JPH11111298A - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH11111298A
JPH11111298A JP9266908A JP26690897A JPH11111298A JP H11111298 A JPH11111298 A JP H11111298A JP 9266908 A JP9266908 A JP 9266908A JP 26690897 A JP26690897 A JP 26690897A JP H11111298 A JPH11111298 A JP H11111298A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
carbon powder
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9266908A
Other languages
Japanese (ja)
Other versions
JP3469754B2 (en
Inventor
Nobuyuki Higashiyama
信幸 東山
Teruhiko Imoto
輝彦 井本
Kikuko Katou
菊子 加藤
Yohei Hirota
洋平 廣田
Mamoru Kimoto
衛 木本
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26690897A priority Critical patent/JP3469754B2/en
Publication of JPH11111298A publication Critical patent/JPH11111298A/en
Application granted granted Critical
Publication of JP3469754B2 publication Critical patent/JP3469754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode having excellent battery characteristic by maintaining the gas compatibility of the carbon powder, and while improving the electrical conductivity more in a hydrogen storage alloy electrode including carbon powder as a conductive agent. SOLUTION: A hydrogen storage alloy electrode includes the metal coated carbon powder A formed with a metal film 23 by coating at least one part of a surface of a carbon powder grains 22. The metal coated carbon powder A maintains the excellent gas compatibility of carbon powder, and while promotes the movement of the electron between the hydrogen storage alloy powder B grains 24, the metal coated carbon powder A grains 21 and collectors, and efficient discharge characteristic is obtained, and the inner pressure characteristic of battery is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・水素蓄
電池等のアルカリ二次電池の負極電極として用いられる
水素吸蔵合金に関し、特に、導電材として用いられる炭
素粉末の粒子表面の特性の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy used as a negative electrode of an alkaline secondary battery such as a nickel-metal hydride storage battery, and more particularly to an improvement in the surface characteristics of carbon powder used as a conductive material. It is.

【0002】[0002]

【従来の技術】従来、二次電池として、ニッケル・カド
ミウム蓄電池や鉛蓄電池が広く普及しているが、特に近
年、携帯電話機やノート型コンピュータ等の小型情報機
器の発達に伴って、エネルギー密度が大きく、然もクリ
ーンな二次電池の開発が要望されている。そこで、カド
ミウムや鉛のような有害物質を含まない水素吸蔵合金か
らなる電極を負極に用いた密閉型ニッケル・水素蓄電池
が注目されている。
2. Description of the Related Art Conventionally, nickel-cadmium storage batteries and lead storage batteries have become widespread as secondary batteries. In particular, in recent years, with the development of small information devices such as mobile phones and notebook computers, the energy density has increased. There is a demand for the development of a large and clean secondary battery. Therefore, a sealed nickel-metal hydride storage battery using an electrode made of a hydrogen storage alloy that does not contain harmful substances such as cadmium and lead as a negative electrode has attracted attention.

【0003】ニッケル・水素蓄電池は、水素吸蔵合金か
らなる負極、ニッケル正極、アルカリ電解液、セパレー
タ等を備え、負極となる水素吸蔵合金電極は水素吸蔵合
金塊を粉砕して得られる水素吸蔵合金粉末に導電材及び
結着剤を加え、これを電極形状に成形することによって
作製される。
A nickel-hydrogen storage battery is provided with a negative electrode made of a hydrogen storage alloy, a nickel positive electrode, an alkaline electrolyte, a separator, and the like. It is produced by adding a conductive material and a binder to the mixture and forming the mixture into an electrode shape.

【0004】水素吸蔵合金を負極に用いたニッケル・水
素蓄電池においては、水素吸蔵合金の表面がアルカリ電
解液と接触することにより、合金表面では気相反応と電
気化学的反応が同時に進行する。即ち、水素圧力及び温
度の関係では、水素が水素吸蔵合金に吸蔵され、或いは
水素吸蔵合金から水素が放出される(気相反応)。一
方、電圧及び電流の関係では、電圧の印加(充電)によ
って、水の電気分解で生じた水素が水素吸蔵合金に吸蔵
され、電流の取り出し(放電)によって、水素が酸化さ
れて水となる(電気化学的反応)。
In a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode, a gas phase reaction and an electrochemical reaction proceed simultaneously on the surface of the alloy because the surface of the hydrogen storage alloy comes into contact with an alkaline electrolyte. That is, in the relationship between the hydrogen pressure and the temperature, hydrogen is stored in the hydrogen storage alloy, or hydrogen is released from the hydrogen storage alloy (gas phase reaction). On the other hand, in the relationship between voltage and current, hydrogen generated by electrolysis of water is stored in the hydrogen storage alloy by application of voltage (charging), and hydrogen is oxidized to water by extraction of current (discharge) ( Electrochemical reaction).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ニッケ
ル・水素蓄電池では、水素吸蔵合金電極の電気伝導性が
不十分な場合、電子の移動が滞り、電極内が電子が飽和
した状態に陥いる。このとき、正極であるニッケル電極
の表面では気体状酸素が発生し、負極である水素吸蔵合
金電極の表面では気体状水素が発生し、電池内圧が上昇
する。密閉型ニッケル・水素蓄電池においては、電池内
圧の過度の上昇は、電解液の外部への逸散などによる充
放電容量の低下などの問題がある。更に、これら水素原
子と、酸素原子が再結合することによって水が生成する
と、電池内圧は降下するものの、電気エネルギーが熱エ
ネルギーとして発散され、放電容量、及び高圧放電特性
の低下が問題となる。
However, in the nickel-hydrogen storage battery, when the electric conductivity of the hydrogen storage alloy electrode is insufficient, the movement of the electrons is hindered and the inside of the electrodes is saturated. At this time, gaseous oxygen is generated on the surface of the nickel electrode as the positive electrode, and gaseous hydrogen is generated on the surface of the hydrogen storage alloy electrode as the negative electrode, and the internal pressure of the battery is increased. In the sealed nickel-metal hydride storage battery, an excessive increase in the internal pressure of the battery has a problem such as a decrease in charge / discharge capacity due to dissipation of the electrolyte to the outside. Further, when water is generated by the recombination of these hydrogen atoms and oxygen atoms, the internal pressure of the battery is reduced, but the electric energy is radiated as heat energy, and the discharge capacity and the high-pressure discharge characteristics are reduced.

【0006】現在、一般に使用されているニッケル・水
素蓄電池においては、金属粉末、炭素粉末等の導電剤を
水素吸蔵合金に混合し、水素吸蔵合金電極の導電性を向
上させることによって、気体の発生を抑制し、充電時の
電池内圧上昇を低減させているが、充分な効果が得られ
ず、更に電極の電気伝導特性を高めることが望まれてい
る。
[0006] In a nickel-hydrogen storage battery generally used at present, gas is generated by mixing a hydrogen storage alloy with a conductive agent such as metal powder and carbon powder to improve the conductivity of the hydrogen storage alloy electrode. , And the increase in the internal pressure of the battery during charging is reduced. However, a sufficient effect cannot be obtained, and it is desired to further improve the electric conductivity of the electrode.

【0007】本発明の目的は、炭素粉末を導電剤として
含有する水素吸蔵合金電極において、炭素粉末の電気伝
導性を更に向上させることによって、電池内圧特性や高
率放電特性等の電池特性に優れた水素吸蔵合金電極を提
供することである。
An object of the present invention is to provide a hydrogen storage alloy electrode containing carbon powder as a conductive agent, by further improving the electrical conductivity of the carbon powder, thereby improving battery characteristics such as battery internal pressure characteristics and high-rate discharge characteristics. To provide a hydrogen storage alloy electrode.

【0008】[0008]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
電極は、水素吸蔵合金粉末Bと導電材の粉末Aとの混合
物を主材とする水素吸蔵合金電極であって、前記導電材
の粉末Aが、炭素粒子(22)の表面の少なくとも一部の領
域を被って金属被膜(23)が形成された金属被覆炭素粉末
であることを特徴とする。
A hydrogen storage alloy electrode according to the present invention is a hydrogen storage alloy electrode mainly comprising a mixture of a hydrogen storage alloy powder B and a powder A of a conductive material. The powder A is a metal-coated carbon powder having a metal coating (23) formed on at least a part of the surface of the carbon particles (22).

【0009】水素吸蔵合金における気相反応及び電気化
学的反応を効率よく行なうためには、気相(酸素、水
素)−固相(水素吸蔵合金)−液相(電解液)の三相界面を
電気的に導通がとれた状態に形成することが必要であ
る。導電剤である炭素粉末は、気体状水素及び気体状酸
素に対して親和性があり、上記反応系への気体の供給、
即ち気相−固相間の相互作用を促進する効果を有する。
本発明に係る水素吸蔵合金電極では、炭素粒子(22)の表
面に良電導性の金属からなる金属被膜(23)を形成した金
属被覆炭素粉末Aを導電材として用いている。金属被覆
炭素粉末Aは上記の炭素粉末の有する作用を維持しつ
つ、その表面を被覆する金属の有する良電導性によっ
て、水素吸蔵合金粉末Bの粒子(24)、金属被覆炭素粉末
Aの粒子(21)、及び集電体の三者間の電子の授受を促進
させることが可能となる。その結果として、各々の粒子
間、或いは集電体と、集電体に接触する粒子との間の電
気的接触が良好となり、高率放電特性が改善されると共
に、水素吸蔵合金粉末への水素原子の吸収を促進させ、
電池内圧の上昇が抑制される。
In order to efficiently perform a gas phase reaction and an electrochemical reaction in a hydrogen storage alloy, a three-phase interface between a gas phase (oxygen and hydrogen), a solid phase (hydrogen storage alloy), and a liquid phase (electrolyte) must be formed. It is necessary to form them in a state where they are electrically connected. Carbon powder that is a conductive agent has affinity for gaseous hydrogen and gaseous oxygen, and supplies gas to the reaction system,
That is, it has the effect of promoting the interaction between the gas phase and the solid phase.
In the hydrogen storage alloy electrode according to the present invention, a metal-coated carbon powder A in which a metal coating (23) made of a highly conductive metal is formed on the surface of carbon particles (22) is used as a conductive material. The metal-coated carbon powder A maintains the action of the above-mentioned carbon powder and, due to the good electrical conductivity of the metal coating the surface thereof, the particles of the hydrogen storage alloy powder B (24) and the particles of the metal-coated carbon powder A ( 21), and the exchange of electrons between the three current collectors can be promoted. As a result, the electrical contact between each particle or between the current collector and the particles in contact with the current collector is improved, the high-rate discharge characteristics are improved, and the hydrogen storage alloy powder is charged with hydrogen. Promotes the absorption of atoms,
An increase in battery internal pressure is suppressed.

【0010】具体的には、前記金属元素は、Ti、V、
Cr、Mn、Fe、Co、Ni、Cu、Zn、Sn、Sb、及び
Alから選ばれた1種以上の遷移金属である。又、前記
炭素粉末は、黒鉛及びカーボンブラックから選ばれた1
種以上の炭素粉末からなる。
Specifically, the metal elements are Ti, V,
One or more transition metals selected from Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Sb, and Al. The carbon powder is selected from graphite and carbon black.
It consists of more than one kind of carbon powder.

【0011】該具体的構成において、導電剤には良伝導
性素材を用いることが望ましく、母材となる炭素粉末と
しては、黒鉛及びカーボンブラックから選ばれた1種以
上を用いることが好ましく、又、該炭素粉末の粒子(22)
の表面を覆う金属元素としては、Ti、V、Cr、Mn、
Fe、Co、Ni、Cu、Zn、Sn、Sb、及びAlから選ば
れた1種以上の遷移金属を用いることが好ましい。
In the specific structure, it is preferable to use a good conductive material as the conductive agent, and it is preferable to use at least one selected from graphite and carbon black as the carbon powder as a base material. , Particles of the carbon powder (22)
The metal elements covering the surface of Ti, V, Cr, Mn,
It is preferable to use at least one transition metal selected from Fe, Co, Ni, Cu, Zn, Sn, Sb, and Al.

【0012】更に具体的には、前記金属被覆炭素粉末A
の粒子径は、1〜30μmである。又、前記金属被膜(2
3)の比表面積は、前記炭素粉末の粒子(22)の単位重量当
たり、0.3〜0.6m2/gである。
More specifically, the metal-coated carbon powder A
Has a particle size of 1 to 30 μm. In addition, the metal coating (2
The specific surface area of 3) is from 0.3 to 0.6 m 2 / g per unit weight of the particles (22) of the carbon powder.

【0013】前記炭素粉末の粒子(22)の表面に前記金属
被膜(23)を形成することよって、本発明に係る水素吸蔵
合金電極の導電性を改善させる旨は先に述べたが、物理
的な側面からみて、各々の粒子が密に接触した充填率の
高い状態にあることが、該水素吸蔵合金電極の導電性を
改善する上で更に望ましい。前記金属被覆炭素粉末Aの
粒子径を縮小させることによって、電極合材の充填率を
増大させることができるため、前記金属被覆炭素粉末A
の粒子径は1μm〜30μmとすることが好ましい。
尚、前記金属被覆炭素粉末Aの最適粒子径に対して、水
素吸蔵合金粉末Bの粒子径は10μm以上であることが
望ましく、両粒子の大小関係は問わない。又、前記金属
被膜(23)が厚すぎる、或いは前記炭素粉末の粒子(22)に
対する前記金属被膜(23)の被覆面積が広すぎる場合、本
来、炭素粉末が有する良好なガス親和性が抑制され、電
池特性の改善効果が得られなくなる。従って、前記炭素
粉末の有するガス親和性と金属被膜(23)の有する良電導
性のバランスをとるために、前記金属被膜(23)の前記炭
素粉末の粒子(22)に対する比表面積は、0.3m2/g〜
0.6m2/gであることが好ましい。
Although it has been described above that the conductivity of the hydrogen storage alloy electrode according to the present invention is improved by forming the metal film (23) on the surface of the carbon powder particles (22), It is more desirable that the particles be in close contact with each other and have a high filling factor from the viewpoint of improving the conductivity of the hydrogen storage alloy electrode. Since the filling rate of the electrode mixture can be increased by reducing the particle diameter of the metal-coated carbon powder A, the metal-coated carbon powder A can be increased.
Is preferably 1 μm to 30 μm.
The particle diameter of the hydrogen-absorbing alloy powder B is desirably 10 μm or more with respect to the optimum particle diameter of the metal-coated carbon powder A, and the relationship between the two particles does not matter. Further, when the metal coating (23) is too thick or the coating area of the metal coating (23) with respect to the particles (22) of the carbon powder is too large, the good gas affinity that the carbon powder originally has is suppressed. In addition, the effect of improving battery characteristics cannot be obtained. Therefore, in order to balance the gas affinity of the carbon powder with the good electrical conductivity of the metal coating (23), the specific surface area of the metal coating (23) with respect to the carbon powder particles (22) is set to 0.1. 3m 2 / g ~
It is preferably 0.6 m 2 / g.

【0014】[0014]

【発明の効果】本発明に係る水素吸蔵合金電極によれ
ば、導電剤である炭素粉末を良電導性の遷移金属で部分
的に被覆することによって、炭素粉末の有する良好なガ
ス親和性を保持しつつ、水素吸蔵合金粉末Bの粒子(2
4)、金属被覆炭素粉末Aの粒子(21)、及び集電体の間の
電気的接続が増強される。従って、本発明に係る水素吸
蔵合金電極を用いたアルカリ二次電池の電池内圧特性や
高圧放電特性が改善され、電池特性に優れたアルカリ二
次電池が得られる。
According to the hydrogen storage alloy electrode of the present invention, the carbon powder, which is a conductive agent, is partially coated with a transition metal having good conductivity, thereby maintaining the good gas affinity of the carbon powder. Of the hydrogen storage alloy powder B (2
4) The electrical connection between the metal-coated carbon powder A particles (21) and the current collector is enhanced. Therefore, the internal battery pressure characteristics and the high-pressure discharge characteristics of the alkaline secondary battery using the hydrogen storage alloy electrode according to the present invention are improved, and an alkaline secondary battery having excellent battery characteristics can be obtained.

【0015】[0015]

【発明の実施の形態】図1に示す如く、本発明に係る水
素吸蔵合金電極の活物質層(2)は、水素吸蔵合金粉末B
の粒子(24)の間に、金属被覆炭素粉末Aの粒子(21)が介
在している。金属被覆炭素粉末Aの粒子(21)は、炭素粉
末の粒子(22)と、その表面を被覆する金属被膜(23)から
なる。ただし、炭素粉末の有するガス親和性を損なわな
いように、水素吸蔵合金電極合材に存在するすべての金
属被覆炭素粉末Aの粒子(21)において、炭素粉末の粒子
(22)の表面全体を覆うような金属被膜(23)が形成される
べきではない。以下、本発明を実施すべきニッケル・水
素蓄電池の水素吸蔵合金電極の実施の形態について、具
体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, an active material layer (2) of a hydrogen storage alloy electrode according to the present invention comprises a hydrogen storage alloy powder B
The particles (21) of the metal-coated carbon powder A are interposed between the particles (24). The particles (21) of the metal-coated carbon powder A are composed of particles (22) of carbon powder and a metal coating (23) covering the surface thereof. However, in order not to impair the gas affinity of the carbon powder, in all the metal-coated carbon powder A particles (21) present in the hydrogen storage alloy electrode mixture, the carbon powder particles
No metal coating (23) should be formed to cover the entire surface of (22). Hereinafter, embodiments of a hydrogen storage alloy electrode of a nickel-metal hydride storage battery according to the present invention will be specifically described.

【0016】[0016]

【実施例】実施例1 (水素吸蔵合金の作製)希土類元素の混合物であるミッ
シュメタル(以下Mmという)、及び夫々純度99.9%
の金属単体であるNi、Co、Al、Mnを所定のモル比で
混合し、アルゴン雰囲気のアーク溶解炉で溶解せしめた
後、これを自然放冷してCaCu5型結晶構造を有する組
成式MmNi3.6Co0.6Al0.2Mn0.6で表わされる水素吸
蔵合金を作製した。この水素吸蔵合金のインゴットを空
気中で機械的に粉砕し、平均粒径が30μmの水素吸蔵
合金粉末を得た。
EXAMPLES Example 1 (Preparation of hydrogen storage alloy) Misch metal (hereinafter referred to as Mm) which is a mixture of rare earth elements and purity of 99.9% each
Ni, Co, Al, and Mn, which are simple metals, were mixed at a predetermined molar ratio, melted in an arc melting furnace in an argon atmosphere, and allowed to cool naturally to obtain a composition formula MmNi having a CaCu 5- type crystal structure. A hydrogen storage alloy represented by 3.6 Co 0.6 Al 0.2 Mn 0.6 was produced. The hydrogen storage alloy ingot was mechanically pulverized in the air to obtain a hydrogen storage alloy powder having an average particle size of 30 μm.

【0017】(化学メッキ法によるカーボンブラックの
表面被覆処理)Co、Cu、Ni、Cr、Zn、或いはSnの
塩化物を各々0.5mol/lと、次亜リン酸ソーダを1.0
mol/l、クエン酸ソーダを0.5mol/lとなるように溶
解させた6種のメッキ浴に、粒子径1.0μmのカーボン
ブラックを2時間浸漬し、洗浄後、乾燥処理を施し、6
種の金属被覆炭素粉末を得た。
(Surface coating treatment of carbon black by a chemical plating method) Co, Cu, Ni, Cr, Zn or Sn chlorides are each 0.5 mol / l, and sodium hypophosphite is 1.0 mol / l.
mol / l, and carbon black having a particle diameter of 1.0 μm was immersed for 2 hours in 6 kinds of plating baths in which sodium citrate was dissolved to a concentration of 0.5 mol / l.
A variety of metal-coated carbon powders were obtained.

【0018】(電極の作製)活物質として前記水素吸蔵
合金粉末と、導電剤として6種の前記金属被覆炭素粉末
と、結着剤としてポリエチレンオキサイドを0.5重量
%含む水溶液とを混合し、6種のペーストを調製した。
これら6種のペーストを、ニッケル鍍金を施したパンチ
ングメタルからなる芯体の両面に塗布し、室温で乾燥さ
せた後に所定の寸法に切断して、6種の負極電極を作製
した。正極としては、従来より公知の焼結式ニッケル電
極を使用した。
(Preparation of Electrode) The hydrogen storage alloy powder as an active material, the six kinds of metal-coated carbon powders as a conductive agent, and an aqueous solution containing 0.5% by weight of polyethylene oxide as a binder were mixed. Six pastes were prepared.
These six pastes were applied to both sides of a core body made of nickel-plated punched metal, dried at room temperature, and then cut into predetermined dimensions to produce six kinds of negative electrode. As the positive electrode, a conventionally known sintered nickel electrode was used.

【0019】(ニッケル・水素蓄電池の作製)上記の正
極及び6種の負極を用いて、正極容量規制の理論容量1
000mAhを有する6種の密閉型ニッケル・水素蓄電池
A1〜A6を作製した。図2に示す如く、本発明に係る
水素吸蔵合金電極を用いて作製したニッケル・水素蓄電
池A1(1)は、正極(11)、負極(12)、セパレーター(1
3)、正極リード(14)、負極リード(15)、正極外部端子(1
6)、負極缶(17)、及び封口蓋(18)等から構成される。正
極(11)及び負極(12)は、セパレーター(13)を介して渦巻
き状に巻き取られた状態で負極缶(17)に収容されてお
り、正極(11)は正極リード(14)を介して封口蓋(18)に、
負極(12)は負極リード(15)を介して負極缶(17)に接続さ
れている。負極缶(17)と封口蓋(18)との接合部には絶縁
性のパッキング(20)が装着されて、電池A1(1)の密閉
化が施されている。正極外部端子(16)と封口蓋(18)との
間には、コイルスプリング(19)が設けられ、電池内圧が
異常に上昇したときに圧縮されて電池内部のガスを大気
中に放出し得る様になっている。
(Preparation of Nickel-Hydrogen Storage Battery) Using the above positive electrode and six types of negative electrodes, a theoretical capacity 1
Six types of sealed nickel-metal hydride batteries A1 to A6 having 000 mAh were produced. As shown in FIG. 2, a nickel-hydrogen storage battery A1 (1) manufactured using the hydrogen storage alloy electrode according to the present invention includes a positive electrode (11), a negative electrode (12), and a separator (1).
3), positive lead (14), negative lead (15), positive external terminal (1
6), a negative electrode can (17) and a sealing lid (18). The positive electrode (11) and the negative electrode (12) are housed in a negative electrode can (17) in a state of being spirally wound via a separator (13), and the positive electrode (11) is connected via a positive electrode lead (14). To the lid (18),
The negative electrode (12) is connected to a negative electrode can (17) via a negative electrode lead (15). An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to seal the battery A1 (1). A coil spring (19) is provided between the positive electrode external terminal (16) and the sealing lid (18), and can be compressed when the battery internal pressure rises abnormally to release gas inside the battery to the atmosphere. It is like.

【0020】(電池特性実験)上記の本発明を実施すべ
き6種のニッケル・水素蓄電池A1〜A6を条件を揃え
るために100mAで2回充放電を行なった。高率放電特
性について検討を行なうために、前記の充放電反応後
に、100mAで16時間充電を行ない、4000mAで放
電した際の放電容量を測定した。又、放電容量の測定と
同様に、100mAで2回の充放電反応を行なった後に、
100mAで16時間充電を行ない、更に1000mAで8
0分間充電した時点での電池内圧についても測定した。
(Battery Characteristics Experiment) In order to make the above-mentioned six types of nickel-metal hydride storage batteries A1 to A6 in which the present invention should be carried out, charging / discharging was performed twice at 100 mA. In order to examine the high-rate discharge characteristics, the battery was charged at 100 mA for 16 hours after the charge / discharge reaction, and the discharge capacity at the time of discharging at 4000 mA was measured. In addition, similarly to the measurement of the discharge capacity, after performing the charge and discharge reaction twice at 100 mA,
Charge at 100mA for 16 hours, then 8 at 1000mA
The internal pressure of the battery at the time of charging for 0 minutes was also measured.

【0021】実施例2 Ti、V、Mn、Fe、Sb、或いはAlの金属小片を、各
々カーボンブラック粉末と共に容器中に収容した。6種
の各々の容器中を10×10-3mmHg以下の高真空とし、
タングステンフィラメントを電気的に加熱させ、前記金
属小片を融解し、更に蒸発させた。その蒸気をカーボン
ブラックの粒子表面に薄膜として凝着させ、6種の金属
被覆カーボンブラックを得た。上記の如く、蒸着法によ
りカーボンブラックの表面被覆処理を行なった以外は、
実施例1と同様にして、6種の本発明を実施すべきニッ
ケル・水素蓄電池A7〜A12を作製し、電池特性試験
を行なった。
Example 2 Small pieces of metal of Ti, V, Mn, Fe, Sb, or Al were each placed in a container together with carbon black powder. A high vacuum of 10 × 10 −3 mmHg or less is set in each of the six types of containers,
The tungsten filament was electrically heated to melt and further evaporate the metal pieces. The vapor was deposited as a thin film on the surface of the carbon black particles to obtain six types of metal-coated carbon black. As described above, except that the surface coating treatment of carbon black was performed by a vapor deposition method,
In the same manner as in Example 1, six types of nickel-metal hydride storage batteries A7 to A12 in which the present invention was to be implemented were manufactured, and battery characteristics tests were performed.

【0022】実施例3 (ニッケル・水素蓄電池の作製)表3に示すように、平
均粒径が0.5〜42μmで比表面積が0.62〜0.29
2/gの8種のカーボンブラックと、コバルトの塩化
物を用い、前記化学メッキ法によって処理した8種のコ
バルト被覆カーボンブラックを得た。これら8種のコバ
ルト被覆カーボンブラックを用いた以外は、実施例1と
同様にして、本発明を実施すべきニッケル・水素蓄電池
B1〜B8を作製した。
Example 3 (Preparation of nickel-metal hydride storage battery) As shown in Table 3, the average particle size is 0.5 to 42 μm and the specific surface area is 0.62 to 0.29.
Eight kinds of carbon black coated with m 2 / g and treated with the above-mentioned chemical plating method using eight kinds of carbon black and cobalt chloride were obtained. Except that these eight types of cobalt-coated carbon blacks were used, nickel-hydrogen storage batteries B1 to B8 according to the present invention were produced in the same manner as in Example 1.

【0023】(電池特性実験)上記の本発明を実施すべ
き8種のニッケル・水素蓄電池B1〜B8を、条件を揃
えるために100mAで2回充放電を行なった。高率放電
特性について検討を行なうために、前記の充放電反応後
に、100mAで16時間充電を行ない、3000mAで放
電した際の放電容量を測定した。又、放電容量の測定と
同様に、100mAで2回の充放電反応を行なった後に、
100mAで16時間充電を行ない、更に1500mAで6
0分間充電した時点での電池内圧についても測定した。
(Battery Characteristics Experiment) The above eight nickel-metal hydride storage batteries B1 to B8 in which the present invention is to be carried out were charged and discharged twice at 100 mA in order to make the conditions uniform. In order to examine the high-rate discharge characteristics, the battery was charged at 100 mA for 16 hours after the above-mentioned charge / discharge reaction, and the discharge capacity when discharging at 3000 mA was measured. In addition, similarly to the measurement of the discharge capacity, after performing the charge and discharge reaction twice at 100 mA,
Charging at 100mA for 16 hours, and 6 at 1500mA
The internal pressure of the battery at the time of charging for 0 minutes was also measured.

【0024】比較例 カーボンブラック粉末に金属被覆処理を施さない以外
は、実施例1と同様にして従来のニッケル・水素蓄電池
C1を作製し、電池特性試験を行なった。
Comparative Example A conventional nickel-hydrogen storage battery C1 was prepared and subjected to a battery characteristic test in the same manner as in Example 1 except that the metal coating treatment was not applied to the carbon black powder.

【0025】以下、実施例1〜実施例3及び比較例の電
池特性試験の結果を表1〜表3に示す。
Tables 1 to 3 show the results of the battery characteristics tests of Examples 1 to 3 and Comparative Example.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】表1及び表2に示されるように、本発明を
実施すべきニッケル・水素蓄電池A1〜A12では、従
来のニッケル・水素蓄電池C1と比較して、放電容量が
著しく増加し、高率放電特性が改善されている。又、充
電反応時の電池内圧も従来のニッケル・水素蓄電池C1
と比較して低く抑えられており、炭素粉末粒子を金属で
被覆することによって水素吸蔵合金電極の電気伝導性が
改善されたことが明らかである。
As shown in Tables 1 and 2, in the nickel-metal hydride storage batteries A1 to A12 to which the present invention is applied, the discharge capacity is remarkably increased as compared with the conventional nickel-metal hydride storage battery C1. The discharge characteristics have been improved. Further, the internal pressure of the battery during the charging reaction is also reduced by the conventional nickel-hydrogen storage battery C1.
It is apparent that the electric conductivity of the hydrogen storage alloy electrode was improved by coating the carbon powder particles with a metal.

【0030】更に、表3においては、コバルトを被覆し
たカーボンブラックを例に、本発明に係る水素吸蔵合金
電極の合材に添加すべき炭素粉末の粒子径及び遷移金属
による表面被覆量の最適域についての検討結果を示す。
コバルト被膜を有するカーボンブラックを負極電極の導
電材として用いたニッケル・水素蓄電池B1〜B6は、
従来のニッケル・水素蓄電池C1と比較して高率放電特
性、電池内圧特性ともに優れている。特に、ニッケル・
水素蓄電池B2〜B4でそれらの効果が著しく、本発明
に係る水素吸蔵合金電極に用いられる金属被覆炭素粉末
の粒子径は1μm〜30μmであることが好ましく、
又、金属被覆の炭素粉末粒子に対する比表面積は0.3
2/g〜0.6m2/gが好ましいことが明らかとなっ
た。
Further, in Table 3, taking carbon black coated with cobalt as an example, the optimum range of the particle diameter of the carbon powder to be added to the mixture of the hydrogen storage alloy electrode according to the present invention and the surface coating amount by the transition metal is shown. The results of the study on
Nickel-metal hydride storage batteries B1 to B6 using carbon black having a cobalt coating as a conductive material of a negative electrode,
Both the high-rate discharge characteristics and the battery internal pressure characteristics are superior to the conventional nickel-metal hydride storage battery C1. In particular, nickel
These effects are remarkable in the hydrogen storage batteries B2 to B4, and the particle diameter of the metal-coated carbon powder used for the hydrogen storage alloy electrode according to the present invention is preferably 1 μm to 30 μm,
The specific surface area of the metal-coated carbon powder particles is 0.3.
m 2 /g~0.6m 2 / g It is preferred revealed.

【0031】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、CaCu5型結晶構造を有す
る水素吸蔵合金を用いる以外にも、C14型若しくはC
15型ラーベス相構造を有する水素吸蔵合金を用いて、
本発明に係る水素吸蔵合金電極を作製することも可能で
ある。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, besides using a hydrogen storage alloy having a CaCu type 5 crystal structure, a C14 type or C
Using a hydrogen storage alloy having a 15-type Laves phase structure,
It is also possible to produce the hydrogen storage alloy electrode according to the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素吸蔵合金電極の活物質層を模
式的に表わした拡大断面図である。
FIG. 1 is an enlarged sectional view schematically showing an active material layer of a hydrogen storage alloy electrode according to the present invention.

【図2】本発明を実施すべきニッケル・水素蓄電池の断
面図である。
FIG. 2 is a sectional view of a nickel-metal hydride storage battery in which the present invention is to be implemented.

【符号の説明】[Explanation of symbols]

A 金属被覆炭素粉末 B 水素吸蔵合金粉末 (1) ニッケル・水素蓄電池A1 (11) 正極 (12) 負極 (13) セパレーター (2) 活物質層 (21) 金属被覆炭素粉末Aの粒子 (22) 炭素粉末の粒子 (23) 金属被膜 (24) 水素吸蔵合金粉末Bの粒子 A Metal-coated carbon powder B Hydrogen storage alloy powder (1) Nickel-hydrogen storage battery A1 (11) Positive electrode (12) Negative electrode (13) Separator (2) Active material layer (21) Particles of metal-coated carbon powder A (22) Carbon Powder particles (23) Metal coating (24) Hydrogen storage alloy powder B particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣田 洋平 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Yohei Hirota 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Mamoru Kimoto 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-2-5 Keihanhondori, Moriguchi City, Osaka Prefecture (72) Inventor Koji Nishio Keihanhondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末Bと導電材の粉末Aと
の混合物を主材とする水素吸蔵合金電極であって、前記
導電材の粉末Aが、炭素粒子(22)の表面の少なくとも一
部の領域を被って金属被膜(23)が形成された金属被覆炭
素粉末であることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode mainly comprising a mixture of a hydrogen storage alloy powder B and a conductive material powder A, wherein the conductive material powder A has at least one surface of carbon particles (22). A hydrogen-absorbing alloy electrode comprising a metal-coated carbon powder having a metal coating (23) formed over a region of a portion.
【請求項2】 前記金属被膜(23)を形成する金属元素
が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、S
n、Sb、及びAlから選ばれた1種以上の遷移金属であ
る請求項1に記載の水素吸蔵合金電極。
2. The metal element forming the metal film (23) is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, S
The hydrogen storage alloy electrode according to claim 1, wherein the electrode is at least one transition metal selected from n, Sb, and Al.
【請求項3】 前記炭素粉末が、黒鉛及びカーボンブラ
ックから選ばれた1種以上の炭素粉末からなる請求項1
又は請求項2に記載の水素吸蔵合金電極。
3. The carbon powder according to claim 1, wherein the carbon powder comprises at least one carbon powder selected from graphite and carbon black.
Or the hydrogen storage alloy electrode according to claim 2.
【請求項4】 前記金属被覆炭素粉末Aの粒子径が、1
〜30μmである請求項1乃至請求項3の何れかに記載
の水素吸蔵合金電極。
4. The metal-coated carbon powder A having a particle size of 1
The hydrogen storage alloy electrode according to any one of claims 1 to 3, wherein the thickness is 30 to 30 µm.
【請求項5】 前記金属被膜(23)の比表面積が、前記炭
素粉末の粒子(22)の単位重量当たり、0.3〜0.6m2
/gである請求項1乃至請求項4の何れかに記載の水素
吸蔵合金電極。
5. The specific surface area of the metal coating (23) is 0.3 to 0.6 m 2 per unit weight of the carbon powder particles (22).
The hydrogen storage alloy electrode according to any one of claims 1 to 4, wherein the ratio is / g.
JP26690897A 1997-09-30 1997-09-30 Hydrogen storage alloy electrode Expired - Fee Related JP3469754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26690897A JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26690897A JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH11111298A true JPH11111298A (en) 1999-04-23
JP3469754B2 JP3469754B2 (en) 2003-11-25

Family

ID=17437341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26690897A Expired - Fee Related JP3469754B2 (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3469754B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509480A (en) * 2003-10-21 2007-04-12 レボルト テクノロジー アクスイェ セルスカプ Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
US7534529B2 (en) 2004-07-30 2009-05-19 Panasonic Corporation Negative electrode and nickel-metal hydride storage battery using the same
US20120040249A1 (en) * 2010-08-12 2012-02-16 Kyeu-Yoon Sheem Negative active material for a rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US8748337B2 (en) 2006-04-28 2014-06-10 INHA—Industry Partnership Institute Preparation method of multi-metals / activated carbon composites

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509480A (en) * 2003-10-21 2007-04-12 レボルト テクノロジー アクスイェ セルスカプ Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
US7534529B2 (en) 2004-07-30 2009-05-19 Panasonic Corporation Negative electrode and nickel-metal hydride storage battery using the same
US8748337B2 (en) 2006-04-28 2014-06-10 INHA—Industry Partnership Institute Preparation method of multi-metals / activated carbon composites
US20120040249A1 (en) * 2010-08-12 2012-02-16 Kyeu-Yoon Sheem Negative active material for a rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US8691442B2 (en) * 2010-08-12 2014-04-08 Samsung Sdi Co., Ltd. Negative active material comprising carbon core particles coated with thin film covering for a rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP3469754B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP0901179B1 (en) Alkaline storage battery
JP3469754B2 (en) Hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3481095B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
EP1012894A1 (en) Hydrogen storage alloy
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3071026B2 (en) Metal hydride storage battery
JP3192694B2 (en) Alkaline storage battery
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2001223000A (en) Alkaline secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH11354124A (en) Alkaline secondary battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2989300B2 (en) Metal-hydrogen alkaline storage battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3229636B2 (en) Metal-hydrogen alkaline storage battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JPH11111303A (en) Hydrogen storage alloy electrode and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees