JPH11111303A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH11111303A
JPH11111303A JP9266907A JP26690797A JPH11111303A JP H11111303 A JPH11111303 A JP H11111303A JP 9266907 A JP9266907 A JP 9266907A JP 26690797 A JP26690797 A JP 26690797A JP H11111303 A JPH11111303 A JP H11111303A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
core
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9266907A
Other languages
Japanese (ja)
Inventor
Kikuko Katou
菊子 加藤
Nobuyuki Higashiyama
信幸 東山
Yasushi Kuroda
黒田  靖
Teruhiko Imoto
輝彦 井本
Mamoru Kimoto
衛 木本
Shin Fujitani
伸 藤谷
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9266907A priority Critical patent/JPH11111303A/en
Publication of JPH11111303A publication Critical patent/JPH11111303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve conductivity, to restrain deterioration of an electrode, and to provide a hydrogen storage alloy electrode superior in cycle characteristic and a high rate discharge characteristic, by improving the adhesion of a core body to a mixture of hydrogen storage alloy electrode materials. SOLUTION: In a hydrogen storage alloy electrode constituted by applying a mixture of electrode materials containing a hydrogen storage alloy to a core body surface, the core body is a metal plate having a wetting index of 35 dyn/cm or more and is obtained by subjecting a punching metal core body 3 to a corona discharge processing, by impressing a voltage through the use of a corona discharge reformer 4 after installing the core body 3 between a discharge electrode 41 and a counter electrode 42, which are arranged facing opposite to each other. Thereby, the wettability of the core body is improved for enhancing its adhesion to the mixture of hydrogen storage alloy electrode materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・水素蓄
電池等のアルカリ二次電池の負極として用いられる水素
吸蔵合金電極に関し、特に、水素吸蔵合金を含む電極材
料混合体と、該電極材料混合体が塗布されるべき芯体と
の密着性の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of an alkaline secondary battery such as a nickel-metal hydride storage battery, and more particularly, to an electrode material mixture containing a hydrogen storage alloy and an electrode material mixture. Is to improve the adhesion to the core to be applied.

【0002】[0002]

【従来の技術】従来、二次電池として、ニッケル・カド
ミウム蓄電池や鉛蓄電池が広く普及しているが、特に近
年、携帯電話機やノート型コンピュータ等の小型情報機
器の発達に伴って、エネルギー密度が大きく、然もクリ
ーンな二次電池の開発が要望されている。そこで、カド
ミウムや鉛のような有害物質を含まない水素吸蔵合金か
らなる電極を負極に用いた密閉型ニッケル・水素蓄電池
が注目されている。
2. Description of the Related Art Conventionally, nickel-cadmium storage batteries and lead storage batteries have become widespread as secondary batteries. In particular, in recent years, with the development of small information devices such as mobile phones and notebook computers, the energy density has increased. There is a demand for the development of a large and clean secondary battery. Therefore, a sealed nickel-metal hydride storage battery using an electrode made of a hydrogen storage alloy that does not contain harmful substances such as cadmium and lead as a negative electrode has attracted attention.

【0003】ニッケル・水素蓄電池は、水素吸蔵合金か
らなる負極、ニッケル正極、アルカリ電解液、セパレー
ター等を備え、負極となる水素吸蔵合金電極は水素吸蔵
合金塊を粉砕して得られる水素吸蔵合金粉末に結着剤を
加え、これを電極形状に成形することによって作製され
る。
A nickel-hydrogen storage battery includes a negative electrode made of a hydrogen storage alloy, a nickel positive electrode, an alkaline electrolyte, a separator, and the like. A hydrogen storage alloy electrode serving as a negative electrode is a hydrogen storage alloy powder obtained by pulverizing a mass of the hydrogen storage alloy. Is prepared by adding a binder to the mixture and molding the mixture into an electrode shape.

【0004】水素吸蔵合金を負極に用いたニッケル・水
素蓄電池においては、水素吸蔵合金の表面がアルカリ電
解液と接触することにより、合金表面では気相反応と電
気化学的反応が同時に進行する。即ち、水素圧力及び温
度の関係では、水素が水素吸蔵合金に吸蔵され、或いは
水素吸蔵合金から水素が放出される(気相反応)。一
方、電圧及び電流の関係では、電圧の印加(充電)によ
って、水の電気分解で生じた水素が水素吸蔵合金に吸蔵
され、電流の取り出し(放電)によって、水素が酸化さ
れて水となる(電気化学的反応)。
In a nickel-hydrogen storage battery using a hydrogen storage alloy as a negative electrode, a gas phase reaction and an electrochemical reaction proceed simultaneously on the surface of the alloy because the surface of the hydrogen storage alloy comes into contact with an alkaline electrolyte. That is, in the relationship between the hydrogen pressure and the temperature, hydrogen is stored in the hydrogen storage alloy, or hydrogen is released from the hydrogen storage alloy (gas phase reaction). On the other hand, in the relationship between voltage and current, hydrogen generated by electrolysis of water is stored in the hydrogen storage alloy by application of voltage (charging), and hydrogen is oxidized to water by extraction of current (discharge) ( Electrochemical reaction).

【0005】[0005]

【発明が解決しようとする課題】ところで、ニッケル・
水素蓄電池に用いられる水素吸蔵合金電極は、充放電反
応時に大きな体積変化を起こすことが知られている。こ
れは、水素吸蔵時、即ち、充電反応時には水素吸蔵合金
中に水素原子が保持されるために水素吸蔵合金の体積が
増加し、水素原子を電解液に放出した状態、即ち、放電
反応時には水素吸蔵合金が収縮するためである。上述の
水素吸蔵合金の体積変動が充放電反応の度に繰り返され
ることによって、水素吸蔵合金粒子の崩壊、微粉化が生
じ、この水素吸蔵合金の体積変化と水素吸蔵合金粒子の
微粉化が原因となって、水素吸蔵合金を含む電極材料混
合体が芯体から剥離し、サイクル特性や高率放電特性等
が低下する問題があった。
SUMMARY OF THE INVENTION By the way, nickel
It is known that a hydrogen storage alloy electrode used in a hydrogen storage battery causes a large volume change during a charge / discharge reaction. This is because the hydrogen atoms are retained in the hydrogen storage alloy at the time of hydrogen storage, that is, at the time of the charge reaction, the volume of the hydrogen storage alloy increases, and the hydrogen atoms are released to the electrolytic solution, that is, the hydrogen is released at the time of the discharge reaction. This is because the storage alloy shrinks. The above-mentioned volume change of the hydrogen storage alloy is repeated each time the charge / discharge reaction is performed, so that the disintegration and pulverization of the hydrogen storage alloy particles occur, and the volume change of the hydrogen storage alloy and the pulverization of the hydrogen storage alloy particles cause As a result, there has been a problem that the electrode material mixture containing the hydrogen storage alloy is peeled off from the core, and the cycle characteristics, high-rate discharge characteristics, and the like are deteriorated.

【0006】本発明の目的は、ニッケル・水素蓄電池の
水素吸蔵合金電極において、芯体と水素吸蔵合金電極材
料混合体との密着性を改善することによって、水素吸蔵
合金と芯体との間の導電性を改良すると共に、電極材料
混合体の芯体からの剥離を抑制し、サイクル特性や高率
放電特性に優れた水素吸蔵合金電極を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the adhesion between a core and a hydrogen storage alloy electrode material mixture in a hydrogen storage alloy electrode of a nickel-metal hydride storage battery, so that the hydrogen storage alloy and the core can be separated from each other. An object of the present invention is to provide a hydrogen storage alloy electrode which has improved conductivity, suppresses separation of an electrode material mixture from a core, and has excellent cycle characteristics and high-rate discharge characteristics.

【0007】[0007]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
電極は、芯体の表面に水素吸蔵合金粉末を含む電極材料
混合体を塗布して構成され、芯体は、表面のぬれ指数が
35dyn/cm以上の金属板によって形成される。
The hydrogen storage alloy electrode according to the present invention is constituted by applying an electrode material mixture containing hydrogen storage alloy powder on the surface of a core, and the core has a surface wetting index. It is formed of a metal plate of 35 dyn / cm or more.

【0008】従来、ニッケル・水素蓄電池に用いられる
水素吸蔵合金電極の芯体は、ぬれ性試験による表面のぬ
れ指数が33dyn/cm程度であった(表1参照)。ここ
で、ぬれ指数は、芯体と、電極材料混合体を芯体に付着
させるべき結着剤との親和性を示している。従って、こ
の値が大きい芯体ほど電極材料混合体の付着強度が大き
く、サイクル特性が良好な水素吸蔵合金電極が得られ
る。又、電極材料混合体と芯体との密着性も向上するた
め、高率放電特性が改善される。
Conventionally, the core of a hydrogen-absorbing alloy electrode used for a nickel-metal hydride storage battery has a surface wetting index of about 33 dyn / cm in a wettability test (see Table 1). Here, the wetting index indicates the affinity between the core and the binder to which the electrode material mixture is to be attached to the core. Therefore, the larger the value of the core, the higher the adhesion strength of the electrode material mixture and the better the hydrogen storage alloy electrode having good cycle characteristics. In addition, since the adhesion between the electrode material mixture and the core is also improved, the high rate discharge characteristics are improved.

【0009】具体的には、芯体の表面には、コロナ放電
処理が施され、これによって芯体表面のぬれ指数が35
dyn/cm以上に設定される。
Specifically, the surface of the core is subjected to a corona discharge treatment so that the surface of the core has a wetting index of 35.
Set to dyn / cm or more.

【0010】具体的には、電極材料混合体に含まれる水
素吸蔵合金粉末の粒子径は30μm以下である。
More specifically, the particle diameter of the hydrogen storage alloy powder contained in the electrode material mixture is 30 μm or less.

【0011】前述の如く、芯体と電極材料混合体との親
和性を向上させることによって、電池特性の改善を行な
うと同時に、各々の粒子が密に接触するように、充填率
を増大させることが、水素吸蔵合金電極の導電性を向上
させ、サイクル特性や高率放電特性を改善する上で更に
好ましい。該具体的構成においては、負極活物質として
30μm以下の小粒径の水素吸蔵合金粉末を用い、電極
材料混合体の稠密性を向上させることによって負極の導
電性を改善し、サイクル特性や高率放電特性の良好な水
素吸蔵合金電極を得る。
As described above, by improving the affinity between the core and the electrode material mixture, the battery characteristics are improved, and at the same time, the packing ratio is increased so that each particle comes into close contact. Is more preferable in terms of improving the conductivity of the hydrogen storage alloy electrode and improving the cycle characteristics and the high-rate discharge characteristics. In this specific configuration, a hydrogen storage alloy powder having a small particle size of 30 μm or less is used as a negative electrode active material, and the conductivity of the negative electrode is improved by improving the denseness of the electrode material mixture, thereby improving cycle characteristics and high efficiency. A hydrogen storage alloy electrode having good discharge characteristics is obtained.

【0012】更に具体的には、前記芯体は、ニッケルを
含むパンチングメタルからなる金属板である。
More specifically, the core is a metal plate made of a punching metal containing nickel.

【0013】パンチングメタル芯体は、金属板に多数の
小孔を穿ったもので、単位重量当りに保持可能な電極材
料混合体量が比較的多く、電極材料混合体付着強度も高
いため、ニッケル・水素蓄電池の負極芯体に一般的に用
いられる。本発明に係る水素吸蔵合金電極は、実施例の
如く正極やセパレーターと共に巻回して円筒形電池に使
用されるので、柔軟性に富んだパンチングメタル芯体を
用いることが好ましい。又、ニッケル・水素蓄電池の負
極芯体の材料としてはニッケルを用いることが望ましい
が、パンチングメタル芯体として他の金属板の表面にニ
ッケル鍍金を施したものを用いることも可能である。
The punched metal core is formed by forming a large number of small holes in a metal plate. Since the amount of the electrode material mixture that can be held per unit weight is relatively large and the adhesion of the electrode material mixture is high, the punched metal core is made of nickel. -Generally used for the negative electrode core of a hydrogen storage battery. Since the hydrogen storage alloy electrode according to the present invention is wound around a positive electrode and a separator and used for a cylindrical battery as in the embodiment, it is preferable to use a punching metal core member having high flexibility. It is desirable to use nickel as the material of the negative electrode core of the nickel-metal hydride storage battery, but it is also possible to use a punched metal core obtained by plating the surface of another metal plate with nickel.

【0014】本発明に係る水素吸蔵合金電極の製造方法
は、芯体を作製する第1工程と、芯体の表面にコロナ放
電処理を施す第2工程と、前記コロナ放電処理を施した
芯体の表面に、水素吸蔵合金粉末及び結着剤からなる電
極材料混合体を塗布し、所定形状に成形する第3工程と
を有する。
The method for producing a hydrogen storage alloy electrode according to the present invention comprises a first step of producing a core, a second step of subjecting the surface of the core to a corona discharge treatment, and a core subjected to the corona discharge treatment. A step of applying an electrode material mixture comprising a hydrogen storage alloy powder and a binder to the surface of the substrate and forming the mixture into a predetermined shape.

【0015】上記本発明の水素吸蔵合金電極の製造方法
においては、芯体表面のぬれ性を改善するためにコロナ
放電処理を施す。一般に、コロナ放電処理は、印刷及び
コピー機による転写等に用いられ、処理対象物の表面を
帯電させる作用を有するものであって、芯体の改良に用
いられた例はない。発明者らは、ニッケル鍍金を施した
パンチングメタル芯体にコロナ放電処理を施すことによ
って、前記パンチングメタル芯体の表面に炭素が付着
し、より具体的にはカルボニル基や水酸基が増加するこ
とを明らかとした。これらの官能基の付着は、有機系及
び親水性の結着剤を用いて電極を作製する場合、芯体と
電極材料混合体の密着性を改善する上で有効であると考
えられる。具体的には、これらの効果は、ぬれ性試験に
よる芯体表面のぬれ指数の増加として表わされる。
In the method for producing a hydrogen storage alloy electrode according to the present invention, a corona discharge treatment is performed to improve the wettability of the surface of the core body. Generally, the corona discharge treatment is used for printing and transfer by a copy machine, and has a function of charging the surface of a processing object, and there is no example used for improving a core body. The present inventors performed a corona discharge treatment on a nickel-plated punched metal core, whereby carbon was attached to the surface of the punched metal core, and more specifically, carbonyl groups and hydroxyl groups increased. Clearly. It is considered that the attachment of these functional groups is effective in improving the adhesion between the core and the electrode material mixture when an electrode is produced using an organic or hydrophilic binder. Specifically, these effects are expressed as an increase in the wetting index of the surface of the core in a wetting test.

【0016】尚、前記コロナ放電処理による芯体のぬれ
性の向上効果は、処理後1週間程度で消失するため、コ
ロナ放電処理後の芯体は、可及的に短期間内に水素吸蔵
合金電極作製に使用する必要がある。
The effect of improving the wettability of the core by the corona discharge treatment disappears in about one week after the treatment, so that the core after the corona discharge treatment can be treated with a hydrogen storage alloy within as short a time as possible. It must be used for electrode fabrication.

【0017】[0017]

【発明の効果】本発明に係る水素吸蔵合金電極によれ
ば、芯体の表面にコロナ放電処理を施すことによって、
芯体表面のぬれ性が向上し、芯体と水素吸蔵合金電極材
料混合体との密着性が改善される。これによって、水素
吸蔵合金粉末と芯体との間の導電性を改良すると共に、
電極材料混合体の芯体からの剥離を抑制し、サイクル特
性や高率放電特性に優れた水素吸蔵合金電極が得られ
る。
According to the hydrogen storage alloy electrode of the present invention, the surface of the core body is subjected to corona discharge treatment,
The wettability of the core body surface is improved, and the adhesion between the core body and the hydrogen storage alloy electrode material mixture is improved. With this, while improving the conductivity between the hydrogen storage alloy powder and the core,
A hydrogen-absorbing alloy electrode excellent in cycle characteristics and high-rate discharge characteristics can be obtained by suppressing separation of the electrode material mixture from the core.

【0018】[0018]

【発明の実施の形態】本発明に係る水素吸蔵合金電極
は、パンチングメタル芯体の表面に、一定の厚さを有す
る電極材料混合体の層を形成してなり、芯体としては、
金属板に多数の小孔を穿ったパンチングメタルの表面
に、コロナ放電改質装置を用いてコロナ放電処理を施し
たものを用い、電極材料混合体は水素吸蔵合金粉末及び
結着剤を含んでいる。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrogen storage alloy electrode according to the present invention is formed by forming a layer of an electrode material mixture having a certain thickness on the surface of a punched metal core.
Using a corona discharge treatment using a corona discharge reformer on the surface of a punched metal with many small holes in a metal plate, the electrode material mixture contains hydrogen storage alloy powder and a binder I have.

【0019】コロナ放電処理の条件設定 本発明に係る水素吸蔵合金電極の作製に先立って、芯体
へのコロナ放電処理についての条件の検討を行なった。
Setting of Conditions for Corona Discharge Treatment Prior to manufacturing the hydrogen storage alloy electrode according to the present invention, conditions for corona discharge treatment on the core were examined.

【0020】(パンチングメタル芯体の作製)鉄からな
る金属板に、直径1.2mmの多数の孔を碁盤目状に穿っ
た後、ニッケル鍍金を施し、厚さ0.065mmのパンチ
ングメタル芯体を作製した。
(Preparation of Punched Metal Core) A metal plate made of iron is formed in a grid pattern with a large number of holes having a diameter of 1.2 mm, and then plated with nickel to form a punched metal core having a thickness of 0.065 mm. Was prepared.

【0021】(コロナ放電処理)コロナ放電処理に用い
るコロナ放電改質装置(4)は、図1に示す如く、長さ2
0cmの棒状の放電電極(41)と対向電極(42)とが対向配備
され、放電電極(41)は電源(43)のプラス電極に、対向電
極(42)は電源(43)のマイナス電極に接続されている。処
理すべきパンチングメタル芯体(3)は対向電極(42)上に
設置される。尚、パンチングメタル芯体(3)をコロナ放
電改質装置(4)の対向電極(42)上に設置する際には、放
電電極(41)の長軸方向に沿うパンチングメタル芯体(3)
の幅領域が、放電電極(41)の長軸方向の長さ領域から外
側に出ない様に位置決めする。芯体に対するコロナ放電
処理は、放電電極(41)とパンチングメタル芯体(3)との
間の距離を1mmに保持しつつ、放電電極(41)又はパンチ
ングメタル芯体(3)を一定の速度で移動させながら、電
圧を印加することによって行なう。表1に示すように、
コロナ放電処理時の電圧を各々8、10、12V、又、
処理速度を各々20、10、5cm/秒とし、9種のコロ
ナ放電処理済のパンチングメタル芯体を作製した。それ
ら9種のコロナ放電処理済パンチングメタル芯体と処理
前のパンチングメタル芯体とについて、JIS K 67
68に規定されるポリエチレン及びプロピレンフィルム
のぬれ試験方法に従って、ぬれ指数の測定を行なった。
(Corona Discharge Treatment) As shown in FIG. 1, a corona discharge reformer (4) used for corona discharge treatment has a length of 2 cm.
A 0 cm rod-shaped discharge electrode (41) and a counter electrode (42) are provided facing each other, and the discharge electrode (41) serves as a positive electrode of the power supply (43), and the counter electrode (42) serves as a negative electrode of the power supply (43). It is connected. The punched metal core (3) to be processed is placed on the counter electrode (42). When the punched metal core (3) is installed on the counter electrode (42) of the corona discharge reformer (4), the punched metal core (3) is disposed along the long axis direction of the discharge electrode (41).
Is positioned so that the width region does not come out of the length region in the major axis direction of the discharge electrode (41). In the corona discharge treatment for the core, the distance between the discharge electrode (41) and the punched metal core (3) is maintained at 1 mm, and the discharge electrode (41) or the punched metal core (3) is moved at a constant speed. This is performed by applying a voltage while moving. As shown in Table 1,
The voltage at the time of corona discharge treatment is 8, 10, 12 V, respectively.
The processing speed was set to 20, 10, and 5 cm / sec, respectively, and nine kinds of punched metal cores subjected to corona discharge treatment were produced. The nine types of punched metal cores subjected to corona discharge treatment and the punched metal cores before treatment are described in JIS K67.
The wetting index was measured according to the wetting test method for polyethylene and propylene films specified in No. 68.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示されるように、コロナ放電処理前
のパンチングメタル芯体のぬれ指数は33dyn/cmであっ
た。一方、コロナ放電処理後のパンチングメタル芯体に
おいて、ぬれ指数はすべてのパンチングメタル芯体で3
5dyn/cm以上となり、特に、処理速度が10cm/秒以上
で放電電圧が10kV以上のパンチングメタル芯体にお
いてぬれ指数は著しく増加し、54dyn/cmとなってい
る。ぬれ指数の増加は、電極材料混合体と芯体とを結着
せしめる結着剤の芯体への浸透性の向上に寄与し、これ
によって電極材料混合体と該芯体との密着性が改善され
る。従って、芯体に対するコロナ放電処理は、水素吸蔵
合金電極の塗膜強度の改良に有効に作用すると考えられ
る。そこで、本発明に係る水素吸蔵合金電極作製のため
のパンチングメタル芯体へのコロナ放電処理の条件は、
ぬれ指数が最大値を示した電圧10kV、処理速度5〜
10cm/秒とした。
As shown in Table 1, the wetting index of the punched metal core before the corona discharge treatment was 33 dyn / cm. On the other hand, in the punched metal core after the corona discharge treatment, the wetting index was 3 for all the punched metal cores.
The wetting index is remarkably increased to 54 dyn / cm, especially for a punched metal core having a processing speed of 10 cm / sec or more and a discharge voltage of 10 kV or more, at 54 dyn / cm. The increase in the wetting index contributes to the improvement of the permeability of the binder for binding the electrode material mixture and the core to the core, thereby improving the adhesion between the electrode material mixture and the core. Is done. Therefore, it is considered that the corona discharge treatment on the core body effectively works to improve the coating strength of the hydrogen storage alloy electrode. Therefore, the conditions of the corona discharge treatment on the punched metal core for producing the hydrogen storage alloy electrode according to the present invention are as follows:
The voltage at which the wetting index showed the maximum value was 10 kV, and the processing speed was 5 to 5.
10 cm / sec.

【0024】尚、コロナ放電処理前及び処理後のパンチ
ングメタル芯体の表面について、光電子分光分析法(X
PS)によって検討を行なった結果、コロナ放電処理後
のパンチングメタル芯体表面では、処理前のパンチング
メタル芯体表面と比較してカルボニル基、水酸基が増加
していることが明らかとなった。又、電極作製後にパン
チングメタル芯体断面を電子線マイクロプローブ分析法
(EPMA)を用いて元素分布について検討を行なった
結果、コロナ放電処理を施したパンチングメタル芯体の
表面付近において、未処理パンチングメタル芯体と比較
して炭素原子の付着が増加していたことが明らかとなっ
た。コロナ放電処理により極板強度が増大するのは、水
酸基、カルボニル基が増加したことによって、有機系結
着剤と芯体表面の親和性が向上したためであると考えら
れる。従って、コロナ放電処理を施し、35dyn/cm以上
のぬれ指数を示すパンチングメタル芯体において、これ
らの効果が期待される。以下、本発明に係るニッケル・
水素蓄電池の水素吸蔵合金電極について、具体的に説明
する。
The surface of the punched metal core before and after the corona discharge treatment was subjected to photoelectron spectroscopy (X
As a result of examination by PS), it was found that the carbonyl group and the hydroxyl group were increased on the surface of the punched metal core after the corona discharge treatment as compared with the surface of the punched metal core before the treatment. In addition, after examining the element distribution of the punched metal core cross section using the electron beam microprobe analysis (EPMA) after the electrode was fabricated, the unprocessed punched metal was found near the surface of the corona-discharged punched metal core. It became clear that the attachment of carbon atoms was increased as compared with the metal core. It is considered that the reason why the electrode strength is increased by the corona discharge treatment is that the affinity between the organic binder and the surface of the core is improved due to the increase of the hydroxyl group and the carbonyl group. Therefore, these effects can be expected in a punched metal core body subjected to corona discharge treatment and exhibiting a wetting index of 35 dyn / cm or more. Hereinafter, nickel according to the present invention
The hydrogen storage alloy electrode of the hydrogen storage battery will be specifically described.

【0025】[0025]

【実施例】実施例1 (水素吸蔵合金の作製、及びその粉末の調製)希土類元
素の混合物であるミッシュメタル(以下Mmという)、及
び各々純度99.9%の金属単体であるNi、Co、Al、
Mnをモル比がMm:Ni:Co:Al:Mn=1.0:3.
1:1.0:0.4:0.5となる様に混合した。この混合
物をアーク溶解炉でアルゴン雰囲気中で溶解せしめた
後、これを自然放冷してCaCu5型結晶構造を有する組
成式MmNi3.1Co1.0Al0.4Mn0.5で表わされる水素吸
蔵合金を作製した。上記の方法で作製した水素吸蔵合金
のインゴットを空気中で機械的に粉砕し、平均粒径80
μmの水素吸蔵合金粉末を得た。
Example 1 (Preparation of hydrogen storage alloy and preparation of powder thereof) Misch metal (hereinafter referred to as Mm) which is a mixture of rare earth elements, and Ni, Co, each of which is a simple metal having a purity of 99.9%. Al,
The molar ratio of Mn is Mm: Ni: Co: Al: Mn = 1.0: 3.
The mixture was mixed to give a ratio of 1: 1.0: 0.4: 0.5. After by dissolving the mixture in an arc melting furnace in an argon atmosphere to prepare a hydrogen absorbing alloy represented by a composition formula MmNi 3.1 Co 1.0 Al 0.4 Mn 0.5 with cool and CaCu 5 type crystal structure which. The hydrogen storage alloy ingot produced by the above method was mechanically pulverized in air to obtain an average particle diameter of 80.
A μm hydrogen storage alloy powder was obtained.

【0026】(水素吸蔵合金電極の作製)上記の如く作
製した水素吸蔵合金粉末から、粒径が各々30〜100
μm、30μm以下、60μm以下のものを分級した。こ
れら3種の水素吸蔵合金粉末を100重量部に対し、各
々結着剤としてポリエチレンオキサイドを5重量%含む
水溶液20重量部を混合し、3種のペーストを調製し
た。ニッケル鍍金を施した後に所定の条件でコロナ放電
処理を施したパンチングメタルからなる芯体の両面に、
これら3種のペーストを塗布し、室温で乾燥させた後に
長さ85mm、幅42mmに切断して、3種の水素吸蔵合金
電極を作製した。
(Preparation of Hydrogen Storage Alloy Electrode) From the hydrogen storage alloy powder prepared as described above, the particle size of each was 30 to 100.
Those having μm, 30 μm or less, and 60 μm or less were classified. 100 parts by weight of these three kinds of hydrogen storage alloy powders were mixed with 20 parts by weight of an aqueous solution containing 5% by weight of polyethylene oxide as a binder to prepare three kinds of pastes. On both sides of a core made of punched metal that has been subjected to corona discharge treatment under predetermined conditions after applying nickel plating,
These three pastes were applied, dried at room temperature, and then cut into a length of 85 mm and a width of 42 mm to produce three kinds of hydrogen storage alloy electrodes.

【0027】(ニッケル・水素蓄電池の作製)これら3
種の水素吸蔵合金電極を負極、従来より公知の焼結式ニ
ッケル電極を正極とし、セパレーターとしては耐アルカ
リ性の不繊布を、又、電解液としては30重量%水酸化
カリウム水溶液をそれぞれ使用し、AAサイズで電池容
量が1000mAhの3種の正極支配型ニッケル・水素蓄
電池A1〜A3を作製した。図2に示す如く、本発明に
係る水素吸蔵合金電極を用いたニッケル・水素蓄電池A
1(1)は、正極(11)、水素吸蔵合金電極からなる負極(1
2)、セパレーター(13)、正極リード(14)、負極リード(1
5)、正極外部端子(16)、負極缶(17)、及び封口蓋(18)等
から構成される。正極(11)及び負極(12)は、セパレータ
ー(13)を介して渦巻き状に巻き取られた状態で負極缶(1
7)に収容されており、正極(11)は正極リード(14)を介し
て封口蓋(18)に、負極(12)は負極リード(15)を介して負
極缶(17)に接続されている。負極缶(17)と封口蓋(18)と
の接合部には絶縁性のパッキング(20)が装着されて、電
池A1(1)の密閉化がなされている。正極外部端子(16)
と封口蓋(18)との間には、コイルスプリング(19)が設け
られ、電池内圧が異常に上昇したときに圧縮されて電池
内部のガスを大気中に放出し得る様になっている。
(Production of Nickel / Hydrogen Storage Battery)
A kind of hydrogen storage alloy electrode is used as a negative electrode, a conventionally known sintered nickel electrode is used as a positive electrode, an alkali-resistant non-woven cloth is used as a separator, and a 30% by weight aqueous solution of potassium hydroxide is used as an electrolytic solution. Three types of AA-sized nickel-metal hydride storage batteries A1 to A3 having a battery capacity of 1000 mAh were produced. As shown in FIG. 2, a nickel-hydrogen storage battery A using the hydrogen storage alloy electrode according to the present invention
1 (1) is a positive electrode (11) and a negative electrode (1) comprising a hydrogen storage alloy electrode.
2), separator (13), positive electrode lead (14), negative electrode lead (1
5), a positive electrode external terminal (16), a negative electrode can (17), a sealing lid (18), and the like. The positive electrode (11) and the negative electrode (12) are spirally wound via a separator (13) in a state where the negative electrode can (1)
The positive electrode (11) is connected to a sealing lid (18) via a positive electrode lead (14), and the negative electrode (12) is connected to a negative electrode can (17) via a negative electrode lead (15). I have. An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to seal the battery A1 (1). Positive external terminal (16)
A coil spring (19) is provided between the battery and the sealing lid (18) so that when the battery internal pressure rises abnormally, the battery is compressed and gas inside the battery can be released to the atmosphere.

【0028】実施例2 水素吸蔵合金の平均粒径が各々10、12、18、2
0、25μmである以外は、実施例1と同様にして5種
の本発明に係る水素吸蔵合金電極を用いたニッケル・水
素蓄電池C1〜C5を作製した。
Example 2 The average particle size of the hydrogen storage alloy was 10, 12, 18, and 2, respectively.
Except for 0 and 25 μm, nickel-hydrogen storage batteries C1 to C5 using five kinds of hydrogen storage alloy electrodes according to the present invention were produced in the same manner as in Example 1.

【0029】比較例1 コロナ放電処理を施さないニッケル鍍金パンチングメタ
ル芯体を用いた以外は、実施例1と同様にして3種の比
較用ニッケル・水素蓄電池B1〜B3を作製した。
Comparative Example 1 Three types of comparative nickel-metal hydride batteries B1 to B3 were produced in the same manner as in Example 1 except that a nickel-plated punched metal core not subjected to corona discharge treatment was used.

【0030】比較例2 コロナ放電処理を施さないニッケル鍍金パンチングメタ
ル芯体を用いた以外は、実施例2と同様にして5種の比
較用ニッケル・水素蓄電池D1〜D5を作製した。
Comparative Example 2 Five kinds of comparative nickel-metal hydride batteries D1 to D5 were produced in the same manner as in Example 2 except that a nickel-plated punched metal core not subjected to corona discharge treatment was used.

【0031】水素吸蔵合金電極の極板強度試験 JIS K 5400に規定される碁盤目テープ法を用い
て、コロナ放電処理済、或いは未処理のパンチングメタ
ル芯体を用いた水素吸蔵合金電極の極板強度を測定し
た。
Electrode strength test of hydrogen storage alloy electrode Electrode plate of hydrogen storage alloy electrode using corona discharge treated or untreated punched metal core using the grid tape method specified in JIS K 5400 The strength was measured.

【0032】サイクル特性試験 各電池を、常温にて200mA(0.2C)で6時間充電
した後、200mA(0.2C)で1.0Vまで放電する充
放電サイクルを繰返し、500サイクル目の放電容量
(mAh)を求めた。尚、各電池の初期放電容量は各々約
1000mAhであった。
Cycle Characteristics Test Each battery was charged at 200 mA (0.2 C) for 6 hours at room temperature, and then charged and discharged at 200 mA (0.2 C) to 1.0 V. The capacity (mAh) was determined. The initial discharge capacity of each battery was about 1000 mAh.

【0033】高率放電特性試験 各電池を、常温にて200mA(0.2C)で6時間充電
した後、3000mA(3.0C)で1.0Vまで放電し、
その際の放電容量(mAh)を求めた。
High Rate Discharge Characteristics Test Each battery was charged at room temperature at 200 mA (0.2 C) for 6 hours, and then discharged at 3000 mA (3.0 C) to 1.0 V.
The discharge capacity (mAh) at that time was determined.

【0034】以下、実施例1及び比較例1の結果を表2
に、実施例2及び比較例2の結果を表3に示す。
The results of Example 1 and Comparative Example 1 are shown in Table 2 below.
Table 3 shows the results of Example 2 and Comparative Example 2.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表2に示されるように、コロナ放電処理を
施したパンチングメタル芯体を用いて作製したニッケル
・水素蓄電池A1〜A3は、パンチングメタル芯体にコ
ロナ放電処理を施さなかった以外は同様に作製した比較
電池B1〜B3と比較して、極板強度、500サイクル
目の放電容量で示されるサイクル特性及び高率放電特性
のすべてが著しく改善されていた。又、これらの効果は
同時に活物質として用いた水素吸蔵合金粉末の粒子径に
も依存し、小粒径の水素吸蔵合金粉末を用いるほど、各
電池特性が改善されることが明らかとなった。
As shown in Table 2, the nickel-metal hydride storage batteries A1 to A3 manufactured using the punched metal cores subjected to the corona discharge treatment were the same except that the corona discharge treatment was not applied to the punched metal cores. As compared with the comparative batteries B1 to B3, all of the electrode strength, the cycle characteristics indicated by the discharge capacity at the 500th cycle, and the high rate discharge characteristics were remarkably improved. These effects also depend on the particle size of the hydrogen storage alloy powder used as the active material at the same time, and it has been clarified that the smaller the particle size of the hydrogen storage alloy powder, the better the characteristics of each battery.

【0038】表3は実施例1で用いられたものより更に
小粒径の水素吸蔵合金粉末を含有する水素吸蔵合金電極
を用いたニッケル・水素蓄電池について検討を行なった
結果を示す。上記の実施例1の結果と同様に、コロナ放
電処理を施したパンチングメタル芯体を用いた本発明を
実施すべきニッケル・水素蓄電池C1〜C5において、
高い極板強度及び良好なサイクル特性が得らた。比較電
池D1〜D5と比較することによって、コロナ放電処理
の効果は明らかであるが、粒子径が30μm以下の水素
吸蔵合金粉末を用いることによっても、更に相乗効果が
得られている。従って、パンチングメタル芯体に対する
コロナ放電処理と同時に、水素吸蔵合金電極の改良に粒
子径が30μm以下の水素吸蔵合金粉末を用いることが
有効であることが明らかとなった。
Table 3 shows the results of a study on a nickel-hydrogen storage battery using a hydrogen storage alloy electrode containing a hydrogen storage alloy powder having a smaller particle size than that used in Example 1. Similarly to the result of Example 1 described above, in the nickel-metal hydride storage batteries C1 to C5 in which the present invention using the punched metal core subjected to the corona discharge treatment is to be implemented,
High electrode plate strength and good cycle characteristics were obtained. Although the effect of the corona discharge treatment is clear by comparing with the comparative batteries D1 to D5, a further synergistic effect is obtained by using a hydrogen storage alloy powder having a particle diameter of 30 μm or less. Therefore, it has been clarified that it is effective to use a hydrogen storage alloy powder having a particle diameter of 30 μm or less in improving the hydrogen storage alloy electrode simultaneously with the corona discharge treatment for the punched metal core.

【0039】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、パンチングメタル芯体は、
鉄を母材としてニッケル鍍金を施したものに限らず、ア
ルカリ電解液によって腐食されない他の金属材料を用い
て作製することも可能である。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, a punched metal core
The present invention is not limited to nickel-plated iron, and it is also possible to use other metal materials that are not corroded by an alkaline electrolyte.

【図面の簡単な説明】[Brief description of the drawings]

【図1】コロナ放電処理に用いるコロナ放電改質装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a corona discharge reforming apparatus used for corona discharge treatment.

【図2】本発明を実施すべきニッケル・水素蓄電池の断
面図である。
FIG. 2 is a sectional view of a nickel-metal hydride storage battery in which the present invention is to be implemented.

【符号の説明】[Explanation of symbols]

(1) ニッケル・水素蓄電池 (11) 正極 (12) 負極 (13) セパレーター (3) パンチングメタル芯体 (4) コロナ放電改質装置 (41) 放電電極 (42) 対向電極 (43) 電源 (1) Nickel / hydrogen storage battery (11) Positive electrode (12) Negative electrode (13) Separator (3) Punched metal core (4) Corona discharge reformer (41) Discharge electrode (42) Counter electrode (43) Power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井本 輝彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 木本 衛 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Teruhiko Imoto 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Mamoru Kimoto 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-2-5 Keihanhondori, Moriguchi City, Osaka Prefecture (72) Inventor Koji Nishio Keihanhondori, Moriguchi City, Osaka Prefecture 2-5-5 Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 芯体の表面に、水素吸蔵合金粉末を含む
電極材料混合体を塗布して構成される水素吸蔵合金電極
において、芯体は、表面のぬれ指数が35dyn/cm以上の
金属板であることを特徴とする水素吸蔵合金電極。
1. A hydrogen storage alloy electrode formed by applying an electrode material mixture containing a hydrogen storage alloy powder on the surface of a core, wherein the core has a surface having a wetting index of 35 dyn / cm or more. A hydrogen storage alloy electrode, characterized in that:
【請求項2】 前記芯体の表面には、コロナ放電処理が
施されている請求項1に記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein a corona discharge treatment is applied to a surface of the core body.
【請求項3】 電極材料混合体に含まれる水素吸蔵合金
粉末の粒径が30μm以下である請求項1又は請求項2
に記載の水素吸蔵合金電極。
3. The hydrogen storage alloy powder contained in the electrode material mixture has a particle size of 30 μm or less.
5. The hydrogen storage alloy electrode according to item 1.
【請求項4】 前記芯体となる金属板は、ニッケルを含
むパンチングメタルから形成される請求項1乃至請求項
3の何れかに記載の水素吸蔵合金電極。
4. The hydrogen storage alloy electrode according to claim 1, wherein the metal plate serving as the core is formed from a punching metal containing nickel.
【請求項5】 芯体を作製する第1工程と、芯体の表面
にコロナ放電処理を施す第2工程と、前記コロナ放電処
理を施した芯体の表面に、水素吸蔵合金粉末及び結着剤
からなる電極材料混合体を塗布し、所定形状に成形する
第3工程とを有する水素吸蔵合金電極の製造方法。
5. A first step of producing a core, a second step of subjecting the surface of the core to a corona discharge treatment, and applying a hydrogen storage alloy powder and binding to the surface of the core subjected to the corona discharge treatment. Applying a mixture of electrode materials made of an agent and forming the mixture into a predetermined shape.
JP9266907A 1997-09-30 1997-09-30 Hydrogen storage alloy electrode and manufacture thereof Pending JPH11111303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9266907A JPH11111303A (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9266907A JPH11111303A (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11111303A true JPH11111303A (en) 1999-04-23

Family

ID=17437326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9266907A Pending JPH11111303A (en) 1997-09-30 1997-09-30 Hydrogen storage alloy electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11111303A (en)

Similar Documents

Publication Publication Date Title
JP3214341B2 (en) Manufacturing method of hydrogen storage alloy for batteries
JP7129288B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing this positive electrode
JPH1186898A (en) Alkaline storage battery
JP3729815B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JPH1021897A (en) Secondary battery electrode
JP3469754B2 (en) Hydrogen storage alloy electrode
JP3895984B2 (en) Nickel / hydrogen storage battery
JPH11111303A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2002343349A (en) Hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH10255775A (en) Hydrogen storage alloy electrode and its manufacture
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
KR100284901B1 (en) Method for manufacturing negative electrode for NI / MH secondary battery using CU
JP3343413B2 (en) Alkaline secondary battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery
JP2004185956A (en) Nickel-hydrogen storage battery