, a softening agent and a diluent to the water.

【0025】ポリエチレングリコールは、100〜40
0の分子量が好ましい。分子量が100より小さいと繊
維の集束性が不足し、繊維束が開繊してスプレーガン内
での詰まりが発生する。また、400より大きいと繊維
の集束性が強くなりすぎて繊維の分散性が低下し、セメ
ント補強効果が悪くなる。ポリエチレングリコールの付
着量は0.1〜20重量%であることが好ましい。より
好ましい付着量は、0.5〜10重量%である。付着量
が0.1重量%未満になるとダイレクトスプレー法での
工程通過性が悪くなり、スプレーガン内で繊維束が開繊
するため詰まりが発生する。また、吹き付けても繊維束
の集束性が弱いためファイバーボール状になり、繊維の
分散性が悪く、成形物の強度が低下する。付着量が20
重量%を越えると集束性が強くなり、スプレーガンで吹
き付けた時、繊維束がより小さい繊維束に分離せず元の
繊維束の状態でモルタル中に存在し、繊維束の分散性が
著しく悪くなり、成形物の強度が低下するため好ましく
ない。
Polyethylene glycol is 100 to 40
A molecular weight of 0 is preferred. If the molecular weight is less than 100, the bundle property of the fibers is insufficient, and the fiber bundles are opened to cause clogging in the spray gun. On the other hand, if it is larger than 400, the convergence of the fibers becomes too strong, the dispersibility of the fibers decreases, and the cement reinforcing effect deteriorates. It is preferable that the adhesion amount of polyethylene glycol is 0.1 to 20% by weight. A more preferred amount is 0.5 to 10% by weight. If the amount of adhesion is less than 0.1% by weight, the processability in the direct spray method will be poor, and the fiber bundle will be opened in the spray gun, causing clogging. Further, even when sprayed, the fiber bundle has a weak convergence property, so that the fiber bundle is formed into a fiber ball shape, the dispersibility of the fiber is poor, and the strength of the molded product is reduced. 20 adhesion amount
If the content is more than 10% by weight, the sizing property becomes strong, and when sprayed with a spray gun, the fiber bundle does not separate into smaller fiber bundles but exists in the mortar in the original fiber bundle state, and the dispersibility of the fiber bundles is extremely poor. It is not preferable because the strength of the molded product is reduced.

【0026】本発明の炭素繊維束は、下記一般式〔1〕
で示される化合物であることを特徴とするサイジング剤
が付着しているセメント系無機質材補強用炭素繊維であ
る。 R1 O−POA−R2 …〔1〕 (ここで、POA:炭素数2〜4の少なくとも1種類以
上のアルキレンオキサイドからなるポリオキシアルキレ
ン、R1 :アルキル基、アリール基、アルキルアリール
基、アルケニル基のいずれか1種、R2 :アルキル基、
アリール基、アルキルアリール基、アルケニル基のいず
れか1種または水素原子)。
The carbon fiber bundle of the present invention has the following general formula [1]
Wherein the sizing agent is attached to the cement-based inorganic material reinforcing carbon fiber. R 1 O-POA-R 2 ... (1) (where POA is a polyoxyalkylene composed of at least one or more alkylene oxides having 2 to 4 carbon atoms, R 1 is an alkyl group, an aryl group, an alkylaryl group, Any one of alkenyl groups, R 2 : an alkyl group,
Any one of an aryl group, an alkylaryl group and an alkenyl group or a hydrogen atom).

【0027】上記した一般式〔1〕で示した化合物から
なるサイジング剤を付着させた炭素繊維は、セメントと
の親和性、分散性、集束性にすぐれている。一般式
〔1〕に示す化合物の基本構造は、ポリオキシアルキレ
ン構造であり繊維の集束性、分散性、セメントとの親和
性を向上させる。一般式〔1〕においてPOAは、炭素
数2〜4のアルキレンオキサイドが単独で繰り返してな
るポリオキシアルキレンでも良く、炭素数2〜4のアル
キレンオキサイドが少なくとも1種類以上のアルキレン
オキサイドが共重合されてなるポリオキシアルキレンで
も良い。
The carbon fiber to which the sizing agent comprising the compound represented by the general formula [1] is adhered has excellent affinity with cement, dispersibility, and convergence. The basic structure of the compound represented by the general formula [1] is a polyoxyalkylene structure, which improves fiber convergence, dispersibility, and affinity with cement. In the general formula [1], POA may be a polyoxyalkylene in which alkylene oxides having 2 to 4 carbon atoms are independently repeated, and at least one alkylene oxide having 2 to 4 carbon atoms is copolymerized. May be used.

【0028】一般式〔1〕においてPOAが単独のアル
キレンオキサイドからなる場合、エチレンオキサイド
(以下、「EO」と略記する場合がある。)またはプロ
ピレンオキサイド(以下、「PO」と略記する場合があ
る。)が好ましく、EO単独がより好ましい。その繰り
返し数は、4〜100の範囲が好ましく、より好ましく
は4〜50が良い。nが2より小さいと、親水性が悪く
モルタルとの馴染みが悪くなる。また、100より大き
いと繊維の集束性が良すぎて吹き付け成形時、繊維の分
散性が悪くなり補強効果が低下する。
In the general formula [1], when POA is composed of a single alkylene oxide, ethylene oxide (hereinafter sometimes abbreviated as “EO”) or propylene oxide (hereinafter sometimes abbreviated as “PO”) may be used. ) Is preferred, and EO alone is more preferred. The number of repetitions is preferably in the range of 4 to 100, and more preferably 4 to 50. When n is smaller than 2, hydrophilicity is poor and familiarity with mortar is poor. On the other hand, if it is larger than 100, the fiber convergence is too good, and the dispersibility of the fiber becomes poor during spray molding, and the reinforcing effect is reduced.

【0029】一般式〔1〕においてPOAが単独のアル
キレンオキサイドからなる場合、一般式〔1〕のR1
アルキル基、アリール基、アルキルアリール基またはア
ルケニル基のいずれか1種を用いることができるが、ア
ルキル基としては、炭素数8〜20のアルキル基が好ま
しく代表的なものとしてオクチル基、デシル基、ドデシ
ル基、ラウリル基、セチル基、ステアリル基などを挙げ
ることができ、中でもブチル基がサイジング剤の溶解
性、繊維の分散性、平滑性が良好であるため好ましい。
アリール基の代表的なものとしてフェニル基、ナフチル
基が挙げられる。さらに、アルキルアリール基として
は、炭素数6〜20のアルキル基を有するものが好まし
く、代表的なものとしてノニルフェニル基、ドデシルフ
ェニル基、ラウリルフェニル基、オクチルフェニル基な
どを挙げられる。中でもノニルフエニル基が繊維の分散
性および平滑性が良好であるため好ましい。
When POA in the general formula [1] is composed of a single alkylene oxide, R 1 in the general formula [1] can be any one of an alkyl group, an aryl group, an alkylaryl group and an alkenyl group. However, as the alkyl group, an alkyl group having 8 to 20 carbon atoms is preferable, and typical examples thereof include an octyl group, a decyl group, a dodecyl group, a lauryl group, a cetyl group, and a stearyl group. It is preferable because the solubility of the sizing agent, the dispersibility of the fiber, and the smoothness are good.
Representative examples of the aryl group include a phenyl group and a naphthyl group. Further, as the alkylaryl group, those having an alkyl group having 6 to 20 carbon atoms are preferable, and typical examples include a nonylphenyl group, a dodecylphenyl group, a laurylphenyl group, and an octylphenyl group. Among them, a nonylphenyl group is preferable because the dispersibility and smoothness of the fiber are good.

【0030】さらに、アルケニル基としては炭素数6〜
20のものが好ましく、代表的なものとしてオレイル基
が好ましい。また、一般式〔1〕のR2 はアルキル基、
アリール基、アルキルアリール基もしくはアルケニル基
のいずれか1種または水素原子であるが水素原子が好ま
しく用いられる。なお、アルキル基としては、炭素数8
〜20のアルキル基が好ましい。また、アリール基の代
表的なものとしてフエニル基、ナフチル基等が挙げられ
る。さらに、アルキルアリール基としては炭素数6〜2
0のアルキル基を有するものが好ましく、代表的なもの
としてノニルフェニル基ドデシルフェニル基、ラウリル
フェニル基、オクチルフェニル基等が挙げられる。さら
にアルケニル基としては炭素数6〜20のものが好まし
く、代表的なものとしてオレイル基が好ましい。
Further, the alkenyl group may have 6 to 6 carbon atoms.
20 are preferable, and an oleyl group is preferable as a representative one. R 2 in the general formula [1] is an alkyl group,
Any one of an aryl group, an alkylaryl group and an alkenyl group or a hydrogen atom, but a hydrogen atom is preferably used. The alkyl group has 8 carbon atoms.
~ 20 alkyl groups are preferred. Representative examples of the aryl group include a phenyl group and a naphthyl group. Further, the alkylaryl group may have 6 to 2 carbon atoms.
Those having an alkyl group of 0 are preferable, and typical examples include a nonylphenyl group, a dodecylphenyl group, a laurylphenyl group, and an octylphenyl group. Further, the alkenyl group is preferably one having 6 to 20 carbon atoms, and a representative one is preferably an oleyl group.

【0031】一方、一般式〔1〕のPOAが共重合物か
らなる場合、その結合形態としては、ブロツクまたはラ
ンダム配列が好ましく、より好ましくはランダム配列が
良い。ランダム配列させると水溶解性が向上する他、モ
ルタル成形時泡立ちが少ないため成形物中の気泡量が少
なく、かつ親水性が向上するため単繊維の間にセメント
粒子が入り込み成形物の曲げ強度が向上するので特に好
ましい。好ましくは、一般式〔1〕において、POA
が、C2 〜C4 のアルキレンオキサイド単独からなるポ
リオキシアルキレンまたはエチレンオキサイド(EO)
とプロピレンオキサイド(PO)とのブロック共重合物
若しくはランダム共重合物が好ましい。EO/POの好
ましい共重合比は、モル比が90:10〜10:90の
範囲、好ましくはEO/POのモル比が40:60〜6
0:40の範囲である。EO/PO共重合物の場合は、
POの成分が上記の範囲より多いと疎水性が大きくなり
すぎ炭素繊維とセメントとの親和性が低下し、炭素繊維
とセメント粒子との馴染みが悪いため単繊維の間にセメ
ント粒子が入りにくくなることがある。上記範囲の共重
合比をとることにより水溶性が高くなりモルタル成形時
泡立ちが少ないため成形物中の気泡量が少なく、かつ親
水性が向上するため単繊維の間にセメント粒子が入り込
み成形物の曲げ強度が向上するので好ましい。
On the other hand, when the POA of the general formula [1] is composed of a copolymer, the bonding form is preferably a block or a random arrangement, more preferably a random arrangement. In addition to improving water solubility when randomly arranged, the amount of bubbles in the molded product is small because foaming during mortar molding is small, and cement particles enter between single fibers because hydrophilicity is improved, and the bending strength of the molded product is improved. It is particularly preferred because it improves. Preferably, in the general formula [1], POA
Is a polyoxyalkylene or ethylene oxide (EO) consisting solely of a C 2 -C 4 alkylene oxide
A block copolymer or a random copolymer of propylene oxide (PO) and propylene oxide (PO) is preferred. The preferred copolymerization ratio of EO / PO is such that the molar ratio is in the range of 90:10 to 10:90, preferably the molar ratio of EO / PO is 40:60 to 6
The range is 0:40. In the case of the EO / PO copolymer,
If the content of PO is larger than the above range, the hydrophobicity becomes too large, the affinity between the carbon fiber and the cement decreases, and the affinity between the carbon fiber and the cement particles is poor, so that the cement particles hardly enter between the single fibers. Sometimes. By taking the copolymerization ratio in the above range, the water solubility is increased and the amount of bubbles in the molded product is small because foaming during mortar molding is small, and cement particles enter between the single fibers because the hydrophilicity is improved, so that the molded product is It is preferable because the bending strength is improved.

【0032】一般式〔1〕のPOAが共重合物からなる
場合、アルキレンオキサイドの繰り返し数は共重合成分
のそれぞれを合計して4〜100であることが好まし
く、4〜50がより好ましい。nが4より小さい場合、
親水性が悪くモルタルとの馴染みが低下する。また、1
00より大きい場合は繊維の集束性が良すぎて吹き付け
成形時繊維の分散性が悪くなり補強効果が低下する。
When the POA of the general formula [1] comprises a copolymer, the number of repeating alkylene oxides is preferably 4 to 100, more preferably 4 to 50, for each of the copolymer components. If n is less than 4,
Poor hydrophilicity and less familiarity with mortar. Also, 1
If it is larger than 00, the fiber convergence is too good, and the dispersibility of the fiber at the time of spray molding is deteriorated, and the reinforcing effect is reduced.

【0033】一般式〔1〕のPOAが共重合物からなる
場合、R1 はアルキル基、アリール基、アルキルアリー
ル基またはアルケニル基のいずれか1種を用いることが
できる。アルキル基としては、炭素数2〜20のものが
好ましく、代表的なものとしてエチル基、ブチル基、ヘ
キシル基、オクチル基、デシル基、ドデシル基、ラウリ
ル基、セチル基、ステアリル基などを挙げることがで
き、中でもブチル基がサイジング剤の溶解性、繊維の分
散性、平滑性が良好であるためより好ましい。アリール
基の代表的なものとしてフェニル基、ナフチル基が挙げ
られる。
When the POA of the general formula [1] comprises a copolymer, R 1 may be any one of an alkyl group, an aryl group, an alkylaryl group and an alkenyl group. As the alkyl group, those having 2 to 20 carbon atoms are preferable, and typical examples include an ethyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a lauryl group, a cetyl group, and a stearyl group. Among them, a butyl group is more preferable because of good sizing agent solubility, fiber dispersibility, and smoothness. Representative examples of the aryl group include a phenyl group and a naphthyl group.

【0034】さらに、アルキルアリール基としては、炭
素数6〜20のアルキル基を有するものが好ましく、代
表的なものとしてノニルフェニル基、ドデシルフェニル
基、ラウリルフェニル基、オクチルフェニル基などを挙
げられる。中でもノニルフエニル基が繊維の分散性およ
び平滑性が良好であるため、より好ましい。
Further, as the alkylaryl group, a group having an alkyl group having 6 to 20 carbon atoms is preferable, and typical examples include a nonylphenyl group, a dodecylphenyl group, a laurylphenyl group, and an octylphenyl group. Among them, a nonylphenyl group is more preferable because the fiber has good dispersibility and smoothness.

【0035】アルケニル基としては炭素数6〜20のア
ルキル基を有するものが好ましく、代表的なものとして
オレイル基が挙げられる。次にR2 はアルキル基、アリ
ール基、アルキルアリール基若しくはアルケニル基のい
ずれか1種または水素原子であるが、炭素数2〜20の
アルキル基または水素原子が好ましく用いられる。炭素
数2〜20のアルキル基の代表的なものとしてエチル
基、ブチル基、ヘキシル基、オクチル基、デシル基、ド
デシル基、ラウリル基、セチル基、ステアリル基が挙げ
られる。
As the alkenyl group, those having an alkyl group having 6 to 20 carbon atoms are preferable, and a typical example is an oleyl group. Next, R 2 is any one of an alkyl group, an aryl group, an alkylaryl group and an alkenyl group or a hydrogen atom, and an alkyl group or a hydrogen atom having 2 to 20 carbon atoms is preferably used. Representative examples of the alkyl group having 2 to 20 carbon atoms include an ethyl group, a butyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a lauryl group, a cetyl group, and a stearyl group.

【0036】一般式〔1〕で示される化合物は単独でも
よいが他の化合物と混合させても良い。混合させる場合
は、一般式〔1〕で示される化合物が少なくとも10〜
100%の範囲で、より好ましくは75〜100%の範
囲で含むサイジング剤を炭素繊維に付着させることが好
ましい。一般式〔1〕で示される化合物が10%より少
ないサイジング剤では繊維の集束性が悪く、セメントと
の親和性が大きく低下し、炭素繊維による十分な補強効
果が発揮出来ない。
The compound represented by the general formula [1] may be used alone or may be mixed with other compounds. When mixing, the compound represented by the general formula [1] is at least 10 to 10
It is preferable to attach a sizing agent containing 100%, more preferably 75-100%, to the carbon fibers. If the sizing agent contains less than 10% of the compound represented by the general formula [1], the sizing properties of the fibers are poor, the affinity with the cement is greatly reduced, and the carbon fiber cannot exert a sufficient reinforcing effect.

【0037】一般式〔1〕で示される化合物と混合させ
るものは、例えばエポキシ、不飽和ポリエステル、平滑
剤、柔軟剤、希釈剤、界面活性剤等の添加剤を加えるこ
とができる。
To the compound to be mixed with the compound represented by the general formula [1], additives such as epoxy, unsaturated polyester, smoothing agent, softening agent, diluent and surfactant can be added.

【0038】サイジング剤の付着量は、繊維の集束性と
ダイレクトスプレー法での工程通過性を良好なものと
し、スプレーガン内での繊維の開繊による詰まりを防止
する観点から0.1〜20重量%が好ましく、0.1〜
10重量%がより好ましい。0.1%以下になると、ダ
イレクトスプレー法での工程通過性が悪くなり、スプレ
ーガン内で繊維束が開繊するため詰まりが発生する。ま
た、吹き付けても繊維束の集束性が弱いためファイバー
ボール状になり、繊維の分散性が悪く、成形物の強度が
低下する。付着量が20%を越えると集束性が強くな
り、スプレーガンで吹き付けた時、単繊維本数100〜
3000本程度の繊維束に分離せず、元の繊維束のまま
でモルタル中に存在し、繊維束の分散性が著しく悪くな
り、成形物の強度が低下するため好ましくない。
The amount of the sizing agent to be attached is preferably 0.1 to 20 from the viewpoint of improving the fiber convergence and the process passability by the direct spray method, and preventing clogging due to fiber opening in the spray gun. % By weight, preferably 0.1 to
10% by weight is more preferred. When the content is less than 0.1%, the processability in the direct spray method is deteriorated, and the fiber bundle is opened in the spray gun, so that clogging occurs. Further, even when sprayed, the fiber bundle has a weak convergence property, so that the fiber bundle is formed into a fiber ball shape, the dispersibility of the fiber is poor, and the strength of the molded product is reduced. When the adhesion amount exceeds 20%, the convergence becomes strong, and when sprayed with a spray gun, the number of single fibers is 100 to 100%.
It does not separate into about 3000 fiber bundles and remains in the mortar as it is in the original fiber bundle, which is not preferable because the dispersibility of the fiber bundle is significantly deteriorated and the strength of the molded product is reduced.

【0039】本発明の炭素繊維は、ポリアクリロニトリ
ル系炭素繊維であることが好ましい。ポリアクリロニト
リル系炭素繊維は、アクリロニトリルを溶媒DMSO中
で重合開始剤により重合反応させた高分子ポリマーを湿
式または乾式または乾湿式紡糸により製造することがで
きる。
The carbon fiber of the present invention is preferably a polyacrylonitrile-based carbon fiber. The polyacrylonitrile-based carbon fiber can be produced by wet, dry or dry-wet spinning of a polymer obtained by polymerizing acrylonitrile with a polymerization initiator in a solvent DMSO.

【0040】このポリアクリロニトリル繊維を200〜
300℃の温度で耐炎化処理し、次いで温度850〜1
300℃で炭化焼成し炭素繊維を得る。このポリアクリ
ロニトリル系炭素繊維は、繊維が緻密で高強度、高弾性
率、耐薬品性が高いことからセメント等の補強にも他の
繊維を使うより高性能な成形物ができる。
This polyacrylonitrile fiber is
Flameproofing at a temperature of 300 ° C.
Carbonized and fired at 300 ° C to obtain carbon fibers. Since the polyacrylonitrile-based carbon fiber is dense and has high strength, high elastic modulus, and high chemical resistance, a molded article having higher performance than other fibers used for reinforcing cement or the like can be obtained.

【0041】本発明のセメント系無機質材補強用炭素繊
維の製造方法は、単繊維本数が1000本以上2400
0本以下の撚りの無いポリアクリロニトリル系繊維を上
述の方法で撚りが入らないように平溝ローラを用いて耐
炎化処理し、次いで繊維束を3〜10mmの幅に広げた
状態にしながら850〜1300℃の温度で炭化焼成す
ることにより交絡度が1〜25の繊維が得られる。この
繊維にサイジング剤として水およびポリエチレングリコ
ールをディップ方式で付着せしめた後、温度70〜25
0℃に加熱したホツトローラの表面に接触通過させるこ
とによって余分な水分を蒸発させ、水分率を0.1〜2
0重量%に、好ましくは1 〜10重量%にすることによ
り、扁平度を好ましくは3〜500に、より好ましくは
5〜100に扁平化した後、芯材に巻き上げることによ
って製造できる。
In the method for producing a carbon fiber for reinforcing a cement-based inorganic material according to the present invention, the number of single fibers is 1,000 or more and 2400 or more.
Zero or less untwisted polyacrylonitrile-based fibers are subjected to a flame-proof treatment using a flat groove roller so as not to be twisted by the above-described method, and then the fiber bundle is expanded to a width of 3 to 10 mm while maintaining a state of 850 to 850. By performing carbonization and firing at a temperature of 1300 ° C., a fiber having a degree of entanglement of 1 to 25 is obtained. After adhering water and polyethylene glycol as a sizing agent to the fiber by a dipping method, the temperature was 70 to 25.
Excess water is evaporated by contacting and passing the surface of a hot roller heated to 0 ° C., and the water content is reduced to 0.1 to 2
It can be manufactured by flattening the flatness to preferably 3 to 500, more preferably 5 to 100 by setting the weight to 0% by weight, preferably 1 to 10% by weight, and winding up the core material.

【0042】ホットローラの温度が70℃未満になると
水分の蒸発が少ないため水分が多くなり、繊維形態をテ
ープ状に扁平化することができなくなる。さらに、ボビ
ンに巻き上げる際、水分が多くなりすぎると巻き形状が
悪くなり、解舒性も悪くなる他、繊維の分散が悪くな
り、セメントの補強効果が低下する。また、ホットロー
ラの温度が250℃を越えると水分の蒸発が多くなりす
ぎて、繊維の集束性が低下し、ボビンからの解舒性、吹
き付け時の工程通過性が悪く、繊維がファイバーボール
状になり、モルタルの補強効果が低下する。ホットロー
ラの温度は100〜160℃が繊維束をテープ状に扁平
化させやすい水分率になるため、より好ましい。なお、
サイジング剤として分子量が100〜400のポリエチ
レングリコールを単独で用いる場合はホットローラで扁
平化した後、芯材に巻き上げる。
When the temperature of the hot roller is lower than 70 ° C., the evaporation of the water is small, so that the water content is increased, and the fiber cannot be flattened into a tape shape. Furthermore, when wound up on a bobbin, if the water content is too large, the winding shape is deteriorated, the unwinding property is deteriorated, the dispersion of fibers is deteriorated, and the cement reinforcing effect is reduced. On the other hand, if the temperature of the hot roller exceeds 250 ° C., the evaporation of water becomes too much, the convergence of the fiber is reduced, the unwinding property from the bobbin, the processability at the time of spraying are poor, and the fiber is in the form of a fiber ball. And the mortar reinforcing effect is reduced. A temperature of the hot roller of 100 to 160 ° C. is more preferable because the moisture content is such that the fiber bundle can be easily flattened into a tape shape. In addition,
When polyethylene glycol having a molecular weight of 100 to 400 is used alone as a sizing agent, it is flattened by a hot roller and then wound up on a core material.

【0043】上記サイジング剤に水または平滑剤、柔軟
剤、希釈剤、界面活性剤等の添加剤を加えて希釈した場
合は、ディップ方式で付着させた後、温度70〜250
℃のホットローラに接触させ余分な水分を蒸発させて扁
平化した後、繊維の残水分を除去するため温度70〜2
50℃の乾燥炉を通過させて芯材に巻き上げても良い。
When the sizing agent is diluted by adding an additive such as water or a leveling agent, a softening agent, a diluent, a surfactant, etc., the mixture is adhered by a dip method and then heated to a temperature of 70 to 250.
After contacting with a hot roller at a temperature of 90 ° C. to evaporate excess water and flattening, the temperature is reduced to 70 to 2 to remove residual water of the fiber.
It may be passed through a drying oven at 50 ° C. and wound up into a core material.

【0044】本発明のセメント系無機質材補強用炭素繊
維の製造方法は、上記ポリアクリロニトリル系炭素繊維
に次式R1 O−POA−R2 (ここで、POA:炭素数
2〜4の少なくとも1種類以上のアルキレンオキサイド
からなるポリオキシアルキレン、R1 :アルキル基、ア
リール基、アルキルアリール基、アルケニル基のいずれ
か1種、R2 :アルキル基、アリール基、アルキルアリ
ール基、アルケニル基のいずれか1種または水素原子)
のサイジング剤をディップ方式で付着せしめた後、温度
70〜250℃に加熱したホットローラの表面に接触通
過させることによって余分な水分を蒸発させ、サイジン
グ剤付着量を0.1〜10重量%に、好ましくは1〜5
重量%にすることにより、扁平度を3〜500に、好ま
しくは5〜100に扁平化した後、次いで温度70〜2
50℃の乾燥機内を通過させて残水分を除去し繊維形態
を固定した後、芯材に巻き上げることによって製造でき
る。
The method for producing a carbon fiber for reinforcing a cement-based inorganic material according to the present invention is characterized in that the above polyacrylonitrile-based carbon fiber has the following formula: R 1 O—POA—R 2 (where POA: at least one of 2 to 4 carbon atoms) Polyoxyalkylene comprising at least one kind of alkylene oxide, R 1 : any one of alkyl group, aryl group, alkylaryl group, alkenyl group, R 2 : any one of alkyl group, aryl group, alkylaryl group, alkenyl group One or hydrogen atom)
After the sizing agent is applied by a dip method, excess water is evaporated by passing the sizing agent through the surface of a hot roller heated to a temperature of 70 to 250 ° C. to reduce the sizing agent adhesion amount to 0.1 to 10% by weight. , Preferably 1 to 5
By adjusting the flatness to 3 to 500, preferably 5 to 100 by setting the weight%, then the temperature is reduced to 70 to 2
It can be manufactured by passing through a dryer at 50 ° C. to remove residual moisture and fix the fiber form, and then winding it around a core material.

【0045】ホットローラの温度が70℃以下になると
水分の蒸発が少ないため水分が多くなり、繊維形態をテ
ープ状に扁平化することができなくなる。ホットローラ
の温度が250℃以上になると水分の蒸発が多くなりす
ぎて、繊維の集束性が低下し、ボビンからの解舒性、吹
き付け時の工程通過性が悪く、繊維がファイバーボール
状になり、モルタルの補強効果が低下する。ホットロー
ラの温度は100〜160℃が繊維束をテープ状に扁平
化させやすい水分率になるため、より好ましい。繊維の
水分を除去し、繊維形態を固定するための乾燥機の温度
は70〜250℃であるが、温度が70℃より低いとサ
イジング剤の乾燥不足から繊維の目付けが不安定となる
他、乾燥時間がかかり製造コストが高くなる。温度が2
50℃より高いとサイジング剤の成分が揮散し、繊維の
性能が低下し、CFRCの曲げ強度が低下するため好ま
しくない。より好ましい乾燥温度は、100〜230℃
である。
When the temperature of the hot roller is 70 ° C. or lower, the evaporation of the water is small, so that the water becomes large and the fiber form cannot be flattened into a tape shape. When the temperature of the hot roller is 250 ° C or higher, the evaporation of water becomes too much, the convergence of the fiber is reduced, the unwinding property from the bobbin, the processability at the time of spraying is poor, and the fiber becomes a fiber ball. , The reinforcing effect of the mortar is reduced. A temperature of the hot roller of 100 to 160 ° C. is more preferable because the moisture content is such that the fiber bundle can be easily flattened into a tape shape. The temperature of the dryer for removing the water content of the fiber and fixing the fiber form is 70 to 250 ° C. However, if the temperature is lower than 70 ° C, the basis weight of the fiber becomes unstable due to insufficient drying of the sizing agent. Drying time is increased and production costs are increased. Temperature 2
When the temperature is higher than 50 ° C., the components of the sizing agent are volatilized, and the performance of the fiber is lowered, and the flexural strength of CFRC is lowered. More preferred drying temperature is 100-230 ° C
It is.

【0046】本発明のセメント系無機質材製部材は、繊
維束の扁平度が3以上500以下で、その交絡度が1以
上25以下であるセメント系無機質材補強用炭素繊維で
補強したものである。セメント系無機質材製部材とは、
たとえば壁材、型枠、板材などが挙げられる。
The member made of a cement-based inorganic material of the present invention is reinforced with carbon fibers for reinforcing a cement-based inorganic material whose fiber bundle has a flatness of 3 to 500 and an entangling degree of 1 to 25. . What is a cement-based inorganic material member?
For example, a wall material, a formwork, a plate material and the like can be mentioned.

【0047】壁材としては、間仕切り壁、間仕切り材、
壁下地材、壁パネル、など壁構成物が挙げられる。ま
た、型枠としては、柱型枠、型枠壁、梁型枠、基礎型
枠、永久型枠などの枠状物が挙げられる。さらに板材と
しては、内壁、外壁、間仕切り、屋根、天井、庇、床な
どの板状物が挙げられる。
As wall materials, partition walls, partition materials,
Examples include wall base materials, wall panels, and other wall components. In addition, examples of the form include frame forms such as a column form, a form wall, a beam form, a basic form, and a permanent form. Further, examples of the plate material include plate-like objects such as an inner wall, an outer wall, a partition, a roof, a ceiling, an eave, and a floor.

【0048】本発明のダイレクトスプレー法で成形する
炭素繊維補強セメント系無機質材成形物の製造方法は、
請求項1〜7のいずれかに記載の炭素繊維をボビンから
引き出し、ダイレクトスプレーガンで連続的に切断し、
セメント系無機質材と同時に型枠に吹き付けることによ
り成形できる。
The method for producing a carbon fiber-reinforced cement-based inorganic material molded product by the direct spray method of the present invention is as follows.
Pulling out the carbon fiber according to any one of claims 1 to 7 from the bobbin, and continuously cutting it with a direct spray gun,
It can be formed by spraying on the mold simultaneously with the cement-based inorganic material.

【0049】炭素繊維をボビンから引き出す方法は、ボ
ビンの外から解舒する方法、ボビンの内側から解舒する
(インサイドプル)方法があり、どちらでもよいがボビ
ンの内側から解舒する(インサイドプル)方法が解舒抵
抗が小さいため好ましい。
The method of pulling out the carbon fiber from the bobbin includes a method of unwinding from the outside of the bobbin and a method of unwinding from the inside of the bobbin (inside pull). The method is preferable because the unwinding resistance is small.

【0050】ダイレクトスプレーガンに供給された炭素
繊維は、長さ3〜50mmに切断され、定量ポンプで移
送されてくるモルタルと同時に型枠に吹き付けられる。
繊維の長さが3mmより短いとモルタル補強効果が小さ
くなり成形物の強度が低下する。また、50mmより長
いと繊維の絡みが強くなり、分散性が低下し、成形物の
強度が低下する。
The carbon fiber supplied to the direct spray gun is cut into a length of 3 to 50 mm, and is blown onto a mold at the same time as the mortar transferred by a metering pump.
If the fiber length is shorter than 3 mm, the mortar reinforcing effect is reduced and the strength of the molded product is reduced. On the other hand, if it is longer than 50 mm, the entanglement of the fibers becomes strong, the dispersibility decreases, and the strength of the molded product decreases.

【0051】吹き付ける繊維の量は、モルタルとの重量
比で好ましくは0.1〜10重量%、より好ましくは1
〜5重量%となるようにダイレクトスプレーガンへ連続
的に供給するのがよい。供給する繊維量が0.1重量%
より少なくなると断面積当りのマトリックス強度より繊
維強度が小さいため繊維の破断により成形物の補強効果
が低下することがある。また、繊維量が10重量%を越
えると繊維混入率が大きくなるとともに空気混入率が大
きくなり、マトリックス強度が低下するため成形物の曲
げ強度が低下することがある。
The amount of the fibers to be sprayed is preferably 0.1 to 10% by weight, more preferably 1 to 10% by weight with respect to the mortar.
It is preferable to continuously supply to the direct spray gun so that the concentration becomes 55% by weight. 0.1% by weight of fiber to be supplied
If the amount is smaller, the fiber strength is smaller than the matrix strength per cross-sectional area, so that the reinforcing effect of the molded product may be reduced due to fiber breakage. On the other hand, if the amount of fibers exceeds 10% by weight, the fiber mixing ratio increases and the air mixing ratio increases, and the matrix strength decreases, so that the bending strength of the molded product may decrease.

【0052】切断された繊維と同時に吹き付けるモルタ
ルは、セメント、水、骨材との混合物が適用できる。
For the mortar to be sprayed simultaneously with the cut fibers, a mixture of cement, water and aggregate can be applied.

【0053】セメントとしては、普通ポルトランドセメ
ント、早強セメント、低収縮セメント、混合セメント、
特殊セメント等が挙げられるが、通常用いられる普通ポ
ルトランドセメントが安価であるため好ましい。骨剤と
しては、砂、ケイ砂、フライアッシュ、シラスバルー
ン、シリカなどの細骨材などが挙げられる。また、混和
剤として減水剤、遅延剤、促進剤、急結剤、増粘剤など
が挙げられ、必要に応じて使用することができる。
As the cement, ordinary Portland cement, early-strength cement, low-shrinkage cement, mixed cement,
Special cement and the like can be mentioned, but usually used ordinary Portland cement is preferable because it is inexpensive. Examples of the aggregate include fine aggregates such as sand, silica sand, fly ash, shirasu balloon, and silica. Examples of the admixture include a water reducing agent, a retarder, an accelerator, a quick-setting agent, a thickener, and the like, and can be used as needed.

【0054】また、本発明のスプレー脱水法で成形する
炭素繊維補強セメント系無機質材成形物の製造方法は、
請求項1〜6のいずれかに記載の炭素繊維を巻き上げた
ボビンより引き出し、セメント系無機質材との重量比で
好ましくは2〜5%となるようにスプレーガンへ連続的
に供給し、スプレーガン内のカッターで切断しながらポ
ンプで移送されてくるモルタル、水、骨材、と混合させ
たセメント系無機質材と同時に型枠または微細孔を有す
るベルトの上にトラバースしながら吹き付け、真空装置
により余分な水を除去し、水/セメント比を調整するこ
とにより製造できる。
The method for producing a carbon fiber reinforced cement-based inorganic material molded product by the spray dewatering method of the present invention is as follows.
The carbon fiber according to any one of claims 1 to 6, which is drawn out from the wound bobbin, and continuously supplied to the spray gun so that the weight ratio with respect to the cement-based inorganic material is preferably 2 to 5%. Spraying while traversing on a mold or a microporous belt at the same time as cement-based inorganic material mixed with mortar, water, aggregate, which is transferred by pump while cutting with the cutter inside, and extra by vacuum device It can be produced by removing water and adjusting the water / cement ratio.

【0055】炭素繊維をボビンから引き出す方法、ダイ
レクトスプレーガンに供給された炭素繊維の長さ、吹き
付ける繊維の量は、前記したダイレクトスプレー法で成
形する炭素繊維補強セメント系無機質材成形物の製造方
法が適用できる。
The method of drawing the carbon fiber from the bobbin, the length of the carbon fiber supplied to the direct spray gun, and the amount of the fiber to be sprayed are determined by the method of producing the carbon fiber-reinforced cement-based inorganic material molded product by the direct spray method described above. Can be applied.

【0056】カットされた繊維とモルタルは、同一のノ
ズルから吹き付けられ、連続的に一定速度で移動するベ
ルトの上に幅方向にトラバースしながら吹き付ける。ベ
ルトの上に吹き付けられたモルタルは、真空装置により
モルタルの水分を吸引し、水分率を調整しながら成形す
る。
The cut fibers and mortar are sprayed from the same nozzle and sprayed while continuously traversing in the width direction on a belt moving at a constant speed. The mortar blown on the belt is formed while sucking the moisture of the mortar by a vacuum device and adjusting the moisture content.

【0057】切断された繊維と同時に吹き付けるモルタ
ルも前記したダイレクトスプレー法で成形する炭素繊維
補強セメント系無機質材成形物の製造方法が適用でき
る。
The method for producing a carbon fiber reinforced cement-based inorganic material molded product, which is formed by the direct spray method described above, can also be applied to mortar to be sprayed simultaneously with the cut fibers.

【0058】[0058]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0059】実施例1 単繊維の太さが1デニール、単繊維本数が12000本
の撚りの無いアクリル系繊維を250℃の空気中で加熱
し、延伸倍率1.05で延伸しながら水分率が4.0%
の酸化繊維を得た。この酸化繊維を1400℃の窒素雰
囲気中で炭素化することによって炭素繊維を得た。サイ
ジング剤として、水をディップ方式で付着させ、次いで
温度150℃の加熱ローラに接触通過させて、扁平度1
5、交絡度1.2、サイジング剤付着量が10%の炭素
繊維を得た。この炭素繊維の水中沈降時間は6秒であっ
た。生産性は安定しローラ表面への毛羽の付着もなくボ
ビンへの巻き揚げ性は良好であった。この炭素繊維の引
張強度は5000MPa、弾性率は230GPa、伸度
2.2%で、水中沈降時間は6秒であった。
Example 1 A non-twisted acrylic fiber having a single fiber thickness of 1 denier and a single fiber count of 12,000 was heated in air at 250 ° C. and stretched at a draw ratio of 1.05 to reduce the water content. 4.0%
Oxidized fiber was obtained. This oxidized fiber was carbonized in a nitrogen atmosphere at 1400 ° C. to obtain a carbon fiber. As a sizing agent, water was applied in a dip method, and then passed through a heating roller at a temperature of 150 ° C. to have a flatness of 1
5. A carbon fiber having a degree of entanglement of 1.2 and a sizing agent adhesion amount of 10% was obtained. The sedimentation time of this carbon fiber in water was 6 seconds. The productivity was stable and no fuzz was attached to the roller surface, and the rollability on the bobbin was good. The tensile strength of this carbon fiber was 5000 MPa, the elastic modulus was 230 GPa, the elongation was 2.2%, and the sedimentation time in water was 6 seconds.

【0060】この炭素繊維をダイレクトスプレー法によ
り成形するためのモルタルは、普通ポルトランドセメン
ト1082gに対して水を512g添加して水/セメン
ト比を47.3重量%とし、細骨剤として粉末硅石をセ
メントに対して25.3重量%投入し、混和剤としてA
E減水剤をセメントに対して2.0重量%添加混合して
製造した。
The mortar for forming the carbon fiber by the direct spray method is as follows: 1082 g of ordinary Portland cement is added with 512 g of water to make the water / cement ratio 47.3% by weight, and powdered silica is used as a fine aggregate. 25.3% by weight based on cement, A as admixture
E was prepared by adding and mixing 2.0% by weight of a water reducing agent to cement.

【0061】該炭素繊維をボビンから引き出し、ダイレ
クトスプレーガンのローターでガン内に給糸し、カッタ
ーで連続的にカットしてポンプで移送されてきたモルタ
ルとのトータル重量比で3%となるように圧縮空気で型
枠に吹き付けた。吹き付ける際、繊維束の工程通過性が
良好で大きな繊維束はさらに小さな繊維束に分離した。
The carbon fiber is drawn out of the bobbin, fed into the gun by a rotor of a direct spray gun, continuously cut by a cutter, and adjusted to a total weight ratio of 3% with mortar transferred by a pump. Was blown to the mold with compressed air. At the time of spraying, the large fiber bundle, which had good processability of the fiber bundle, was separated into smaller fiber bundles.

【0062】圧力0.2MPaの圧縮空気で繊維束を吹
き付け繊維の拡散面積を測定すると250cm2 で型枠
面へ均一に繊維束が分離分散していた。
The fiber bundle was sprayed with compressed air at a pressure of 0.2 MPa, and the diffusion area of the fiber was measured. As a result, the fiber bundle was uniformly separated and dispersed on the mold surface at 250 cm 2 .

【0063】吹き付け成形物は厚さ10mm、縦400
mm、横400mmの板状にして、温度25℃湿度65
%で3時間気中養生した。ついで室温で28日間自然養
生して、厚さ10mm、幅40mm、長さ160mmの
測定サンプルを製作した。成形物の横断面を切断し、顕
微鏡で観察すると単繊維間にセメント粒子が入っている
ことから、セメントとの馴染みが良好であった。この成
形物の曲げ強度について測定した結果を表1に示した。
The spray molded product is 10 mm thick and 400 mm long.
mm, 400mm width, temperature 25 ℃, humidity 65
% For 3 hours in the air. Then, the sample was naturally cured at room temperature for 28 days to prepare a measurement sample having a thickness of 10 mm, a width of 40 mm, and a length of 160 mm. When the cross section of the molded product was cut and observed with a microscope, it was found that cement particles were contained between the single fibers, and that the molded product was well adapted to the cement. Table 1 shows the results of measuring the bending strength of this molded product.

【0064】実施例2 実施例1と同様の炭素繊維にサイジング剤として、分子
量400のポリエチレングリコールをディップ方式で
2.0重量%付着させ、次いで温度150℃の加熱ロー
ラに接触通過させて、扁平度18、交絡度1.3の炭素
繊維を得た。生産性は安定しローラ表面への毛羽の付着
もなくボビンへの巻き揚げ性は良好であった。この炭素
繊維の引張強度は4900MPa、弾性率は230GP
a、伸度2.1%で、水中沈降時間は7秒であった。こ
の炭素繊維をダイレクトスプレー法で吹き付けた繊維拡
散面積は240cm2 で成形物は厚さ10mm、縦40
0mm、横400mmの板状にして、温度25℃湿度6
5%で3時間気中養生した。ついで室温で28日間自然
養生して、厚さ10mm、幅40mm、長さ160mm
の測定サンプルを製作した。成形物の横断面を切断し、
顕微鏡で観察すると単繊維間にセメント粒子が入ってい
ることから、セメントとの馴染みが良好であった。この
成形物の曲げ強度について測定した結果を表1に示し
た。
Example 2 As a sizing agent, 2.0% by weight of polyethylene glycol having a molecular weight of 400 was applied as a sizing agent to the same carbon fibers as in Example 1 by dipping, and then passed through a heating roller at a temperature of 150 ° C. to be flattened. A carbon fiber having a degree of 18 and a degree of entanglement of 1.3 was obtained. The productivity was stable and no fuzz was attached to the roller surface, and the rollability on the bobbin was good. This carbon fiber has a tensile strength of 4900 MPa and an elastic modulus of 230 GP.
a, the elongation was 2.1%, and the sedimentation time in water was 7 seconds. The fiber diffusion area obtained by spraying this carbon fiber by the direct spray method is 240 cm 2 , the molded product is 10 mm thick, and the length is 40 cm.
0 mm, 400 mm wide, 25 ° C, humidity 6
Cured in the air at 5% for 3 hours. Then natural curing at room temperature for 28 days, thickness 10mm, width 40mm, length 160mm
Was prepared. Cut the cross section of the molded product,
Observation with a microscope revealed that cement particles were present between the single fibers, so that the cement had good compatibility with the cement. Table 1 shows the results of measuring the bending strength of this molded product.

【0065】実施例3 実施例1と同様の炭素繊維にサイジング剤として、次式
の化合物(オレイルエーテル)C1835O−(EO)8-
Hを用い、濃度4%水溶液が入っている槽の中に上記炭
素繊維をディップ方式で2.0重量%付着させ、次いで
温度150℃の加熱ローラに接触通過させた後、150
℃の乾燥機を通過させ残水分を除去した後ボビンに巻き
取り、扁平度20、交絡度1.4の炭素繊維を得た。生
産性は安定しローラ表面への毛羽の付着もなくボビンへ
の巻き揚げ性は良好であった。この炭素繊維の引張強度
は5100MPa、弾性率は229GPa、伸度2.3
%で、水中沈降時間は6.2秒であった。
Example 3 A sizing agent of the following formula (oleyl ether) C 18 H 35 O- (EO) 8-
Using H, 2.0% by weight of the carbon fiber was adhered by dipping in a tank containing a 4% aqueous solution, and then passed through a heating roller at a temperature of 150 ° C.
After passing through a drier at ℃ to remove residual moisture, the film was wound around a bobbin to obtain carbon fibers having a flatness of 20 and an entanglement of 1.4. The productivity was stable and no fuzz was attached to the roller surface, and the rollability on the bobbin was good. This carbon fiber has a tensile strength of 5100 MPa, an elastic modulus of 229 GPa, and an elongation of 2.3.
In%, the settling time in water was 6.2 seconds.

【0066】この炭素繊維を実施例1と同様の方法で吹
き付け成形した繊維の拡散面積は260cm2 で型枠面
へ均一に繊維束が分離分散していた。この成形物の曲げ
強度について測定した結果を表1に示した。
The diffusion area of the fiber formed by spraying the carbon fiber in the same manner as in Example 1 was 260 cm 2 , and the fiber bundle was uniformly separated and dispersed on the mold surface. Table 1 shows the results of measuring the bending strength of this molded product.

【0067】実施例4 実施例1と同様の炭素繊維にサイジング剤として、次式
の化合物(オレイルエーテル)C1835O−(EO)8-
Hを用い、このサイジング剤の濃度4%水溶液が入って
いる槽の中に上記炭素繊維をディップ方式で2.0重量
%付着させ、次いで温度150℃の加熱ローラに接触通
過させた後、150℃の乾燥機を通過させ残水分を除去
した後ボビンに巻き取り、扁平度19、交絡度1.5の
炭素繊維を得た。生産性は安定しローラ表面への毛羽の
付着もなくボビンへの巻き揚げ性は良好であった。この
炭素繊維の引張強度は4950MPa、弾性率は232
GPa、伸度2.2%で、水中沈降時間は6秒であっ
た。
Example 4 A sizing agent of the following formula (oleyl ether) C 18 H 35 O- (EO) 8-
Using carbon dioxide, 2.0% by weight of the carbon fiber was attached by dipping to a tank containing a 4% aqueous solution of the sizing agent, and then passed through a heating roller at a temperature of 150 ° C. After passing through a drier at ℃ to remove residual moisture, it was wound around a bobbin to obtain carbon fibers having a flatness of 19 and an entangling degree of 1.5. The productivity was stable and no fuzz was attached to the roller surface, and the rollability on the bobbin was good. This carbon fiber has a tensile strength of 4950 MPa and an elastic modulus of 232
GPa, elongation: 2.2%, sedimentation time in water: 6 seconds.

【0068】実施例1と同様の炭素繊維とモルタルを用
いて繊維の添加量がモルタルに対する重量比で2.0%
になるようにスプレーガンへ連続的に供給し、スプレー
ガン内のカッターで切断しながらポンプで移送されてく
るセメント、水、骨材と混合させたセメント系無機質材
と同時に型枠または微細孔を有するベルトの上にトラバ
ースしながら吹き付け、真空装置により余分な水を除去
し、水/セメント比を調整しながら成形した。圧縮空気
で吹き付けた繊維の拡散面積は240cm2 であった。
成形物は厚さ10mm、縦400mm、横400mmの
板状にして、温度25℃湿度65%で3時間気中養生し
た。ついで室温で28日間自然養生して、厚さ10m
m、幅40mm、長さ160mmの測定サンプルを製作
した。この成形物の曲げ強度について測定した結果を表
1に示した。
Using the same carbon fiber and mortar as in Example 1, the amount of the fiber added was 2.0% by weight relative to the mortar.
To the spray gun so that the cement-based inorganic material mixed with cement, water, and aggregate is transferred by the pump while cutting with the cutter in the spray gun. It was sprayed while traversing on a belt having the same, excess water was removed by a vacuum device, and molding was performed while adjusting the water / cement ratio. The diffusion area of the fibers sprayed with compressed air was 240 cm 2 .
The molded product was formed into a plate having a thickness of 10 mm, a length of 400 mm and a width of 400 mm, and was cured in the air at a temperature of 25 ° C. and a humidity of 65% for 3 hours. Then natural curing at room temperature for 28 days, thickness 10m
A measurement sample having a length of 40 mm and a length of 160 mm was prepared. Table 1 shows the results of measuring the bending strength of this molded product.

【0069】比較例1 実施例1の連続炭素繊維をビスフェノールA型エポキシ
樹脂(“エピコート”1004(油化シェルエポキシ
製))にエチレンオキサイド30モルを付加させた化合
物の水分散液で濃度4%の水溶液中に通過させディップ
方式で2.0%付着させ、200℃の温度で乾燥した。
この繊維の扁平度は2.5、交絡度は35であった。圧
縮空気で吹き付けた時の繊維拡散面積は40cm2 であ
った。
Comparative Example 1 The continuous carbon fiber of Example 1 was dissolved in a bisphenol A type epoxy resin (“Epicoat” 1004 (manufactured by Yuka Shell Epoxy)) to which 30 mol of ethylene oxide was added. Was passed through an aqueous solution, and adhered 2.0% by a dip method, and dried at a temperature of 200 ° C.
The flatness of this fiber was 2.5 and the degree of entanglement was 35. The fiber diffusion area when blown with compressed air was 40 cm 2 .

【0070】実施例1と同様のモルタルおよび成形方法
により型枠に吹き付け成形しサンプルを製作した。吹き
付け時、繊維の集束性が強いため繊維束がさらに小さい
繊維束に分散しなかった。また、顕微鏡による断面観察
では単繊維間に入ったセメント粒子が少なかった。繊維
束のモーメントおよび成形物の曲げ強度について測定し
た結果を表1に示した。
A sample was manufactured by spray molding on a mold by the same mortar and molding method as in Example 1. At the time of spraying, the fiber bundle did not disperse into smaller fiber bundles due to the strong convergence of the fibers. In addition, observation of the cross section with a microscope showed that there were few cement particles between the single fibers. Table 1 shows the results of measuring the moment of the fiber bundle and the bending strength of the molded product.

【0071】比較例2 実施例1の連続炭素繊維にビスフェノールA型エポキシ
樹脂(“エピコート”828(油化シェルエポキシ
製))濃度4%水分散液の中に炭素化した繊維を通過さ
せディップ方式で付着量を2.0重量%とした。この繊
維の扁平度は2.1、交絡度は31であった。
Comparative Example 2 The continuous carbon fiber of Example 1 was passed through a 4% aqueous dispersion of bisphenol A type epoxy resin (“Epicoat” 828 (manufactured by Yuka Shell Epoxy)) to pass the carbonized fiber through a dipping method. To make the adhesion amount 2.0% by weight. The flatness of this fiber was 2.1 and the degree of entanglement was 31.

【0072】プリミックス法で成形するため、普通ポル
トランドセメント1082gをオムニミキサーに投入
し、細骨剤として粉末硅石をセメントに対して25.3
重量%投入し、長さ6mmに切断した炭素繊維をモルタ
ルに対して重量比で2.0%添加した。この状態で一端
撹拌混合させた。次いで、水を512g添加して水/セ
メント比を47.3重量%とし、混和剤としてAE減水
剤をセメントに対して2.0重量%添加混合してモルタ
ルを製造した。
For molding by the premixing method, 1082 g of ordinary Portland cement was put into an omni mixer, and powdered silica was used as a fine aggregate for the cement.
% By weight, and carbon fibers cut to a length of 6 mm were added in a weight ratio of 2.0% to the mortar. In this state, the mixture was once stirred and mixed. Then, 512 g of water was added to adjust the water / cement ratio to 47.3% by weight, and an AE water reducing agent as an admixture was added and mixed with 2.0% by weight of the cement to prepare a mortar.

【0073】このモルタルを厚さ10mm、縦400m
m、横さ400mmの板状になる型枠に流し込み、温度
25℃湿度65%で3時間気中養生した。ついで室温で
28日間自然養生して、厚さ10mm、幅40mm、長
さ160mmの曲げ強度測定サンプルを製作した。
This mortar is 10 mm thick and 400 m long.
It was poured into a plate-shaped mold having a width of 400 mm and a width of 400 mm, and cured in the air at a temperature of 25 ° C. and a humidity of 65% for 3 hours. Then, the sample was naturally cured at room temperature for 28 days to prepare a bending strength measurement sample having a thickness of 10 mm, a width of 40 mm, and a length of 160 mm.

【0074】成形物の曲げ強度について測定した結果を
表1に示した。
Table 1 shows the results of measuring the bending strength of the molded product.

【0075】比較例3 市販のピッチ系炭素繊維を用いて、実施例1と同様のモ
ルタルおよびダイレクトスプレー法により成形したサン
プルを製作した。ピッチ系炭素繊維の扁平度は2.3、
交絡度は28で、吹き付け時の繊維拡散面積は45cm
2 であった。繊維の集束性が強いためか繊維束がさらに
小さい繊維束に分散しなかった。成形物の曲げ強度につ
いて測定した結果を表1に示した。
Comparative Example 3 Using a commercially available pitch-based carbon fiber, a sample was formed by the same mortar and direct spray method as in Example 1. The flatness of pitch-based carbon fiber is 2.3,
Entanglement degree is 28, fiber diffusion area at spraying is 45cm
Was 2 . The fiber bundles did not disperse into smaller fiber bundles, presumably because of the strong bundle properties of the fibers. Table 1 shows the results of measuring the bending strength of the molded product.

【0076】[0076]

【表1】 [Table 1]

【0077】[0077]

【発明の効果】本発明の炭素繊維は、扁平度3以上50
0以下で、その交絡度が1以上25以下であることによ
り、吹き付け成形すると繊維がより小さい繊維束に分
離、分散して繊維の拡散面積が大きくなる。すなわち、
繊維の分散性が向上し、セメント系無機質材との接触面
積が多くなりセメント成形物の補強効果が向上して、成
形物の力学的特性が優れたものとなる。
The carbon fiber of the present invention has a flatness of 3 or more and 50 or more.
When the entanglement degree is 0 or less and the entanglement degree is 1 or more and 25 or less, the fibers are separated and dispersed into smaller fiber bundles by spray molding, and the diffusion area of the fibers is increased. That is,
The dispersibility of the fiber is improved, the contact area with the cement-based inorganic material is increased, the reinforcing effect of the cement molded product is improved, and the mechanical properties of the molded product are excellent.

フロントページの続き (51)Int.Cl.6 識別記号 FI D06M 13/18 13/52 (72)発明者 岡太 浩 東京都千代田区丸の内2丁目1番2号 旭 硝子株式会社内Continuation of the front page (51) Int.Cl. 6 Identification code FI D06M 13/18 13/52 (72) Inventor Hiroshi Oka 2-1-2-2 Marunouchi, Chiyoda-ku, Tokyo Asahi Glass Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】繊維束の扁平度が3以上500以下で、そ
の交絡度が1以上25以下であることを特徴とするセメ
ント系無機質材補強用炭素繊維。
1. A carbon fiber for reinforcing a cement-based inorganic material, wherein the flatness of the fiber bundle is 3 or more and 500 or less and the degree of entanglement is 1 or more and 25 or less.
【請求項2】請求項1に記載の炭素繊維であって水中沈
降時間が1秒以上30秒以下であることを特徴とするセ
メント系無機質材補強用炭素繊維。
2. The carbon fiber for reinforcing a cement-based inorganic material according to claim 1, wherein the sedimentation time in water is 1 second or more and 30 seconds or less.
【請求項3】請求項1〜2のいずれかに記載の炭素繊維
であって圧力0.1MPa以上1MPa以下の圧縮空気
で型枠に吹き付けたとき繊維の拡散面積が50cm2
上400cm2 以下であることを特徴とするセメント系
無機質材補強用炭素繊維。
3. The carbon fiber according to claim 1, which has a diffusion area of 50 cm 2 or more and 400 cm 2 or less when sprayed on a mold with compressed air having a pressure of 0.1 MPa or more and 1 MPa or less. A carbon fiber for reinforcing a cement-based inorganic material, wherein
【請求項4】請求項1〜3のいずれかに記載の炭素繊維
にサイジング剤が付着され、該サイジング剤が水および
/または分子量100〜600のポリエチレングリコー
ルであることを特徴とするセメント系無機質材補強用炭
素繊維。
4. A cement mineral characterized in that a sizing agent is attached to the carbon fiber according to claim 1, and the sizing agent is water and / or polyethylene glycol having a molecular weight of 100 to 600. Carbon fiber for material reinforcement.
【請求項5】請求項1〜3のいずれかに記載の炭素繊維
にサイジング剤が付着され、該サイジング剤が下記一般
式〔1〕で示される化合物であることを特徴とするセメ
ント系無機質材補強用炭素繊維。 R1 O−POA−R2 …〔1〕 (ここで、POA:炭素数2〜4の少なくとも1種類以
上のアルキレンオキサイドからなるポリオキシアルキレ
ン、R1 :アルキル基、アリール基、アルキルアリール
基、アルケニル基のいずれか1種、R2 :アルキル基、
アリール基、アルキルアリール基、アルケニル基のいず
れか1種または水素原子)
5. A cement-based inorganic material, wherein a sizing agent is attached to the carbon fiber according to claim 1, wherein the sizing agent is a compound represented by the following general formula [1]. Carbon fiber for reinforcement. R 1 O-POA-R 2 ... (1) (where POA is a polyoxyalkylene composed of at least one or more alkylene oxides having 2 to 4 carbon atoms, R 1 is an alkyl group, an aryl group, an alkylaryl group, Any one of alkenyl groups, R 2 : an alkyl group,
Any one of an aryl group, an alkylaryl group and an alkenyl group or a hydrogen atom)
【請求項6】請求項1〜5のいずれかに記載の炭素繊維
にサイジング剤が付着され、該サイジング剤の付着量が
0.1〜20重量%であることを特徴とするセメント系
無機質材補強用炭素繊維。
6. A cement-based inorganic material, wherein a sizing agent is attached to the carbon fiber according to any one of claims 1 to 5, and the amount of the sizing agent is 0.1 to 20% by weight. Carbon fiber for reinforcement.
【請求項7】請求項1〜6のいずれかに記載の炭素繊維
がポリアクリロニトリル系炭素繊維であることを特徴と
するセメント系無機質材補強用炭素繊維。
7. A carbon fiber for reinforcing a cement-based inorganic material, wherein the carbon fiber according to claim 1 is a polyacrylonitrile-based carbon fiber.
【請求項8】炭素繊維に請求項4に記載のサイジング剤
を付着せしめた後、温度70〜250℃に加熱したロー
ラの表面に接触通過させることによって水分の一部を除
去しながら繊維形態をテープ状に扁平化した後、芯材に
巻き上げることを特徴とするセメント系無機質材補強用
炭素繊維の製造方法。
8. After adhering the sizing agent according to claim 4 to carbon fiber, the sizing agent according to claim 4 is passed through the surface of a roller heated to a temperature of 70 to 250 ° C. to remove a part of the water while removing the fiber form. A method for producing a carbon fiber for reinforcing a cement-based inorganic material, comprising flattening into a tape shape and winding up the core material.
【請求項9】炭素繊維に請求項5に記載のサイジング剤
を付着せしめた後、温度70〜250℃に加熱したロー
ラの表面に接触通過させることによって水分の一部を除
去しながら繊維形態をテープ状に扁平化し、次いで温度
70〜250℃の乾燥機内を通過させて残水分を除去し
繊維形態を固定した後、芯材に巻き上げることを特徴と
するセメント系無機質材補強用炭素繊維の製造方法。
9. After the sizing agent according to claim 5 is applied to carbon fibers, the sizing agent is passed through the surface of a roller heated to a temperature of 70 to 250.degree. Producing a carbon fiber for reinforcing a cement-based inorganic material, characterized in that it is flattened into a tape shape, then passed through a dryer at a temperature of 70 to 250 ° C. to remove residual moisture and fix the fiber form, and then wound up around a core material. Method.
【請求項10】請求項1〜7のいずれかに記載の炭素繊
維をモルタルに添加し、補強されてなることを特徴とす
る炭素繊維補強セメント系無機質材製部材。
10. A member made of a carbon fiber reinforced cement-based inorganic material, wherein the carbon fiber according to claim 1 is added to a mortar and reinforced.
【請求項11】請求項1〜7のいずれかに記載の炭素繊
維をボビンから引き出し、連続的に切断し、セメント系
無機質材と同時に型枠に吹き付けるダイレクトスプレー
法により成形することを特徴とする炭素繊維補強セメン
ト系無機質材成形物の製造方法。
11. The method according to claim 1, wherein the carbon fiber according to any one of claims 1 to 7 is drawn out of a bobbin, cut continuously, and formed by a direct spray method in which the carbon fiber is sprayed on a mold simultaneously with a cement-based inorganic material. A method for producing a carbon fiber reinforced cement-based inorganic material molded product.
【請求項12】請求項1〜7のいずれかに記載の炭素繊
維をボビンから引き出し、連続的に切断しながらセメン
ト系無機質材と同時に型枠または微細孔を有するベルト
の上に吹き付け、減圧下で水分を除去し、水/セメント
比を調整するスプレー脱水法により成形することを特徴
とする炭素繊維補強セメント系無機質材成形物の製造方
法。
12. The carbon fiber according to any one of claims 1 to 7, which is drawn from a bobbin and sprayed onto a mold or a belt having micropores simultaneously with the cement-based inorganic material while continuously cutting the same. A method for producing a carbon fiber reinforced cement-based inorganic material molded product, wherein the molded product is formed by a spray dewatering method of removing water and adjusting a water / cement ratio by using the above method.
JP27269097A 1997-10-06 1997-10-06 Cement-based inorganic material reinforcing carbon fiber and method for producing the same Expired - Fee Related JP3895842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27269097A JP3895842B2 (en) 1997-10-06 1997-10-06 Cement-based inorganic material reinforcing carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27269097A JP3895842B2 (en) 1997-10-06 1997-10-06 Cement-based inorganic material reinforcing carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11116295A true JPH11116295A (en) 1999-04-27
JP3895842B2 JP3895842B2 (en) 2007-03-22

Family

ID=17517445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27269097A Expired - Fee Related JP3895842B2 (en) 1997-10-06 1997-10-06 Cement-based inorganic material reinforcing carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3895842B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289947A (en) 2002-04-01 2003-10-14 Hideo Tomiyama Method and apparatus of manufacturing rotable toothbrush
JP2007070204A (en) * 2005-09-09 2007-03-22 Toray Ind Inc Carbon fiber-containing composite resin wire rod for reinforcing concrete or mortar, manufacturing method therefor, and concrete or mortar structure
WO2023002876A1 (en) * 2021-07-19 2023-01-26 東レ株式会社 Carbon fiber bundle containing sizing agent and method for producing same
EP4026942A4 (en) * 2019-09-03 2023-10-25 Hyosung Advanced Materials Corporation Carbon fiber production method and carbon fiber produced using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289947A (en) 2002-04-01 2003-10-14 Hideo Tomiyama Method and apparatus of manufacturing rotable toothbrush
JP2007070204A (en) * 2005-09-09 2007-03-22 Toray Ind Inc Carbon fiber-containing composite resin wire rod for reinforcing concrete or mortar, manufacturing method therefor, and concrete or mortar structure
EP4026942A4 (en) * 2019-09-03 2023-10-25 Hyosung Advanced Materials Corporation Carbon fiber production method and carbon fiber produced using same
WO2023002876A1 (en) * 2021-07-19 2023-01-26 東レ株式会社 Carbon fiber bundle containing sizing agent and method for producing same

Also Published As

Publication number Publication date
JP3895842B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
CA1131264A (en) Fiber-reinforced cement-like material
EP0599340B1 (en) Carbon fibers for reinforcement of cement and cement composite material
JP6470315B2 (en) Cement reinforcing fiber material
US7204879B2 (en) Fiber reinforced cementitious material
US5753368A (en) Fibers having enhanced concrete bonding strength
JP2756069B2 (en) Carbon fiber for concrete reinforcement
JP2001519318A (en) Shaped fibers-cement products and reinforcing fibers for such products
JP4252369B2 (en) Reinforcing short fibers with excellent defibration properties
JPH11116295A (en) Carbon fiber for reinforcing cement based inorganic material and its production
JPH0140785B2 (en)
JPH042715B2 (en)
JP2018111631A (en) Fiber material for cement reinforcement
JPH10183473A (en) Bundled yarn
JP2810173B2 (en) Method for producing carbon fiber reinforced cementitious composite material
JP2018111632A (en) Fiber material for cement reinforcement
JP2660143B2 (en) Carbon fiber and cement composite for cement reinforcement
JP2752871B2 (en) Carbon fiber and cement composite for cement reinforcement
JPH10101386A (en) Carbon fiber for reinforcing cement-base inorganic material and its production
JP3166180B2 (en) Fiber-reinforced hydraulic molded article and method for producing the same
JP3543880B2 (en) Carbon fiber for reinforcing cement-based inorganic material, molded article of carbon fiber-reinforced cement-based inorganic material, and method for producing the same
JP3563145B2 (en) Binding yarn
JP2001328853A (en) Reinforcing material for concrete, etc.
JP2948884B2 (en) Fiber reinforced hydraulic molding
JPS62108755A (en) Fiber material for cement reinforcement
JPH11293515A (en) Fiber and molding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees