JPH11101421A - Method of controlling waste feed speed of waste incinerator and waste incinerator - Google Patents

Method of controlling waste feed speed of waste incinerator and waste incinerator

Info

Publication number
JPH11101421A
JPH11101421A JP9264012A JP26401297A JPH11101421A JP H11101421 A JPH11101421 A JP H11101421A JP 9264012 A JP9264012 A JP 9264012A JP 26401297 A JP26401297 A JP 26401297A JP H11101421 A JPH11101421 A JP H11101421A
Authority
JP
Japan
Prior art keywords
furnace
amount
dust
waste
calorific value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9264012A
Other languages
Japanese (ja)
Other versions
JP3556078B2 (en
Inventor
Toshio Nakanishi
俊夫 中西
Fuminori Imamura
文典 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP26401297A priority Critical patent/JP3556078B2/en
Publication of JPH11101421A publication Critical patent/JPH11101421A/en
Application granted granted Critical
Publication of JP3556078B2 publication Critical patent/JP3556078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize calorific value within a furnace by providing a waste heat boiler producing steam by heat produced in a furnace which performs incineration treatment of fed waste while the waste is being conveyed and avoiding reverse response to control of a waste incinerator controlling waste feed amount to the furnace by a waste feed mechanism per unit time in order to keep calorific value within a specified range. SOLUTION: Theoretical air volume At required for combustion of waste fed to a furnace F is calculated and derived from concentration of oxygen in a waste gas at a downstream side of a flue 4 and volume of fed air and low level calorific value Hu is calculated and derived on the basis of calorific value Qo calculated and derived on the basis of combustion of waste in the furnace F and the theoretical air volume At. On the basis of a target calorific value Qs and the low level calorific value Hu in the fiunace a feed amount Gr of the waste to the furnace F per unit time is set and the waste feed operation of the waste feed mechanism 7 is controlled on the basis of the set waste feed amount Gr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゴミ焼却炉の給塵
速度制御方法に関し、詳しくは、投入されたゴミを搬送
しながら焼却処理する火炉における発生熱により蒸気を
発生する廃熱ボイラを備え、前記火炉における発生熱量
を所定範囲内に維持すべく、給塵機構による前記火炉へ
の単位時間当たりのゴミ投入量を制御するゴミ焼却炉の
給塵速度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a dust supply speed of a refuse incinerator, and more particularly, to a waste heat boiler for generating steam by heat generated in a furnace for incineration while transporting inputted refuse. The present invention also relates to a dust supply speed control method for a refuse incinerator, which controls the amount of refuse supplied to the furnace per unit time by a dust supply mechanism so as to maintain the amount of heat generated in the furnace within a predetermined range.

【0002】[0002]

【従来の技術】従来、ゴミ焼却設備には、図2に示すよ
うに、投入されるゴミを受け入れるホッパ1aと、前記
ホッパ1aから火炉Fにゴミを投入する給塵機構7と、
前記火炉Fに投入されたゴミを搬送しながら焼却するス
トーカ機構1bからなる火床と、前記火床上に形成され
る燃焼領域からの燃焼ガスを二次燃焼させる二次燃焼室
1cとを設けて構成してあるゴミ焼却炉1と、前記二次
燃焼室1cからの排ガスを煙突6に導く煙道4に、前記
排ガスの熱、即ち前記火床上で焼却されるゴミの焼却生
成熱を回収して蒸気を発生する廃熱ボイラ2と、前記排
ガス中の粉塵等を除去する除塵装置3と、前記除塵後の
排ガスを無害化する排ガス処理装置5とを順次配置し、
さらに、前記ゴミ焼却炉1からの排ガスを前記廃熱ボイ
ラ2で生成する蒸気によりタービンを回転駆動して発電
する発電装置9を設けてあり、前記火炉Fにおけるゴミ
の燃焼により発生する蒸気の量を所定範囲内に維持しな
がら所定量のゴミの焼却を遂行するための燃焼制御装置
10を付設して構成されていた。前記燃焼制御装置10
は、火炉Fに空気を供給する空気供給装置8及び前記給
塵機構7を制御するように構成してある。
2. Description of the Related Art Conventionally, as shown in FIG. 2, a garbage incinerator has a hopper 1a for receiving garbage to be thrown in, and a dust supply mechanism 7 for throwing garbage into the furnace F from the hopper 1a.
A fire bed comprising a stoker mechanism 1b for incinerating the refuse charged in the furnace F while transporting the same, and a secondary combustion chamber 1c for secondary burning of combustion gas from a combustion region formed on the fire bed are provided. The heat of the exhaust gas, that is, the heat generated by the incineration of the refuse to be incinerated on the grate, is collected in the configured refuse incinerator 1 and the flue 4 that guides the exhaust gas from the secondary combustion chamber 1c to the chimney 6. A waste heat boiler 2 for generating steam, a dust removal device 3 for removing dust and the like in the exhaust gas, and an exhaust gas treatment device 5 for detoxifying the exhaust gas after the dust removal, are sequentially arranged.
Further, there is provided a power generation device 9 for generating electric power by rotating a turbine with steam generated by the waste heat boiler 2 to generate exhaust gas from the refuse incinerator 1, and the amount of steam generated by combustion of refuse in the furnace F. And a combustion control device 10 for performing incineration of a predetermined amount of garbage while maintaining the temperature within a predetermined range. The combustion control device 10
Is configured to control an air supply device 8 for supplying air to the furnace F and the dust supply mechanism 7.

【0003】そして、その燃焼制御装置10にフィード
バックデータを出力すべく、前記廃熱ボイラ2からの蒸
気の流量を検出する蒸気流量検出手段21と、その蒸気
の温度を検出する蒸気温度検出手段22と、排ガス中の
酸素濃度を検出する酸素濃度検出手段23とを設けてあ
った。前記蒸気流量検出手段21と前記蒸気温度検出手
段22とは前記廃熱ボイラ2からの発生蒸気量を所定範
囲内に維持するためのものであり、前記酸素濃度検出手
段23は排ガスの成分組成を所定範囲に維持するための
ものであり、具体的には排ガス中の酸素濃度を例えば8
%程度に維持する。
[0003] In order to output feedback data to the combustion control device 10, a steam flow rate detecting means 21 for detecting a flow rate of steam from the waste heat boiler 2 and a steam temperature detecting means 22 for detecting a temperature of the steam. And oxygen concentration detecting means 23 for detecting the oxygen concentration in the exhaust gas. The steam flow rate detecting means 21 and the steam temperature detecting means 22 are for maintaining the amount of steam generated from the waste heat boiler 2 within a predetermined range, and the oxygen concentration detecting means 23 determines the component composition of the exhaust gas. This is for maintaining the oxygen concentration in the exhaust gas at, for example, 8%.
%.

【0004】前記燃焼制御装置10には、前記給塵機構
7により火炉F内にゴミを投入する給塵速度を制御する
ための給塵制御手段11を備えており、その給塵速度制
御は、過去3時間内にホッパに投入されたゴミの重量の
移動平均値と、同じく過去3時間内に炉内で発生した発
熱量の移動平均値とから、炉内のゴミの単位重量当たり
の平均発熱量を算出し、これを基に前記給塵機構7のホ
ッパ内のゴミを炉内に投入する動作速度を制御すること
で行われていた。つまり、炉内に投入されるゴミの低位
発熱量を前記平均発熱量であると推定して、炉内の発生
熱量を一定に維持するように、炉内に投入されるゴミの
重量を前記平均発熱量に見合うように前記給塵機構のゴ
ミ投入量を制御していた。上記3時間の移動平均値を用
いるのは、ホッパにゴミが投入されてから火炉内の燃え
切り位置に達するまでの平均所要時間(例えば、ホッパ
滞留時間(具体例をあげれば、約1〜1.5時間)と火
炉内に投入されてから燃え切り位置に達するまでの時間
(具体例をあげれば、約0.5〜1時間)を基準とす
る)を基準として投入されるゴミのゴミ質を平均化して
把握することにあり、火炉に投入されるゴミの質の変動
に対処しようとするものである。
The combustion control device 10 is provided with dust supply control means 11 for controlling a dust supply speed at which dust is introduced into the furnace F by the dust supply mechanism 7. From the moving average of the weight of the trash put into the hopper in the past 3 hours and the moving average of the calorific value generated in the furnace in the last 3 hours, the average heat generation per unit weight of the trash in the furnace The amount is calculated, and based on the calculated amount, the operation speed at which dust in the hopper of the dust supply mechanism 7 is introduced into the furnace is controlled. That is, the lower calorific value of the refuse introduced into the furnace is estimated to be the average calorific value, and the weight of the refuse introduced into the furnace is averaged so as to keep the calorific value generated in the furnace constant. The amount of dust input into the dust supply mechanism is controlled to match the amount of heat generated. The above three-hour moving average is used because the average required time from when dust is introduced into the hopper to when it reaches the burnout position in the furnace (for example, the hopper residence time (about 1 to 1 in a specific example) .5 hours) and the time taken from when it is put into the furnace to when it reaches the burnout position (about 0.5 to 1 hour in a specific example). The purpose of this is to average out and understand and to deal with fluctuations in the quality of garbage put into the furnace.

【0005】さらに詳しく説明すれば、ゴミの計量はホ
ッパ投入前にクレーンで掴み上げた際に行われるから、
例えば給塵機構が押込給塵機構である場合には、1回に
投入されたゴミが数回乃至中数回にわたって分割して投
入されることになり、1回に押し込まれるゴミの質につ
いてみれば、毎回ゴミ質の変動があるが、火炉内でのゴ
ミは、数回乃至十数回にわたって押込まれた投入ゴミ量
に相当するゴミが燃焼していることになり、燃焼発熱は
平均化された現象となってから、投入されるゴミに関し
ても平均化することが必要なのである。しかも、ゴミの
質は前記クレーンで掴み上げた際に嵩密度から判定する
から、前記押込給塵機構の数回乃至十数回の押込動作に
よって火炉に投入されるゴミの嵩密度の平均値から判定
していることになり、この点からも平均値で把握するこ
とが必要であったのである。
[0005] More specifically, since the weighing of dust is performed when the dust is picked up by a crane before being put into the hopper,
For example, when the dust supply mechanism is a push-in dust supply mechanism, the dust put in at one time is divided and put in several to several times, and the quality of the dust pushed in at one time is examined. For example, the garbage quality fluctuates every time, but as for garbage in the furnace, garbage equivalent to the amount of input garbage pushed in several to ten and several times is burning, and the combustion heat is averaged. It is necessary to average out the garbage that is thrown in after the phenomenon. Moreover, since the quality of the garbage is determined from the bulk density when the garbage is picked up by the crane, it is determined from the average value of the bulk density of the garbage put into the furnace by the pushing operation of the pushing dust supply mechanism several to ten and several times. This means that the judgment was made, and from this point it was necessary to grasp the average value.

【0006】[0006]

【発明が解決しようとする課題】従って、上記従来のゴ
ミ焼却炉の給塵速度制御方法においては、実際に給塵機
構によりホッパから炉内に投入されるゴミの単位重量当
たりの発熱量と上述の移動平均値として求めた平均発熱
量との間には大きな誤差が生じる場合があり、次のよう
な問題を招いていた。例えば急に多量の水分の多いゴミ
がホッパ内に投入される場合、炉内に投入されたゴミの
低位発熱量が急激に低下して燃焼発熱量が低下するが、
これに拘わらず過去3時間の投入ゴミの燃焼発熱量から
投入されるゴミの燃焼発熱量を推定している(従って、
ゴミの嵩密度もこれに対応している)ために、実際に投
入されるゴミの水分が多ければ、投入されるゴミの嵩密
度が前記平均発熱量に対応するゴミの嵩密度よりも大き
くなるのが通常で、投入ゴミ量を増量すべく設定された
ゴミ投入量に対して、実際に投入されるゴミの量は少な
くなり、しかも水分が多いために投入されたゴミの燃焼
発熱量は逆に低下する場合があり、こうした制御に対す
る逆応答により炉内発熱量を一定に保つのが困難になる
という問題がある。また、これと逆に、乾燥度が高く、
低位発熱量の高いゴミが多量にホッパ内に投入された場
合には、炉内に投入されたゴミの燃焼発熱量が急激に増
大して、投入ゴミ量を減量すべく設定されたゴミ投入量
に対して、上記と同様の理由により、逆に炉内に投入さ
れるゴミ量は設定されたほどには減少せず、しかもゴミ
が乾燥しているために投入されたゴミの燃焼発熱量が逆
に増大する場合があり、ここでも逆応答により炉内発熱
量を一定に保つのが困難になる場合があるという問題を
有している。さらに、ゴミの平均発熱量を、燃焼制御装
置に付随する記憶手段に過去のデータとして記憶させた
ものから算出しているために、炉の立ち上げの際や、制
御電源の停電等による記憶消失の後には、給塵制御の指
標となるべき基準、即ち炉内ゴミの平均発熱量が給塵機
構の投入ゴミ量に反映できないために、適切な給塵制御
ができなくなるという問題も有していた。そこで、本発
明のゴミ焼却炉の給塵速度制御方法並びにゴミ焼却炉
は、上記の問題点を解決し、適切な給塵量を設定するこ
とにより、制御に対する逆応答を防止して、炉内の発熱
量をさらに安定化させることを目的とする。
Therefore, in the above-described conventional method of controlling the dust supply speed of a refuse incinerator, the amount of heat generated per unit weight of refuse introduced into the furnace from the hopper by the dust supply mechanism and the amount of heat generated per unit weight are described. In some cases, a large error occurs between the moving average value and the average calorific value calculated as the moving average value, and this causes the following problem. For example, when a large amount of moisture-rich dust is suddenly thrown into the hopper, the lower calorific value of the dust thrown into the furnace decreases sharply, and the calorific value decreases.
Despite this, the calorific value of the injected refuse is estimated from the calorific value of the refuse for the past three hours (accordingly,
(The bulk density of the garbage also corresponds to this.) Therefore, if the water content of the garbage actually input is large, the bulk density of the garbage to be input is larger than the bulk density of the garbage corresponding to the average calorific value. Normally, the amount of garbage actually input is smaller than the garbage input amount set to increase the amount of garbage input, and the amount of heat generated by burning the garbage is inverse due to the large amount of moisture. However, there is a problem that it is difficult to maintain a constant calorific value in the furnace due to the inverse response to such control. On the contrary, the degree of drying is high,
If a large amount of garbage with a low calorific value is thrown into the hopper, the amount of garbage charged into the furnace increases rapidly and the amount of garbage charged is set to reduce the amount of garbage charged On the other hand, for the same reason as above, the amount of refuse charged into the furnace does not decrease as much as set, and since the refuse is dry, the amount of heat generated by burning the refuse increases. On the other hand, it may increase, and here again, there is a problem that it may be difficult to maintain a constant calorific value in the furnace due to the reverse response. Furthermore, since the average calorific value of dust is calculated from data stored in the storage means associated with the combustion control device as past data, memory loss due to furnace startup, power failure of the control power supply, etc. After that, there is also a problem that proper dust supply control cannot be performed because the standard to be an index of the dust supply control, that is, the average heat generation amount of the dust in the furnace cannot be reflected in the amount of dust put in the dust supply mechanism. Was. Thus, the dust supply speed control method and the dust incinerator of the refuse incinerator according to the present invention solve the above-described problems, and by setting an appropriate amount of dust supply, prevent a reverse response to the control, thereby preventing the in-furnace The purpose of the present invention is to further stabilize the calorific value.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕 上記の目的のための本発明のゴミ焼却炉の給塵速度制御
方法の第1特徴構成は、請求項1に記載の如く、炉内の
ゴミの燃焼に要する理論空気量(At)を、前記火炉からの
燃焼排ガスを導く煙道の下流側における排ガス中の酸素
濃度と(Po)、前記火炉に供給された空気量(Fa)とから求
め、予め前記理論空気量(At)と炉内ゴミの低位発熱量(H
u)とに関する At = a1 × Hu + a2 (但し、a1,a2 は夫々実測値に基づき設定される定数) とする経験式を求めておき、前記炉内ゴミの低位発熱量
(Hu)を、プロセスデータから求められる前記火炉におけ
るゴミの燃焼に基づく発生熱量(Qo)と、前記理論空気量
(At)とに基づく Hu = b1 × Qo / ( At − b2 × Qo ) (但し、b1,b2 は夫々設定される定数) として定められる関係式に基づいて求めて、前記ゴミ投
入量(Gr)を、前記火炉における目標発生熱量(Qs)と前記
求めた低位発熱量(Hu)とに基づき、 Gr = Qs / Hu として求めて前記給塵機構を制御する点にある。尚、前
記各定数は、通常は b1 = a2 b2 = a1 という関係を備えている。
[First characteristic configuration] A first characteristic configuration of the dust supply speed control method for a refuse incinerator according to the present invention for the above purpose is as described in claim 1, wherein the theoretical air amount required for refuse combustion in the furnace. (At), the oxygen concentration in the flue gas downstream of the flue that guides the flue gas from the furnace and (Po), the amount of air supplied to the furnace (Fa), the theoretical air amount in advance ( At) and the lower heating value (H
u) and an empirical formula of At = a 1 × Hu + a 2 (where a 1 and a 2 are constants set based on actually measured values) is obtained, and the lower heating value of the refuse in the furnace is obtained.
(Hu), the amount of heat generated based on the combustion of garbage in the furnace determined from process data (Qo), and the theoretical air amount
Hu = b 1 × Qo / (At−b 2 × Qo) based on (At) (where b 1 and b 2 are constants respectively set) The amount (Gr) is obtained as Gr = Qs / Hu based on the target generated heat amount (Qs) in the furnace and the obtained lower heating value (Hu), and the dust supply mechanism is controlled. Note that the constants typically includes a relationship b 1 = a 2 b 2 = a 1.

【0008】〔第1特徴構成の作用効果〕上記第1特徴
構成によれば、ゴミ投入量を実情に即して制御できるよ
うになる。つまり、従来はホッパに投入されてから火炉
内で燃え切るまでの時間に見合う時間の前記ホッパへの
投入ゴミの軽量結果の平均値からゴミの低位発熱量を推
定していたのに対して、実際に燃焼しているゴミの低位
発熱量に基づいてゴミ投入量を設定するから、次に火炉
に投入されるゴミの質に対して従来のような大きな誤差
は生じない。従って、給塵速度の制御の精度を大幅に向
上できるようになる。
[Effects of the first characteristic configuration] According to the first characteristic configuration, the amount of dust input can be controlled in accordance with the actual situation. In other words, conventionally, the lower heating value of the garbage was estimated from the average value of the light weight results of the garbage charged into the hopper for a time corresponding to the time from being put into the hopper to burning out in the furnace, Since the dust input amount is set based on the lower heating value of the actually burning dust, there is no large difference in the quality of the dust to be subsequently fed into the furnace as in the conventional case. Therefore, the accuracy of controlling the dust supply speed can be greatly improved.

【0009】詳しく説明すれば、前記火炉からの燃焼排
ガスを導く煙道の下流側における排ガス中の酸素濃度
と、前記火炉に供給された空気量とから炉内のゴミの燃
焼に要する理論空気量を求め、予め各種ゴミ質のゴミの
燃焼に要する理論空気量と、同じゴミに対する低位発熱
量の実測結果から、両者の相関を求めて、一次近似した
式を導出しておいて、燃焼制御装置に入力されるプロセ
スデータから求められる前記火炉におけるゴミの燃焼に
基づく発生熱量と、前記理論空気量とに基づいて前記炉
内ゴミの低位発熱量を求めるから、炉内の実際の燃焼状
態に即したゴミの低位発熱量が求められる。尚、ゴミの
嵩密度とその低位発熱量との間には高い相関がある。
More specifically, the theoretical air amount required for the combustion of refuse in the furnace is obtained from the oxygen concentration in the exhaust gas on the downstream side of the flue that guides the combustion exhaust gas from the furnace and the amount of air supplied to the furnace. From the theoretical air amount required for the combustion of various types of garbage and the actual measurement results of the lower heating value for the same garbage, to obtain a correlation between the two, to derive a linearly approximated expression, The lower calorific value of the in-furnace debris is determined based on the amount of heat generated based on the combustion of debris in the furnace and the theoretical amount of air obtained from the process data input to the furnace. The lower calorific value of the waste is required. Note that there is a high correlation between the bulk density of dust and its lower heating value.

【0010】従って、給塵機構によりホッパから投入さ
れるゴミの性状に近いゴミをの性状を基準として給塵速
度を決定するから、逆方向の制御応答を防止して、前記
給塵機構の制御の静定を早めることが出来るようにな
る。その結果、適切な給塵量を設定することが可能にな
る。
Therefore, since the dust supply speed is determined based on the property of dust near the property of dust input from the hopper by the dust supply mechanism, the control response in the reverse direction is prevented, and the control of the dust supply mechanism is prevented. Can be settled earlier. As a result, it is possible to set an appropriate dust supply amount.

【0011】〔第2特徴構成〕上記の目的のための本発
明のゴミ焼却炉の第2特徴構成は、請求項2に記載の如
く、火炉からの燃焼排ガスを導く煙道の下流側における
排ガス中の酸素濃度と、前記火炉に供給された空気量と
から、前記火炉に投入されたゴミの燃焼に要する理論空
気量を演算導出する理論空気量演算手段と、炉の燃焼制
御装置からのプロセスデータに基づき前記火炉における
ゴミの燃焼に基づく発生熱量を演算導出する発生熱量演
算手段と、前記理論空気量演算手段で演算導出した理論
空気量と、前記発生熱量演算手段で演算導出した発生熱
量とを基に、炉内ゴミの低位発熱量を演算導出する低位
発熱量演算手段とを備え、前記火炉における目標発生熱
量と前記低位発熱量演算手段で演算導出した低位発熱量
とに基づき、前記火炉への単位時間当たりのゴミ投入量
を設定する給塵量設定手段を備えて、前記給塵量設定手
段で設定したゴミ投入量に基づき給塵機構の給塵動作を
制御するように給塵制御手段を構成してある点にある。
[Second characteristic configuration] A second characteristic configuration of the refuse incinerator of the present invention for the above purpose is as described in claim 2, wherein the exhaust gas at the downstream side of the flue for guiding the combustion exhaust gas from the furnace is described. A theoretical air amount calculating means for calculating and calculating a theoretical air amount required for burning the refuse charged into the furnace from the oxygen concentration in the furnace and the air amount supplied to the furnace, and a process from a furnace combustion control device. A generated calorific value calculating means for calculating and deriving a generated heat amount based on the combustion of dust in the furnace based on the data, a theoretical air amount calculated and derived by the theoretical air amount calculating means, and a generated heat amount calculated and derived by the generated heat amount calculating means. Based on the lower calorific value calculating means for calculating and deriving the lower calorific value of the refuse in the furnace, based on the target calorific value in the furnace and the lower calorific value calculated and derived by the lower calorific value calculating means, A dust supply amount setting unit that sets a dust amount per unit time into the furnace; and a dust supply unit that controls a dust supply operation of a dust supply mechanism based on the dust amount set by the dust amount setting unit. The point is that the control means is constituted.

【0012】〔第2特徴構成の作用効果〕上記第2特徴
構成によれば、ゴミ投入量を、実際に補正されるべき方
向に適正に補正できるようになる。つまり、理論空気量
演算手段で排ガス中の酸素濃度と火炉に供給された空気
量とから理論空気量を演算導出するのはリアルタイムに
実行でき、発生熱量演算手段ではゴミの燃焼に基づく発
生熱量を炉内ゴミの燃焼に基づく発生熱量をプロセスデ
ータに基づき演算導出するから、サンプリング間隔程度
の短時間間隔で炉内の燃焼発熱量を把握でき、低位発熱
量演算手段で前記理論空気量とこの燃焼発熱量とを基に
前記炉内ゴミの低位発熱量を所定の関係式により求める
ように構成してあるから、演算導出された前記低位発熱
量に係わるゴミは、ホッパから給塵機構により火炉に投
入されるゴミと、前記ホッパに同時に投入されたか或い
は少なくとも1回前に前記ホッパに投入されたゴミであ
り、前記投入されるゴミとの性状に大きな差は生じな
い。仮に、前記ホッパに投入されるゴミの性状に、投入
毎に大きな差を生じた場合でも、その大きな差が表れる
のは現状の移動平均を求める時間と較べれば僅かな時間
である。また、性状の変化をもたらす前記ホッパ内での
投入ゴミの境界部が明確に生じても、火炉へのゴミの投
入の際及び投入後にはゴミが攪拌されて、火炉の火床上
では境界が明瞭ではなくなる。
[Function and Effect of Second Characteristic Configuration] According to the second characteristic configuration, the amount of dust input can be properly corrected in the direction in which it should be actually corrected. In other words, the theoretical air amount calculation means can calculate and derive the theoretical air amount from the oxygen concentration in the exhaust gas and the air amount supplied to the furnace in real time, and the generated heat amount calculation means can calculate the generated heat amount based on the combustion of dust. Since the calorific value generated based on the combustion of the refuse in the furnace is calculated and derived based on the process data, the calorific value of the combustion in the furnace can be grasped at a short time interval such as the sampling interval. Since the configuration is such that the lower heating value of the in-furnace dust is determined by a predetermined relational expression based on the heating value, the calculated dust derived from the lower heating value is transferred from the hopper to the furnace by a dust supply mechanism. The dust to be thrown in and the dust to be thrown into the hopper at the same time or at least one time before being thrown into the hopper, and there is no large difference between the dust and the thrown dust. . Even if a large difference occurs in the properties of the refuse to be thrown into the hopper every time the hopper is thrown, the large difference appears only in a short time as compared with the current time for obtaining the moving average. Further, even if a boundary portion of the input dust in the hopper that causes a change in properties is clearly generated, the dust is stirred at the time of and after the input of the dust into the furnace, and the boundary is clear on the grate of the furnace. Not.

【0013】しかも、性状の異なるゴミの混合したもの
が順次燃焼領域に供給されるから、前後のゴミが同時に
燃焼するようになり、演算導出される低位燃焼発熱量は
次第に火炉に投入されるゴミのものに近付くのである。
こうした低位燃焼発熱量を基に、給塵制御手段によっ
て、設定された目標発生熱量を基準として給塵機構の給
塵動作を制御するから、前記給塵機構により前記ホッパ
から火炉に供給されるゴミの給塵速度は、火炉における
ゴミの燃焼発熱量を目標発生熱量に近付けるように制御
されることになり、従って、火炉内の燃焼発熱量と目標
発生熱量との間の乖離を防止できる。その結果、火炉へ
の給塵量を適正に維持できるようになる。
Moreover, since a mixture of dust having different properties is sequentially supplied to the combustion area, the dust before and after is burned at the same time, and the lower combustion calorific value calculated and derived is gradually increased into the furnace. It comes closer to things.
Based on such a low combustion heat value, the dust supply control means controls the dust supply operation of the dust supply mechanism on the basis of the set target heat generation amount, so that the dust supply mechanism supplies dust to the furnace from the hopper. Is controlled so that the amount of heat generated by combustion of the dust in the furnace approaches the target amount of heat, and therefore, it is possible to prevent the difference between the amount of heat generated by combustion in the furnace and the target amount of heat. As a result, the amount of dust supplied to the furnace can be properly maintained.

【0014】[0014]

【発明の実施の形態】上記本発明の請求項2に係るゴミ
焼却炉の実施の形態の一例について、以下に、図面を参
照しながら説明する。図1に示すゴミ焼却設備には、本
発明の請求項1に係る給塵速度制御方法が適用可能であ
る。尚、前記従来の技術において説明した要素と同じ要
素並びに同等の機能を有する要素に関しては、先の図2
に付したと同一の符号を付し、詳細の説明の一部は省略
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a refuse incinerator according to claim 2 of the present invention will be described below with reference to the drawings. The dust supply speed control method according to claim 1 of the present invention is applicable to the refuse incineration equipment shown in FIG. The same elements as those described in the related art and elements having the same functions are described with reference to FIG.
Are given the same reference numerals as in, and a part of the detailed description is omitted.

【0015】図1に示すように、ゴミ焼却設備には、除
塵装置3としてバグフィルタ3Aを備え、燃焼制御装置
10にフィードバックデータを出力すべく、廃熱ボイラ
2からの蒸気の流量を検出する蒸気流量検出手段21
と、その蒸気の温度を検出する蒸気温度検出手段22
と、前記バグフィルタ3A出口の煙道4における排ガス
中の酸素濃度を検出する酸素濃度検出手段23と、火炉
Fにおける発生熱量を検出する発生熱量検出手段20と
して、発生熱量演算手段14を設けてあり、前記発生熱
量演算手段14には前記蒸気流量検出手段21と前記蒸
気温度検出手段22及びその他の発生熱量に関連するプ
ロセスデータが入力される。前記燃焼制御装置10に
は、発生熱量を所定範囲内に維持すべく、給塵機構7の
ゴミ供給速度を制御する給塵制御手段11を備えてい
る。
As shown in FIG. 1, the refuse incineration equipment is provided with a bag filter 3A as a dust removing device 3, and detects a flow rate of steam from the waste heat boiler 2 so as to output feedback data to the combustion control device 10. Steam flow rate detecting means 21
And a steam temperature detecting means 22 for detecting the temperature of the steam.
And an oxygen concentration detecting means 23 for detecting the oxygen concentration in the exhaust gas in the flue 4 at the outlet of the bag filter 3A, and a generated heat amount calculating means 14 as a generated heat amount detecting means 20 for detecting the generated heat amount in the furnace F. In addition, the generated calorific value calculating means 14 receives the steam flow rate detecting means 21, the steam temperature detecting means 22, and other process data relating to the generated heat quantity. The combustion control device 10 is provided with dust supply control means 11 for controlling the dust supply speed of the dust supply mechanism 7 in order to maintain the amount of generated heat within a predetermined range.

【0016】さらに、前記火炉Fからの煙道4の下流側
における排ガス中の酸素濃度として前記酸素濃度検出手
段23で検出した酸素濃度と、前記火炉Fに供給された
空気量とから、前記火炉Fに投入されたゴミの燃焼に要
する理論空気量を演算導出する理論空気量演算手段13
と、前記燃焼制御装置10におけるプロセスデータに基
づき前記火炉Fにおける発生熱量を演算導出する発生熱
量演算手段14と、前記理論空気量演算手段13で演算
導出した理論空気量と、前記発生熱量演算手段14で演
算導出した発生熱量とを基に、炉内ゴミの低位発熱量を
演算導出する低位発熱量演算手段15とを備えている。
Further, based on the oxygen concentration detected by the oxygen concentration detecting means 23 as the oxygen concentration in the exhaust gas downstream of the flue 4 from the furnace F, and the amount of air supplied to the furnace F, Theoretical air amount calculating means 13 for calculating and deriving the theoretical air amount required for the combustion of the refuse introduced into F
A generated calorific value calculating means 14 for calculating and deriving the generated heat amount in the furnace F based on the process data in the combustion control device 10; a theoretical air amount calculated and derived by the theoretical air amount calculating means 13; And a lower calorific value calculating means 15 for calculating and deriving a lower calorific value of the in-furnace dust based on the generated calorific value calculated and derived in 14.

【0017】前記給塵制御手段11は、前記火炉におけ
る目標発生熱量と前記演算導出したゴミの低位発熱量と
に基づき、前記火炉Fへの単位時間当たりのゴミ投入量
を設定する給塵量設定手段12を備えて、前記設定した
ゴミ投入量に基づき前記給塵機構7の給塵動作を制御す
るように構成してある。
The dust supply control means 11 sets a dust supply amount for setting a dust input amount per unit time to the furnace F based on a target generated heat amount in the furnace and the calculated lower heat generation amount of the dust. Means 12 are provided to control the dust feeding operation of the dust feeding mechanism 7 based on the set dust input amount.

【0018】上記ゴミ焼却炉の給塵機構7の制御のため
の給塵量の設定は以下のようにして行われる。つまり、
先ず理論空気量演算手段13において、前記酸素濃度検
出手段23で検出した排ガス中の酸素濃度と(Po)と、前
記燃焼制御装置10に入力されるプロセスデータに基づ
き得られる火炉Fに供給された空気量(Fa)とから炉内の
ゴミの燃焼に要する理論空気量(At)を求め、予め前記理
論空気量(At)と炉内のゴミ低位発熱量(Hu)とに関する経
験式を基に、低位発熱量演算手段15で、廃熱ボイラ2
で発生した蒸気の温度(Ts)及び流量(Gs)を主とする前記
燃焼制御装置10に入力されるプロセスデータから前記
火炉Fにおける発生熱量(Qo)を求め、この発生熱量(Qo)
と前記理論空気量演算手段13で求めた理論空気量(At)
とを基に、所定の関係式に基づいて前記低位発熱量(Hu)
を求める。ここに、前記廃熱ボイラ2で発生する蒸気の
総エンタルピと、排ガスの持ち去る熱量とが主な出熱量
であり、前記廃熱ボイラ2への給水の総エンタルピと、
火炉への供給空気の持ち込む熱量とが主な入熱量であ
り、前記発生熱量(Qo)は、この出熱量から入熱量を減じ
たものとして求められる。ここに、前記蒸気の総エンタ
ルピは、前記流量(Gs)と前記温度(Ts)の積に蒸気の定圧
比熱を乗じて得られるものであるが、他に大きい熱損失
がある場合にはその熱損失を前記出熱量に加算すればよ
く、さらに、排ガス冷却を行っている場合には、冷却熱
量も出熱量に加算される。排ガスに冷却用空気或いは噴
霧水を吹き込んでいる場合には、この持ち込み熱量を入
熱量に加算すればよく、また、二次燃焼領域に攪拌用ガ
スを吹き込んでいる場合には、その持ち込み熱量も前記
入熱量に加算される。上記低位発熱量演算手段15で求
めた低位発熱量(Hu)と、前記燃焼制御装置10で設定さ
れる前記火炉における目標発生熱量(Qs)とから、給塵量
設定手段12では、 Gr = Qs / Hu として前記給塵機構7から単位操作当たりに投入される
べきゴミ投入量(Gr)を設定する。
The setting of the dust supply amount for controlling the dust supply mechanism 7 of the refuse incinerator is performed as follows. That is,
First, in the theoretical air amount calculating means 13, the oxygen concentration in the exhaust gas detected by the oxygen concentration detecting means 23 and (Po) were supplied to the furnace F obtained based on the process data inputted to the combustion control device 10. From the air amount (Fa) and the theoretical air amount (At) required for the combustion of the refuse in the furnace is determined based on an empirical formula relating to the theoretical air amount (At) and the lower heat generation value of the refuse in the furnace (Hu) in advance. , The lower heating value calculating means 15 and the waste heat boiler 2
The amount of heat (Qo) generated in the furnace F is obtained from process data input to the combustion control device 10 mainly including the temperature (Ts) and flow rate (Gs) of the steam generated in
And the theoretical air amount (At) obtained by the theoretical air amount calculating means 13
And based on a predetermined relational expression, the lower heating value (Hu)
Ask for. Here, the total enthalpy of steam generated in the waste heat boiler 2 and the amount of heat removed by the exhaust gas are the main heat output, and the total enthalpy of water supplied to the waste heat boiler 2;
The amount of heat brought into the furnace by the supplied air is the main amount of heat input, and the amount of generated heat (Qo) is obtained by subtracting the amount of heat input from the amount of heat output. Here, the total enthalpy of the steam is obtained by multiplying the product of the flow rate (Gs) and the temperature (Ts) by the specific heat at constant pressure of the steam. The loss may be added to the heat output, and when exhaust gas cooling is performed, the cooling heat is also added to the heat output. If cooling air or spray water is blown into the exhaust gas, the amount of heat brought in may be added to the amount of heat input, and if the gas for stirring is blown into the secondary combustion region, the amount of heat brought in It is added to the heat input. Based on the lower heating value (Hu) obtained by the lower heating value calculation means 15 and the target generated heat amount (Qs) in the furnace set by the combustion control device 10, the dust supply amount setting means 12 obtains Gr = Qs The dust input amount (Gr) to be input per unit operation from the dust supply mechanism 7 is set as / Hu.

【0019】上記理論空気量演算手段13における演算
の一例を示すと、排ガス中の酸素濃度をPoとし、前記火
炉Fに供給された空気量をFaとすれば、 At = Fa ×(1− Po / 0.21) として炉内のゴミの燃焼に要する理論空気量(At)を求め
ることができる。また、予め前記理論空気量(At)と炉内
ゴミの低位発熱量(Hu)とに関する経験式の一例を示す
と、例えば1週間の操炉実績から、 At = 2.019 × Hu − 1227 とすることができる。そして、低位発熱量演算手段15
での算式の一例を示すと、上記経験式を基に、両定数を
用いて、前記火炉Fにおける発生熱量をQoとし、前記理
論空気量をAtとして、 Hu = 1227 × Qo / ( 2.019 × Qo − At ) とした関係式を定めて前記低位発熱量(Hu)を求めること
ができる。
An example of the calculation by the theoretical air amount calculation means 13 is as follows: If the oxygen concentration in the exhaust gas is Po and the amount of air supplied to the furnace F is Fa, At = Fa × (1-Po /0.21) to calculate the theoretical air volume (At) required for the combustion of refuse in the furnace. In addition, an example of an empirical formula regarding the theoretical air amount (At) and the lower heating value (Hu) of the in-furnace garbage is shown in advance. For example, based on one-week furnace operation results, At = 2.019 × Hu-1227 Can be. Then, the lower heating value calculating means 15
As an example of the formula in the above, based on the above empirical formula, using both constants, the amount of heat generated in the furnace F is defined as Qo, and the theoretical air amount is defined as At, and Hu = 1227 × Qo / (2.019 × Qo) -At)), the lower heating value (Hu) can be obtained.

【0020】次に、本発明の他の実施の形態について説
明する。 〈1〉上記実施の形態に於いては、ゴミ焼却炉にストー
カ機構1bで構成される火床を備えた例について説明し
たが、前記火床は他の形式のものであってもよい。 〈2〉上記実施の形態に於いては、除塵装置3としてバ
グフィルタ3Aを備えた例について説明したが、前記除
塵装置3は例えば電機集塵機等の他の形式のものであっ
てもよい。 〈3〉上記実施の形態に於いては、廃熱ボイラ2を備え
るゴミ焼却設備の例について説明したが、前記廃熱ボイ
ラ2を備えず、ガス冷却機構により排ガスを冷却するも
のであってもよい。この場合には、発生熱量(Qo)は、先
述のように冷却用空気或いは噴霧水の冷却熱量を主とし
て求めればよい。 〈4〉上記実施の形態に於いては、酸素濃度検出手段2
3をバグフィルタ3A出口に設けた例について説明した
が、前記酸素濃度検出手段23は他の煙道4に設けられ
てあってもよく、例えば、燃焼反応の完結している廃熱
ボイラ2出口或いはガス冷却機構出口に配置してあって
もよい。 〈5〉上記実施の形態に於いては、ゴミの低位発熱量(H
u)と理論空気量(At)の関係式を一次近似式として求めた
結果を用いて低位発熱量演算手段15での低位発熱量(H
u)算出に用いる例について説明したが、前記関係式を用
いることなく、炉内のゴミの燃焼量を判定する手段を設
けて、発生熱量(Qo)と求めた燃焼量とから低位発熱量(H
u)を求めるようにしてあってもよい。 〈6〉上記実施の形態に於いては、ゴミの低位発熱量(H
u)をプロセスデータに基づいて求めるように説明した
が、サンプリング毎に記憶手段に記憶しておいて、適宜
の時間の平均値を求めて平均低位発熱量として求めるよ
うにしてあってもよい。 〈7〉上記実施の形態に於いては、ゴミの嵩密度の算出
については触れなかったが、ホッパ1aに投入する際の
クレーンの掴み量と掴み重量とから前記ホッパ1a内の
ゴミの平均嵩密度を求めて火炉F内に投入されるゴミの
嵩密度としてもよく、予めゴミの低位発熱量と嵩密度の
相関を求めておいて、低位発熱量演算手段15で火炉F
内のゴミの低位発熱量(Hu)を求めた際に、同時に嵩密度
を算出するようにしてあってもよい。 〈8〉上記実施の形態に於いては、給塵量設定手段12
で火炉Fにおける目標発生熱量(Qs)と低位発熱量演算手
段15で求めた炉内ゴミの低位発熱量(Hu)とからゴミ投
入量(Gr)を求める例について説明したが、前記目標発生
熱量(Qs)は、廃熱ボイラ2からの蒸気発生量を基準に定
めてもよいが、さらに1日のゴミの焼却目標を基にこれ
を補正するようにしてあってもよい。つまり、設備の操
業条件によって、優先されるべきものが発電量であった
り、ゴミの焼却処理量であったりするから、目的に応じ
て設定条件を変更できるようにしてあればよいのであ
る。また、例えば、施設内で蒸気の消費のある場合に
は、蒸気溜めをバッファとして用いることができるか
ら、発生蒸気量を主体に前記ゴミ投入量(Gr)を設定でき
る。
Next, another embodiment of the present invention will be described. <1> In the above embodiment, an example was described in which the garbage incinerator was provided with a grate constituted by the stoker mechanism 1b, but the grate may be of another type. <2> In the above embodiment, the example in which the bag filter 3A is provided as the dust removing device 3 has been described. However, the dust removing device 3 may be of another type such as an electric dust collector. <3> In the above-described embodiment, an example of the refuse incineration facility including the waste heat boiler 2 has been described. However, even if the waste heat boiler 2 is not provided and the exhaust gas is cooled by the gas cooling mechanism, Good. In this case, the amount of generated heat (Qo) may be obtained mainly from the cooling heat of the cooling air or spray water as described above. <4> In the above embodiment, the oxygen concentration detecting means 2
Although the example in which the fuel cell 3 is provided at the outlet of the bag filter 3A has been described, the oxygen concentration detecting means 23 may be provided in another flue 4 and, for example, the outlet of the waste heat boiler 2 where the combustion reaction is completed. Alternatively, it may be arranged at the outlet of the gas cooling mechanism. <5> In the above embodiment, the lower heating value (H
u) and the theoretical air amount (At) as a first-order approximation formula, and using the result obtained by the lower heating value calculation means 15
u) Although the example used for the calculation has been described, without using the above-mentioned relational expression, a means for determining the amount of combustion of dust in the furnace is provided, and the lower heating value (Qo) and the calculated combustion amount are used to determine the lower heating value ( H
u) may be required. <6> In the above embodiment, the lower heating value (H
Although u) has been described as being obtained based on the process data, it may be stored in the storage unit for each sampling, and an average value of an appropriate time may be obtained as an average lower heating value. <7> In the above embodiment, the calculation of the bulk density of the garbage was not described, but the average volume of the garbage in the hopper 1a was determined based on the amount of the crane grasped and the grasped weight when the crane was put into the hopper 1a. The density may be obtained as the bulk density of the refuse to be charged into the furnace F. The correlation between the lower heating value of the refuse and the bulk density may be obtained in advance, and the lower heating value calculating means 15 may use the lower heating value calculator 15 to calculate the density.
The bulk density may be calculated at the same time when the lower calorific value (Hu) of the garbage inside is obtained. <8> In the above embodiment, the dust supply amount setting means 12
In the example described above, the target heat generation amount (Gr) is obtained from the target heat generation amount (Qs) in the furnace F and the lower heat generation amount (Hu) of the in-furnace debris obtained by the lower heat generation amount calculation means 15. (Qs) may be determined based on the amount of steam generated from the waste heat boiler 2, or may be corrected based on the target of incinerating garbage for one day. In other words, depending on the operating conditions of the equipment, the priority should be the amount of power generation or the amount of incineration of garbage, so that it is sufficient if the setting conditions can be changed according to the purpose. Further, for example, when steam is consumed in the facility, the steam reservoir can be used as a buffer, so that the dust input amount (Gr) can be set mainly based on the amount of generated steam.

【0021】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるゴミ焼却炉の説明図FIG. 1 is an explanatory view of a garbage incinerator according to the present invention.

【図2】従来のゴミ焼却炉の説明図FIG. 2 is an explanatory view of a conventional refuse incinerator.

【符号の説明】[Explanation of symbols]

2 廃熱ボイラ 4 煙道 7 給塵機構 11 給塵制御手段 12 給塵量設定手段 13 理論空気量演算手段 14 発生熱量演算手段 15 低位発熱量演算手段 F 火炉 At 理論空気量 Fa 供給空気量 Gr ゴミ投入量 Hu ゴミの低位発熱量 Po 排ガス中酸素濃度 Qo 発生熱量 Qs 目標発生熱量 2 Waste heat boiler 4 Flue 7 Dust supply mechanism 11 Dust supply control means 12 Dust supply amount setting means 13 Theoretical air amount calculation means 14 Generated heat amount calculation means 15 Lower heating value calculation means F Furnace At theoretical air amount Fa Supply air amount Gr Waste input amount Hu Low heat generation amount of garbage Po Oxygen concentration in exhaust gas Qo Generated heat amount Qs Target generated heat amount

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投入されたゴミを搬送しながら焼却処理
する火炉(F)における発生熱により蒸気を発生する廃
熱ボイラ(2)を備え、前記火炉(F)における発生熱
量(Qo)を所定範囲内に維持すべく、給塵機構(7)によ
る前記火炉(F)への単位時間当たりのゴミ投入量(Gr)
を制御するゴミ焼却炉の給塵速度制御方法であって、 炉内のゴミの燃焼に要する理論空気量(At)を、前記火炉
(F)からの燃焼排ガスを導く煙道(4)の下流側にお
ける排ガス中の酸素濃度(Po)と、前記火炉(F)に供給
された空気量(Fa)とから求め、 予め前記理論空気量(At)と炉内ゴミの低位発熱量(Hu)と
に関する At = a1 × Hu + a2 (但し、a1,a2 は夫々実測値に基づき設定される定数) とする経験式を求めておき、 前記低位発熱量(Hu)を、プロセスデータから求められる
前記火炉(F)におけるゴミの燃焼に基づく発生熱量(Q
o)と、前記理論空気量(At)とに基づく Hu = b1 × Qo / ( At − b2 × Qo ) (但し、b1,b2 は夫々設定される定数) として定められる関係式に基づいて求めて、 前記ゴミ投入量(Gr)を、前記火炉における目標発生熱量
(Qs)と前記求めた低位発熱量(Hu)とに基づき、 Gr = Qs / Hu として求めて前記給塵機構(7)を制御するゴミ焼却炉
の給塵速度制御方法。
1. A waste heat boiler (2) for generating steam by heat generated in a furnace (F) for incineration processing while transporting input garbage, wherein the amount of heat (Qo) generated in the furnace (F) is predetermined. The amount of dust (Gr) charged per unit time to the furnace (F) by the dust supply mechanism (7) to keep it within the range
A method for controlling a dust supply rate of a refuse incinerator, comprising: controlling a theoretical air amount (At) required for combustion of refuse in a furnace downstream of a flue (4) for leading flue gas from the furnace (F). Obtained from the oxygen concentration (Po) in the exhaust gas on the side and the amount of air (Fa) supplied to the furnace (F), the theoretical air amount (At) and the lower heating value (Hu) of the refuse in the furnace are determined in advance. An empirical formula of At = a 1 × Hu + a 2 (where a 1 and a 2 are constants set based on actually measured values) is obtained in advance, and the lower heating value (Hu) is obtained from process data. The calorific value (Q) based on the burning of refuse in the furnace (F)
and o), the theoretical amount of air (At) and based on the Hu = b 1 × Qo / ( At - b 2 × Qo) ( where, b 1, b 2 is the relation defined as a constant), which are respectively set The amount of garbage input (Gr) is calculated based on the target amount of heat generated in the furnace.
(Qs) and a method of controlling the dust supply speed of a refuse incinerator, wherein Gr = Qs / Hu is determined based on the determined lower heating value (Hu) to control the dust supply mechanism (7).
【請求項2】 ホッパ(1a)から火炉(F)にゴミを
投入する給塵機構(7)と、前記火炉(F)に投入され
たゴミの焼却生成熱により蒸気を発生する廃熱ボイラ
(2)と、前記火炉(F)における発生熱量を検出する
発生熱量検出手段(20)と、前記発生熱量を所定範囲
内に維持すべく、前記給塵機構(7)のゴミ供給速度を
制御する給塵制御手段(11)とを備えるゴミ焼却炉で
あって、 前記火炉(F)からの燃焼排ガスを導く煙道(4)の下
流側における排ガス中の酸素濃度と、前記火炉(F)に
供給された空気量とから、前記火炉(F)に投入された
ゴミの燃焼に要する理論空気量を演算導出する理論空気
量演算手段(13)と、 プロセスデータに基づき前記火炉(F)におけるゴミの
燃焼に基づく発生熱量を演算導出する発生熱量演算手段
(14)と、 前記演算導出した理論空気量と、前記演算導出した発生
熱量とを基に、炉内ゴミの低位発熱量を演算導出する低
位発熱量演算手段(15)とを備え、 前記給塵制御手段(11)を、前記火炉における目標発
生熱量と前記演算導出した低位発熱量とに基づき、前記
火炉(F)への単位時間当たりのゴミ投入量を設定する
給塵量設定手段(12)を備えて、前記設定したゴミ投
入量に基づき前記給塵機構(7)の給塵動作を制御する
ように構成してあるゴミ焼却炉。
2. A dust supply mechanism (7) for introducing garbage from the hopper (1a) to the furnace (F), and a waste heat boiler (14) for generating steam by heat generated by incineration of the garbage charged into the furnace (F). 2), a generated heat amount detecting means (20) for detecting the generated heat amount in the furnace (F), and controlling a dust supply speed of the dust supply mechanism (7) so as to maintain the generated heat amount within a predetermined range. A refuse incinerator provided with dust supply control means (11), wherein an oxygen concentration in exhaust gas on a downstream side of a flue (4) for leading a combustion exhaust gas from the furnace (F) is provided to the furnace (F). A theoretical air amount calculating means (13) for calculating and calculating a theoretical air amount required for burning the refuse charged into the furnace (F) from the supplied air amount; and a refuse in the furnace (F) based on process data. For calculating the calorific value based on the combustion of coal An amount calculator (14); and a lower calorific value calculator (15) for calculating and calculating a lower calorific value of the in-furnace dust based on the calculated theoretical air amount and the calculated calorific value. The dust supply control means (11) sets a dust supply amount per unit time to the furnace (F) based on a target generated heat amount in the furnace and the calculated lower heating value. A refuse incinerator comprising means (12) and configured to control a dust supply operation of the dust supply mechanism (7) based on the set dust input amount.
JP26401297A 1997-09-29 1997-09-29 Dust supply speed control method for refuse incinerator and refuse incinerator Expired - Fee Related JP3556078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26401297A JP3556078B2 (en) 1997-09-29 1997-09-29 Dust supply speed control method for refuse incinerator and refuse incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26401297A JP3556078B2 (en) 1997-09-29 1997-09-29 Dust supply speed control method for refuse incinerator and refuse incinerator

Publications (2)

Publication Number Publication Date
JPH11101421A true JPH11101421A (en) 1999-04-13
JP3556078B2 JP3556078B2 (en) 2004-08-18

Family

ID=17397332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26401297A Expired - Fee Related JP3556078B2 (en) 1997-09-29 1997-09-29 Dust supply speed control method for refuse incinerator and refuse incinerator

Country Status (1)

Country Link
JP (1) JP3556078B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089819A (en) * 2000-09-21 2002-03-27 Kubota Corp Combustion control method and combustion control device
JP2002333120A (en) * 2001-05-14 2002-11-22 Kawasaki Steel Corp Method of presuming composition and lower calorific value of waste and waste disposal method
JP2015224822A (en) * 2014-05-28 2015-12-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068514A (en) * 1996-06-21 1998-03-10 Nkk Corp Combustion controlling method for refuse incinerating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068514A (en) * 1996-06-21 1998-03-10 Nkk Corp Combustion controlling method for refuse incinerating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089819A (en) * 2000-09-21 2002-03-27 Kubota Corp Combustion control method and combustion control device
JP2002333120A (en) * 2001-05-14 2002-11-22 Kawasaki Steel Corp Method of presuming composition and lower calorific value of waste and waste disposal method
JP2015224822A (en) * 2014-05-28 2015-12-14 Jfeエンジニアリング株式会社 Waste incinerator and waste incineration method

Also Published As

Publication number Publication date
JP3556078B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
US20080163803A1 (en) Method and systems to control municipal solid waste density and higher heating value for improved waste-to-energy boiler operation
JPH1068514A (en) Combustion controlling method for refuse incinerating furnace
JP3688644B2 (en) Method for estimating in-furnace waste retention distribution in incinerator and combustion control method and apparatus using the method
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP4099195B2 (en) Combustion control system for waste incinerator without boiler equipment
JP2005024126A (en) Combustion control method
WO1991014915A1 (en) Method of controlling combustion in fluidized bed incinerator
CN115479276A (en) Control device, waste incineration facility, control method, and program
JP2003269712A (en) Combustion control device and combustion control method for thermal decomposition gasification melting furnace
JPH0240410A (en) Automatic combustion control of municipal waste incinerating furnace
JPH0470528B2 (en)
CN114568031A (en) Waste combustion device and waste combustion method
JP3902454B2 (en) Combustion control method and waste treatment apparatus
US7845291B2 (en) Control method for waste incineration plants with auxiliary burner operation
JPH09324907A (en) Predetermined amount supply method of garbage in garbage incinerator
JPH08159436A (en) Combustion control method of waste melting furnace
KR100434650B1 (en) Automatic Combustion Control System for Stoker Type Refuse Incinerator
JPH09273732A (en) Control method of combustion in incinerating furnace
JP2002181320A (en) Waste gasification combustion system and method therefor
JP2001349520A (en) Incinerator for general wastes and operating method therefor
JPH0157245B2 (en)
JP3850228B2 (en) Dust supply control method in incinerator
JPH11108327A (en) Garbage incinerator and combustion control method
JP3665476B2 (en) Combustion control device for incinerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees